The Exploration of Integrating the Midjourney Artificial Intelligence Generated Content Tool into Design Systems to Direct Designers towards Future-Oriented Innovation
将中途人工智能生成内容工具整合到设计系统中,引导设计师朝着面向未来的创新方向探索
北京航空航天大学机械工程与自动化学院工业设计系,中国北京 100191
清华大学艺术与设计学院,中国北京 100084
应该联系的作者。
系统 2023 年,11(12),566;https://doi.org/10.3390/systems11120566
收到提交日期:2023 年 10 月 30 日 / 修订日期:2023 年 11 月 27 日 / 接受日期:2023 年 11 月 30 日 / 发表日期:2023 年 12 月 4 日
本文属于《设计系统与社会转型中的未来思维》专题
Abstract 摘要
在计算能力迅猛扩张的时代,人工智能生成内容(AIGC)技术的出现为设计的未来带来了前所未有的机遇和挑战。对设计师来说,研究如何有效利用这一强大工具以促进创新至关重要。随着 AIGC 技术的发展,它必然会改变设计师的期望,迫使他们深入探讨设计创意的本质,超越传统的素描或建模技能。本研究为设计师提供了关于如何利用 AIGC 进行前瞻性设计创新的宝贵见解。我们关注代表性的 AIGC 工具“Midjourney”,探讨其如何融入设计系统以促进内容创作者之间的协作创新。我们介绍了基于 AIGC 的 Midjourney 产品设计路径,并提出了一个支持工具卡片套装:AMP-Cards。为了确认它们的实用性,我们通过先进的原型设计研究、任务特定项目实践和跨学科协作研讨会进行了广泛验证。 我们的研究结果表明,AIGC 可以显著提高设计师在产品开发过程中的效率,特别是在“探索性产品形状”阶段。该技术在识别设计风格和快速生成多样化设计方案方面表现出色。此外,AIGC 快速将创作者的概念转化为视觉形式的能力极大地促进了跨学科团队的沟通和创新。
关键词:AIGC;设计师-AI 协作;跨学科合作;面向未来的设计
1. Introduction 1. 引言
在人工智能生成内容(AIGC)蓬勃发展的领域中,我们正在见证一种技术进化,超越了设计师传统生产的限制,为无限内容生成开辟了前所未有的能力。目前,AIGC 的应用范围从媒体和教育延伸到娱乐、营销和科学研究,突显了这项技术为用户提供高质量、高效和个性化内容服务的潜力。AIGC 的进展将重塑设计师的工作方法,并影响设计行业的合作模式。一些人工智能(AI)工具正日益影响设计领域。例如,ChatGPT 聊天机器人可以进行逻辑对话,并生成自发的文案、小说、剧本和论文,从而增强人机交互。另一个例子是稳定扩散 AI 绘画模型,在国际艺术比赛中获得了多个奖项,因其创作的作品而备受赞誉。Midjourney,根植于稳定扩散 AI 绘画范式,是一种以文本驱动的图像生成工具。 仅凭文字提示,Midjourney 可以在大约一分钟内生成相应的图像。Midjourney 利用人类直觉和机器智能之间的协同合作,赋予专业内容创作者和更广泛的观众超越传统“技术”和“效率”范围的构想和创作能力。最近的版本,Midjourney 5.2,引入了诸如对象锁定、部分重绘和绘图风格选择等功能,扩大了其在产品设计、动画、游戏和时尚等各个领域的适用性。此外,它始终提供领先质量和创意的图像。
作为技术进步和智力进步的体现,人工智能引导设计师转变为智能设计师。人工智能的快速演进使其不仅仅是设计工具;它还展现出一定程度的创造力,引发了围绕“人工智能会取代设计师吗?”的争论。我们认为,人工智能与人类设计师之间的关系应被视为互补而非替代性的。 “人类智慧+人工智能”或“融合智能”的协同作用可能会出现。人工智能充当协作伙伴,与设计师建立共生关系,并系统地引导他们的创新思维。在 Midjourney 的案例中,该工具在人工智能共同设计的基本模块上取得了突破,并成功地融入了设计创新过程。在这里,我们采用了双钻石模型,这是一种结构化和迭代的方法,用于描述设计过程,包括定义(设计定义)、发现(设计研究)、开发(设计生成)和交付(设计实施)。 正如我们从图 1 中所看到的,Midjourney AIGC 工具在设计研究和概念设计的两个关键阶段中发挥着重要作用,实现快速可视化并促进跨学科背景下的高效沟通。对于研究人员来说,Midjourney 的快速可视化能力提供了一种新颖的研究工具,激发了想法,支持形态学研究,并提高了试验的效率。对于公司而言,Midjourney 在提高设计效率方面起着关键作用。其使用 Vincennes 图表的方式提供了一种表达 A 和 B 双方需求的新途径。同时,Midjourney 显著降低了设计师软件学习的成本,降低了设计表达的障碍,并提升了跨学科团队的沟通效率。通过人工智能的协作,设计过程将变得更加系统化和高效,使设计师能够更深入地进行设计研究。这将使他们能够整合来自各个学科的知识,建立对关键跨学科挑战的理解,并更好地为解决未来的设计问题做好准备。
本文旨在探讨如何将 Midjourney AIGC 工具整合到设计创新系统中,以赋予设计师未来导向的设计素养,涵盖不同形式的产品创新和跨学科合作。具体而言,我们探讨以下三个研究问题:
- RQ1: How does AIGC assist designers in developing leading-edge exploratory product design innovations?
