A Comparison between GaN and Silicon Based Class D Audio Power Amplifiers with Pulse Density Modulation 基于氮化镓和硅的 D 类音频功率放大器与脉冲密度调制的比较
by 由
Man Lok Joshua Chung
A thesis submitted in conformity with the requirements 根据要求提交的论文
for the degree of Master of Applied Science 申请应用科学硕士学位
Graduate Department of Electrical and Computer Engineering 电气与计算机工程研究生部
University of Toronto 多伦多大学
(C) Copyright by Man Lok Joshua Chung 2016 (C) 版权所有:Man Lok Joshua Chung 2016
A Comparison between GaN and Silicon Based Class D Audio Power Amplifiers with Pulse Density Modulation 基于氮化镓和硅的 D 类音频功率放大器与脉冲密度调制的比较
Man Lok Joshua ChungMaster of Applied Science 应用科学硕士Graduate Department of Electrical and Computer Engineering 电气与计算机工程研究生部University of Toronto 多伦多大学
2016
Abstract 摘要
GaN power devices have lower specific on-resistance and faster switching speeds when compared to silicon power devices. These attributes make the GaN devices attractive for switching power converters. 与硅功率器件相比,氮化镓功率器件具有更低的比导通电阻和更快的开关速度。这些特性使得氮化镓器件在开关电源转换器中颇具吸引力。 However, the application of GaN power devices in Class D audio power amplifier have not been widely studied. This thesis studies the performance of two 25 W openloop GaN and silicon based Class D audio amplifiers using Pulse Density Modulation. 然而,氮化镓功率器件在 D 类音频功率放大器中的应用尚未得到广泛研究。本论文研究了使用脉冲密度调制的两个 25 W 开环氮化镓和硅基 D 类音频放大器的性能。 The distortion, efficiency and thermal characteristics of a GaN based and a silicon based Class D amplifiers performances are compared under matching operating conditions. The GaN based amplifier shows a reduction in distortion and a increase in efficiency at output power levels of less than 20 W . However, the GaN based amplifier exhibits a increase in distortion with rise in temperature. 在匹配工作条件下,对氮化镓放大器和硅D类放大器的失真、效率和热特性进行了比较。在输出功率低于 20 W 时,氮化镓放大器的失真降低了 ,效率提高了 。然而,随着温度的 升高,基于氮化镓的放大器显示出 的失真增加。
Acknowledgments 致谢
I would like to express my deep and sincere gratitude to my research supervisor, Professor Wai Tung Ng for pointing me to the exciting topic of Class D audio amplifiers, and for his guidance and support through the courses of this research. 在此,我要向我的研究导师 Wai Tung Ng 教授表示深深而诚挚的谢意,感谢他将我引向 D 类音频放大器这一令人兴奋的课题,感谢他在本研究过程中给予的指导和支持。 I have enjoyed working in the Smart Power Integration & Semiconductor Devices Research Group under this leadership. His knowledge and vision in power electronics and audio amplifiers has been invaluable for my career development. 在他的领导下,我在智能功率集成与半导体器件研究组工作得非常愉快。他在电力电子和音频放大器方面的知识和远见对我的职业发展非常宝贵。
I would also like to thank my fellow graduate students and researchers for many discussions and insights over the courses for this research. Robert McKenzie and Rophina Li 我还要感谢我的研究生同学和研究人员,他们在本研究课程中进行了多次讨论,并提出了许多真知灼见。罗伯特-麦肯齐(Robert McKenzie)和李若菲娜(Rophina Li
worked closely with me on the topic of Class D audio amplifiers. Additional thanks to goes to Weijia Zhang, Tae Young Goh, Jingxuan Chen, Jingshu Yu, Mengqi Wang and Andrew Shorten who provided with valuable feedbacks. 在 D 类音频放大器的课题上与我密切合作。此外,还要感谢张维佳、Tae Young Goh、陈景轩、于静姝、王梦琪和 Andrew Shorten,他们为我提供了宝贵的反馈意见。
I would like to express my sincere gratitude towards GaN Systems Inc. for providing the device samples for this research. Iain Scott and Hughes Lafontaine have provided many answers to the questions about the GaN device samples. 我衷心感谢氮化镓系统公司(GaN Systems Inc.Iain Scott 和 Hughes Lafontaine 为我解答了许多有关氮化镓器件样品的问题。
Finally, I would like to thank my family, my parents Sandra and Edwin as well as my brother Jonathan would support and encouragement through all my endeavors. 最后,我要感谢我的家人,我的父母桑德拉和埃德温以及我的兄弟乔纳森在我的所有努力中给予我的支持和鼓励。
Table of Contents 目录
Acknowledgments ..... iii 致谢 ..... iii
List of Tables ..... vi 表格清单 ..... vi
List of Figures ..... vii 图表目录 ..... vii
List of Glossary ..... xii 词汇表 .....xii
1 Introduction ..... 1 1 简介 .....1
1.1 Class D Amplifiers ..... 3 1.1 D 类放大器 .....3
1.2 Thesis Organization ..... 4 1.2 论文组织 .....4
2 Background ..... 5 2 背景 .....5
2.1 Operations of Class D Amplifier ..... 5 2.1 D 类放大器的运行 .....5
2.1.1 Half Bridge Configuration ..... 6 2.1.1 半桥配置 ..... 6
2.1.2 Concept of Dead-Time ..... 7 2.1.2 死亡时间的概念 ..... 7
2.1.3 Full-Bridge Configuration ..... 8 2.1.3 全桥配置 .....8
2.2 Modulation Schemes ..... 9 2.2 调制方案 .....9
2.2.1 Pulse Width Modulation ..... 9 2.2.1 脉冲宽度调制 .....9
2.2.2 Pulse Density Modulation ..... 10 2.2.2 脉冲密度调制 .....10
2.2.3 Comparison between Pulse Density and Pulse Width Modulation ..... 14 2.2.3 脉冲密度与脉宽调制的比较 .....14
2.3 GaN Material Properties ..... 17 2.3 氮化镓材料特性 .....17
2.3.1 Device Structure and Operation ..... 18 2.3.1 设备结构和运行 .....18
2.4 Source of Power Loss ..... 20 2.4 电力损耗来源 .....20
2.4.1 Conduction Loss ..... 20 2.4.1 传导损耗 .....20
2.4.2 Switching Loss ..... 20 2.4.2 开关损耗 .....20
2.4.3 Gate Drive Loss ..... 22 2.4.3 栅极驱动损耗 .....22
2.4.4 Reverse Conduction Loss ..... 22 2.4.4 反向传导损耗 .....22
2.4.5 Reverse Recovery Loss ..... 25 2.4.5 反向恢复损失 .....25
2.5 Source of Distortion in Class D Amplifier ..... 26 2.5 D 类放大器的失真源 .....26
2.6 Sources of Electromagnetic Interference (EMI) ..... 28 2.6 电磁干扰(EMI)源 .....28
2.6.1 Switch Mode Configuration ..... 28 2.6.1 交换机模式配置 .....28
2.6.2 Ringing due to Parasitic ..... 28 2.6.2 寄生虫引起的振铃 .....28
2.7 Summary ..... 31 2.7 总结 .....31
3 Digital Modulator and Output Stage Design ..... 32 3 数字调制器和输出级设计 .....32
3.1 Digital Modulator Design ..... 32 3.1 数字调制器设计 .....32
3.1.1 Modulator Architecture ..... 32 3.1.1 调制器架构 .....32
3.1.2 Up-Sampler & Interpolator ..... 32 3.1.2 上采样器和插值器 .....32
3.1.3 Delta sigma Modulator ..... 34 3.1.3 ΔΣ 调制器 .....34
3.1.4 Dead-Time Controller ..... 36 3.1.4 死区控制器 .....36
3.2 Print Circuit Board (PCBs) Design ..... 37 3.2 印刷电路板(PCB)设计 .....37
3.2.1 Current Loops ..... 37 3.2.1 电流环路 .....37
3.2.2 PCB Grounding ..... 39 3.2.2 PCB 接地 .....39
3.3 Discrete Component Selection ..... 40 3.3 分立元件选择 .....40
3.3.1 GaN and Silicon Device ..... 40 3.3.1 氮化镓和硅器件 .....40
3.3.2 Gate Driver ..... 42 3.3.2 栅极驱动器 .....42
3.3.3 Gate Resistance ..... 43 3.3.3 栅极电阻 .....43
3.3.4 Low Pass Filter ..... 46 3.3.4 低通滤波器 .....46
3.4 Summary ..... 47 3.4 总结 .....47
4 Experimental Results ..... 48 4 实验结果 .....48
4.1 Experimental Implementation ..... 48 4.1 实验实施 .....48
4.2 Test Setup ..... 48 4.2 测试设置 .....48
4.3 Experimental Results ..... 49 4.3 实验结果 .....49
4.3.1 Synchronous Buck Converter Experimental Results ..... 49 4.3.1 同步降压转换器实验结果 .....49
4.3.2 Class D Audio Amplifier Experimental Results ..... 51 4.3.2 D 类音频放大器实验结果 .....51
4.4 Performance Variation due to Thermal Issues ..... 73 4.4 热问题导致的性能差异 .....73
4.6 Summary ..... 80 4.6 总结 .....80
5 Conclusions ..... 81 5 结论 .....81
6 References ..... 83 6 参考文献 .....83
APPENDIX A - PCB Layout ..... 86 附录 A - PCB 布局 .....86
APPENDIX B - Data Sheets of Transistors ..... 90 附录 B - 晶体管数据表 .....90
List of Tables 表格清单
Table 2.1. Material Properties of Silicon and Wide Band Gap Materials [18, 19]....................... 17 表 2.1.硅和宽带隙材料的材料特性 [18, 19].......................17
Table 3.1. Comparison between GaN and Silicon Transistors. .................................................... 40 表 3.1.氮化镓晶体管与硅晶体管的比较。....................................................40
Table 3.2. Comparison of the GaN and Silicon Gate Driver........................................................ 42 表 3.2.氮化镓和硅栅极驱动器的比较........................................................42
Table 4.2. GaN and Silicon Output Stage without Air-Cooling................................................... 78 表 4.2.无空气冷却的氮化镓和硅输出级...................................................78
Table 4.3. GaN and Silicon Output Stage with Air-Cooling. ....................................................... 79 表 4.3.采用空气冷却的氮化镓和硅输出级。.......................................................79
List of Figures 图表目录
Figure 1.1. Audio amplifier configurations: a) Linear Class AB and b) Switch Mode Class D amplifier. ..... 3 图 1.1.音频放大器配置:a) 线性 AB 类和 b) 开关模式 D 类放大器。.....3
Figure 2.1. Essential circuit blocks in a class D audio amplifier. ..... 5 图 2.1.D 类音频放大器的基本电路模块。.....5
Figure 2.2. Half-bridge configuration ..... 6 图 2.2.半桥配置 .....6
Figure 2.3. Waveforms of a buck converter. ..... 7 图 2.3.降压转换器的波形。.....7
Figure 2.4. and are the dead-times inserted between the gating signals ..... 8 图 2.4. 和 是插入门控信号之间的死区时间 .....8
Figure 2.5. Full-bridge configuration ..... 8 图 2.5.全桥配置 .....8
Figure 2.6. Basic architecture of a PWM modulator. ..... 9 图 2.6.PWM 调制器的基本结构。.....9
Figure 2.7. Example of a PWM modulator output waveforms ..... 9 图 2.7.PWM 调制器输出波形示例 .....9
Figure 2.8. Example architecture of a digital PWM modulator ..... 10 图 2.8.数字 PWM 调制器结构示例 .....10
Figure 2.9. Basic architecture of a PDM modulator. ..... 11 图 2.9.PDM 调制器的基本结构。.....11
Figure 2.10. PDM output waveforms with and without with hysteresis. ..... 11 图 2.10.带滞后和不带滞后的 PDM 输出波形。.....11
Figure 2.11. DSM noise transfer functions: Red is a order modulator and blue is a order 图 2.11.DSM 噪声传递函数:红色为 阶调制器,蓝色为 阶调制器
modulator. ..... 11 调制器。.....11
Figure 2.12. Basic architecture of a PDM modulator with hysteresis. ..... 12 图 2.12.带滞后的 PDM 调制器的基本结构。.....12
Figure 2.13. Example architecture of a digital PDM modulator. ..... 12 图 2.13.数字 PDM 调制器结构示例。.....12
Figure 2.14. PDM single-tone spectrum with different hysteresis coefficient. ..... 13 图 2.14.具有不同滞后系数的 PDM 单音频谱。.....13
Figure 2.15. PDM output pulse width histogram with different hysteresis coefficient ..... 13 图 2.15.不同滞后系数下 PDM 输出脉宽直方图 .....13
Figure 2.16. Histogram of pulse width of the PWM modulator with different input sine wave. ..... 14 图 2.16.不同输入正弦波时 PWM 调制器脉冲宽度的直方图。.....14
Figure 2.17. Histogram of pulse width of the PDM modulator with different input sine wave. ..... 15 图 2.17.PDM 调制器在不同输入正弦波条件下的脉冲宽度直方图。.....15
Figure 2.18. The supply current spectrum: Red is PDM and blue is PWM ..... 15 图 2.18.电源电流频谱:红色为 PDM,蓝色为 PWM .....15
Figure 2.19. PWM output single tone spectrums with an output stage. ..... 16 图 2.19.带输出级的 PWM 输出单音频谱。.....16
Figure 2.20. PDM output single tone spectrums with an output stage ..... 16 图 2.20.带有输出级的 PDM 输出单音频谱 .....16
Figure 2.21. versus breakdown voltage for silicon, SiC , and ..... 18 图 2.21.硅、SiC 和 的 与击穿电压的关系 .....18
Figure 2.22. A typical GaN HEMT structure [22]. ..... 19 图 2.22.典型的 GaN HEMT 结构 [22]。.....19
Figure 2.23. A typical silicon MOSFET structure ..... 19 图 2.23.典型的硅 MOSFET 结构 .....19
Figure 2.24. Switching loss during the turn-on of a power device ..... 21 图 2.24.功率器件接通期间的开关损耗 .....21
Figure 2.25. Switching loss during the turn-off a power device. ..... 21 图 2.25.功率器件关断时的开关损耗。.....21
Figure 2.26. Reverse conduction in a half-bridge configuration with GaN devices ..... 23 图 2.26.使用氮化镓器件的半桥配置中的反向传导 .....23
Figure 2.27. Waveforms for reverse conduction in a half-bridge configuration ..... 23 图 2.27.半桥配置中的反向传导波形 .....23
Figure 2.28. Reverse conduction in a full-bridge configuration with GaN device. ..... 24 图 2.28.采用氮化镓器件的全桥配置中的反向传导。.....24
Figure 2.29. Waveforms for reverse conduction in a full-bridge configuration. ..... 24 图 2.29.全桥配置中的反向传导波形。.....24
Figure 2.30 Diode recovery waveform during turn off transistors [23]. ..... 25 图 2.30 关闭晶体管时二极管的恢复波形 [23]。.....25
Figure 2.31 Comparison between ideal and actual switching waveform ..... 26 图 2.31 理想开关波形与实际开关波形对比 .....26
Figure 2.32. The effect of change in on THD+N [25] ..... 27 图 2.32. 的变化对 THD+N 的影响 [25] .....27
Figure 2.33. The effects of dead-time on THD+N [25] ..... 27 图 2.33.死区时间对 THD+N 的影响 [25] .....27
Figure 2.34. One-sided spectrum of a square wave [28] ..... 28 图 2.34.方波的单边频谱 [28] .....28
Figure 2.35. Parasitic inductances in a half-bridge configuration. ..... 29 图 2.35.半桥配置中的寄生电感。.....29
Figure 2.36. Parasitic in the gate circuit. ..... 29 图 2.36.栅极电路中的寄生.....29
Figure 2.37. Square wave with ringing ..... 30 图 2.37.带振铃的方波 .....30
Figure 2.38. Spectra of a square wave with ringing at [28]. ..... 30 图 2.38.在 处出现振铃的方波频谱 [28]。.....30
Figure 3.1. Block diagram showing the main digital PDM modulator building blocks ..... 32 图 3.1.显示主要数字 PDM 调制器构件的框图 .....32
Figure 3.2. CIC interpolation filter [31] ..... 33 图 3.2.CIC 插值滤波器 [31] .....33
Figure 3.3. CIC filter magnitude output. ..... 33 图 3.3.CIC 滤波器幅度输出。.....33
Figure 3.4. CIC filter output (a) Input (b) First CIC (C) Second CIC. ..... 34 图 3.4.CIC 滤波器输出 (a) 输入 (b) 第一个 CIC (C) 第二个 CIC。.....34
Figure 3.5. order DSM architecture with hysteresis ..... 34 图 3.5.带滞后的 阶 DSM 架构 .....34
Figure 3.6. FFT of the input and output of a DSM. ..... 35 图 3.6.DSM 输入和输出的 FFT。.....35
Figure 3.7. Dead-time controller for each transistor. ..... 36 图 3.7.每个晶体管的死区时间控制器.....36
Figure 3.8. Current loops of the GaN output stage. ..... 38 图 3.8.氮化镓输出级的电流回路。.....38
Figure 3.9. Current loops of the silicon output stage ..... 38 图 3.9.硅输出级的电流回路 .....38
Figure 3.10. Star connection on the PCB ..... 39 图 3.10.PCB 上的星形连接 .....39
Figure 3.11. Comparison of FOM for TrenchFET and NexFET technologies [33] ..... 41 图 3.11.TrenchFET 和 NexFET 技术的 FOM 比较 [33] .....41
Figure 3.12. Qg vs Ron graph [34] ..... 41 图 3.12.Qg vs Ron 图 [34] .....41
Figure 3.13. Example boot strap circuit. ..... 43 图 3.13.引导带电路示例。.....43
Figure 3.14. The GaN half-bridge output stage schematic. ..... 44 图 3.14.氮化镓半桥输出级原理图。.....44
Figure 3.15. The silicon half-bridge output stage schematic ..... 44 图 3.15.硅半桥输出级原理图 .....44
Figure 3.16. Gate nodes of the silicon output stage with different gate resistance ..... 45 图 3.16.具有不同栅极电阻的硅输出级栅极节点 .....45
Figure 3.17. Passive RLC low pass filter. ..... 46 图 3.17.无源 RLC 低通滤波器。.....46
Figure 3.18. Low pass filter transfer function ..... 46 图 3.18.低通滤波器传递函数 .....46
Figure 4.1. Photographs of the output stages ..... 48 图 4.1.输出级照片 .....48
Figure 4.2. The setup for audio performance characterization. ..... 49 图 4.2.音频性能鉴定装置。.....49
Figure 4.3. Gate nodes of both output stages. ..... 50 图 4.3.两个输出级的栅极节点。.....50
Figure 4.4. Switching nodes of both output stages. ...................................................................... 50 图 4.4.两个输出级的开关节点。......................................................................50
Figure 4.5. First operating condition of the full-bridge configuration when output voltage is positive to ..................................................................................... 51 图 4.5.当输出电压为 ..................................................................................... 时,全桥配置的第一工作状态51
Figure 4.6. Second operating condition of the full-bridge configuration when output voltage is negative to . .................................................................................... 51 图 4.6.当输出电压为负至 时,全桥配置的第二种工作状态。....................................................................................51
Figure 4.7. Switching node of the GaN output stage with . .......................................... 53 图 4.7.带有 的氮化镓输出级的开关节点。..........................................53
Figure 4.8. Switching node of the GaN output stage with . .......................................... 53 图 4.8.带有 的氮化镓输出级的开关节点。..........................................53
Figure 4.9. Switching node of the silicon output stage with ........................................ 53 图 4.9.带有 ........................................ 的硅输出级开关节点53
Figure 4.10. Switching node of the silicon output stage with ...................................... 54 图 4.10.带有 ...................................... 的硅输出级开关节点54
Figure 4.11. Gate nodes of both output stages at . .................................................... 54 图 4.11. 时两个输出级的栅极节点。....................................................54
Figure 4.12. Single-tone spectrum of the GaN output stage with and a -6 dBFS 100 Hz sine wave 56 图 4.12.采用 和 -6 dBFS 100 Hz 正弦波的氮化镓输出级的单音频谱 56
Figure 4.13. Single-tone spectrum of the GaN output stage with and a -6 dBFS 1 kHz sine wave 56 图 4.13.采用 和 -6 dBFS 1 kHz 正弦波的氮化镓输出级的单音频谱 56