RQ1:AIGC 如何帮助设计师开发领先的探索性产品设计创新? - RQ2: How does AIGC rapidly empower designers to focus on task-oriented product design practices?
RQ2:AIGC 如何快速赋能设计师专注于面向任务的产品设计实践? - RQ3: How does AIGC facilitate the communication of interdisciplinary collaboration in design innovation?
RQ3:AIGC 如何促进设计创新中跨学科合作的沟通?
2. Methods 2. 方法
我们选择了 AI 绘图工具 Midjourney 作为示例,以展示 AIGC 如何在设计实践中与设计师合作和创新。这个过程可以分为以下四个主要步骤:
- Step 1—Introduction of AMP-Cards: Propose the formula-based AIGC Midjourney Prompt cards for product design;
步骤 1—引入 AMP 卡片:提出基于公式的 AIGC 中途提示卡片,用于产品设计; - Step 2—Conducting leading-edge exploratory program practices: Develop product design concepts through prototype-based design research;
第二步——进行领先的探索性项目实践:通过基于原型的设计研究开发产品设计概念; - Step 3—Undertaking enterprise design task-oriented project practice: Delve into how AIGC empowers designers to advance their design practice through examples of projects.
第三步——进行以企业设计任务为导向的项目实践:深入探讨 AIGC 如何通过项目示例赋予设计师推进他们的设计实践。 - Step 4—Hosting interdisciplinary collaborative design workshops: Investigate the influence of AIGC on interdisciplinary collaboration for design innovation through a design workshop, and gather participants’ feedback through interviews.
第四步—举办跨学科协作设计研讨会:通过设计研讨会调查 AIGC 对设计创新跨学科协作的影响,并通过访谈收集参与者的反馈。
2.1. Step 1: AIGC-Based Midjourney Prompt Cards for Product Design
2.1. 步骤 1:基于 AIGC 的产品设计中程提示卡
Midjourney 是一种生成式人工智能服务,可以根据所谓的提示从自然语言描述中创建图像;因此,给出正确的命令非常重要。图 2 总结了我们对 Midjourney 的使用方式如下:(1)输入两个风格迁移参考地图并生成融合地图;(2)将融合地图与提示公式结合;(3)选择预期解决方案;(4)使用提示公式对预期解决方案进行迭代;(5)选择最终解决方案。
提示的标准化和准确性极大地影响使用 Midjourney 生成的图像的质量[15]。根据文献综述[16,17,18]和我们团队的实践经验,我们提出以下产品设计公式:
参考图像 + 目标产品(声音设计)+ 设计学科(工业设计)+ CMF(阳极氧化铝,冷冲压)+ 设计主义(现代主义)+ 设计师/品牌(Ditramus/苹果)+ 摄像头视图(侧视图)+ 背景(白色背景)+ 渲染方法(OC 渲染/虚拟渲染)+ 灯光(全局照明)+ 锐度(4K)。
此外,结合许多实际经验,使用提示公式创建了一套应用卡——基于 AIGC 的产品设计中程提示卡(图 3)。这些卡片为初学者中程设计师提供了一个方便的工具,通过提供简洁的指导,帮助他们从产品概念进展到产品形态。有经验的设计师也可以使用这些卡片模板来创建和扩展他们的工作领域,这需要一个提示卡。
图 3. 基于 AIGC 的产品设计中程提示卡(AMP-Cards)。请注意,卡片中的所有图像均由 Midjourney 创建。
AMP 卡片可以根据其创建者积累的 AIGC 应用经验进行扩展。为了促进其产品设计 AIGC 提示卡的扩展,我们总结并整理了一些与产品设计密切相关且影响生成质量的关键词(表 1),以便创建者可以通过 Midjourney 快速生成所需的设计解决方案[19, 20]。
2.2. Step 2: AIGC Empowers Product Design Innovation for Leading-Edge Prototyping Exploration
2.2. 第二步:AIGC 推动产品设计创新,为领先的原型探索提供支持
未来设计越来越注重设计系统的整合和创新。对设计师资格的要求不再局限于他们的设计技能;相反,更加强调对设计系统的理解,即与设计相关的跨学科知识和能力的融合。因此,设计师更有可能从跨学科的视角进行设计研究,发掘更深层次的设计灵感,并创造富有原则性质的创新设计。借助 AIGC 协作设计,设计师可以节省更多精力专注于研究设计灵感,特别是那些源自现实世界的灵感,例如仿生学。通过深入其他领域,他们能够发现更广泛范围的设计灵感。
利用基于对珍珠扇贝形态学研究的设计应用程序,演示 AIGC 如何协助设计师进行前沿原型探索的设计创新。我们分析了关于珍珠扇贝的现有研究,特别关注了其进化适应恶劣环境的独特结构。通过 Canny 边缘检测,我们处理了来自图 4a 的四十九张扇贝图像进行边缘提取。结果显示,识别出两种形态学模式,并在图 4b 中呈现。在这个过程中,我们利用参数化设计进行形状拟合和规则性验证,为中途生成铺平了道路。
图 4. 珍珠贝壳图像处理:(a) 珍珠扇贝图像采集;(b) 边缘检测。
模式 1:这些壳具有拱形而不是半圆形的脊,夹杂着微小的凹槽,如图 5 所示,这种设计增强了它们对压力的抵抗力。为了分析这种特殊形状,我们使用了 Ameba,这是 Rhino 7.4 建模软件的拓扑优化插件,根据建模结构验证了形态。我们发现拱形在改善地面接触时的压力分布中起着重要作用。此外,在将双向演化结构优化(BESO)应用于拱形的 59 次迭代后,脊上出现了一种细微的凹槽结构。这种结构类似于珍珠贝中看到的平行排列,证实了模式 1 的有效性。
图 5. 珍珠扇贝的形态学研究。在选择对象后,我们创建了一个拓扑图来说明扇贝的层次结构:第 1 级(A)和第 2 级(B,A 的组成部分)。珍珠扇贝分为壳 A1、软部分 A2 和眼睛 A3。壳 A1 进一步分为脊 B1 和槽 B2,而软部分分为肌肉 B3 和鳃 B4。
模式 2:珍珠扇贝在分隔脊和槽的扇形生长模式中,与传统的同心扇形相比,半径逐渐增加的等差扇形,倾向于从外到内逐渐加密,这种结构有效地减少了压力集中的问题。在这种情况下,采用圆形插值混合算法来模拟生长模式稀疏性的变化,通过拟合形态。利用 Rhino 建模软件,我们构建了一个经典的曲线轴结构,然后使用 Ameba 插件进行有限元分析来验证这种结构[21,22](图 5)。
珍珠扇贝的形态启发了潜水艇的设计,这是一种人造水下产品。我们应用了 AMP-Cards,并在 Midjourney 中输入了以下关键词:自主水下车辆设计,工业设计,阳极氧化铝,深灰色,热压工艺,未来主义,技术性,工作室照明,白色背景,8k,照片逼真,呈工业和技术主题风格的拱形结构,拱形切割模板,以太阳朋克风格呈现。拱形展示了一个带有锋利边缘并呈波浪图案的结构。图 6 展示了具体的生成过程:受到六个参考的限制,首先进行了三个系列的概念设计尝试,然后选择了三个初步解决方案。使用 Midjourney 的“/blend”命令,将三个解决方案组合并迭代生成最终解决方案。该解决方案强调了珍珠扇贝脊的结构,并在中央突起处加入凹槽以增强壳体的强度。外部结构是半封闭的,边缘形态反映了珍珠扇贝的不规则边缘。
图 6. 根据珍珠扇贝形态学研究设计的潜艇,是 AIGC 合作的成果。提出了五个维度来评估 AIGC 生成结果,从形态设计的角度来看。
上述案例展示了 AIGC 的协作影响,正如 Midjourney 所展示的,将设计灵感迅速可视化(转化)为概念设计解决方案。它可以为设计师高效地生成多个抽象解决方案,显著减少设计师在概念设计的“塑造”阶段的工作量。这种效率使设计师能够将更多时间和精力投入到灵感研究中,激发更深层次的创新能力,并促进跨学科合作以解决更复杂的问题(图 7)。这种 AIGC 共同设计的方法可能成为工业设计师未来操作方法的模式。
2.3. Step 3: AIGC Assists Companies in Designing Task-Oriented Practice Programs
2.3. 步骤 3:AIGC 协助公司设计面向任务的实践计划
AIGC 在掌握设计风格和快速输出多种解决方案方面具有显著优势,有助于公司委托设计的快速和迭代进展,特别是在注重样式的项目中[27]。以 Midjourney 为例,设计的成功取决于两个关键因素:(i) 根据公司的规格标准确定并上传与所需设计风格一致的参考资料;(ii) 输入适当的提示以便 AIGC 生成逻辑。提示是设计师和 AIGC 之间的主要交互方式,选择正确的提示词对于最大化 AIGC 的效率至关重要,使其能够快速生成大量设计解决方案供设计师选择。
我们提供了一份关于 Flying Aerospace(北京)飞行器设计的案例研究,其中传统飞行器配备了垂直起降(eVTOL)功能,除了标准的地面操作外。该公司对这个项目的主要设计要求包括(i)具有吸引力的时尚设计和可行的结构;(ii)过渡到特斯拉 Cybertruck 设计风格;(iii)在二十四小时内完成设计。在分析 Cybertruck 的“坚不可摧的外骨骼”造型感知后,我们将其设计元素(如形态风格、材料和配色方案)转化为文本描述,以准备撰写提示。AIGC-Midjourney 和我们的设计团队共同致力于外观设计。为了提高提示的准确性,我们使用了 Midjourney 的“/describe”命令来输入 Cybertruck 的图像,让人工智能提取其风格元素。 此外,我们使用 AMP-Cards 将提示与设计概念一起输入:飞行汽车设计,工业设计,黑白分割,冷冲压,现代主义,未来主义,特斯拉,透视,白色背景,OC 渲染,工作室照明,4K。在 20 分钟内,我们与 Midjourney 合作进行了两轮迭代,生成了 26 个解决方案。基于一个与公司设计要求密切相关的提案,我们导出了 STEP 模型,并根据设计师的经验进行了修改和手动调整(图 8)。从接收项目要求到完成设计提案仅用了 10 小时,公司在第一轮迭代中就批准了。公司的设计任务导向实践项目表明,AIGC 协作设计师可以大大提高产品设计效率。
2.4. Step 4: AIGC Facilitates the Future of Design Innovation through Interdisciplinary Collaboration
2.4. 第四步:AIGC 通过跨学科合作促进设计创新的未来
未来的设计项目需要跨学科和多专业的合作。然而,之前的项目[28]表明,在跨学科团队内实现高效沟通和有效团队合作始终是一个挑战。由于不同的专业领域,传统跨学科合作中对不同知识背景的相互理解不足导致沟通成本高、项目进展缓慢[29, 30, 31]。例如,没有设计背景的学生可能缺乏必要的素描技能,无法将他们的想法以视觉方式呈现给其他组员,由于各自不同的专业背景而导致沟通问题。人工智能生成创意(AIGC)的出现为改变设计过程并可能积极影响跨学科团队合作提供了机会[32]。 因此,我们开展了一场关于跨学科协作设计的研讨会,利用 AIGC 的协同效应来观察 Midjourney 和 AMP-Cards 成员之间的沟通在多学科协作中的作用,并探索由引入 AIGC 而产生的跨学科协作设计新模式。
对于这个研讨会,招募了 12 名学生,并分成两组。每组包括四名机械工程学生和两名工业设计学生。第一组与 AIGC-Midjourney 进行共同设计,而第二组遵循传统设计流程。研讨会项目基于 XY 双轴机械平台衍生产品概念。