Figure 4.14. Single-tone spectrum of the GaN output stage with and a -6 dBFS 10 kHz sine wave 56 图 4.14.采用 和 -6 dBFS 10 kHz 正弦波的氮化镓输出级的单音频谱 56
Figure 4.15. Single-tone spectrum of the silicon output stage with and a -6 dBFS 100 Hz sine wave. 57 图 4.15.硅输出级 和 -6 dBFS 100 Hz 正弦波的单音频谱。57
Figure 4.16. Single-tone spectrum of the silicon output stage with and a -6 dBFS 1 kHz sine wave. 57 图 4.16.带有 和 -6 dBFS 1 kHz 正弦波的硅输出级单音频谱。57
Figure 4.17. Single-tone spectrum of the silicon output stage with and a -6 dBFS 10 kHz sine wave. 57 图 4.17.带有 和 -6 dBFS 10 kHz 正弦波的硅输出级单音频谱。57
Figure 4.18. Efficiency versus output power of the GaN output stage at different with and a 1 kHz sine wave at different power levels 图 4.18.在不同 、 和 1 kHz 正弦波的不同功率水平下,氮化镓输出级的效率与输出功率的关系
59
Figure.4.19. Efficiency versus output power of the silicon output stage at different with and a 1 kHz sine wave at different power levels. 图 4.19.硅输出级在不同 和 条件下的效率与输出功率的关系,以及不同功率水平下的 1 kHz 正弦波。
Figure 4.20. Efficiency versus output power of both GaN and silicon output stages with different with and a 1 kHz sine wave at different power levels. 60 图 4.20.不同 和 的氮化镓和硅输出级的效率与输出功率的关系,以及不同功率水平下的 1 kHz 正弦波。60
Figure 4.21. Efficiency versus output power of the GaN output stage at different dead-times with , a 1 kHz sine wave at different power levels and with an 图 4.21.氮化镓输出级在不同死区时间 、不同功率水平的 1 kHz 正弦波和 条件下的效率与输出功率的关系
Figure 4.22. Efficiency versus output power of the silicon output stage at different dead-times with , a 1 kHz sine wave at different power levels and with an 61 图 4.22.硅输出级在不同死区时间 、不同功率水平的 1 kHz 正弦波和 61 条件下的效率与输出功率的关系
Figure 4.23. THD +N versus output power of the GaN output stage at different with with a 1 kHz sine wave at different power levels 63 图 4.23.氮化镓输出级在不同 和 条件下的 THD +N 与输出功率的关系,1 kHz 正弦波在不同功率水平 63
Figure 4.24. THD +N versus output power of the silicon output stage at different with with a 1 kHz sine wave at different power levels 63 图 4.24.硅输出级在不同 和 条件下的 THD +N 与输出功率的关系,1 kHz 正弦波在不同功率水平 63
Figure 4.25. THD +N versus output power of both GaN and silicon output stage at different with with a 1 kHz sine wave at different power levels. 64 图 4.25.在不同 和 条件下,氮化镓和硅输出级的 THD +N 与输出功率的关系,1 kHz 正弦波在不同功率水平。64
Figure 4.26. THD+N versus output power of the GaN output stage at different dead times with , a 1 kHz sine wave at different power levels and with an 64 图 4.26.在 不同死区时间、不同功率水平的 1 kHz 正弦波和 64 条件下,氮化镓输出级的 THD+N 与输出功率的关系。
Figure 4.27. THD +N versus output power of the silicon output stage at different dead times with , a 1 kHz sine wave at different power levels and with an 图 4.27.硅输出级在 不同死区时间、不同功率水平的 1 kHz 正弦波和 时的 THD +N 与输出功率的关系。
65
Figure 4.28. Frequency response of both GaN and silicon output stage with and a -6 dBFS sine wave at different frequencies and with different . 66 图 4.28.采用 和 -6 dBFS 正弦波的氮化镓和硅输出级在不同频率和不同 下的频率响应。66
Figure 4.29. Maximum power of both GaN and silicon with and at different with a constant THD+N = ........................................................................... 67 图 4.29.在 THD+N = ........................................................................... 不变的情况下,在不同 条件下,GaN 和硅在 和 时的最大功率67
Figure 4.30. THD+N versus frequency of both GaN and silicon at an constant output power of 5 W with and at different ............................................... 68 图 4.30.在 5 W 恒定输出功率下,GaN 和硅的 THD+N 与频率的关系, 和 在不同的 ...............................................。68
Figure 4.31. THD +N versus frequency of both GaN and silicon at an constant output power of 10 W with and at different 69 图 4.31.当输出功率恒定为 10 W, 和 位于不同的 69 时,氮化镓和硅的 THD +N 随频率变化的情况
Figure 4.32. Dual tone test with of the GaN output stage with and with -1 dBFS 图 4.32.氮化镓输出级的 和 双音测试(-1 dBFS
Figure 4.33. Dual tone test with of the silicon output stage with and with -1 dBFS . 图 4.33.硅输出级的 和 双音测试(-1 dBFS)。
Figure 4.34. CEMI of the GaN output stage with and and a -6 dBFS 1 kHz) sine wave 图 4.34.采用 和 以及 -6 dBFS 1 kHz 正弦波的氮化镓输出级的 CEMI
Figure 4.35. CEMI of the silicon output stage with and and a -6 dBFS 1) kHz sine wave 72 图 4.35.带有 和 的硅输出级的 CEMI 以及 -6 dBFS 1) kHz 正弦波 72
Figure 4.36 CEMI of the output stage with no input and VSupply V........................................ 72 图 4.36 输出级的 CEMI(无输入,VSupply V........................................72
Figure 4.37. Temperature characteristic for the GaN power devices [38]. ..... 74 图 4.37.氮化镓功率器件的温度特性 [38]。.....74
Figure 4.38. Changes in dead-time after a threshold voltage increase. Actual dead-times are 图 4.38.阈值电压上升后的死区时间变化。实际死区时间为 。
and ..... 74 和 .....74
Figure 4.39. Temperature characteristic for silicon power devices [39]. ..... 75 图 4.39.硅功率器件的温度特性 [39]。.....75
Figure 4.40. Changes in dead-time after a threshold voltage decrease. Actual dead-times are 图 4.40.阈值电压降低后的死区时间变化。实际死区时间为 。
and . ..... 75 和 。.....75
Figure 4.41. GaN output stage taken with a digital camera. ..... 76 图 4.41.用数码相机拍摄的 GaN 输出级。.....76
Figure 4.42. GaN output stage taken with an IR Camera with a 1 kHz sine wave. ..... 76 图 4.42.用红外热像仪拍摄的氮化镓输出级 1 kHz 正弦波。.....76
Figure 4.43. Silicon output stage taken with digital camera. ..... 76 图 4.43.用数码相机拍摄的硅输出级。.....76
Figure 4.44. Silicon output stage taken with an IR Camera with a 1 kHz sine wave ..... 77 图 4.44.用红外摄像机拍摄的硅输出级,1 kHz 正弦波 .....77
Figure 4.45. GaN output stage taken with an IR Camera, with music playing ..... 77 图 4.45.使用红外摄像机拍摄的氮化镓输出级,播放音乐 .....77
Figure 4.46. Silicon output stage taken with an IR Camera, with music playing. ..... 77 图 4.46.使用红外摄像机拍摄的硅输出级,同时播放音乐。.....77
Figure A. 1 Top layer of the GaN output stage. ..... 86 图 A. 1 氮化镓输出级的顶层。.....86
Figure A.2. Bottom layer of the GaN output stage ..... 87 图 A.2.氮化镓输出级底层 .....87
Figure A.3. Top layer of the silicon output stage ..... 88 图 A.3.硅输出级顶层 .....88
Figure A.4. Bottom layer of the silicon output stage ..... 89 图 A.4.硅输出级底层 .....89
List of Glossary 词汇表
2DEG
Two dimensional electron gas 二维电子气
AlGaN 氮化铝
Aluminum gallium nitride 氮化铝镓
CEMI
Current electromagnetic interference 电流电磁干扰
CIC
Cascaded integrator-comb filter 级联积分器-组合滤波器
dBFS
Decibel relative to full scale 相对于满刻度的分贝
DSM
Delta sigma modulator 德尔塔西格玛调制器
FFT
Fast Fourier Transform 快速傅立叶变换
FIR
Finite impulse response filter 有限脉冲响应滤波器
EMI
Electromagnetic interference 电磁干扰
EV
Electrical vehicles 电动车辆
FOM
Figure of Merit 功勋奖章
GaN 氮化镓
Gallium nitride 氮化镓
HEMT
High electron mobility transistor 高电子迁移率晶体管
IR
Infrared 红外线
JFET
Junction gate field effect transistor 结栅场效应晶体管
LED
Light emitting diode 发光二极管
NTF
Noise transfer function 噪声传递函数
MOSFET
Metal-oxide field effect transistor 金属氧化物场效应晶体管
PDM
Pulse density modulation 脉冲密度调制
PICs
Power integrated circuit 功率集成电路
PV
Photovoltaic 光电
PWM
Pulse width modulation 脉宽调制
SiC
Silicon carbide 碳化硅
STF
Signal transfer function 信号传递函数
THD+N
Total harmonic distortion plus noise 总谐波失真加噪声
1 Introduction 1 引言
Gallium Nitride (GaN) is a promising wide-band gap material suitable for switching power converters. It has higher electron mobility and electron saturation velocity when compared to silicon. 氮化镓(GaN)是一种很有前途的宽带隙材料,适用于开关功率转换器。与硅相比,氮化镓具有更高的电子迁移率和电子饱和速度。 These properties have led to GaN power devices having a lower figure of merit (FOM), which is defined as gate charge on-resistance [1]. The FOM is important in applications such as switching power converters, where the devices' conduction loss and switching loss affect the performance of the converters. These advantages have led to an increase in research activities to further improve GaN power devices [2]. 这些特性使得氮化镓功率器件具有较低的优点系数(FOM),其定义为栅极电荷 导通电阻 [1]。FOM 在开关功率转换器等应用中非常重要,因为器件的传导损耗和开关损耗会影响转换器的性能。这些优势促使进一步改进氮化镓功率器件的研究活动不断增加[2]。
With the introduction of commercial GaN power devices, the market for these devices has been increasing dramatically. It is forecasted that the GaN power devices market will reach billion by 2022 [3]. The entire semiconductor market for power converters ranging from 20 to 1200 V is billion annually and the power integrated circuit (PICs) market for devices account for an additional 10 billion in annual sales [4]. This market is growing with increasing demand from several emerging technologies that require these devices. 随着商用氮化镓功率器件的推出,这些器件的市场也在急剧增长。据预测,到 2022 年,氮化镓功率器件的市场规模将达到 十亿[3]。20 至 1200 V 功率转换器的整个半导体市场每年的销售额为 亿美元,功率集成电路 (PIC) 市场的年销售额也达到 100 亿美元 [4]。随着一些新兴技术对这些器件的需求不断增长,这一市场也在不断扩大。 These include light emitting diode (LED) lighting, inverters for photovoltaic (PV) applications, and motor drives in electrical vehicles (EV). For power converters such as PICs the power density, which is defined as amount of power per area, is important for consumers. 这些应用包括发光二极管(LED)照明、光伏(PV)应用中的逆变器以及电动汽车(EV)中的电机驱动器。对于 PIC 等功率转换器而言,功率密度(即单位面积的功率)对消费者来说非常重要。 A GaN power device with a low FOM allows the power converters to operate at a higher efficiency and switching frequencies ( ) than silicon power device. This results in a smaller overall circuit as the size of the output low pass filter decreases. With higher efficiency, minimal thermal management are required to cool down the devices. 与硅功率器件相比,具有低 FOM 的氮化镓功率器件可使功率转换器以更高的效率和开关频率( )工作。由于输出低通滤波器的尺寸减小,因此整体电路更小。有了更高的效率,冷却器件所需的热管理也降至最低。
The material properties of GaN has led researchers to build power converters from 10's of W to several kW , with switching frequency ranging from a few 100 's of kHz to power converters have been used in various applications such as power supplies, envelope tracking and PV converters. A 300 W boost converter operating at 1 MHz was shown to have an efficiency of in 2008 [5] and in 2013 a 1.6 kW boost converter operating at 1 MHz was shown to have efficiency [6]. The material properties of GaN allows the power converters to operate at higher switching speeds, therefore researcher have pushed the of the converters. They have demonstrated a 10 W buck converter with varying from 10 to 40 MHz . The peak efficiency at 10 MHz is and above at 40 MHz , with the duty cycles > [7]. Another researcher demonstrated a 65 W boost converter with a peak efficiency of and of 50 MHz in 2011 氮化镓的材料特性促使研究人员制造出功率从 10 几瓦到几千瓦不等的功率转换器,开关频率从几百千赫到 不等,功率转换器已被用于电源、包络跟踪和光伏转换器等各种应用中。2008 年,一个工作频率为 1 MHz 的 300 W 升压转换器的效率达到 [5];2013 年,一个工作频率为 1 MHz 的 1.6 kW 升压转换器的效率达到 [6]。氮化镓的材料特性允许功率转换器以更高的开关速度运行,因此研究人员推动了转换器的 。他们展示了一个 10 W 的降压转换器, 在 10 到 40 MHz 之间变化。10 MHz 时的峰值效率为 ,40 MHz 时超过 ,占空比 > [7]。另一位研究人员在 2011 年展示了一款 65 W 的升压转换器,其峰值效率为 , 为 50 MHz。
[8]. The GaN devices are also shown to be more efficient when compared to silicon devices, a study has shown an increase in efficiency from 94.7 % to 95.9 % in a PV converter [9]. Another study has shown a buck converter with a increase in efficiency at an of 10 MHz [10]. The research carried out on various configurations shows general improvement in efficiency at all . However, the application of GaN devices in Class D audio power amplifiers have not been widely studied. [8].一项研究显示,在光伏转换器中,氮化镓器件的效率从 94.7% 提高到 95.9%[9]。另一项研究显示,在 10 MHz 的 频率下,降压转换器的效率提高了 [10]。对各种配置进行的研究表明,在所有 条件下,效率都有普遍提高。然而,GaN 器件在 D 类音频功率放大器中的应用尚未得到广泛研究。
Companies which manufacture GaN power devices such as EPC and Infineon has built GaN Class D audio amplifiers achieving at 5 W and a max efficiency of at 150 W with an load [11]. Although GaN based audio amplifiers has been studied, no comparison on the overall performance between a GaN and silicon based Class D audio power amplifiers were conducted. 宜普公司和英飞凌公司等生产氮化镓功率器件的公司已制造出氮化镓 D 类音频放大器,在 5 W 时达到 ,在 150 W 时达到 ,负载为 [11]。虽然对基于氮化镓的音频放大器进行了研究,但并未对氮化镓和硅基 D 类音频功率放大器的整体性能进行比较。 In this thesis, a comparison between an open-loop Class D audio power amplifier with GaN and silicon based output stage will be investigated. 本论文将对采用氮化镓输出级和硅输出级的开环 D 类音频功率放大器进行比较研究。
1.1 Class D Amplifiers 1.1 D 类放大器
The latest generation of audio amplifiers employs the switched mode Class D topology to achieve significant power efficiency improvements over conventional linear audio amplifiers, such as Class and AB . Linear amplifiers have a DC bias current which makes up for a large portion of their power consumption. As a result, typical power efficiency is limited to around . In contrast, the Class D amplifier utilizes a switched mode configuration to achieve a power efficiency, which can theoretically reach . However, Class D amplifiers require an additional modulation stage in order to encode the input audio signal. These two topologies are illustrated in Figure 1.1. Class D amplifiers has higher efficiency; therefore, the heat dissipation is reduced. 最新一代音频放大器采用了开关模式 D 类拓扑结构,与传统的线性音频放大器(如 类和 AB 类)相比,功率效率有了显著提高。线性放大器的大部分功耗来自直流偏置电流。因此,典型的功率效率仅限于 左右。相比之下,D 类放大器利用开关模式配置来实现功率效率,理论上可以达到 。不过,D 类放大器需要额外的调制级才能对输入音频信号进行编码。这两种拓扑结构如图 1.1 所示。D 类放大器具有更高的效率,因此可以减少散热。 As a result, the Class D amplifier has a lower cost and minimal thermal managements are usually sufficient. 因此,D 类放大器的成本较低,通常只需最低限度的热管理即可。 On the other hand, compared to linear amplifiers, the Class D amplifiers are sensitive to modulator non-linearity, power device non-idealities and power supply noise, which makes achieving low distortion difficult. 另一方面,与线性放大器相比,D 类放大器对调制器非线性、功率器件非理想性和电源噪声非常敏感,因此很难实现低失真。 With the recent development in GaN technology, this thesis will focus on minimizing the non-idealities of the power devices with the use of GaN power devices. 随着氮化镓技术的最新发展,本论文将重点讨论如何利用氮化镓功率器件最大限度地减少功率器件的非理想性。
(a)
(b)
Figure 1.1. Audio amplifier configurations: a) Linear Class AB and b) Switch Mode Class D amplifier. 图 1.1.音频放大器配置:a) 线性 AB 类和 b) 开关模式 D 类放大器。
1.2 Thesis Organization 1.2 论文组织
Chapter 2 covers the background of the Class D audio power amplifier and is organized into four parts. 第 2 章介绍了 D 类音频功率放大器的背景,分为四个部分。 The first part deals with the operation of the Class D audio amplifier, followed by the theoretical concepts of the Pulse Width Modulation (PWM) and Pulse Density Modulation (PDM) architectures and lastly the advantages and disadvantages of each modulation scheme. 第一部分介绍 D 类音频放大器的工作原理,然后是脉冲宽度调制 (PWM) 和脉冲密度调制 (PDM) 结构的理论概念,最后是每种调制方案的优缺点。 This is followed by a description of the GaN material properties. Finally, the sources of power loss, distortion and electromagnetic interference (EMI) from the Class D amplifier are discussed. Chapter 3 discusses the design of the modulator and output stage. 随后介绍了氮化镓材料的特性。最后,讨论了 D 类放大器的功率损耗、失真和电磁干扰(EMI)来源。第 3 章讨论了调制器和输出级的设计。 Beginning with the design of the digital modulation stage, followed by the design considerations for the Printed Circuit Boards (PCB) and the details of the selections of discrete components. 首先是数字调制阶段的设计,然后是印刷电路板(PCB)的设计考虑因素和选择分立元件的细节。 Chapter 4 presents the experimental results and discussion of the Class D audio amplifier. The thesis concludes with Chapter 5, where the research is summarized and the opportunities for future work are discussed. 第 4 章介绍了 D 类音频放大器的实验结果和讨论。论文最后的第 5 章总结了研究工作,并讨论了未来工作的机会。
2 Background 2 背景
This chapter discusses the basic components of a Class D amplifier, beginning with the basic operations. This is then followed by the theoretical concepts and the modulation schemes. 本章从基本操作开始,讨论 D 类放大器的基本组件。然后是理论概念和调制方案。 Pulse Width Modulation (PWM) and Pulse Density Modulation (PDM) are the two modulation schemes to be discussed. The GaN materials properties is discussed next. 脉宽调制(PWM)和脉冲密度调制(PDM)是将要讨论的两种调制方案。接下来将讨论氮化镓材料的特性。 Finally, the chapter ends with an overview of the power loss, distortion and electromagnetic interference associated with the Class D amplifier. 最后,本章概述了与 D 类放大器有关的功率损耗、失真和电磁干扰。
2.1 Operations of Class D Amplifier 2.1 D 类放大器的工作原理