第一组在概念设计阶段与所有组员讨论了设计定义。每位组员通过整理 AMP-Cards,根据设计定义设计了一个提示,并将提示输入到 Midjourney 中以获得生成的设计图像。在生成设计图纸后,组员们讨论了方案,并进一步优化了提示词以进行迭代。这种“思想可视化+语言表达”的跨学科沟通模式可以确保设计解决方案在统一概念下快速迭代,显著提高了进展效率。利用“思想可视化+语言表达”方法,来自两个学科的学生能够直观地把握彼此的设计意图,促进对设计细节的讨论,避免了常常伴随抽象语言表达的误解风险。
第一组为城市地区的快餐设计了一个解决方案,提出了定制汉堡自动售货机的概念。这款汉堡由多层预先烹饪的食材组成,满足不同食客的口味偏好。自动售货机配备了一个灵活的手臂,位于 XY 平台上,可以抓取相应的元素并在中央平台上“制作”汉堡的食材,整个汉堡制作过程是可见的,以展示食材的质量和新鲜度。团队成员利用 Midjourney 和 AMP-Cards 等工具,高效地完成了五轮概念解决方案的工作(见图 9),采用了“想法可视化+语言表达”方法(见图 10)。整个设计过程大约耗时三个小时。
图 9. 基于 Midjourney + AMP-Cards 的第一组 5 轮迭代设计解决方案。
图 10. 基于 AIGC 的协作跨学科共同设计场景的第一组。
与第一组相比,第二组以传统的协作方式进行设计过程,没有借助 AIGC-Midjourney 协同。他们的设计概念侧重于打造一款配备 XY 工作平台和机器视觉系统的按摩椅。这项技术将使椅子能够智能识别不同的身体部位,旨在缓解办公人员因长时间坐着而感到的疲劳。
小组成员收集相关的设计案例研究,以设计概念为基础寻找设计灵感。在初步讨论后,他们根据自己的理解绘制草图,然后重新聚集进行第二轮讨论,重点放在这些插图上(图 11)。由于机械背景的学生无法通过草图有效地可视化想法,设计背景的学生根据面对面的沟通重新绘制了机械学生的草图。草图解决方案在第三轮讨论中进行评估和选择。在对最终解决方案建模和渲染约 4.5 小时后,最终解决方案完成(图 12)。
图 11. 基于传统模型的跨学科协作设计场景,适用于第二组。
图 12. 第二组解决方案基于传统的设计过程。
跨学科研讨会两组的数据见表 2。在相同的时间段内,利用 AIGC 的第一组进行了五倍于第二组的设计迭代,表明 AIGC 可以显著提高跨学科合作中的设计效率。为了评估设计的质量,邀请了两位外部设计专家来评估结果。第一组得分为 85 和 88 分,而第二组得分为 78 和 80 分,展示了 AIGC 对设计质量的积极影响。然而,外部专家的评估突显了 AIGC 在设计评估方面的不足,这是产品设计成功的关键因素,需要设计师具备高水平的专业知识。
在研讨会结束后,我们对两组成员进行了采访,询问他们对研讨会的体验,总结如表 2 所示。来自第一组的一位工业设计学生表达了 AIGC 如何改善他们与机械工程同行的沟通。他们强调了 AIGC 对于那些缺乏素描技能的人来说易于使用,并赞赏其在设计过程中的效率。相反,未使用人工智能工具的第二组学生在讨论上花费了更多时间,并感觉他们的视觉输出不尽如人意。那些具有机械背景的人直到有设计背景的学生帮助翻译他们的想法,才觉得自己的想法没有清晰表达。反馈与表格数据一致,显示 Midjourney 在改善清晰度和沟通方面的价值,尤其对于工具的新手。总体而言,将 AIGC 和 AMP-Cards 整合到跨学科设计研讨会中增强了快速、准确和视觉沟通的优势,积极影响了多学科合作。
3. Discussion 3. 讨论
AIGC 的演变催生了创新和设计生产模式的转变,也重塑了未来设计师所需的技能组合,他们需要获得新的视角。我们总结了基于 AIGC 的产品设计中程提示卡(AMP 卡),这将帮助创作者快速学习如何使用中程来可视化和图形化呈现他们的想法,以协助设计师进行设计研究和实践,以及与标志性工具中程进行跨学科合作。中程的引入可以减少设计过程中建模和渲染的学习和生产时间成本,以及由于设计工具学习而导致的新手设计师的技能限制,这抑制了他们的创造力并在学习过程中造成挫折。换句话说,设计从业者可以“解放双手”不再受技能学习的束缚,更专注于发展创造力和创新。
然而,AIGC 并不提供创作者原始的设计灵感,因此创作者必须自行发现。AIGC 的技术原理是收集并学习大量的文本、图像和其他多格式数据,结合自然语言处理、深度学习和不同的算法,自动生成文本内容、图像和其他创意设计产品,即通过大量现有数据优化算法,实现设计内容的自动化生成。实质上,这些生成的内容代表了现有解决方案的融合,而非原创创新。在大多数情况下,随着设计的发展,设计灵感的来源已经从表面动机转变为对特定对象的深入研究,揭示表面下隐藏的奥秘,激发设计灵感并应用于设计项目中。例如,在文章中的案例 1——珍珠扇贝研究中,AIGC 可以通过快速生成程序原型加速迭代过程,为预先设计研究过程节省大量时间和精力。 因此,更有可能以独创性进行前沿探索,实现从源头衍生出的衍生概念的创新,包括突破性和独特的产品解决方案。
AIGC 提供了一个强大而广泛的设计素材库,使设计师可以根据他们的需求即时访问启发性的图片。这也意味着设计师应该花时间与 AIGC 有效合作,为 AIGC 工具提供准确和具体的指导。在使用 Midjourney 工具进行 Case 2—Flying Car Styling Design 时,设计师需要对 Cybertruck 进行系统和全面的产品造型分析,并整理设计元素的文本描述以响应提示。这表明未来的设计师需要加深对经典设计案例、风格和 CMF 的理解,以有效地利用 Midjourney 工具进行有意识的解决方案生成。
此外,AIGC 还提供一个跨学科协作共创平台,降低非设计专业人士的准入门槛,让更多人参与设计创新。设计的未来将需要更大程度的跨学科合作。设计师、工程师、科学家和社会学家合作开发综合设计解决方案,解决日益复杂的问题并推动设计的进步。这要求未来的设计师在学习阶段适应跨学科合作环境。在跨学科设计研讨会案例 3 中,来自不同专业背景的学生运用 Midjourney 工具快速、直观地表达他们的设计概念。 通过 AIGC 结合 AMP-Cards 作为一种快速可视化工具,来自各个领域的成员可以准确表达他们的概念,绕过口头沟通的限制。这极大地增强了跨学科合作过程。
目前,AI 生成解决方案的选择在很大程度上取决于设计师自身的经验,市场吸引力、商业价值可行性和技术可行性仍有改进空间,主要受以下两个技术限制制约:(i) 生成结果缺乏标准化,降低了技术可行性。例如,AI 可以快速生成专业结构设计中的产品结构(如专业建模软件 Creo 的 3D 生成设计)。然而,生成的结构主要由异质和复杂部件组成,难以加工且生产成本高昂。(ii) AI 训练模型是单向且不可逆的。由于设计研究必须不断整合新的跨学科知识,AIGC 也必须找出如何使 AI 与设计师一起进步,并适应未来设计范式转变。
未来人工智能技术和计算机数学的发展将显著影响优化设计评估方法[37, 38]。为了通过机器学习增强人工智能协同设计的评估能力,用户数据被纳入模型训练过程中,并开发了针对个性化和高度专业领域的设计概念可视化和定量评估模型。经过一轮生成,该模型可以根据结果及时客观地提供定量评估数据和优化建议(例如“A”设计奖的十级评分系统),促进 AIGC 与内容生成者之间的合作,以“裁判”身份控制结果质量,并增强跨学科研究的效力。利用情感计算、个性计算、社交计算、文化计算等科学和人文方法,可以研究人类体验模式,拓展人类认知边界,并为未来跨学科团队开展设计和创新合作奠定沟通基础,作为“润滑剂”[40]。
AIGC 为设计协作提供客观全面的选择和评判辅助功能,将提供更准确和有针对性的反馈信息,使生成器更好地了解设计的结果和缺陷,并提高发明的整体质量。可以预见的是,未来创新领域可能会实现跨学科“研究设计”的闭环,实现效率、精确性和稳定性。
此外,值得注意的是,在利用人工智能技术提升创意表现之前,确保设计师概念的独创性是重要的。人工智能应被用作增强和创新的工具,而非复制或替代的手段,从而保持创意作品的完整性、真实性和价值。
4. Conclusions 4. 结论
在本文中,我们深入探讨了将 AIGC 整合到设计系统中,以 Midjourney 作为代表性 AIGC 工具,以增强创作者之间的协作和创新。我们提出了基于 AIGC 的 Midjourney 方法,用于产品设计,配备了快速公式和相应的 AMP-Cards,旨在帮助内容创作者更快地掌握 Midjourney 技能。通过在尖端设计创新、企业项目和跨学科研讨会中的应用,探讨了 AIGC 的作用,以 Midjourney 为例。具体而言,AIGC 共同设计使设计师能够更多地专注于研究设计灵感,特别是现实世界的灵感,比如案例 1 中对珍珠扇贝的设计研究。AIGC 在设计风格掌握和快速多程序输出方面具有非凡优势,可实现企业委托设计的快速和迭代推进,特别是那些集中在产品造型设计风格的设计。在跨学科团队合作中,AIGC 强大的数据库能够快速可视化设计概念,促进沟通并加速解决方案迭代。
预计本文中概述的 Midjourney 在产品设计中的使用及其案例实践将为创作者和团队提供未来设计研究、试验和跨学科合作的灵感和参考。同时,案例研究揭示了 Midjourney 工具的改进领域,这可以为 AIGC 设计工具的未来增强提供建议。
Author Contributions 作者贡献
概念化,H.Y. 和 Y.L.;方法论,H.Y.,Y.L. 和 Z.Z.;数据分析,H.Y. 和 Z.Z.;撰写—原稿准备,H.Y.,Y.L. 和 Z.Z.;撰写—审阅和编辑,Y.L. 和 Z.Z.;资金获取,H.Y. 和 Y.L. 所有作者已阅读并同意发表版本的手稿。
Funding 资金
该研究得到了北航大学一流本科课程项目(资助号 42020210)和前沿交叉学科项目(资助号 KG16250001)的资助,同时也得到了北京市科学技术协会青年科技精英资助计划的支持(资助号 BYESS2023287)。
Data Availability Statement
数据可用性声明
本研究未创建或分析任何新数据。本文不适用数据共享。
Acknowledgments 致谢
我们要感谢陈殿生在组织研讨会方面的支持,以及所有参与的学生们。
Conflicts of Interest 利益冲突
作者声明没有利益冲突。
References 参考文献
- Cao, Y.; Li, S.; Liu, Y.; Yan, Z.; Dai, Y.; Yu, P.S.; Sun, L. A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt. arXiv 2023, arXiv:2303.04226. [Google Scholar]
曹,李,刘,严,戴,于,孙。《人工智能生成内容(AIGC)的综合调查:从 GAN 到 ChatGPT 的生成式人工智能历史》。arXiv 2023,arXiv:2303.04226。【谷歌学术】 - Javaid, M.; Haleem, A.; Singh, R.P. A study on ChatGPT for Industry 4.0: Background, Potentials, Challenges, and Eventualities. J. Econ. Technol. 2023, 1, 127–143. [Google Scholar] [CrossRef]
Javaid, M.; Haleem, A.; Singh, R.P. 关于 ChatGPT 在工业 4.0 中的研究:背景、潜力、挑战和最终结果。J. Econ. Technol. 2023, 1, 127–143. [ Google Scholar] [ CrossRef] - Tencent Research Institute. Tencent Research Institute AIGC Development Trend Report. 2023. Available online: https://www.iotku.com/News/783389487429320704.html (accessed on 25 May 2023).
腾讯研究院。腾讯研究院 AIGC 发展趋势报告。2023 年。在线获取:https://www.iotku.com/News/783389487429320704.html(访问日期:2023 年 5 月 25 日)。 - Wang, Y.; Dong, Y. AIGC Assisted Generation Craft Based on Dialogue Interface. Highlights Sci. Eng. Technol. 2023, 57, 242–246. [Google Scholar] [CrossRef]