The Class D amplifier consists of a modulator, a switching output stage, and a low pass filter as illustrated in Figure 2.1. The input audio signal is encoded with a PWM or PDM modulator into a high frequency gating signal. D 类放大器由一个调制器、一个开关输出级和一个低通滤波器组成,如图 2.1 所示。输入音频信号由 PWM 或 PDM 调制器编码成高频门控信号。 This signal is then used to drive the output stage devices. The output stage can be in a half-bridge or full-bridge configuration; however, a full-bridge configuration is more common. The output stage amplifies the input gating signal determined by the level of supply voltage. 该信号随后用于驱动输出级设备。输出级可以采用半桥或全桥配置,但全桥配置更为常见。输出级放大由电源电压电平决定的输入门控信号。 It is then demodulated by a low pass filter, in order to remove the high frequency components, to recovery of the original signal. Finally, the demodulated signal then is used to drive the speaker. 然后通过低通滤波器进行解调,以去除高频成分,恢复原始信号。最后,解调后的信号用于驱动扬声器。
Figure 2.1. Essential circuit blocks in a class D audio amplifier. 图 2.1.D 类音频放大器的基本电路模块。
2.1.1 Half Bridge Configuration 2.1.1 半桥配置
A full-bridge configuration consists of two half-bridges. The half-bridge configuration is illustrated in Figure 2.2. In order to understand the full-bridge configuration, understanding the operations of a half-bridge is essential. 全桥配置由两个半桥组成。半桥配置如图 2.2 所示。要了解全桥配置,必须先了解半桥的工作原理。 However, the half-bridge is not commonly used for Class D amplifiers. The full-bridge configuration can resolve issues that exist in the half-bridge configuration, such as an inherent DC component [12]. 不过,半桥并不常用于 D 类放大器。全桥配置可以解决半桥配置中存在的问题,如固有的直流分量 [12]。
Figure 2.2. Half-bridge configuration. 图 2.2.半桥配置
The half-bridge configuration can operate as a synchronous buck converter or a Class D amplifier. However, in order to operate the Class D amplifier with a half-bridge configuration, a capacitor in series with the output speaker is require to remove the inherent DC component. 半桥配置可作为同步降压转换器或 D 类放大器运行。不过,要使用半桥配置运行 D 类放大器,需要在输出扬声器上串联一个电容器,以消除固有的直流分量。 In a buck converter, a constant regulated output voltage is desired, however in a Class D audio amplifier, a constantly changing output voltage reflective to the input signal is desired. 在降压转换器中,需要恒定的稳压输出电压,而在 D 类音频放大器中,则需要不断变化的输出电压来反映输入信号。
In a synchronous buck converter, the switches are gated in a complementary fashion, this ensures that M1 and M2 are never on at the same time; otherwise it will short circuit from power to ground. 在同步降压转换器中,开关是以互补方式选通的,这就确保了 M1 和 M2 永远不会同时导通,否则就会造成电源到地的短路。 To ensure M1 and M2 are never on at the same time, additional dead-time is added between the two gate signals. When is on and is off, supplies the output load, and charges the inductor and capacitor. When M2 is on, M1 is off, the energy stored in from the inductor, and the capacitor is used to supply the load. The corresponding waveforms illustrated in Figure 2.3. 为确保 M1 和 M2 绝不同时导通,在两个栅极信号之间增加了额外的死区时间。当 开启, 关闭时, 为输出负载供电,并为电感器和电容器充电。当 M2 接通、M1 关断时,电感器和电容器储存的能量将用于为负载供电。相应的波形如图 2.3 所示。
Figure 2.3. Waveforms of a buck converter. 图 2.3.降压转换器的波形。
Given a fixed frequency at the period defines by , with duty cycle as the percentage of time that is turned on and as the percentage that is turned on. The average output voltage will be defined as [13]: 给定一个固定频率,其周期由 定义,占空比 为 接通的时间百分比, 为 接通的时间百分比。平均输出电压定义为 [13]:
2.1.2 Concept of Dead-Time 2.1.2 死亡时间的概念
To ensure that M1 and M2 are never on at the same time, dead-time is added to the gating signal as a practical and safety measure. Figure 2.4, illustrates the complementary gating signals with the presence of dead-time. 为了确保 M1 和 M2 永远不会同时开启,作为一项实用和安全的措施,在门控信号中加入了死区时间。图 2.4 展示了存在死区时间的互补选通信号。 In order to prevent the situation where both M1 and M2 being on simultaneously, due to finite switching speed of the transistors, a dead-time is inserted between the gating signals such that one transistors will be allowed to turn off before the other one is turned on. 由于晶体管的开关速度有限,为了防止出现 M1 和 M2 同时导通的情况,在门控信号之间插入了一个死区时间,使一个晶体管可以在另一个晶体管导通之前关闭。 Dead-time is implemented with the same method in a full-bridge configuration. 死区时间在全桥配置中以同样的方法实现。
Figure 2.4. and are the dead-times inserted between the gating signals. 图 2.4. 和 是插入门控信号之间的死区时间。
2.1.3 Full-Bridge Configuration 2.1.3 全桥配置
The full-bridge configuration (refer to Figure 2.5) operates in a similar fashion. M1 and M2 are gated in a complementary fashion same as that in a half-bridge configuration. For a simple two level modulation scheme, the gating signals for and are the same, and those for and M3 are the same. The full-bridge configuration allows the load to have a differential output of , doubling that of the half-bridge configuration. A full-bridge configuration also removes the inherent DC component as well as with an inherent power supply rejection, which are not present in a half-bridge configuration. 全桥配置(参见图 2.5)的工作方式类似。M1 和 M2 的门控方式与半桥配置中的互补方式相同。对于简单的两电平调制方案, 和 的门控信号相同, 和 M3 的门控信号也相同。全桥配置允许负载具有 的差分输出,是半桥配置的两倍。全桥配置还消除了固有的直流分量,并具有固有的电源抑制功能,而半桥配置则不具备这些功能。 The full-bridge configuration can also function with a 3 level modulation scheme [12], whereas the half-bridge configuration is limited to 2 . 全桥配置还可采用 3 级调制方案 [12],而半桥配置则仅限于 2 级。
The modulation schemes are techniques that encode an input waveform into an output gating signal. The two level modulation scheme is used in this thesis. 调制方案是将输入波形编码成输出门控信号的技术。本论文采用的是两级调制方案。 This section discusses and compares two modulation schemes used in Class D amplifiers, the Pulse Width Modulation (PWM) and Pulse Density Modulation (PDM). 本节讨论并比较 D 类放大器中使用的两种调制方案,即脉冲宽度调制 (PWM) 和脉冲密度调制 (PDM)。
2.2.1 Pulse Width Modulation 2.2.1 脉冲宽度调制
The architecture of a PWM is illustrated in Figure 2.6. The PWM modulation produces a waveform with a duty cycle that reflects the average voltage level of the input signal by comparing the input with a ramp as shown in Figure 2.7. The output switches once per ramp cycle, typically at 384 kHz , can create significant electromagnetic inference (EMI) harmonics at the ramp frequency. PWM 的结构如图 2.6 所示。如图 2.7 所示,PWM 调制产生的波形占空比反映了输入信号的平均电压水平。输出在每个斜坡周期切换一次,频率通常为 384 kHz,会在斜坡频率上产生显著的电磁干扰 (EMI) 谐波。 As the modulation index increases the pulses can become narrow. At this point the output stage cannot replicate the pulses due to the transistors non-idealities such as finite switching speeds. 随着调制指数的增加,脉冲会变得越来越窄。此时,由于晶体管的非理想特性(如有限的开关速度),输出级无法复制脉冲。
Figure 2.6. Basic architecture of a PWM modulator. 图 2.6.PWM 调制器的基本结构。
Figure 2.7. Example of a PWM modulator output waveforms. 图 2.7.PWM 调制器输出波形示例。
The implementation of the PWM modulator in digital domain requires several digital signal-processing components, because direct PWM modulation of an audio signal is impractical. 在数字域实现 PWM 调制器需要多个数字信号处理组件,因为直接对音频信号进行 PWM 调制是不切实际的。 Audio samples have a long word-length, therefore the clock speed required to modulate such a signals difficult to realize. 音频采样的字长较长,因此难以实现调制此类信号所需的时钟速度。 The modulator designs based on cascading a Delta Sigma Modulator (DSM) and PWM modulator have been developed [14-16], and an example of the setup is illustrated in Figure 2.8. In this example, the up-sampler & interpolator stage increases the sampling frequency of the audio data. The up-sampled audio data is fed into a DSM with an 8bit output and an oversampling ratio of 16 . The DSM quantizes the audio data. Finally, the sample is converted to a gating pulses using PWM modulation [17]. 基于级联ΔΣ调制器(DSM)和 PWM 调制器的调制器设计已经开发出来 [14-16],图 2.8 举例说明了这种设置。在此示例中,上采样器和内插器阶段提高了音频数据的 采样频率。上采样音频数据被送入一个 8 位输出、过采样率为 16 的 DSM。DSM 对音频数据进行量化。最后,使用 PWM 调制将采样转换为门控脉冲[17]。 However, this technique still requires the use of a 200 MHz clock to convert the gating pulses. 不过,这种技术仍然需要使用 200 MHz 的时钟来转换门控脉冲。
Figure 2.8. Example architecture of a digital PWM modulator. 图 2.8.数字 PWM 调制器结构示例。
2.2.2 Pulse Density Modulation 2.2.2 脉冲密度调制
The architecture of a PDM is illustrated in Figure 2.9. The PDM modulation scheme produces a waveform of pulses whose average reflects the input signal by using a DSM with an 1bit output shown with Figure 2.9 [15]. PDM 的结构如图 2.9 所示。PDM 调制方案通过使用 DSM 产生脉冲波形,其平均值反映输入信号,输出为 1 位,如图 2.9 所示[15]。 A DSM uses noise shaping which can provide lower noise in the audio band shown in Figure 2.11. A higher order modulator can provide more noise attenuation. However, the higher the modulator order the lower the input range becomes as the modulator becomes unstable [18]. DSM 采用噪声整形技术,可降低图 2.11 所示音频频段的噪声。高阶调制器可以提供更多的噪声衰减。不过,调制器阶数越高,输入范围就越小,因为调制器会变得不稳定 [18]。 The PDM requires a higher clock frequency (12.5 MHz) to achieve comparable signal to noise (SNR) performance to PWM. PDM 需要更高的时钟频率(12.5 MHz),才能达到与 PWM 相当的信噪比(SNR)性能。
An advantage of the PDM is that it has no fixed output frequency, which has no concentrated electromagnetic energy in the carrier band and harmonics. On other hand, an issue with PDM is that the shortest pulse width is 1 clock pulse wide. PDM 的优势在于它没有固定的输出频率,因此不会在载波频段产生集中的电磁能量和谐波。另一方面,PDM 的问题是最短脉冲宽度为 1 个时钟脉冲宽。 Without additional signal processing, the output switching frequency ( ) will center around half of the clock frequency. The could be decreased by adding hysteresis to the PDM modulator, illustrated with Figure 2.10 . 如果不进行额外的信号处理,输出开关频率( )将以时钟频率的一半为中心。如图 2.10 所示,可以通过在 PDM 调制器中添加滞后来降低 。
Figure 2.9. Basic architecture of a PDM modulator. 图 2.9.PDM 调制器的基本结构。
Figure 2.10. PDM output waveforms with and without with hysteresis. 图 2.10.带滞后和不带滞后的 PDM 输出波形。
Figure 2.11. DSM noise transfer functions: Red is a order modulator and blue is a order modulator. 图 2.11.DSM 噪声传递函数:红色为 阶调制器,蓝色为 阶调制器。
Hysteresis is used in PDM in order to decrease the at the output. The modulation scheme is illustrated Figure 2.12 [19]. Hysteresis biases the output signal by adding or subtracting a coefficient after the integrator. The output signal remains higher or lower for extra clock cycles depending on the coefficient, which decreases . The output difference between the PDM with and without hysteresis are shown in Figure 2.10. PDM 中使用磁滞来降低输出端的 。调制方案如图 2.12 所示 [19]。磁滞通过在积分器后添加或减去一个系数来偏置输出信号。根据系数的不同,输出信号在额外的时钟周期内保持较高或较低的水平,从而减小 。有磁滞和无磁滞 PDM 的输出差异如图 2.10 所示。
Figure 2.12. Basic architecture of a PDM modulator with hysteresis. 图 2.12.带滞后的 PDM 调制器的基本结构。
The PDM modulator implementation requires fewer digital signal-processing components compared to the PWM modulator, as the PDM modulator does not require an additional PWM modulator. The up-sampler & interpolator stage increases the sampling frequency ( ) of the audio data. The DSM with a 1-bit output, hysteresis and an oversampling ratio of 512, quantizes the word-length of the audio data and also converts the audio data to the gating signal. An example of the PDM modulator is illustrated in Figure 2.13. 与 PWM 调制器相比,PDM 调制器的实现所需的数字信号处理组件更少,因为 PDM 调制器不需要额外的 PWM 调制器。上采样器和插值器阶段提高了音频数据的采样频率( )。DSM 具有 1 位输出、滞后和 512 的过采样率,可量化音频数据的字长,并将音频数据转换为门控信号。图 2.13 举例说明了 PDM 调制器。
Figure 2.13. Example architecture of a digital PDM modulator. 图 2.13.数字 PDM 调制器结构示例。
The output of the PDM with different hysteresis coefficients is shown Figure 2.14 and Figure 2.15 are the histograms of the pulse widths with different hysteresis coefficients. When the hysteresis coefficient increases the decreases. With hysteresis, the performance of the PDM can be comparable to PWM as the output can be decreased. 图 2.14 和图 2.15 所示为 PDM 在不同滞后系数下的输出,图 2.15 是不同滞后系数下脉冲宽度的直方图。当磁滞系数增大时, 会减小。有了滞后,PDM 的性能可与 PWM 相媲美,因为输出 可以降低。
Figure 2.14. PDM single-tone spectrum with different hysteresis coefficient. 图 2.14.具有不同滞后系数的 PDM 单音频谱。
Figure 2.15. PDM output pulse width histogram with different hysteresis coefficient 图 2.15.不同滞后系数下 PDM 输出脉宽直方图
2.2.3 Comparison between Pulse Density and Pulse Width Modulation 2.2.3 脉冲密度与脉宽调制的比较
PDM and PWM are different modulation schemes with their own advantages and disadvantage. In this section, the differences between PDM and PWM are discussed. PDM 和 PWM 是不同的调制方案,各有利弊。本节将讨论 PDM 和 PWM 的区别。
Pulse Widths 脉冲宽度
The pulse widths can affect the output distortion of the amplifier. The shorter the pulse widths, the more difficult it is for the output stage to reproduce. 脉冲宽度会影响放大器的输出失真。脉冲宽度越短,输出级就越难再现。 Therefore, more distortion can occur, as the transistors' non-idealities such as finite switching speed become more apparent. 因此,随着晶体管的非理想特性(如有限开关速度)变得更加明显,可能会出现更多失真。 As the input becomes larger, the pulse widths of the PWM modulator will become narrower or wider, as shown in Figure 2.16. On the other hand, for the PDM modulator as the input becomes larger, the pulse widths becomes wider, as shown in Figure 2.17. A similar is chosen for the simulation with PWM at 384 kHz and PDM at 360 kHz . The histograms also show that PWM has a fixed , because all the pulses revolve around the center point. However, PDM pulses are randomized, which indicates that the PDM has no fixed . The difference in the output pulse behaviors indicate that the electromagnetic interference (EMI) behavior between PWM and PDM will be different. 如图 2.16 所示,随着输入变大,PWM 调制器的脉冲宽度会变窄或变宽。另一方面,对于 PDM 调制器,当输入变大时,脉冲宽度会变宽,如图 2.17 所示。在 PWM 频率为 384 kHz 和 PDM 频率为 360 kHz 的模拟中,选择了类似的 。直方图还显示,PWM 的 是固定的,因为所有脉冲都围绕中心点旋转。然而,PDM 脉冲是随机的,这表明 PDM 没有固定的 。输出脉冲行为的不同表明 PWM 和 PDM 的电磁干扰(EMI)行为将有所不同。
Figure 2.16. Histogram of pulse width of the PWM modulator with different input sine wave. 图 2.16.不同输入正弦波时 PWM 调制器脉冲宽度的直方图。
Figure 2.17. Histogram of pulse width of the PDM modulator with different input sine wave. 图 2.17.PDM 调制器在不同输入正弦波条件下的脉冲宽度直方图。
Electromagnetic Interference (EMI) 电磁干扰(EMI)
EMI is an important consideration, because if large EMI disturbance is present, it may degrade the performance of the circuit or even stop it from functioning. EMI 是一个重要的考虑因素,因为如果存在较大的 EMI 干扰,可能会降低电路的性能,甚至使其无法运行。 Figure 2.18 shows the supply current spectrum measured with a full-bridge output stage of a Class D amplifier for both PWM and PDM with 1 kHz input sine wave. The for PWM is at 384 kHz and PDM is at 360 kHz . PWM shows switching harmonics (EMI peaks) at 384 kHz , on the other hand PDM's switching harmonics has a spread spectrum affect, which decreases EMI. 图 2.18 显示了使用 D 类放大器全桥输出级测量的 PWM 和 PDM 电源电流频谱,输入正弦波频率均为 1 kHz。PWM 的 频率为 384 kHz,PDM 为 360 kHz。PWM 在 384 kHz 时会产生开关谐波(EMI 峰值),而 PDM 的开关谐波则会产生扩频效应,从而降低 EMI。
Figure 2.18. The supply current spectrum: Red is PDM and blue is PWM. 图 2.18.电源电流频谱:红色为 PDM,蓝色为 PWM。
Fast Fourier Transform (FFT) 快速傅立叶变换 (FFT)
Figure 2.19 and Figure 2.20 are the FFTs after an output stage. In order to capture the nonidealities of both PWM and PDM modulation schemes, similar are used. PDM with hysteresis can increase the pulse widths, hence decrease the , however not all pulse widths are increased leading to a few short pulses. The output stage cannot reproduce the short pulses property, which results in a higher noise floor. 图 2.19 和图 2.20 是输出级之后的 FFT 图。为了捕捉 PWM 和 PDM 调制方案的非理想性,使用了类似的 。带有滞后的 PDM 可以增加脉冲宽度,从而降低 ,但并非所有脉冲宽度都会增加,从而导致一些短脉冲。输出级无法再现短脉冲特性,从而导致更高的本底噪声。 In Figure 2.20 the slight rise in the PDM noise floor is the intermodulation between the fundamental frequency and the switching harmonics of PDM. 在图 2.20 中,PDM 本底噪声的轻微上升是 PDM 基频与开关谐波之间的互调。
Figure 2.19. PWM output single tone spectrums with an output stage. 图 2.19.带有输出级的 PWM 输出单音频谱。
Figure 2.20. PDM output single tone spectrums with an output stage. 图 2.20.带有输出级的 PDM 输出单音频谱。
2.3 GaN Material Properties 2.3 氮化镓材料特性
Silicon transistors are reaching their performance limits due to its material properties. Researchers have turned to alternative semiconductor materials. 由于硅晶体管的材料特性,其性能已达到极限。研究人员已转向替代半导体材料。 In term of power devices, most of the current research is focused on wide bandgap materials, specifically GaN and silicon carbide . 在功率器件方面,目前的大部分研究都集中在宽带隙材料上,特别是氮化镓和碳化硅 。
Table 2.1. Material Properties of Silicon and Wide Band Gap Materials [20, 21]. 表 2.1.硅和宽带隙材料的材料特性 [20, 21]。
Material Property 材料特性
Si
SiC-4H
GaN 氮化镓
Band Gap (eV) 带隙(eV)
1.1
3.26
3.39
Critical Breakdown Electric Field (MV/cm) 临界击穿电场(MV/cm)
0.3
3.0
3.3
Electron Mobility 电子迁移率
1350
700
Electron Saturation Velocity 电子饱和速度
1.0
2.0
2.5