王,杨。基于对话界面的 AIGC 辅助生成工艺。2023 年科学工程技术亮点,57,242-246。[谷歌学术] [交叉引用] - Xi, Z.; Chen, W.; Guo, X.; He, W.; Ding, Y.; Hong, B.; Zhang, M.; Wang, J.; Jin, S.; Zhou, E.; et al. The rise and potential of large language model based agents: A survey. arXiv 2023, arXiv:2309.07864. [Google Scholar]
Xi, Z.; Chen, W.; Guo, X.; He, W.; Ding, Y.; Hong, B.; Zhang, M.; Wang, J.; Jin, S.; Zhou, E.; 等人。基于大型语言模型的智能体的崛起与潜力:一项调查。arXiv 2023, arXiv:2309.07864. [ Google Scholar] - Zhang, C.; Zhang, C.; Zheng, S.; Qiao, Y.; Li, C.; Zhang, M.; Dam, S.K.; Thwal, C.M.; Tun, Y.L.; Huy, L.L.; et al. A complete survey on generative ai (aigc): Is chatgpt from gpt-4 to gpt-5 all you need? arXiv 2023, arXiv:2303.11717. [Google Scholar]
张,C.;张,C.;郑,S.;乔,Y.;李,C.;张,M.;达姆,S.K.;特瓦尔,C.M.;屯,Y.L.;胡伊,L.L.;等。生成式人工智能(AIGC)的完整调查:ChatGPT 从 GPT-4 到 GPT-5 就是你所需要的吗?arXiv 2023,arXiv:2303.11717。【谷歌学术】 - Divam Gupta. DifusionBee—Stable Difusion App for AI Art. 2022. Available online: https://diffusionbee.com/ (accessed on 7 October 2023).
Divam Gupta. DifusionBee—稳定的 AI 艺术扩散应用。2022 年。在线可获取:https://diffusionbee.com/(访问时间:2023 年 10 月 7 日)。 - Fathoni, A.F.C.A. Leveraging Generative AI Solutions in Art and Design Education: Bridging Sustainable Creativity and Fostering Academic Integrity for Innovative Society. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2023; Volume 426, p. 01102. [Google Scholar]
Fathoni, A.F.C.A.(2023). 在艺术和设计教育中利用生成式人工智能解决方案:搭建可持续创造力,促进学术诚信,为创新社会架起桥梁。收录于 E3S Web of Conferences; EDP Sciences: 法国莱塞利斯, 卷 426, 页 01102。【谷歌学术】 - Boden, M.A.; Edmonds, E.A. What is generative art? Digit. Creat. 2009, 20, 21–46. [Google Scholar] [CrossRef]
Boden, M.A.; Edmonds, E.A. 什么是生成艺术?数字创意。2009 年,20,21-46。[谷歌学术] [交叉引用] - Tomasello, M. A Natural History of Human Thinking; Harvard University Press: Cambridge, MA, USA, 2014. [Google Scholar]
Tomasello, M. 人类思维的自然历史; 哈佛大学出版社: 美国马萨诸塞州剑桥, 2014. [ Google Scholar] - INCOSE Systems Engineering Handbook Working Group. Systems Engineering Handbook, 4th ed.; INCOSE: San Diego, CA, USA, 2015. [Google Scholar]
INCOSE 系统工程手册工作组。系统工程手册,第 4 版;INCOSE:美国加利福尼亚州圣地亚哥,2015 年。[Google Scholar] - Jarrahi, M.H.; Askay, D.; Eshraghi, A.; Smith, P. Artificial intelligence and knowledge management: A partnership between human and AI. Bus. Horiz. 2023, 66, 87–99. [Google Scholar] [CrossRef]
Jarrahi, M.H.; Askay, D.; Eshraghi, A.; Smith, P. 人工智能与知识管理:人类与人工智能之间的合作伙伴关系. Bus. Horiz. 2023, 66, 87–99. [ Google Scholar] [ CrossRef] - Kevin Kelly. What AI-Generated Art Really Means for Human Creativity. 2022. Available online: https://www.wired.com/story/picture-limitless-creativity-ai-image-generators/ (accessed on 13 January 2023).