Thermal Conductivity (Watts/cm K) 导热系数(瓦特/厘米 K)
1.5
4.9
1.3
In Table 2.1, it is evident that both GaN and SiC have material properties that make them better suited for power applications when compared to silicon. 从表 2.1 中可以明显看出,与硅相比,氮化镓和碳化硅都具有更适合功率应用的材料特性。 The wide band gap materials have a higher critical breakdown voltage making these transistors better suited for high voltages applications. GaN has higher electron mobility and saturation velocity, which improve the conductivity of the devices. 宽带隙材料具有更高的临界击穿电压,使这些晶体管更适合高压应用。氮化镓具有更高的电子迁移率和饱和速度,从而提高了器件的导电性。 In Figure 2.21, for the same sized transistors and the same breakdown voltage, the GaN transistors can provide a lower compared to silicon and SiC. However, GaN has a low thermal conductivity similar to silicon, meaning that it is less efficient in dissipating heat compared to SiC. 在图 2.21 中,对于相同尺寸的晶体管和相同的击穿电压,与硅和碳化硅相比,氮化镓晶体管可以提供更低的 。然而,氮化镓的热导率与硅类似较低,这意味着与碳化硅相比,氮化镓的散热效率较低。 The material properties of GaN indicates that a GaN based Class D amplifier will have lower power loss and distortion compared to a silicon based Class D amplifier. 氮化镓的材料特性表明,与硅基 D 类放大器相比,氮化镓 D 类放大器的功率损耗和失真更低。
Figure 2.21. versus breakdown voltage for silicon, SiC , and GaN [22]. 图 2.21.硅、碳化硅和氮化镓的 与击穿电压的关系 [22]。
2.3.1 Device Structure and Operation 2.3.1 设备结构和运行
The GaN is a high electron mobility transistor (HEMT) has significant differences structure when compared to the structures of silicon power devices. 氮化镓是一种高电子迁移率晶体管(HEMT),其结构与硅功率器件的结构有很大不同。 The structure of a GaN HEMT is illustrated in Figure 2.22. The device is fabricated on a GaN-on-silicon substrate, with the aluminum nitride layer as a buffer between the GaN and silicon. An aluminum gallium nitride layer sits on top of the GaN layer, and at the interface a two dimensional electron gas (2DEG) is formed due to polarization. The electrons in the 2DEG is confined to movement in 2 dimensions, in the plane perpendicular to the surface of the device. GaN HEMT 的结构如图 2.22 所示。该器件是在硅基氮化镓衬底上制造的,氮化铝层是氮化镓和硅之间的缓冲层。氮化镓层的顶部是氮化铝镓 层,由于极化作用,在界面上形成了二维电子气(2DEG)。二维电子气中的电子被限制在垂直于器件表面的平面内进行二维运动。 The properties of the 2DEG give rise to very high electron mobility, the reason behind the high electron mobility of GaN transistors. This is a depletion mode device, and is normally on. 二维电子元件的特性使其具有极高的电子迁移率,这也是氮化镓晶体管具有高电子迁移率的原因。这是一种耗尽模式器件,通常处于导通状态。
Figure 2.22. A typical GaN HEMT structure [22]. 图 2.22.典型的 GaN HEMT 结构 [22]。
The structure of a GaN HEMT is fundamentally different from silicon metal-oxide field effect transistor (MOSFET). The junction formed from the region of the body to region at the drain forms a body diode in a typical silicon MOSFET that is lacking in a GaN HEMT. GaN HEMT 的结构与硅金属氧化物场效应晶体管 (MOSFET) 有本质区别。从本体的 区到漏极的 区形成的 结构成了典型硅 MOSFET 中的本体二极管,而这正是 GaN HEMT 所缺乏的。
2.4 Source of Power Loss 2.4 电力损失的来源
In this section, sources of power loss from the devices are discussed in detail. 本节将详细讨论设备功率损耗的来源。
2.4.1 Conduction Loss 2.4.1 传导损耗
Conduction loss occurs when the device is switched on and voltage drops due to the . This can be calculated using the following equation: 当器件接通时,由于 导致电压下降,从而产生传导损耗。这可以用下式计算:
where is the percentage of time the transistor is on, is the current conducted by the transistor and is the on-resistance of the transistor. 其中, 是晶体管导通时间的百分比, 是晶体管传导的电流, 是晶体管的导通电阻。
2.4.2 Switching Loss 2.4.2 开关损耗
Switching loss is associated with the turn-on and turn-off of the transistor, when both the voltage across the transistor and current conducting through the transistor is non-zero. They are calculated using the following equations: 当晶体管两端的电压和通过晶体管的电流都不为零时,开关损耗与晶体管的导通和关断有关。其计算公式如下
where, is the switching frequency, is the current conducted by the transistor and is the voltage conducted by the transistor. (refer to Figure 2.24) and (refer to Figure 2.25) are integrated over the turn-on and turn-off transition period, respectively. 其中, 是开关频率, 是晶体管传导的电流, 是晶体管传导的电压。 (参见图 2.24)和 (参见图 2.25)分别是开通和关断过渡期间的积分。
Figure 2.24. Switching loss during the turn-on of a power device. 图 2.24.功率器件接通时的开关损耗。
Figure 2.25. Switching loss during the turn-off a power device. 图 2.25.功率器件关断时的开关损耗。
2.4.3 Gate Drive Loss 2.4.3 闸门驱动损失
The gate drive loss is the energy required to charge/discharge the gate capacitance of the transistor . The more the transistor turns-on and turns-off, the higher the , the higher the gate drive losses. Therefore, the gate drive loss is a function of , the supply voltage of the gate driver ( ) and . 栅极驱动损耗是对晶体管 的栅极电容进行充电/放电所需的能量。晶体管导通和关断的次数越多, 越高,栅极驱动损耗就越大。因此,栅极驱动损耗是 、栅极驱动器的电源电压( )和 的函数。
2.4.4 Reverse Conduction Loss 2.4.4 反向传导损耗
Reverse conduction loss is relevant to half-bridge and full-bridge configuration, but the effect on each one is different. Reverse conduction losses occur when all the switches are off and with current still flowing through the inductor. 反向传导损耗与半桥和全桥配置相关,但对每种配置的影响不同。反向传导损耗发生在所有开关都关断、电流仍流经电感器的情况下。 To provide a conduction path, the current flows through the body diode in the case of a silicon transistor. A GaN device does not have a body diode, therefore the current flows through the channel itself, as GaN device current can conducted in both directions. 为了提供传导路径,硅晶体管的电流流经体二极管。氮化镓器件没有体二极管,因此电流流经沟道本身,因为氮化镓器件的电流可以双向传导。
When reverse conduction occurs, the source and drain of the GaN device are reversed. Figure 2.26 is an illustration of reverse conduction in a GaN device in a half-bridge configuration. When both transistors are intended to be off, gate voltage is 0 V , the current flows through will require a conduction path. The current will flow through the channel of M2, requiring to turn-on. During reverse conduction, the source node functions as a drain node and vice versa. The voltage between and determines the gate to source voltage of . For to conduct, must be lower than negative threshold voltage , the of the transistor. The effects of reverse 发生反向传导时,氮化镓器件的源极和漏极会反向。图 2.26 是半桥配置中 GaN 器件反向传导的示意图。当两个晶体管都处于关断状态,栅极电压 为 0 V 时,流经 的电流将需要一个传导路径。电流将流经 M2 的沟道,要求 接通。在反向传导过程中,源极节点充当漏极节点,反之亦然。 和 之间的电压决定了 的栅极至源极电压。要使 导通, 必须低于负阈值电压 ,即晶体管的 。反向
conduction can be seen in the corresponding waveforms illustrated in Figure 2.27 where dips to . 从图 2.27 所示的相应波形中可以看出, 下降到 。
Figure 2.26. Reverse conduction in a half-bridge configuration with GaN devices. 图 2.26.采用氮化镓器件的半桥配置中的反向传导。
Figure 2.27. Waveforms for reverse conduction in a half-bridge configuration 图 2.27.半桥配置中的反向传导波形
In the full-bridge configuration since two transistors are required to provide the conduction path, the reverse conduction loss is doubled. As seen in Figure 2.28, and the waveforms in Figure 2.29, the reverse conduction effects are seen in the switching nodes of both legs. 在全桥配置中,由于需要两个晶体管提供传导路径,因此反向传导损耗增加了一倍。如图 2.28 和图 2.29 的波形所示,反向传导效应出现在两条腿的开关节点上。
Figure 2.28. Reverse conduction in a full-bridge configuration with GaN device. 图 2.28.采用氮化镓器件的全桥配置中的反向传导。
Figure 2.29. Waveforms for reverse conduction in a full-bridge configuration. 图 2.29.全桥配置中的反向传导波形。
2.4.5 Reverse Recovery Loss 2.4.5 反向恢复损失
GaN transistors have no reverse recovery losses due to a lack of an anti-parallel pn body diode that is inherent in the structure of silicon transistor. Therefore, the GaN devices do not have reverse recovery loss. 氮化镓晶体管没有反向恢复损耗,这是因为硅晶体管结构中没有固有的反并联 pn 体二极管。因此,氮化镓器件没有反向恢复损耗。 The reverse recovery loss occurs during the turn-on and turn-off transition of the transistors. During reverse recovery loss, the diode current rolls off at a constant ( ) to zero then reverses the direction. The negative current, also known as reverse recovery current ( ) reaches the negative peak ( ) and then goes back up to zero. The area of the negative current is known as reverse recovery charge ( ). The reverse recovery loss is illustrated in Figure 2.30. The is the energy loss during reverse recovery and the more transitions between turn on-and turnoff (higher ) and , the higher the reverse recovery loss. Therefore, reverse recovery loss is dependent and . 反向恢复损耗发生在晶体管的导通和关断转换期间。在反向恢复损耗期间,二极管电流以一定的速度( )滚动到零,然后反向。负电流也称为反向恢复电流( )达到负峰值( ),然后回升到零。负电流的面积称为反向恢复电荷 ( )。反向恢复损耗如图 2.30 所示。 是反向恢复过程中的能量损耗,导通和关断之间的转换越多( 越高), 越高,反向恢复损耗就越大。因此,反向恢复损耗取决于 和 。
Figure 2.30 Diode recovery waveform during turn off transistors [23]. 图 2.30 关闭晶体管时的二极管恢复波形 [23]。
2.5 Source of Distortion in Class D Amplifier 2.5 D 类放大器的失真源
Total Harmonic Distortion plus noise (THD+N) is defined as 总谐波失真加噪声 (THD+N) 的定义是
where is the number of harmonics. There are several factors that contribute to THD +N , such as nonlinearities from the modulated schemes, non-idealities in the transistor, ringing from parasitic, noise from power supply and non-idealities in the output filter [24]. 其中 为谐波次数。造成 THD +N 的因素有多种,如调制方案的非线性、晶体管的非理想性、寄生振铃、电源噪声和输出滤波器的非理想性 [24]。
The non-idealities of the power devices cause distortion in the pulse shape of the gating signal. 功率器件的非理想性导致门控信号的脉冲形状失真。 The ideal and actual waveform are shown in Figure 2.31. The distortion of the Class D amplifier depends on the ability for the power devices to reproduce the gating signal's pulse shapes. Distortion in the pulse shape results in distortion at the output. 理想波形和实际波形如图 2.31 所示。D 类放大器的失真取决于功率器件再现门控信号脉冲形状的能力。脉冲形状失真会导致输出失真。 In order to achieve low distortion, the pulse shape should be as ideal as possible. Therefore, a reduction in non-idealities in the power devices, for example the use of GaN power devices, can reduce distortion at the output. 为了实现低失真,脉冲形状应尽可能理想。因此,减少功率器件中的非理想状态,例如使用氮化镓功率器件,可以减少输出端的失真。
Figure 2.31 Comparison between ideal and actual switching waveform 图 2.31 理想开关波形与实际开关波形的比较
The of a transistor affects the switching speed, shown in Figure 2.32, this implies that the amplifiers linearity is also affected by a higher . 晶体管的 会影响开关速度,如图 2.32 所示,这意味着放大器的线性度也会受到 较高的影响。
Figure 2.32. The effect of change in on THD+N [25]. 图 2.32. 的变化对 THD+N 的影响 [25]。
Figure 2.33. The effects of dead-time on THD+N [25]. 图 2.33.死区时间对 THD+N 的影响 [25]。
Figure 2.33 shows how the introduction of excessive dead-time affects THD+N. Dead-time also affects the operation of the output stage as discussed earlier. 图 2.33 显示了过长死区时间对 THD+N 的影响。如前所述,死区时间也会影响输出级的运行。 Excessive dead-time can change the apparent pulse widths of the Class D amplifier switching node which introduce more distortion . 过长的死区时间会改变 D 类放大器开关节点的表观脉冲宽度,从而带来更大的失真 。
2.6 Sources of Electromagnetic Interference (EMI) 2.6 电磁干扰(EMI)源
In this section, the sources of EMI from switch mode configuration and parasitic are discussed. 本节将讨论来自开关模式配置和寄生的电磁干扰源。
2.6.1 Switch Mode Configuration 2.6.1 交换机模式配置
In switch mode configurations, the circuit generates a constant rectangular pulses. The switching on and off of currents in the circuit, generate high frequency components that contribute to EMI [27]. 在开关模式配置中,电路会产生恒定的矩形脉冲。电路中电流的接通和断开会产生高频成分,从而导致电磁干扰 [27]。 A Fourier analysis of a switch mode configuration will show a fundamental frequency and decaying higher harmonics at multiples of the fundamental frequency [28] as illustrated in Figure 2.34. 如图 2.34 所示,开关模式配置的傅立叶分析将显示基频和基频倍数衰减的高次谐波 [28]。
Figure 2.34. One-sided spectrum of a square wave [28]. 图 2.34.方波的单边频谱 [28]。
2.6.2 Ringing due to Parasitic 2.6.2 寄生虫引起的振铃
Parasitic inductances and capacitances can create circuits that cause ringing. The effects of the parasitic are often seen higher frequencies in the order of 100's MHz. 寄生电感和寄生电容会产生导致振铃的 电路。寄生的影响通常出现在 100 兆赫的较高频率上。
Parasitic inductances from the source and drain of the transistors resulting from transistor packaging and Printed Circuit Board routing can also contribute to an unwanted resonant circuit, as illustrated in Figure 2.35. Another location is the inductance from the wire connecting the gate driver output to the gate of the transistor, which can interact, with the input capacitance of the transistor, as seen in Figure 2.36. The ringing at the gate can also induce ringing at the switching node. 晶体管封装和印刷电路板布线造成的晶体管源极和漏极寄生电感也会导致不必要的 谐振电路,如图 2.35 所示。另一个原因是连接栅极驱动器输出和晶体管栅极的导线电感,它会与晶体管的输入电容相互作用,如图 2.36 所示。栅极的振铃也会引起开关节点的振铃。
Figure 2.35. Parasitic inductances in a half-bridge configuration. 图 2.35.半桥配置中的寄生电感。
Figure 2.36. Parasitic in the gate circuit. 图 2.36.栅极电路中的寄生
Inductances are generally kept to a minimum to reduce ringing, but cannot be completely removed. Unwanted ringing at the gate can be damped by the addition of gate resistances in series at the output of the gate driver. 为了减少振铃,电感通常会保持在最低水平,但不可能完全消除。通过在栅极驱动器输出端串联栅极电阻,可以抑制栅极上不必要的振铃。 An alternative is to place a ferrite bead in series with the output of the gate driver, rated at the ringing frequency. The ferrite bead is a passive low pass filter, and suppresses the ringing as it is seen as a high impedance by the high frequency ringing [29]. 另一种方法是在栅极驱动器的输出端串联一个铁氧体磁珠,其额定频率为振铃频率。铁氧体磁珠是一种无源低通滤波器,可以抑制振铃,因为它被高频振铃视为高阻抗 [29]。 At the switching node, a snubber circuits, a resistor in series with a capacitor connect to ground, can be added to suppress the ringing. At higher frequencies, the capacitor is seen as a low impedance path and can dampen the ringing energy through the snubber resistor [30]. 在开关节点处,可以添加一个缓冲电路,即一个与接地电容串联的电阻,以抑制振铃。在较高频率下,电容器被视为低阻抗路径,可通过缓冲电阻抑制振铃能量 [30]。
A square wave with a ringing at the rising edge is commonly seen in switching waveforms as depicted in Figure 2.37. The ringing spectrum can be seen as a noticeable peak in the spectra of the signal. The shape of the spectra of the entire waveform is shown in Figure 2.38. 如图 2.37 所示,开关波形中常见的是上升沿有振铃的方波。振铃频谱可以看作是信号频谱中的一个明显峰值。整个波形的频谱形状如图 2.38 所示。
Figure 2.37. Square wave with ringing. 图 2.37.带振铃的方波
Figure 2.38. Spectra of a square wave with ringing at [28]. 图 2.38.在 处出现振铃的方波频谱 [28]。
2.7 Summary 2.7 小结
In this chapter, we have reviewed the basics for Class D audio amplifier and the switching configuration of a half-bridge and full-bridge. The concept of dead-time is introduced and discussed for the half-bridge and full-bridge configurations. 在本章中,我们回顾了 D 类音频放大器的基础知识以及半桥和全桥的开关配置。介绍并讨论了半桥和全桥配置的死区时间概念。 The modulation schemes of typical Class D amplifier, PWM and PDM are discussed and compared. The GaN material properties has been reviewed. Finally, the sources of distortion, power loss and EMI were also discussed. 讨论并比较了典型 D 类放大器、PWM 和 PDM 的调制方案。此外,还回顾了氮化镓材料的特性。最后,还讨论了失真、功率损耗和 EMI 的来源。
3 Digital Modulator and Output Stage Design 3 数字调制器和输出级设计
This chapter presents the design and implementations of the digital modulator and the GaN and silicon output stages. 本章介绍数字调制器以及氮化镓和硅输出级的设计和实现。
3.1 Digital Modulator Design 3.1 数字调制器设计
In this section, the design considerations of digital modulator design are discussed. Beginning with the modulator architecture. Followed by the details of the up-sampler and interpolator, Delta Sigma Modulation (DSM) and dead-time controller. 本节将讨论数字调制器设计的注意事项。首先是调制器结构。然后是上采样器和插值器、ΔΣ调制(DSM)和死区时间控制器的细节。 The digital modulator is then implemented onto an FPGA using Verilog. Robert Mckenzie a PhD student in Smart Power Integration & Semiconductor Devices Research Group developed the digital modulator. 然后使用 Verilog 在 FPGA 上实现数字调制器。智能功率集成与半导体器件研究小组的博士生罗伯特-麦肯齐(Robert Mckenzie)开发了数字调制器。
3.1.1 Modulator Architecture 3.1.1 调制器结构
The digital Class D modulator converts digital audio data into the output power stage gating signal. The architecture of modulator directly effects the performance of the amplifier. The PWM and PDM modulation schemes are both considered. However, in order to achieve different the PDM is chosen. As the PDM modulator scheme can use different hysteresis coefficients in order to adjust . The PDM modulator design is illustrated in Figure 3.5. 数字 D 类调制器将数字音频数据转换为输出功率级门控信号。调制器的结构直接影响放大器的性能。PWM 和 PDM 调制方案都在考虑之列。但是,为了实现不同的 ,我们选择了 PDM。由于 PDM 调制器方案可以使用不同的磁滞系数来调整 。PDM 调制器的设计如图 3.5 所示。
Figure 3.1. Block diagram showing the main digital PDM modulator building blocks. 图 3.1.显示主要数字 PDM 调制器构件的框图。