凯文·凯利。AI 生成艺术对人类创造力意味着什么。2022 年。在线可获取:https://www.wired.com/story/picture-limitless-creativity-ai-image-generators/(访问日期:2023 年 1 月 13 日)。 - Chung, J.J.Y.; He, S.; Adar, E. Artist support networks: Implications for future creativity support tools. In Proceedings of the Designing Interactive Systems Conference, Virtual, 13–17 June 2022; pp. 232–246. [Google Scholar]
- Dubberly, H.; Pangaro, P. How Might We Help Designers Understand Systems? She Ji J. Des. Econ. Innov. 2023, 9, 135–156. [Google Scholar] [CrossRef]
- Hugo, J. Artificial Intelligence in the Industrial Design Process. 2023. Available online: https://hj.diva-portal.org/smash/record.jsf?pid=diva2%3A1769813&dswid=-3529 (accessed on 17 May 2023).
- Verheijden, M.P.; Funk, M. Collaborative Diffusion: Boosting Designerly Co-Creation with Generative AI. In Proceedings of the Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–8. [Google Scholar]
- Caires, C.S.; Estadieu, G.; Olga Ng Ka Man, S. Design Thinking Methodology and Text-To-Image Artificial Intelligence: A Case Study in the Context of Furniture Design Education. In Perspectives on Design and Digital Communication IV: Research, Innovations and Best Practices; Springer Nature: Cham, Switzerland, 2023; pp. 113–134. [Google Scholar]
- Dehouche, N.; Dehouche, K. What’s in a text-to-image prompt? The potential of stable diffusion in visual arts education. Heliyon 2023, 9, e16757. [Google Scholar] [CrossRef]
- Fang, Y.M. The Role of Generative AI in Industrial Design: Enhancing the Design Process and Learning. Available online: https://www.researchgate.net/ (accessed on 12 February 2023).
- Liang, D.; Wang, L. Teaching System Design of “Systems Engineering” Curriculum in Industrial Engineering. In Proceedings of the International Conference on Advanced Materials and Information Technology Processing (AMITP 2011), Guangzhou, China, 17–18 April 2011; pp. 1488–1492. [Google Scholar]
- Muller, G. Systems engineering research methods. Procedia Comput. Sci. 2013, 16, 1092–1101. [Google Scholar] [CrossRef]
- Forsgren, J.; Schröder, H. Can AI perform the work of human designers?: A qualitative study on the impact of AI on digital design professions. 2023. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-62053 (accessed on 12 April 2023).
- Suh, N.P. Complexity in Engineering. Ann. CIRP 2005, 2, 581–598. [Google Scholar] [CrossRef]
- Monat, J.P.; Gannon, T.F. Applying systems thinking to engineering and design. Systems 2018, 6, 34. [Google Scholar] [CrossRef]
- Offenhuber, D.; Mountford, J. Reconsidering Representation in College Design Curricula. She Ji J. Des. Econ. Innov. 2023, 9, 264–282. [Google Scholar] [CrossRef]
- Fui-Hoon Nah, F.; Zheng, R.; Cai, J.; Siau, K.; Chen, L. Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. J. Inf. Technol. Case Appl. Res. 2023, 25, 277–304. [Google Scholar] [CrossRef]
- Ozcelik, D.; Terken JM, B.; Eggen, J.H.; van Loenen, E.J. Effect of visual quality and animation of design representations on users’ responses to early design concepts: A study on the adaptive patient room concept. Int. J. Des. 2015, 9, 91–106. [Google Scholar]
- Brusilovsky, P. Adaptive hypermedia: From intelligent tutoring systems to Web-based education (Invited talk). In Intelligent Tutoring Systems. Lecture Notes in Computer Science; Gauthier, G., Frasson, C., VanLehn, K., Eds.; Springer: Berlin, Germany, 2000; pp. 1–7. [Google Scholar]
- Ahmed, S.; Wallace, K.M.; Blessing, L.T. Understanding the differences between how novice and experienced designers approach design tasks. Res. Eng. Des. 2003, 14, 1–11. [Google Scholar] [CrossRef]
- Jordanous, A.; Keller, B. Modeling creativity: Identifying key components through a corpus-based approach. PLoS ONE 2016, 11, e0162959. [Google Scholar] [CrossRef]
- Jordanous, A. The longer term value of creativity judgements in computational creativity. In AISB Symposium on Computational Creativity (CC2016); al Rifaie, M.M., McGregor, S., Eds.; AISB: Sheffield, UK, 2016; pp. 16–23. [Google Scholar]
- Paulus, P.; Kenworthy, J. Efective Brainstorming. In The Oxfordhandbook of Group Creativity and Innovation; Oxford Library of Psychology: Oxford, UK, 2019; pp. 287–386. [Google Scholar]
- Corazza, G.E.; Agnoli, S. (Eds.) Multidisciplinary Contributions to the Science of Creative Thinking; Springer: Singapore, 2016. [Google Scholar]
- Song, B.; Gyory, J.T.; Zhang, G.; Zurita, N.F.S.; Stump, G.; Martin, J.; Miller, S.; Balon, C.; Yukish, M.; McComb, C.; et al. Decoding the agility of artificial intelligence-assisted human design teams. Des. Stud. 2022, 79, 101094. [Google Scholar] [CrossRef]
- Lee, Y.H.; Chiu, C.Y. The Impact of AI Text-to-Image Generator on Product Styling Design. In Proceedings of the International Conference on Human-Computer Interaction, Copenhagen, Denmark, 23–28 July 2023; Springer Nature: Cham, Switzerland, 2023; pp. 502–515. [Google Scholar]
- Benjamin, J.J.; Berger, A.; Merrill, N.; Pierce, J. Machine learning uncertainty as a design material: A post-phenomenological inquiry. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–14. [Google Scholar]
- Lin, C.C.; Jaech, A.; Li, X.; Gormley, M.R.; Eisner, J. Limitations of autoregressive models and their alternatives. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, 6–11 June 2021; pp. 5147–5173. [Google Scholar]
- Harshvardhan, G.; Gourisaria, M.K.; Pandey, M.; Rautaray, S.S. A comprehensive survey and analysis of generative models in machine learning. Comput. Sci. Rev. 2020, 38, 100285. [Google Scholar]
- Park, J.S.; O’Brien, J.; Cai, C.J.; Morris, M.R.; Liang, P.; Bernstein, M.S. Generative agents: Interactive simulacra of human behavior. arXiv 2023, arXiv:2304.03442. [Google Scholar]
- Qin, J. Impaction of artificial intelligence on interaction design. Packag. Eng. 2017, 38, 27–31. [Google Scholar]
Materials | Processing | Designism | Designer |
---|---|---|---|
Anodized aluminum | Super plastic molding | Modernism | Dieter Rams |
Carbon fiber | Injection molding | Deconstructionism | Raymond Loewy |
Stainless steel | Blow molding | Postmodernism | Charles and Ray Eames |
Ceramic | Extrusion molding | Minimalism | Philippe Starck |
Glass | Rotational molding | Maximalism | Jonathan Ive |
Acrylic | Thermoforming | Functionalism | Karim Rashid |
ABS plastic | Die casting | Constructivism | Marc Newson |
Polycarbonate | Sand casting | Futurism | Naoto Fukasawa |
Nylon | Investment casting | Brutalism | Ross Lovegrove |
Leather | Lost-wax casting | Expressionism | Richard Sapper |
Wood | Vacuum casting | Surrealism | Patricia Urquiola |
Concrete | Metal spinning | Abstract expressionism | Jasper Morrison |
Silicone | Hydroforming | Pop art | Ingo Maurer |
Rubber | Compression molding | Art deco | Yves Behar |
Brass | Transfer molding | Constructivism | Marcel Wanders |
Copper | Foam molding | Post-structuralism | Alfredo Häberli |
Bronze | Hot forging | Structuralism | Hella Jongerius |
Zinc | Cold forging | Eclecticism | Tom Dixon |
Titanium | Roll forging | technocracy | Konstantin Grcic |
Gold | Coining | Art nouveau | Stefan Sagmeister |
Silver | Swaging | Arts and crafts | Sam Hecht |
Platinum | Wire drawing | Environmentalism | Tadao Ando |
Nickel | Deep drawing | Humanism | Peter Eisenman |
Tin | Spinning | Rationalism | Bjarke Ingels |
Iron | Bending | Primitivism | Zaha Hadid |
Alloy | Roll bending | Neo-classicism | Norman Foster |
Epoxy | Hydro bending | Neo-expressionism | Jean Nouvel |
… | … | … | … |
Group | Program | Iteration Number | Design Quality Assessment | Overview of Interview Feedback |
---|---|---|---|---|
Group 1 (Apply AIGC + AMP Cards) | Burger Vending Machine | 5 | 85/88 |
|
Group 2 (Without AIGC) | Office Scene Massage Chair | 1 | 78/80 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Zhang, Z.; Liu, Y. The Exploration of Integrating the Midjourney Artificial Intelligence Generated Content Tool into Design Systems to Direct Designers towards Future-Oriented Innovation. Systems 2023, 11, 566. https://doi.org/10.3390/systems11120566
Yin H, Zhang Z, Liu Y. The Exploration of Integrating the Midjourney Artificial Intelligence Generated Content Tool into Design Systems to Direct Designers towards Future-Oriented Innovation. Systems. 2023; 11(12):566. https://doi.org/10.3390/systems11120566
Chicago/Turabian StyleYin, Hu, Zipeng Zhang, and Yuanyuan Liu. 2023. "The Exploration of Integrating the Midjourney Artificial Intelligence Generated Content Tool into Design Systems to Direct Designers towards Future-Oriented Innovation" Systems 11, no. 12: 566. https://doi.org/10.3390/systems11120566