3.1.2 Up-Sampler & Interpolator 3.1.2 上采样器和插值器
The up-sampler & interpolator is used to increase the sampling frequency of the input signal. A Cascaded Integrator-comb (CIC) filter is implemented over a traditional Finite Impulse Response (FIR) filter, due to the simple structure of the CIC filter. The CIC filter only uses adders and subtractors. 上采样器和内插器用于提高输入信号的 采样频率。与传统的有限脉冲响应(FIR)滤波器相比,级联积分器-梳状(CIC)滤波器结构简单。CIC 滤波器只使用加法器和减法器。 This is more preferable as the FIR filter requires the use of multipliers. In order to sample the input 256 times , two 16 times CIC filters are cascaded and implemented. 由于 FIR 滤波器需要使用乘法器,因此这种方法更为可取。为了对输入进行 256 次 采样,需要级联并实现两个 16 次 CIC 滤波器。
Figure 3.2 illustrates the architecture of the CIC filter. The comb section operates at a low sampling rate where is the inter rate change factor. This section consists of comb stages with a different delay of samples per stage [31]. The inter rate change is chosen to be 16 for each CIC to up-sample the signal 16 times, and where selected to be 1 . The transfer function of the CIC filter is shown in Figure 3.3 and outputs of the CIC filters are shown in Figure 3.4. 图 3.2 展示了 CIC 滤波器的结构。梳状器部分以较低的采样率 工作,其中 是速率间变化系数。该部分由 个梳齿级组成,每个梳齿级有 个不同的采样延迟 [31]。每个 CIC 的间隔速率变化 选为 16,以便对信号进行 16 次上采样, 和 选为 1。CIC 滤波器的传递函数如图 3.3 所示,CIC 滤波器的输出如图 3.4 所示。
A order DSM with hysteresis and a 1-bit output is implemented. The DSM is implemented with the structure shown in Figure 3.5. The feedforward structure is chosen in order to reduce the dynamic range requirements in both integrators. 实现了一个具有滞后和 1 位输出的 阶 DSM。DSM 的结构如图 3.5 所示。选择前馈结构是为了降低两个积分器的动态范围要求。 Audio signals are always varying, therefore a good dynamic range for both integrators allows the modulator to be more stable. 音频信号总是不断变化的,因此两个积分器的动态范围越大,调制器就越稳定。
Figure 3.5. order DSM architecture with hysteresis. 图 3.5.带滞后的 阶 DSM 结构。
The output of the CIC filter feeds into the DSM. The noise transfer function (NTF) and signal transfer functions (STF) of the DSM shape the output signal. Hysteresis is then added or subtracted depending on the output signal to adjust the [19]. Finally, the signal is quantized and used to generate the gating pulse, which is then fed into the dead-time controller. The input and output of the DSM are simulated and shown in Figure 3.6. A DSM provides noise shaping by a NTF, which is derived from the architecture. CIC 滤波器的输出馈入 DSM。DSM 的噪声传递函数 (NTF) 和信号传递函数 (STF) 塑造输出信号。然后根据输出信号添加或减去滞后,以调整 [19]。最后,对信号进行量化并用于生成门控脉冲,然后将其输入死区时间控制器。DSM 的输入和输出经过仿真,如图 3.6 所示。DSM 通过 NTF 进行噪声整形,而 NTF 则来自于架构。 The NTF behaves like a high pass filter. It suppresses noise at frequencies in the audio band and enhances noise at frequencies beyond the audio band. The STF and NTF equation are shown in the following equation: NTF 的作用类似于高通滤波器。它抑制音频频段内的噪声,增强音频频段外的噪声。STF 和 NTF 方程如下所示:
The STF is designed to have flat band of 0 dB within the audio band; this ensures that the audio signal will not be affected. STF 的设计在音频频段内具有 0 dB 的平坦频带;这可确保音频信号不受影响。 The NTF is designed to have a 40 dB per decade noise shaping that attenuate the noise inside the audio band by moving the noise out of the audio band shown in Figure 3.6. 如图 3.6 所示,NTF 设计有每 10 年 40 dB 的噪声整形,通过将噪声移出音频频段来衰减音频频段内的噪声。
(a) Input FFT (a) 输入 FFT
(b) Output FFT (b) 输出 FFT
Figure 3.6. FFT of the input and output of a DSM. 图 3.6.DSM 输入和输出的 FFT。
3.1.4 Dead-Time Controller 3.1.4 死区控制器
The dead-time controller is implemented for the gate signal edges with flip-flops and buffers, illustrated in Figure 3.7. The gating signals are fed into the dead-time controller to delay the rise and fall times, in order to achieve different dead-times. 如图 3.7 所示,死区时间控制器是通过触发器和缓冲器来实现栅极信号边沿的。栅极信号被输入到死区时间控制器,以延迟上升和下降时间,从而实现不同的死区时间。 The flip-flops of the dead-time controller are clocked with a 200 MHz clock (5 ns delay). A higher precision delay is also implemented with buffers; each buffer has a delay of around 500 ps . 死区时间控制器的触发器采用 200 MHz 时钟(5 ns 延迟)。更高精度的延迟也是通过缓冲器实现的;每个缓冲器的延迟约为 500 ps。
Figure 3.7. Dead-time controller for each transistor. 图 3.7.每个晶体管的死区时间控制器
The design of the PCB board can significantly affect the performance of the amplifier. The design of the PCB board is discuses in this section. PCB 电路板的设计会对放大器的性能产生重大影响。本节将讨论 PCB 电路板的设计。
3.2.1 Current Loops 3.2.1 电流回路
The current loops that carry large currents have the greatest potential to generate EMI in the circuit. The high peak currents, sharp edges and the currents flowing through these loops can inject noise into surrounding circuitry. 携带大电流的电流回路最有可能在电路中产生 EMI。高峰值电流、尖锐的边缘和流经这些回路的电流会向周围电路中注入噪声。 To minimize these affects in the amplifier, the PCB should minimize the loop area and distance of these current paths [32]. Among the high current loops, the power paths should be prioritized, as the highest frequency components are present. 为尽量减少放大器中的这些影响,PCB 应尽量减少这些电流路径的环路面积和距离 [32]。在大电流环路中,应优先考虑功率路径,因为其中存在频率最高的元件。 By minimizing these current loops, it will prevent the switching current waveform from distorting the audio signal at the output. 通过最大限度地减少这些电流回路,可以防止开关电流波形对输出端的音频信号造成失真。 The current loops of the gate node and switching node are kept to a minimum distance shown in Figure 3.8 and Figure 3.9. The gate driver traces are represented by the red lines and the high current power paths between , the switching node and the ground are represented by the blue arrows. Both are designed with the shortest possible current paths, as distortion that occurs in these current paths will be translated to the output. 如图 3.8 和图 3.9 所示,栅极节点和开关节点的电流回路保持在最小距离。栅极驱动器迹线用红线表示, 、开关节点和接地之间的大电流电源路径用蓝色箭头表示。这两条路径都设计为尽可能短的电流路径,因为这些电流路径中发生的失真将转化为输出。
Figure 3.8. Current loops of the GaN output stage. 图 3.8.氮化镓输出级的电流回路。
Figure 3.9. Current loops of the silicon output stage. 图 3.9.硅输出级的电流回路。
3.2.2 PCB Grounding 3.2.2 PCB 接地
The PCB ground is designed to separate the two half-bridges with a central ground node (within the red box). Traditionally the star ground concept is the preferred technique for audio signals, as this technique can suppress noise injection into the ground wires of a PCB [32]. 印刷电路板的接地设计是通过一个中央接地节点(红框内)将两个半桥分开。传统上,星形接地概念是音频信号的首选技术,因为这种技术可以抑制噪声注入 PCB 的接地线 [32]。 However, star ground technique is not implemented in this design, as the minimization of the current loops are prioritized. 不过,在本设计中没有采用星形接地技术,因为要优先考虑尽量减少电流回路。 The PCB ground design is shown in Figure 3.10. The blue boxes represent the ground nodes of the two half-bridges and they are separated with the aforementioned central ground node. PCB 的接地设计如图 3.10 所示。蓝色方框代表两个半桥的接地节点,它们被上述中央接地节点隔开。
Figure 3.10. Star connection on the PCB. 图 3.10.PCB 上的星形连接。
3.3 Discrete Component Selection 3.3 分立元件的选择
The discrete components of the Class D amplifier can affect the performance the amplifier. The selection of the components and the differences between the GaN and silicon output stages are discussed in this section. D 类放大器的分立元件会影响放大器的性能。本节将讨论元件的选择以及氮化镓输出级和硅输出级之间的差异。
3.3.1 GaN and Silicon Device 3.3.1 氮化镓和硅器件
The device selection is essential for this study. The GaN power device chosen for this study is an enhancement mode device from GaN Systems, and the silicon power device is a NexFET from Texas Instruments (TI). 器件的选择对本研究至关重要。本研究选择的氮化镓功率器件是氮化镓系统公司的增强模式器件,硅功率器件是德州仪器公司(TI)的 NexFET。 The 100 VGaN and silicon device are chosen to have a similar onresistance (approximately 12-15 m ). Their specifications are outlined in Table 3.1 100 VGaN 和硅器件的导通电阻相近(约为 12-15 m )。它们的规格如表 3.1 所示
Table 3.1. Comparison between GaN and Silicon Transistors. 表 3.1.氮化镓晶体管与硅晶体管的比较。
GaN 氮化镓
Silicon 硅
Manufacturer 制造商
GaN Systems 氮化镓系统
Texas Instrument 德州仪器
Part Number 部件编号
GS61004B
CSD19537Q3
Voltage Rating 额定电压
100 V
100 V
Current Rating 当前评级
45 A
50 A
On-Resistance
Gate Charge 闸门电荷
6.6 nC
16 nC
FOM
Threshold Voltage 阈值电压
1.3 V
3 V
The figure of merit (FOM) is defines as . GaN devices have a smaller FOM than the silicon devices. The gate charge for GaN is approximately 2.4 times smaller. This indicates that the switching speed of the GaN devices is faster than the silicon transistor when .is similar. The threshold voltages ( ) of devices are different due to the different material properties. The gate-source breakdown voltage of these devices are also different due to the difference in gate dielectric breakdowns. 优点系数 (FOM) 的定义为 。氮化镓器件的 FOM 比硅器件小。氮化镓器件的栅极电荷 约为硅器件的 2.4 倍。这表明,当 .相似时,氮化镓器件的开关速度比硅晶体管快。由于材料特性不同,器件的阈值电压( )也不同。由于栅极电介质击穿的不同,这些器件的栅极-源极击穿电压也不同。 The gate-source breakdown voltages differences, indicates that different gate drivers into to drive the devices. 栅极-源极击穿电压的差异表明,驱动器件的栅极驱动器不同。
The silicon device is a NexFET from Texas Instruments. The NexFET offers a similar to the TrenchFET, and it reduces the input capacitances significantly by optimizing the structure and packaging. The reduction in the capacitance means that low input gate charge and faster switching speeds [33]. 硅器件是德州仪器的 NexFET。NexFET 具有与 TrenchFET 相似的 特性,并通过优化结构和封装大大降低了输入电容。电容的减少意味着输入栅极电荷的降低和开关速度的加快 [33]。 The NexFET offers excellent FOM compared to other silicon power devices shown in Figure 3.11. 与图 3.11 所示的其他硅功率器件相比,NexFET 具有出色的 FOM。
Figure 3.11. Comparison of FOM for TrenchFET and NexFET technologies [33]. 图 3.11.TrenchFET 和 NexFET 技术的 FOM 比较 [33]。
The Figure 3.12 shows the vs of both the and silicon devices. The devices that are selected are placed on the graph, the silicon device is shown in black and the GaN devices is shown in red. The NexFET improves the FOM of the typical silicon power devices, however, the material properties of GaN leads a superior FOM. 图 3.12 显示了 和硅器件的 与 的对比。所选器件置于图中,硅器件显示为黑色,氮化镓器件显示为红色。NexFET 改善了典型硅功率器件的 FOM,但氮化镓的材料特性使其具有更优越的 FOM。
Figure 3.12. vs graph [34]. 图 3.12. vs 图 [34]。
3.3.2 Gate Driver 3.3.2 栅极驱动器
The different gate dielectric breakdown of the GaN and silicon devices results in different gate-source breakdown voltage. Therefore, different gate drivers are chosen for the GaN and silicon devices. 氮化镓和硅器件的栅极电介质击穿不同,导致栅极-源极击穿电压也不同。因此,要为氮化镓和硅器件选择不同的栅极驱动器。 The different gate drivers are selected for each output stage, and the specifications are noted in Table 3.2. 表 3.2 列出了为每个输出级选择的不同栅极驱动器的规格。
Table 3.2. Comparison of the GaN and Silicon Gate Driver 表 3.2.氮化镓和硅栅极驱动器的比较
GaN 氮化镓
Silicon 硅
Manufacturer 制造商
Texas Instrument 德州仪器
Texas Instrument 德州仪器
Model Number 型号
LM5113
UCC27211
Source/Sink Current (A) 源/汇电流 (A)
Pull-down/Pull-up resistance 下拉/上拉电阻
Maximum Supply Voltage 最大供电电压
7 V
20 V
Under Voltage Protection 欠压保护
3.8 V
7 V
The gate driver of the GaN devices have different source/sink current, this is a technique used for driving GaN devices [35]. 氮化镓器件的栅极驱动器具有不同的源/漏电流,这是一种用于驱动氮化镓器件的技术 [35]。 The larger sink currents result in a fall time faster and the smaller source current result in a rise time slower, which will reduce the amount of ringing. 沉入电流越大,下降时间越快,源电流越小,上升时间越慢,从而减少振铃。 As for the gate driver of the silicon device, a larger source current to drive the device are required as the silicon device has a larger . The source current of the gate drivers can produce a large the amount of ringing, therefore external gate resistances can be implemented to reduce the amount of ringing. 至于硅器件的栅极驱动器,由于硅器件的 较大,因此需要更大的源电流来驱动器件。栅极驱动器的源电流会产生较大的振铃,因此可以采用外部栅极电阻来减少振铃。
3.3.3 Gate Resistance 3.3.3 闸门电阻
The gate resistance of the circuit can affect the switching speed of the devices. The gate of a transistor is effectively an circuit and by increasing the the switching speed of the transistor will decrease. The output stage switching node is then connected to a boot strap capacitor ( ) and is selected to be . An example boot strap circuit is shown in Figure 3.133. The gate driver components chosen have an integrated diode, therefore only an external capacitor is required. In the gate driver components, HI and LI are the inputs for the high side and low side devices. 电路的栅极电阻 会影响器件的开关速度。晶体管的栅极实际上是一个 电路,增加 会降低晶体管的开关速度。输出级开关节点连接到一个自举电容器( ),并选择为 。图 3.133 显示了一个自举电路示例。所选的栅极驱动器组件具有集成二极管,因此只需一个外部电容器。在栅极驱动器元件中,HI 和 LI 分别是高压侧和低压侧器件的输入端。 HB and HS are the power and reference voltage for the high side device. HB 和 HS 是高压侧设备的功率和基准电压。
Figure 3.13. Example boot strap circuit. 图 3.13.引导带电路示例。
The gate resistance of the GaN output stage is chosen to maximize the performance of the amplifier. The circuit illustrated in Figure 3.14, shows the half-bridge schematic of the GaN output stage and the full bridge consist two half-bridges circuits. 选择氮化镓输出级的栅极电阻是为了最大限度地提高放大器的性能。图 3.14 所示电路是氮化镓输出级的半桥原理图,全桥由两个半桥电路组成。 The GaN gate driver has different source/sink currents, this results in different outputs as source outputs and HOL/LOL as sink outputs for both high side and low side. The source resistance is chosen to be larger than the sink resistance , in order to decrease ringing at the switching node. These values are chosen to maximize , as large ringing increases the distortion at the output. GaN 栅极驱动器具有不同的源/汇电流,这导致高压侧和低压侧的源输出 和汇输出不同。源极电阻 应大于汇极电阻 ,以减少开关节点处的振铃。选择这些值是为了最大化 ,因为较大的振铃会增加输出端的失真。
Figure 3.14. The GaN half-bridge output stage schematic. 图 3.14.氮化镓半桥输出级原理图。
The circuit illustrated in Figure 3.15 shows the schematic of the half-bridge silicon output stage. The silicon gate driver has the same source and sink currents; therefore, the gate driver only has one output for high side (HO) and low side (LO). 图 3.15 所示电路是半桥硅输出级的原理图。硅栅极驱动器具有相同的源电流和灌电流,因此栅极驱动器只有一个高电平 (HO) 和低电平 (LO) 输出。 The larger input capacitance of the silicon transistor compare to the GaN transistor leads to larger RLC ringing with the parasitic inductance. The silicon output stage has larger and an additional boot resistance is added in order to reduce the ringing of the transistor by damping the RLC ringing with a larger resistance. Large ringing at the switching node causes the under voltage protection of the gate driver to trigger, resulting in the gate driver turning off shown in Figure 3.16. 与 GaN 晶体管相比,硅晶体管的输入电容更大,导致寄生电感产生更大的 RLC 振铃。硅输出级的 较大,并增加了一个额外的 引导电阻 ,以便通过较大的电阻阻尼 RLC 振荡来降低晶体管的振荡。开关节点处的较大振铃会触发栅极驱动器的欠压保护,导致栅极驱动器关闭,如图 3.16 所示。
Figure 3.15. The silicon half-bridge output stage schematic. 图 3.15.硅半桥输出级原理图。
Figure 3.16. Gate nodes of the silicon output stage with different gate resistance. 图 3.16.不同栅极电阻下硅输出级的栅极节点。
3.3.4 Low Pass Filter 3.3.4 低通滤波器
The low pass filter is implemented to demodulate the amplified gating signal from the output signal. A passive RLC low pass filter is chosen in order to demodulate the amplified gating signal. 低通滤波器用于解调输出信号中的放大选通信号。选用无源 RLC 低通滤波器来解调放大的选通信号。 The values of the low pass filter is illustrated in Figure 3.17. The cut off frequency is chosen to be at 45 kHz . The second order filter will have a drop of -40 dB per decade and will attenuate frequencies above 45 kHz . 低通滤波器的数值如图 3.17 所示。截止频率选为 45 kHz。二阶滤波器每十进制下降 -40 dB,将衰减 45 kHz 以上的频率。
Figure 3.18. Low pass filter transfer function. 图 3.18.低通滤波器传递函数
3.4 Summary 3.4 小结
In this chapter, we discussed the design considerations of the digital Pulse Density Modulation scheme, which consists of a Cascaded Integrator-Comb filter, a feedforward Delta Sigma Modulator and a dead-time controller. 在本章中,我们讨论了数字脉冲密度调制方案的设计考虑因素,该方案由级联积分器-组合滤波器、前馈德尔塔Σ调制器和死区时间控制器组成。 The digital modulator is implemented into an FPGA using Verilog. The Print Circuit Board design is reviewed and the main design considerations were discussed. The selection of discrete components beginning with the power devices, gate drivers and gate resistance are reviewed. 数字调制器使用 Verilog 在 FPGA 中实现。对印刷电路板的设计进行了回顾,并讨论了主要的设计注意事项。从功率器件、栅极驱动器和栅极电阻开始,回顾了分立元件的选择。 Finally, the output low pass filter design is discussed. 最后,讨论了输出低通滤波器的设计。
4 Experimental Results 4 实验结果
The experimental results for the comparison between the GaN and silicon based Class D audio amplifiers using Pulse Density Modulation are presented in this chapter. 本章介绍了使用脉冲密度调制对氮化镓和硅基 D 类音频放大器进行比较的实验结果。
4.1 Experimental Implementation 4.1 实验实施
The implementation of the GaN and silicon based designs are presented in this thesis and their photographs are shown in Figure 4.1. The comparison between these two output stages are made using PCB implementations and discrete components. 本论文介绍了氮化镓和硅基设计的实现,其照片如图 4.1 所示。这两种输出级使用 PCB 实现和分立元件进行比较。
(a) GaN (a) 氮化镓
(b) Silicon (b) 硅
Figure 4.1. Photographs of the output stages. 图 4.1.输出级的照片。
4.2 Test Setup 4.2 测试设置
The setup for characterizing the audio amplifier is illustrated in Figure 4.2. All the measurements are performed using an Audio Precision SYS-2322 audio analyzer. 图 4.2 展示了鉴定音频放大器的设置。所有测量均使用 Audio Precision SYS-2322 音频分析仪进行。 An Audio Precision AW-0025 low-pass filter is placed between the audio analyzer and the Class D amplifier to attenuate the high frequency noise components in the amplifier output. The test tones are generated using MATLAB. 音频分析仪和 D 类放大器之间安装了 Audio Precision AW-0025 低通滤波器,以衰减放大器输出中的高频噪声成分。测试音调使用 MATLAB 生成。 The test tones are loaded onto a Raspberry pi computer and converted to format before being delivering to the FPGA based modulator. Lastly, the amplified output is connected to a power resistor. Standard lab equipment is employed for making other measurements presented in this chapter. 测试音调被加载到 Raspberry pi 计算机上,并转换为 格式,然后传送到基于 FPGA 的调制器。最后,放大输出连接到 功率电阻。本章介绍的其他测量均采用标准实验室设备。
Figure 4.2. The setup for audio performance characterization. 图 4.2.音频性能鉴定装置。
4.3 Experimental Results 4.3 实验结果
The experimental results are presented in this section. The performance of the Class D audio amplifiers with the GaN and silicon based output stages with different are reported. 本节将介绍实验结果。报告了采用不同 的氮化镓和硅基输出级的 D 类音频放大器的性能。
Before testing the Class D audio amplifier, the buck converter configuration using the halfbridge configuration is used to determine the rise and fall times, ringing frequency and the amount of overshoot. The amplifier is operating in a buck configuration with an and . 在测试 D 类音频放大器之前,使用半桥配置的降压转换器配置来确定上升和下降时间、振铃频率和过冲量。放大器以降压配置运行,具有 和 。
Figure 4.3 show the switching waveforms of the gate nodes at the synchronous buck converters. 图 4.3 显示了同步降压转换器栅极节点的开关波形。 The rise and fall time of the gate nodes are observed and noted in Table 4.1. The gate nodes for the silicon output stage are shown to be significantly slower due the larger gate capacitance. 表 4.1 观察并记录了栅极节点的上升和下降时间。由于栅极电容较大,硅输出级的栅极节点明显较慢。 The gates nodes of the GaN output stage rise within nano-second, therefore the precise dead-times are difficult to determine. 氮化镓输出级的栅极节点在纳秒级内上升,因此很难确定精确的死区时间。
The waveforms at switching node of the synchronous buck converter are shown in Figure 4.4. The rise and fall times, ringing frequency and overshoot are observed at the switching node are also observed noted in Table 4.1. The rise and fall times are an essential factor in order to achieve low distortion, as the output stages ability to reproduce the switching waveform determines the amplifiers distortion. 同步降压转换器开关节点的波形如图 4.4 所示。在开关节点处观察到的上升和下降时间、振铃频率和过冲也如表 4.1 所示。上升和下降时间是实现低失真度的关键因素,因为输出级再现开关波形的能力决定了放大器的失真度。 Table 4.1 shows that the rise and fall times for the GaN output stage are much faster than the silicon output stage. The rise and fall times of the GaN output stage 表 4.1 显示,氮化镓输出级的上升和下降时间比硅输出级快得多。氮化镓输出级的上升和下降时间
is much faster, the amount of ringing and overshoot is higher than the silicon output stage, as shown in Figure 4.4. The ringing on the switching node generates EMI that can affect the frequency bands at around 100 MHz . 如图 4.4 所示,由于硅输出级的速度更快,振铃和过冲的量也更大。开关节点上的振铃会产生电磁干扰,影响 100 MHz 左右的频段。 The more severe the ringing and overshoot, the more EMI the circuit produces. The buck configuration reveals that the GaN output stage will have significant improvement in efficiency and distortion, as the material properties of GaN allows the output stage to switch faster. 振铃和过冲越严重,电路产生的 EMI 就越大。降压配置表明,氮化镓输出级在效率和失真方面会有显著改善,因为氮化镓的材料特性使输出级的开关速度更快。 The faster switching speeds indicates that the GaN output stage can also operate at a higher than the silicon output stage. 更快的开关速度表明,氮化镓输出级的 工作频率也高于硅输出级。
Figure 4.3. Gate nodes of both output stages. 图 4.3.两个输出级的栅极节点
Figure 4.4. Switching nodes of both output stages. 图 4.4.两个输出级的开关节点
4.3.2 Class D Audio Amplifiers Experimental Results 4.3.2 D 类音频放大器实验结果
The experiments of the Class D audio amplifiers use input sine waves with the dBFS (decibels relative to full scale) scale where 0 dBFS is full scale. The condition for the experiments is with and with air cooling to maintain constant temperature. The is chosen to begin at a typical Class D amplifier of 384 kHz . The is swept from 384 KHz to 4 MHz in order to push the limits of the GaN and silicon power devices D 类音频放大器的实验使用 dBFS(相对于满量程的分贝)量程的输入正弦波,其中 0 dBFS 为满量程。实验条件为 ,采用空气冷却以保持恒温。 选择从 384 kHz 的典型 D 类放大器 开始。 从 384 KHz 扫频至 4 MHz,以挑战 GaN 和硅功率器件的极限。
Switching waveform analysis 开关波形分析
This measurement examines the non-idealities of the amplifiers switching node. The fullbridge configuration is used with a 1 kHz sine wave input that produces -6 dBFS , at different . The full-bridge configuration switching node consists of two operating conditions, and both are observed and measured at . The first condition is illustrated in Figure 4.5, where the output current is positive with respect to and has a . The second condition is illustrated in Figure 4.6, where the output current is negative with respect to and has a . 该测量检查了放大器开关节点的非理想性。全桥配置使用 1 kHz 正弦波输入,在不同的 下产生 -6 dBFS 。全桥配置开关节点包括两种工作条件,均在 处进行观察和测量。第一种情况如图 4.5 所示,输出电流相对于 为正, 具有 。第二种情况如图 4.6 所示,输出电流相对于 为负,且 具有 。
Figure 4.5. First operating condition of the full-bridge configuration when output voltage is positive to 图 4.5.当输出电压为正至负时,全桥配置的第一工作状态
Figure 4.6. Second operating condition of the full-bridge configuration when output voltage is negative to 图 4.6.当输出电压为负至
Figure 4.7 and Figure 4.8 shows the GaN output stage switching waveform. Figure 4.9 and Figure 4.10 show the silicon output stage switching waveform. The GaN device structure lacks a body diode, which is present in the silicon device. 图 4.7 和图 4.8 显示氮化镓输出级开关波形。图 4.9 和图 4.10 显示硅输出级开关波形。氮化镓器件结构中没有硅器件中的体二极管。 Therefore, during reverse conduction the current flows through the GaN device channel. The direction of current in the full-bridge configuration affects reverse conduction. When the voltage of the load is positive with respect and 0.5 the reverse conduction is negative, shown in Figure 4.7. When voltage of the load is negative with respect to and the reverse conductions is positive, as shown in Figure 4.8. The silicon device has a 0.7 V drop during reverse conduction due to the diode body; however, the scale of the switching waveform is too large to display the voltage drop. 因此,在反向传导过程中,电流会流经氮化镓器件通道。全桥配置中的电流方向会影响反向传导。当负载电压相对于 为正且 为 0.5 时,反向传导为负,如图 4.7 所示。当负载电压相对于 和 为负时,反向传导为正,如图 4.8 所示。由于二极管本体的原因,硅器件在反向传导过程中会产生 0.7 V 的压降;但开关波形的刻度太大,无法显示压降。
The switching waveforms of the GaN and the silicon output stages are noticeably different. The GaN output stage switches faster when compared to the silicon output stage, resulting in a higher amount of overshoot. 氮化镓输出级和硅输出级的开关波形明显不同。与硅输出级相比,氮化镓输出级的开关速度更快,导致过冲量更大。 As the GaN devices has a lower FOM compared to the silicon devices. The faster switching speeds of the GaN output stage indicates that it has the ability to reproduce a switching waveform with less distortion, which leads to better performance. 与硅器件相比,氮化镓器件的 FOM 更低。氮化镓输出级的开关速度更快,这表明它有能力以更小的失真重现开关波形,从而实现更好的性能。
Figure 4.11 shows the waveforms at the gate nodes of both GaN and silicon output stages with a sine wave at . The voltage at the gate nodes of silicon devices cannot reach the intended level gate-source voltage at , which results in the situation where the silicon devices are not driven with the intended gate-source voltage ( ). Consequently, the distortion of the switching waveforms will increase. However, the voltage at the gate nodes of the GaN device can reach the intended level of gate-source voltage; this shows that the GaN output stage will have higher efficiency and lower distortion at higher as the intended operating conditions of the devices remain the same. 图 4.11 显示了在 处有 正弦波的氮化镓和硅输出级栅极节点的波形。硅器件栅极节点上的电压无法达到 处的预期电平栅极-源极电压,从而导致硅器件无法以预期的栅极-源极电压( )驱动。因此,开关波形的失真会增加。然而,氮化镓器件栅极节点上的电压可以达到预期的栅源电压水平;这表明,在器件的预期工作条件保持不变的情况下,氮化镓输出级在较高的 下将具有更高的效率和更低的失真。
Figure 4.7. Switching node of the GaN output stage with . 图 4.7.带有 的氮化镓输出级开关节点。
(a) (a)
(b) (b)
(c) (c)
Figure 4.8. Switching node of the GaN output stage with . 图 4.8.带有 的氮化镓输出级开关节点。
(a) (a)
(b) (b)
(c) (c)
Figure 4.9. Switching node of the silicon output stage with . 图 4.9.带有 的硅输出级开关节点。
Figure 4.10. Switching node of the silicon output stage with . 图 4.10.带有 的硅输出级开关节点。
(a) GaN output Stage (a) 氮化镓输出级
(b) Silicon output stage (b) 硅输出级
Figure 4.11. Gate nodes of both output stages at . 图 4.11. 时两个输出级的栅极节点。
Single-tone spectral analysis 单音频谱分析
This single tone measurement reveals the individual harmonic distortion levels, the noise floor height and shape, plus any in-band artifacts. It is a useful tool for evaluating amplifier linearity at given frequency. 这种单音测量可显示单次谐波失真水平、本底噪声的高度和形状,以及任何带内假象。它是评估特定频率下放大器线性度的有用工具。 The GaN and silicon output stages is driven by a sine wave input signals with amplitude of -6 dBFS , frequencies at and 10 kHz and at different . GaN 和硅输出级由振幅为 -6 dBFS、频率为 和 10 kHz 以及 不同的正弦波输入信号驱动。
Figure 4.12, Figure 4.13 and Figure 4.14 shows the spectral plots for the GaN output stage and Figure 4.15, Figure 4.16 and Figure 4.17 shows the silicon output stage. The GaN output stage's noise floor and the third harmonics are around 5 dB lower than the silicon output stage. 图 4.12、图 4.13 和图 4.14 显示氮化镓输出级的频谱图,图 4.15、图 4.16 和图 4.17 显示硅输出级的频谱图。氮化镓输出级的本底噪声和三次谐波比硅输出级低约 5 dB。 The noise floor and third harmonics are usually due to non-idealities of the devices, which leads to distortion in the switching waveform of the amplifier. The silicon device has a larger gate capacitance, which results in a slower rise and fall times. 本底噪声和三次谐波通常是由于器件的非理想性导致放大器的开关波形失真。硅器件的栅极电容较大,导致上升和下降时间较慢。 This distorts the switching waveform, resulting in a higher noise floor and third harmonic. The higher noise floor and third harmonic of the amplifiers, reveals that the difference in the FOM between GaN and silicon devices can significantly affect the amplifier's performance. 这扭曲了开关波形,导致更高的本底噪声和三次谐波。放大器较高的本底噪声和三次谐波表明,氮化镓和硅器件之间的 FOM 差异会严重影响放大器的性能。 However, the second harmonic of the GaN output stage is around 8 dB larger than the silicon output stage, due to mismatch between the two halfbridges of the amplifier. 然而,由于放大器两个半桥之间的不匹配,氮化镓输出级的二次谐波比硅输出级大 8 分贝左右。 The gate nodes of the GaN output stage switches within nano-seconds, therefore matching both half-bridges of the GaN output stage requires a high-resolution dead-time controller. 氮化镓输出级的栅极节点在纳秒级内切换,因此匹配氮化镓输出级的两个半桥需要高分辨率的死区时间控制器。
The input spectrum at 100 Hz and 1 kHz input sine waves from both output stages have similar harmonic distortion and noise floor. With a sine wave input of 10 kHz , the fundamental amplitude decreases, due to the low pass filter. As the increases, the noise floor and third harmonic for both the GaN and silicon output stages rises, as the non-idealities such as switching speeds of the devices becomes more apparent, leading to an increase in distortion. 两个输出级在 100 赫兹和 1 千赫兹输入正弦波时的输入频谱具有相似的谐波失真和本底噪声。输入 10 kHz 正弦波时,由于低通滤波器的作用,基波振幅减小。随着 的增加,氮化镓和硅输出级的本底噪声和三次谐波都会上升,因为器件的开关速度等非理想特性变得更加明显,从而导致失真增加。
Figure 4.12. Single-tone spectrum of the GaN output stage with and a -6 dBFS) 100 Hz sine wave. 图 4.12.采用 和 -6 dBFS) 100 Hz 正弦波的氮化镓输出级的单音频谱。
Figure 4.13. Single-tone spectrum of the GaN output stage with and a -6 dBFS) 1 kHz sine wave. 图 4.13.采用 和 -6 dBFS) 1 kHz 正弦波的氮化镓输出级的单音频谱。
(a) (a)
(b) (b)
(c) (c)
Figure 4.14. Single-tone spectrum of the GaN output stage with and a -6 dBFS) 10 kHz sine wave. 图 4.14.采用 和 -6 dBFS) 10 kHz 正弦波的氮化镓输出级的单音频谱。
Figure 4.15. Single-tone spectrum of the silicon output stage with and a -6 dBFS) 100 Hz sine wave. 图 4.15.硅输出级 和 -6 dBFS) 100 Hz 正弦波的单音频谱。
Figure 4.16. Single-tone spectrum of the silicon output stage with and a -6 dBFS) 1 kHz sine wave. 图 4.16.带有 和 -6 dBFS) 1 kHz 正弦波的硅输出级单音频谱。
Figure 4.17. Single-tone spectrum of the silicon output stage with and a -6 dBFS) 10 kHz sine wave. 图 4.17.带有 和 -6 dBFS) 10 kHz 正弦波的硅输出级单音频谱。
Efficiency versus output power 效率与输出功率
This measurement examines the amplifier's power efficiency as a function of the output power. At low output power, switching loss dominates, however as the output power increases conduction loss starts to dominate. The of both the GaN and silicon power devices are similar, therefore comparison of efficiency based on switching loss. GaN devices have better FOM than silicon device, which indicates that the theoretical efficiency for the GaN output stage is higher. 这项测量是根据输出功率的函数来检查放大器的功率效率。在低输出功率时,开关损耗占主导地位,但随着输出功率的增加,传导损耗开始占主导地位。氮化镓和硅功率器件的 相似,因此根据开关损耗来比较效率。氮化镓器件的 FOM 优于硅器件,这表明氮化镓输出级的理论效率更高。
The results for both the GaN and silicon output stages are shown in Figure 4.18 and Figure.4.19 and a comparison between the two are shown in Figure 4.20. The switching speeds of the silicon devices are slower, resulting in higher switching loss, and therefore lower efficiency. 氮化镓和硅输出级的结果如图 4.18 和图 4.19 所示,两者的比较如图 4.20 所示。硅器件的开关速度较慢,导致开关损耗较高,因此效率较低。 As the increases, the efficiency of the silicon output stages decreases dramatically, as switching loss increases. At the silicon devices are not operating at the intended , which leads in higher power loses. Figure 4.20 shows that the GaN output stage has higher efficiency across power levels lower than 20 W at all . The GaN output stage can operate at a higher with higher efficiency, therefore minimal thermal management and a smaller low pass filter is required, which leads to a smaller amplifier and lower power density. 随着 的增加,硅输出级的效率会急剧下降,因为开关损耗会增加。在 时,硅器件无法以预期的 工作,从而导致更高的功率损耗。图 4.20 显示,在所有 条件下,氮化镓输出级在低于 20 W 的功率水平上都具有更高的效率。氮化镓输出级可以在更高的 下工作,效率更高,因此需要的热管理最少,低通滤波器更小,从而导致放大器更小,功率密度更低。
Dead-time is one of the most important factors in a Class D audio amplifier Figure 4.21 and Figure 4.22 shows how dead-time affects the GaN and silicon output stage. 死区时间是 D 类音频放大器中最重要的因素之一,图 4.21 和图 4.22 显示了死区时间对氮化镓和硅输出级的影响。 Figure 4.22 show that with positive and negative dead-times of 5 ns , the efficiency of the silicon output stage does not vary. 图 4.22 显示,在正负死区时间均为 5 ns 的情况下,硅输出级的效率没有变化。 On the other hand, with positive and negative dead-times of 5 ns the efficiency of the GaN output stage varies significantly compared to the silicon output stage. 另一方面,在正负死区时间均为 5 ns 的情况下,氮化镓输出级的效率与硅输出级相比有显著差异。 As the GaN devices nodes rise and fall significantly faster than the silicon devices, therefore minor changes in deadtime can significantly affect the performance of the amplifier. 由于氮化镓器件节点的上升和下降速度明显快于硅器件,因此死区时间的微小变化都会严重影响放大器的性能。
Figure 4.18. Efficiency versus output power of the GaN output stage at different with and a 1 kHz sine wave at different power levels. 图 4.18.氮化镓输出级在不同 和 条件下的效率与输出功率的关系,以及不同功率水平下的 1 kHz 正弦波。
Figure.4.19. Efficiency versus output power of the silicon output stage at different with , and a 1 kHz sine wave at different power levels. 图 4.19.硅输出级在不同 、 、 和 1 kHz 正弦波的不同功率水平下的效率与输出功率关系。
Figure 4.20. Efficiency versus output power of both GaN and silicon output stages with different with and a 1 kHz sine wave at different power levels. 图 4.20.具有不同 和 的氮化镓和硅输出级的效率与输出功率的关系,以及不同功率水平下的 1 kHz 正弦波。
Figure 4.21. Efficiency versus output power of the GaN output stage at different dead-times with , a 1 kHz sine wave at different power levels and with an . 图 4.21.在 、不同功率水平的 1 kHz 正弦波和 条件下,氮化镓输出级在不同死区时间的效率与输出功率关系。
Figure 4.22. Efficiency versus output power of the silicon output stage at different dead-times with , a 1 kHz sine wave at different power levels and with an . 图 4.22.硅输出级在不同死区时间 、不同功率水平的 1 kHz 正弦波和 时的效率与输出功率关系。
THD+N versus output power THD+N 与输出功率的关系
This measurement is to examine the amplifier linearity dependence on the output power. At very low power, the harmonic components are below the noise floor and the measured THD +N is really the signal to noise ratio (SNR). 该测量用于检查放大器线性度与输出功率的关系。在非常低的功率下,谐波成分低于本底噪声,测量的 THD +N 实际上就是信噪比 (SNR)。 For switching amplifiers, linearity worsens significantly close to the peak power level because the modulation index is too high and as a result, the switching pulse shape becomes distorted. 对于开关放大器来说,由于调制指数过高,线性度在接近峰值功率电平时会明显降低,从而导致开关脉冲形状失真。
The results for both the GaN and silicon output stage is shown in Figure 4.23 and Figure 4.24 and a comparison is shown in Figure 4.25. The silicon output stage at during mid power has lower THD +N than at . The noise floor is slightly higher at kHz , the harmonic distortion is higher at as shown Figure 4.13. The THD +N of the silicon output stage at and 4 MHz rise exponentially as non-idealities dominate and distorts the switching waveform. Compared to the silicon output stage, as the increases the THD + N of the GaN output stage increases linearly. This indicates that the GaN output stage can produce a less distorted switching waveform at higher compared to the silicon output stage. The comparison between the two amplifiers show that the GaN output stage has lower THD+N at power levels above 0.5 W . However, at power levels less than 0.5 W the silicon output stage has a lower THD+N. 氮化镓和硅输出级的结果如图 4.23 和图 4.24 所示,比较结果如图 4.25 所示。硅输出级在 中功率时的 THD +N 低于 时。如图 4.13 所示, kHz 时的本底噪声略高, 时的谐波失真更高。硅输出级在 和 4 MHz 时的 THD +N 呈指数上升,因为非理想状态占主导地位,并使开关波形失真。与硅输出级相比,随着 的增加,氮化镓输出级的 THD + N 呈线性增加。这表明,与硅输出级相比,氮化镓输出级在 较高时产生的开关波形失真较小。两个放大器的比较表明,氮化镓输出级在功率高于 0.5 W 时的 THD+N 较低。然而,当功率水平低于 0.5 W 时,硅输出级的 THD+N 较低。 This is due to dead-time sensitivity of the GaN output stage as the ideal deadtimes can change at different power level. The GaN output stage has significantly lower THD+N at higher , which indicates that the GaN output stage can operate at higher frequecies compared to the silicon output stage. 这是由于氮化镓输出级的死区时间敏感性造成的,因为理想死区时间会在不同功率水平下发生变化。氮化镓输出级在 较高时的 THD+N 明显较低,这表明与硅输出级相比,氮化镓输出级可以在更高的频率下工作。 However, the deadtime sensivity of the GaN devices show that if the application requires less variation in THD+N with output power the silicon devices should be considered. 不过,氮化镓器件的死区敏感性表明,如果应用要求 THD+N 随输出功率的变化较小,则应考虑使用硅器件。
Dead-time is one of the most important factors in a Class D audio amplifier and Figure 4.26 and Figure 4.27 shows how dead times affects the GaN and silicon output stages. 死区时间是 D 类音频放大器中最重要的因素之一,图 4.26 和图 4.27 显示了死区时间对氮化镓和硅输出级的影响。 With a positive dead-time of 5 ns the both output stages THD +N increases and with negative dead-time of 5ns the THD+N decreases. Figure 4.26 and Figure 4.27 shows that dead-time effects the GaN output stage more than the silicon output stage. 死区时间为正 5 毫微秒时,两个输出级的 THD+N 都会增加;死区时间为负 5 毫微秒时,THD+N 都会减少。图 4.26 和图 4.27 显示,死区时间对氮化镓输出级的影响大于硅输出级。 As ideal dead-times shifts at different power levels, Figure 4.26 shows the sensitivity of the GaN output stage to dead-time. 由于理想死区时间在不同功率水平下会发生变化,图 4.26 显示了氮化镓输出级对死区时间的敏感性。
Figure 4.23. THD+N versus output power of the GaN output stage at different with with a 1 kHz sine wave at different power levels. 图 4.23.氮化镓输出级在不同 和 条件下的 THD+N 与输出功率的关系,不同功率水平下的 1 kHz 正弦波。
Figure 4.24. THD +N versus output power of the silicon output stage at different with with a 1 kHz sine wave at different power levels. 图 4.24.硅输出级在不同 和 条件下的 THD +N 与输出功率的关系,不同功率水平下的 1 kHz 正弦波。
Figure 4.25. THD +N versus output power of both GaN and silicon output stage at different with with a 1 kHz sine wave at different power levels. 图 4.25.氮化镓和硅输出级在不同 和 下的 THD +N 与输出功率的关系,不同功率水平下的 1 kHz 正弦波。
Figure 4.26. THD +N versus output power of the GaN output stage at different dead times with , a 1 kHz sine wave at different power levels and with an . 图 4.26.在 不同死区时间、不同功率水平的 1 kHz 正弦波和 时,氮化镓输出级的 THD +N 与输出功率的关系。
Figure 4.27. THD+N versus output power of the silicon output stage at different dead times with , a 1 kHz sine wave at different power levels and with an 图 4.27.在 的不同死区时间、不同功率水平的 1 kHz 正弦波和 时,硅输出级的 THD+N 与输出功率的关系。
Frequency response 频率响应
This measurement reveals the amplifier linearity dependence on input frequency with constant an input of -6 dBFS . The decrease in voltage at 4 kHz is due to the low pass filter cutting off the voltage at higher frequencies. Both output stages are taken with an up to 1.1 MHz as the performance of the output stages decreases above 2 MHz . 该测量显示了放大器线性度与输入频率的关系,输入恒定为 -6 dBFS。4 kHz 时电压下降的原因是低通滤波器切断了较高频率下的电压。两个输出级的 均高达 1.1 MHz,因为输出级的性能在 2 MHz 以上会降低。
The frequency response of both the GaN and silicon output stages with different are shown in Figure 4.28. The frequency response reveals that with same input amplitude the GaN output stage can produce a higher output voltage than the silicon output stage. With an increase in the difference of output voltage in the silicon output stage is more significant than the GaN output stage, as silicon has lower efficiency at higher . 图 4.28 显示了不同 的氮化镓和硅输出级的频率响应。频率响应显示,在输入振幅相同的情况下,氮化镓输出级比硅输出级能产生更高的输出电压。随着 的增大,硅输出级的输出电压差异比 GaN 输出级更大,因为硅在 较高时效率较低。
Figure 4.28. Frequency response of both GaN and silicon output stage with and a -6 dBFS sine wave at different frequencies and with different . 图 4.28.在不同频率和不同 下,氮化镓和硅输出级在 和 -6 dBFS 正弦波下的频率响应。
Maximum power 最大功率
This measurement reveals the amplifier's output power at a constant THD+N with different input frequencies. At a higher modulation index the THD+N will increase as the modulator clips or become unstable. Note that the measurement becomes inaccurate beyond approximately 10 kHz , because the third order harmonic is out of the audio band. 该测量显示了放大器在恒定 THD+N 条件下不同输入频率的输出功率。调制指数越高,THD+N 就越大,因为调制器会发生剪切或变得不稳定。请注意,超过大约 10 kHz 时,测量会变得不准确,因为三阶谐波已超出音频频带。 At 10 kHz and higher the measured THD +N is actually the SNR. At the modulator becomes unstable at a lower modulation index than at and , therefore the maximum power is lower. 在 10 kHz 及更高频率下,测量到的 THD +N 实际上就是信噪比。与 和 时相比,在 时,调制器在调制指数较低时变得不稳定,因此最大功率较低。
The maximum power of both the GaN and silicon output stage is shown in Figure 4.29 at different . Figure 4.29 reveals that at the output power is similar and the difference is due to the efficiency. However, as increases to 760 kHz and 1.1 MHz the output power of the silicon output stage drops significant. The silicon output stage cannot reproduce an adequate switching waveform at a higher modulation index, which leads to an increase in THD+N. 图 4.29 显示了不同 时氮化镓和硅输出级的最大功率。图 4.29 显示,在 时,输出功率相近,差别在于效率。但是,当 增加到 760 kHz 和 1.1 MHz 时,硅输出级的输出功率显著下降。硅输出级无法在更高的调制指数下再现适当的开关波形,从而导致 THD+N 增加。 Therefore, the silicon output stage achieves a constant THD at lower output power. This measurement reveals that the THD +N of the silicon output stage at is significant higher than the GaN output stage at higher modulation index. The GaN output stage produces double the amount of power at a constant THD when compared to the silicon output stage. 因此,硅输出级在较低的输出功率下可实现恒定的 THD 。这一测量结果表明,在 时,硅输出级的 THD +N 明显高于调制指数较高的氮化镓输出级。与硅输出级相比,氮化镓输出级在恒定 THD 时产生的功率是硅输出级的两倍。
Figure 4.29. Maximum power of both GaN and silicon with and at different with a constant 图 4.29.不同 条件下,GaN 和硅在 和 条件下的最大功率,以及 恒定值
THD versus frequency THD 与频率的关系
This measurement reveals the dependence of the amplifier linearity on input frequency with constant output powers of 5 W and 10 W . Note the measurement becomes inaccurate beyond approximately 10 kHz , because the 3rd harmonic is out of the audio band. 该测量显示了放大器线性度与输入频率的关系,输出功率分别为 5 W 和 10 W。请注意,当频率超过约 10 kHz 时,测量会变得不准确,因为 3 次谐波已超出音频频带。 At 10 kHz and higher the measured THD +N is actually the SNR. 在 10 kHz 及更高频率下,测得的 THD +N 实际上就是信噪比。
The THD +N verses frequency at constant output powers of 5 W and 10 W at different are shown in Figure 4.30 and Figure 4.31. The silicon output stage at and 760 kHz produces similar THD+N which is also shown in Figure 4.23 at a output power of 5W. Note refer to THD+N versus power. The GaN output stage's THD+N is lower than silicon at mid to high power levels, shown in the THD+N versus power. 图 4.30 和图 4.31 显示了在不同 条件下,输出功率恒定为 5 W 和 10 W 时 THD +N 随频率变化的情况。硅输出级在 和 760 kHz 频率下产生类似的 THD+N,输出功率为 5 W 时的情况也如图 4.23 所示。请注意 THD+N 与功率的关系。氮化镓输出级的 THD+N 在中高功率水平时低于硅,如 THD+N 与功率的关系所示。 The plot reveals that at the same power levels the GaN output stage produces, half the THD +N compared to the silicon output stage, which is evident in Figure 4.30 and Figure 4.31. The results indicate that the GaN output stage can produce lower distortion at the same power levels compared to the silicon output stage at all frequencies within the audio band. 该图显示,在相同功率水平下,氮化镓输出级产生的 THD +N 是硅输出级的一半,这在图 4.30 和图 4.31 中很明显。结果表明,在相同功率水平下,氮化镓输出级在音频频段内的所有频率上产生的失真都比硅输出级低。
Figure 4.30. THD +N versus frequency of both GaN and silicon at an constant output power of 5 W with 图 4.30.在恒定输出功率为 5 W 时,氮化镓和硅的 THD +N 随频率变化的情况。
Figure 4.31. THD+N versus frequency of both GaN and silicon at an constant output power of 10 W with 图 4.31.在输出功率恒定为 10 W 时,氮化镓和硅的 THD+N 随频率的变化情况。
Dual-Tone Spectral Analysis 双音频谱分析
Single-tone spectral analysis is no longer useful beyond 10 kHz because all of the harmonics are out of the audio band. 超过 10 kHz 的单音频谱分析就不再有用了,因为所有谐波都超出了音频频带。 However, if two tones that are sufficiently close together in frequency are applied to the amplifier, their inter-modulation products can be observed in-band even if the input frequencies are above 10 kHz . 不过,如果将频率足够接近的两个音调加到放大器上,即使输入频率高于 10 kHz,也能在带内观察到它们的互调产物。 Therefore, dual tone spectral analysis is used for the super 10 kHz range. 因此,对超 10 kHz 范围采用了双音频谱分析。
The dual tone spectrum are shown in Figure 4.32 and Figure 4.33. The intermodulation distortion in the GaN output stage is lower than the silicon output stage at all . The intermodulation distortion can show how audio amplifier will play music. A music file is a combination of inter-modulated sine waves. 双音频谱如图 4.32 和图 4.33 所示。在所有 情况下,氮化镓输出级的互调失真都低于硅输出级。从互调失真可以看出音频放大器是如何播放音乐的。音乐文件是互调正弦波的组合。 The dual tone analysis shows that the silicon output stage will have significantly more distortion than the GaN output stage when playing music. 双音分析表明,在播放音乐时,硅输出级的失真将明显高于氮化镓输出级。
Figure 4.32. Dual tone test with of the GaN output stage with and with -1 dBFS . 图 4.32.氮化镓输出级的 和 双音测试(-1 dBFS)。
Figure 4.33. Dual tone test with of the silicon output stage with and with -1 dBFS . 图 4.33.硅输出级的 和 双音测试(-1 dBFS)。
This measurement is used to reveal the CEMI of the amplifier. The current of the supply voltage is measured in the full-bridge configuration with a current probe and the FFT is obtain with an oscilloscope. 该测量用于揭示放大器的 CEMI。在全桥配置中使用电流探头测量电源电压的电流,并使用示波器获得 FFT。 The disturbance may degrade the performance of circuit with the same supply voltage. Note the current probe used has a bandwidth of 100 MHz , however the ringing frequencies are around 100 MHz . 干扰可能会降低相同电源电压下的电路性能。请注意,所使用的电流探头带宽为 100 MHz,但振铃频率约为 100 MHz。
Figure 4.34 and Figure 4.35 shows that the CEMI of the GaN and silicon output stages. Figure 4.36 shows the CEMI of the output stage with no input. Both output stages have similar CEMI effects at frequencies . This is due to the modulation stage. The GaN output stage has a faster switching speeded, which results in a higher amount of ringing compared to the silicon output stage. 图 4.34 和图 4.35 显示了氮化镓和硅输出级的 CEMI。图 4.36 显示了无输入时输出级的 CEMI。在频率 时,两个输出级都具有类似的 CEMI 效应。这是调制级造成的。与硅输出级相比,氮化镓输出级的开关速度更快,因此振铃量也更大。 Therefore, the difference in CEMI is larger at higher frequencies ( 90 MHz to 100 MHz , which happens to be part of the FM band). 因此,在较高频率下(90 兆赫至 100 兆赫,恰好是调频频段的一部分),CEMI 的差异会更大。 The CEMI of both GaN and silicon output stages are similar has that higher amount of overshoot is not apparent compared to the switching harmonics of the amplifier. This shows that the GaN and silicon output stages have similar EMI behaviors. 氮化镓和硅输出级的 CEMI 相似,与放大器的开关谐波相比,过冲量不明显。这表明氮化镓和硅输出级具有相似的电磁干扰行为。
Figure 4.34. CEMI of the GaN output stage with and and a -6 dBFS 1 kHz sine wave. 图 4.34.采用 和 以及 -6 dBFS 1 kHz 正弦波的氮化镓输出级的 CEMI。
(a) (b)
(c) (c)
Figure 4.35. CEMI of the silicon output stage with and and a -6 dBFS 1 kHz sine wave. 图 4.35.硅输出级的 CEMI( 和 )和 -6 dBFS 1 kHz 正弦波。
Figure 4.36 CEMI of the output stage with no input and . 图 4.36 无输入和 输出级的 CEMI。
4.4 Performance Variation due to Thermal Issues 4.4 热问题导致的性能差异
The GaN and silicon devices have different materials and thermal properties. The GaN devices can theoretically operate at a high temperature due to the larger bandgap. 氮化镓和硅器件具有不同的材料和热特性。氮化镓器件的带隙较大,理论上可以在高温下工作。 Previously, studies on the thermal performance of GaN device in power converters [36] have been conducted; however, no studies have covered the analysis of the Class D amplifiers. The effect of the change of temperature is observed and noted in this section. 以前曾对功率转换器中氮化镓器件的热性能进行过研究[36],但没有研究涉及 D 类放大器的分析。本节将观察并指出温度变化的影响。
The Class D amplifier is operated for 15 mins with an output power of at 1 kHz and D 类放大器工作 15 分钟,输出功率为 1 kHz 和 1 kHz。
, a higher is chosen to heat up the power devices, the change in temperature, THD +N and efficiency are observed. Figure 4.41 and Figure 4.43 are pictures of the GaN and silicon output stages taken with a digital camera. ,选择较高的 来加热功率器件,观察温度、THD +N 和效率的变化。图 4.41 和图 4.43 是用数码相机拍摄的氮化镓和硅输出级的照片。 Figure 4.42 and Figure 4.44 are pictures of the GaN and silicon output stages taken with the infrared camera at different times. Table 4.2 show the measurements taken at 1 min , 10 min and at 15 min with convection cooling. 图 4.42 和图 4.44 是在不同时间用红外相机拍摄的氮化镓和硅输出级的照片。表 4.2 显示了对流冷却时 1 分钟、10 分钟和 15 分钟的测量结果。 The junction temperature is calculated by using equation: 结温的计算公式为
where is the junction temperature, is the case temperature, is the power dissipated in the power transistor and is the junction to case thermal resistance. is calculated by assuming that the total power loss is distributed evenly across the four power transistors in the full bridge. 其中, 为结温, 为外壳温度, 为功率晶体管的耗散功率, 为结到外壳的热阻。 的计算方法是,假设总功率损耗平均分布在全桥中的四个功率晶体管上。
In Table 4.2 the case and junction temperatures of the GaN output stage is 20 to lower than the silicon output stage at all times, as efficiency of the GaN output stage is lower. Although the efficiency is constant, the THD +N of the GaN output stage increases as temperature rises. GaN devices have a positive temperature coefficient [37]. The GaN junction temperature characteristics [38] of and is illustrated in Figure 4.37. With an increase in temperature while assuming the FPGA generates the same gate signals, and switching speed of the devices remain the same, the apparent dead-time is increased to and (see Figure 4.38). The GaN output stage's dead-time is previously fine-tuned to be and . The gate node of the GaN output stages rise and fall times are within nano-seconds, therefore a slight change in can affect the dead-times. Dead-time is a major source of distortion, the rise in THD +N with temperature is expected. Normally an increase in dead-time would improve the efficiency, but the of the devices also increases with temperature, therefore it does not change significantly. 在表 4.2 中,氮化镓输出级的外壳和结温始终比硅输出级低 20 至 ,因为氮化镓输出级的效率较低。虽然效率不变,但氮化镓输出级的 THD +N 会随着温度升高而增加。氮化镓器件具有正温度 系数 [37]。 和 的 GaN 结温度特性 [38] 如图 4.37 所示。在假设 FPGA 产生相同栅极信号和器件开关速度保持不变的情况下,随着温度的升高,表观死区时间增加到 和 (见图 4.38)。GaN 输出级的死区时间先前微调为 和 。GaN 输出级的栅极节点上升和下降时间都在纳秒级之内,因此 的微小变化都会影响死区时间。死区时间是失真的主要来源,THD +N 随温度升高而升高是意料之中的。通常情况下,死区时间的增加会提高效率,但器件的 也会随温度升高而增加,因此它不会发生显著变化。
Figure 4.37. Temperature characteristic for the GaN power devices [38]. 图 4.37.氮化镓功率器件的温度特性 [38]。
Figure 4.38. Changes in dead-time after a threshold voltage increase. Actual dead-times are and . 图 4.38.阈值电压上升后死区时间的变化。实际死区时间为 和 。
The thermal characteristics of GaN and silicon devices are different, although the GaN output stage efficiency stay constant and THD+N increase, Table 4.2 reveals that in the silicon output stage both efficiency and THD +N decreases. The silicon's and as a function of case temperature are illustrated in Figure 4.39. Note that the GaN transistor temperature characteristics are shown with junction temperature. As the temperature rises, decreases and increases. Lower results in a shorter apparent dead-time as illustrated in Figure 4.40. As dead-time decrease, more cross conduction occurs decreasing efficiency and increasing THD+N. 氮化镓和硅器件的热特性不同,虽然氮化镓输出级的效率保持不变,而 THD+N 增加,但表 4.2 显示硅输出级的效率和 THD+N 都降低了。硅的 和 与外壳温度的函数关系如图 4.39 所示。请注意,GaN 晶体管的温度特性显示的是结温。随着温度的升高, 下降, 上升。如图 4.40 所示, 越低,表观死区时间越短。随着死区时间的缩短,会出现更多的交叉传导,从而降低效率并增加 THD+N。
Figure 4.39. Temperature characteristic for silicon power devices [39]. 图 4.39.硅功率器件的温度特性 [39]。
Figure 4.40. Changes in dead-time after a threshold voltage decrease. Actual dead-times are and . 图 4.40.阈值电压降低后死区时间的变化。实际死区时间为 和 。
Table 4.3 show the measurements taken at and at 15 min with force air-cooling in order to stabilize the temperature. The efficiency and THD+N at constant temperature of the GaN and silicon outputs stages are observed and noted. 表 4.3 显示了在 和强制风冷 15 分钟以稳定温度时进行的测量。表 4.3 观察并记录了氮化镓和硅输出级在恒温条件下的效率和 THD+N。 The efficiency and THD+N when the temperature is constant are stable, therefore this indicates that thermal characterises of the power devices can change the performance of the amplifier. 温度恒定时,效率和 THD+N 保持稳定,这表明功率器件的热特性会改变放大器的性能。
Finally, music is played in order to observe how the amplifiers temperatures behave with a varying input wave. Figure 4.45 and Figure 4.46 shows the pictures taken with the IR camera at and 8 min while playing music. The THD+N and efficiency are always varying; therefore, the measurements were not taken. 最后,播放音乐以观察放大器温度在输入波变化时的表现。图 4.45 和图 4.46 显示了红外热像仪在 和 8 分钟播放音乐时拍摄的照片。THD+N 和效率始终在变化,因此没有进行测量。 The temperature rise in the silicon transistors are far greater than the temperatures of the GaN transistors which is similar to what is observes with a constant sine wave. 硅晶体管的温升远高于氮化镓晶体管的温升,这与恒定正弦波的观察结果类似。
The experimental results show that with a rise in temperature the distortion of the GaN output stage increases by almost . This is a significant difference for an audio amplifier. If the amplifier is operating at a higher output power, it will result in a higher temperature change. This indicates the thermal management of the GaN devices are important. 实验结果表明,随着温度上升 ,氮化镓输出级的失真几乎增加 。这对于音频放大器来说是一个很大的差异。如果放大器以更高的输出功率工作,则会导致更高的温度变化。这表明 GaN 器件的热管理非常重要。 The silicon output stage has lower efficiency at an , which leads to a higher change in temperature. However, the change in THD +N and efficiency is not as apparent as the GaN output stage. The silicon output stage has a rise in temperature but only a change in THD +N this indicates that with a lower the silicon output stage will be stable with minimal thermal management. 硅输出级在 时效率较低,导致温度变化较大。不过,THD +N 和效率的变化不如氮化镓输出级明显。硅输出级的温度上升 ,但 THD +N 仅有 的变化,这表明在 较低的情况下,硅输出级将保持稳定,只需进行最少的热管理。
Figure 4.41. GaN output stage taken with a digital camera. 图 4.41.用数码相机拍摄的氮化镓输出级。
(a) 1 minute (a) 1 分钟
(b) 15 minute (b) 15 分钟
Figure 4.42. GaN output stage taken with an IR Camera with a 1 kHz sine wave. 图 4.42.用红外热像仪拍摄的氮化镓输出级 1 kHz 正弦波。
Figure 4.43. Silicon output stage taken with digital camera. 图 4.43.数码相机拍摄的硅输出级。
(a) 1 minute (b) 15 minute (a) 1 分钟 (b) 15 分钟
Figure 4.44. Silicon output stage taken with an IR Camera with a 1 kHz sine wave. 图 4.44.用红外摄像机拍摄的硅输出级,正弦波频率为 1 kHz。
(a) 1 minute (a) 1 分钟
(b) 5 minute (b) 5 分钟
(c) 8 minute (c) 8 分钟
Figure 4.45. GaN output stage taken with an IR Camera, with music playing. 图 4.45.使用红外摄像机拍摄的氮化镓输出级,同时播放音乐。
Figure 4.46. Silicon output stage taken with an IR Camera, with music playing. 图 4.46.使用红外摄像机拍摄的硅输出级,同时播放音乐。
Table 4.2. GaN and Silicon Output Stage without Air-Cooling. 表 4.2.无空气冷却的氮化镓和硅输出级。
Time 时间
Conditions 条件
GaN 氮化镓
Silicon 硅
1min 1 分钟
45.9
66.8
46.2
67.8
0.287
0.638
1.1
1.5
0.665
0.812
Efficiency (%) 效率 (%)
82.3
66.2
10 min 10 分钟
49.1
74.8
49.4
75.1
0.289
0.665
0.734
0.798
Efficiency (%) 效率 (%)
82.1
65.3
15 min 15 分钟
49.9
75.4
50.2
76.4
0.29
0.664
0.742
65.3
Efficiency (%) 效率 (%)
82.0
Table 4.3. GaN and Silicon Output Stage with Air-Cooling. 表 4.3.采用空气冷却的氮化镓和硅输出级。
Time 时间
Conditions 条件
GaN 氮化镓
Silicon 硅
1min 1 分钟
41.3
49.4
41.6
50.1
0.291
0.612
1.1
1.5
0.568
0.814
Efficiency (%) 效率 (%)
82.2
67
10 min 10 分钟
40.5
48.6
40.8
49.3
0.290
0.614
0.552
0.828
Efficiency (%) 效率 (%)
82.3
67
15 min 15 分钟
41.3
48.1
41.6
0.613
0.289
0.829
0.547
67
Efficiency (%) 效率 (%)
82.3
4.6 Summary 4.6 小结
The performance of the GaN and silicon Class D audio amplifier output stages are investigated. The different output stages are observed in terms of commonly used audio test, CEMI and thermal characteristics. 研究了氮化镓和硅 D 类音频放大器输出级的性能。从常用音频测试、CEMI 和热特性方面观察了不同的输出级。 The results show that the GaN output stage can reproduce a switching waveform with less distortion than the silicon output stage, which leads to superior performance in terms of efficiency and THD+N at constant temperature. 结果表明,与硅输出级相比,氮化镓输出级能以更小的失真再现开关波形,从而在恒温条件下实现更出色的效率和 THD+N 性能。 However, the thermal characteristics of the GaN power devices leads to an increase in distortion as temperature rises. 然而,氮化镓功率器件的热特性会导致失真随温度升高而增加。
5 Conclusions 5 结论
The comparison between a GaN and silicon based Class D audio power amplifiers has been achieved. In the first part, the digital modulator and the output stage designs considerations are addressed. 我们对氮化镓和硅基 D 类音频功率放大器进行了比较。第一部分讨论了数字调制器和输出级设计方面的考虑因素。 A digital modulator using Pulse Density Modulation with hysteresis was implemented onto an FPGA using Verilog. The GaN and silicon power devices are selected with similar onresistance, in order to compare the figure of merit. 我们使用 Verilog 在 FPGA 上实现了一个数字调制器,该调制器采用带滞后的脉冲密度调制。氮化镓和硅功率器件的导通电阻相近,以便比较优越性。 An efficient and low distortion output stage has been obtained through careful PCB design. 通过精心的印刷电路板设计,实现了高效、低失真的输出级。
The GaN and silicon output stages are operated with different switching frequencies at a constant temperature. The efficiency of the GaN and silicon output stages are comparable at lower switching frequencies. 氮化镓和硅输出级在恒温条件下以不同的开关频率工作。在较低的开关频率下,氮化镓和硅输出级的效率相当。 The GaN output stage can reproduce a switching waveform with less distortion compared than the silicon output stage, which leads to the GaN output stage having a superior distortion at lower switching frequencies. 与硅输出级相比,氮化镓输出级能以较小的失真重现开关波形,这使得氮化镓输出级在较低的开关频率下具有更高的失真。 The efficiency and distortion of the silicon output stage degrades as the switching frequencies increase, due to the slower switching speeds of the silicon devices. 由于硅器件的开关速度较慢,硅输出级的效率和失真会随着开关频率的增加而降低。 At switching frequencies above 1.1 MHz the silicon devices cannot switch due to slower switching speeds, which results in high distortion and low efficiency. 当开关频率超过 1.1 MHz 时,硅器件因开关速度较慢而无法开关,从而导致高失真和低效率。 This results in the GaN output stage's performance is superior compared to silicon at switching frequencies above 1.1 MHz. The GaN output stage can produce lower distortion at all frequencies while achieving comparable or higher efficiency compared to the silicon output stage. 因此,在开关频率高于 1.1 MHz 时,氮化镓输出级的性能要优于硅输出级。与硅输出级相比,氮化镓输出级可在所有频率下产生更低的失真,同时实现相当或更高的效率。
The GaN and silicon devices have different thermal characteristics. Therefore, an experiment is setup in order to observe the behaviour of the devices with the rise in temperature. The experiment reveals that the distortion of the GaN output stage degrades as temperature rises. 氮化镓和硅器件具有不同的热特性。因此,我们设置了一个实验,以观察器件随温度升高而发生的变化。实验结果表明,氮化镓输出级的失真会随着温度的升高而减小。 The distortion increases due to the threshold voltage having a positive coefficient. The increase in threshold voltage leads to an increase in apparent dead-time of the amplifier, which increases the distortion of the amplifier. 由于阈值电压具有正系数,因此失真会增加。阈值电压的增加会导致放大器的视死时间增加,从而增加放大器的失真。 The increase in apparent dead-time should increase the efficiency but the on-resistance has a negative temperature coefficient which results in a stable efficiency. The silicon devices have a negative threshold voltage and on-resistance temperature coefficient. 表观死区时间的增加应该会提高效率,但导通电阻的温度系数为负,因此效率比较稳定。硅器件具有负阈值电压和导通电阻温度系数。 As the temperature rises the distortion and efficiency of the silicon output stage decreases because the apparent dead-time decrease. 随着温度的升高,硅输出级的失真和效率会降低,因为表观死区时间会缩短。
In conclusion, the GaN output stage has superior distortion at all switching frequencies, but the efficiency is similar at lower switching frequencies. However, as switching frequencies increases, the GaN output stage has superior efficiency compared to the silicon output stage. 总之,氮化镓输出级在所有开关频率下的失真都更出色,但在较低的开关频率下,效率却相差无几。不过,随着开关频率的增加,氮化镓输出级的效率要优于硅输出级。 The GaN devices should be chosen if a higher efficiency and switching frequency is required as the output filter can be smaller. 如果需要更高的效率和开关频率,则应选择氮化镓器件,因为输出滤波器可以更小。 However, a slight change in the temperature of the GaN device leads to an increase in distortion; this shows better thermal management is required for the GaN devices. 然而,氮化镓器件的温度稍有变化,失真就会增加;这表明氮化镓器件需要更好的热管理。
There are several areas of the Class D audio amplifiers that can be further investigated. Firstly, the PCB can be more refined and further improvements of the layout to decrease distortion. D 类音频放大器有几个方面可以进一步研究。首先,印刷电路板可以更加精细,并进一步改进布局以减少失真。 For example, better thermal management can be applied to reduce the temperatures effect on the devices. Other passive techniques such as adding a snubber circuits to clamp the overshoot voltage and ferrite beads to control high frequency ringing could be applied. 例如,可以采用更好的热管理来降低温度对器件的影响。还可以采用其他无源技术,如添加缓冲电路来钳制过冲电压,以及使用铁氧体磁珠来控制高频振铃。
The Class D amplifier is sensitive to the change in dead-times; therefore, an adaptive deadtimes controller which dynamically adjusted to optimum dead-time can be implemented. D 类放大器对死区时间的变化非常敏感,因此可以采用自适应死区时间控制器,动态调整死区时间,以达到最佳死区时间。 This technique could improve efficiency, distortion and electromagnetic interference of Class D amplifier; especially for the GaN output stage, this technique could mitigate the effects of the change in temperature. 这种技术可以提高 D 类放大器的效率、失真和电磁干扰;特别是对于氮化镓输出级,这种技术可以减轻温度变化的影响。
Finally, the comparison can be made with a closed-loop Class D amplifier. The closed loop configuration is used to counteract the effects of power device non-idealities and power supply noise. 最后,可以与闭环 D 类放大器进行比较。闭环配置用于抵消功率器件非理想状态和电源噪声的影响。 The closed-loop can be used to determine how the devices will behave and the difference in distortion under a different configuration. The closed-loop configuration can also be used to determine how the non-idealities of the devices could be mitigated by feedback. 闭环可用于确定设备在不同配置下的表现和失真差异。闭环配置还可用于确定如何通过反馈来减轻设备的非理想状态。
6 References 6 参考资料
[1] J. Strydom, "eGaNTM N -Silicon Power Shoot-Out: Comparing Figure of Merit (FOM) ", ed. Power Electronics Technology, 2010. [1] J. Strydom,"eGaNTM N -Silicon Power Shoot-Out:比较功绩值(FOM)",《电力电子技术》,2010 年。电力电子技术》,2010 年。
[4] M. A. Briere, "The Power Electronics Market and the Status of GaN Based Power Devices," in IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2011. [4] M. A. Briere,"电力电子市场和基于氮化镓的功率器件的现状",电气和电子工程师协会化合物半导体集成电路研讨会(CSICS),2011 年。
[5] Y. Wu, M. Jacob-Mitos, M. L. Moore, and S. Heikman, "A 97.8% Efficient GaN HEMT Boost Converter With 300-W Output Power at 1 MHz), " IEEE Electron Device Letters, vol. 29, no. 8, pp. 824-826, 2008. [5] Y. Wu、M. Jacob-Mitos、M. L. Moore 和 S. Heikman,"1 MHz 时输出功率为 300 瓦的 97.8% 高效 GaN HEMT 升压转换器",《电气和电子工程师学会电子器件通讯》,第 29 卷第 8 期,第 824-826 页,2008 年。
[6] X. Jing, K. D. T. Ngo, and L. Hoi, "A 99%-efficiency 1-MHz 1.6-kW zero-voltageswitching boost converter using normally-off GaN power transistors and adaptive deadtime controlled gate drivers," in Electron Devices and Solid-State Circuits (EDSSC, 2013. [6] X. Jing、K. D. T. Ngo 和 L. Hoi:"使用常关断氮化镓功率晶体管和自适应死区时间控制栅极驱动器的 99% 效率 1-MHz 1.6 kW 零电压开关升压转换器",《电子器件与固态电路》(Electron Devices and Solid-State Circuits,EDSSC,2013.
[7] Y. Zhang, M. Rodr, x00Ed, guez, D. Maksimovi, and x, "High frequency synchronous Buck converter using GaN-on-SiC HEMTs," in 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 488-494. [7] Y. Zhang、M. Rodr、x00Ed、guez、D. Maksimovi 和 x,"使用 GaN-on-SiC HEMT 的高频同步降压转换器",2013 年电气和电子工程师学会能源转换大会和博览会,2013 年,第 488-494 页。
[8] N. L. Gallou, D. Sardin, C. Delepaut, M. Campovecchio, and S. Rochette, "Over 10MHz bandwidth envelope-tracking DC/DC converter for flexible high power GaN amplifiers," in Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International, 2011. [8] N. L. Gallou、D. Sardin、C. Delepaut、M. Campovecchio 和 S. Rochette,"用于灵活大功率氮化镓放大器的 10MHz 以上带宽包络跟踪 DC/DC 转换器",2011 年 IEEE MTT-S 国际微波研讨会文摘(MTT),2011 年。
[9] M. Acanski, J. Popovic-Gerber, and J. A. Ferreira, "Comparison of Si and GaN power devices used in PV module integrated converters," in 2011 IEEE Energy Conversion Congress and Exposition, 2011, pp. 1217-1223. [9] M. Acanski、J. Popovic-Gerber 和 J. A. Ferreira,"光伏模块集成转换器中使用的硅和氮化镓功率器件的比较",2011 年电气和电子工程师学会能源转换大会和博览会,2011 年,第 1217-1223 页。
[10] K. Shah and K. Shenai, "Performance Evaluation of Point-of-Load Chip-Scale DC-DC Power Converters Using Silicon Power MOSFETs and GaN Power HEMTs," in 2011 IEEE Green Technologies Conference (IEEE-Green), 2011, pp. 1-5. [10] K. Shah 和 K. Shenai,"使用硅功率 MOSFET 和氮化镓功率 HEMT 的负载点芯片级 DC-DC 电源转换器的性能评估",2011 年电气和电子工程师学会绿色技术会议(IEEE-Green),2011 年,第 1-5 页。
[11] E. P. Conversion, "AB003: eGaN® FETs for Class-D Audio," ed, 2016. [11] E. P. Conversion,"AB003:用于 D 类音频的 eGaN® FET",编辑,2016 年。
[12] I. Rectifier, "Application Note AN-1071: Class D Audio Amplifier Basics," ed. [12] I. Rectifier,"Application Note AN-1071:D 类音频放大器基础知识",ed.
[13] R. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd Edition ed. New York: Springer, 2000. [13] R. Erickson 和 D. Maksimovic,《电力电子学基础》,第 2 版,纽约:纽约大学出版社。New York:Springer, 2000.
[14] P. Midya, M. Miller, and M. Sandler, "Integral Noise Shaping for Quantization of Pulse Width Modulation," presented at the Audio Engineering Society, Los Angeles, California, USA, 2000. [14] P. Midya、M. Miller 和 M. Sandler,"脉冲宽度调制量化的积分噪声整形",2000 年在美国加利福尼亚州洛杉矶音频工程学会上发表。
[15] V. Adrian, B. H. Gwee, and J. S. Chang, "A Review of Design Methods for Digital Modulators," in 2007 International Symposium on Integrated Circuits, 2007, pp. 85-88. [15] V. Adrian、B. H. Gwee 和 J. S. Chang,"数字调制器设计方法综述",2007 年集成电路国际研讨会,2007 年,第 85-88 页。
[16] G. Wei, "High Fidelity Integrated Digital Class-D Audio Amplifier With External Feedback For Distortion Suppression " Master of Applied Science, Graduate Department of Electrical and Computer Engineering, University of Toronto, 2007. [16] G. Wei,"具有外部反馈抑制失真功能的高保真集成数字 D 类音频放大器",多伦多大学电气与计算机工程研究生部应用科学硕士,2007 年。
[17] P. H. Mellor, S. P. Leigh, and B. M. G. Cheetham, "Reduction of spectral distortion in class D amplifiers by an enhanced pulse width modulation sampling process," IEE Proceedings G - Circuits, Devices and Systems, vol. 138, no. 4, pp. 441-448, 1991. [17] P. H. Mellor, S. P. Leigh, and B. M. G. Cheetham, "Reduction of spectral distortion in class D amplifiers by an enhanced pulse width modulation sampling process," IEE Proceedings G - Circuits, Devices and Systems, vol. 138, no.4, pp.
[18] R. Schreier and G. Temes, Understanding Delta-Sigma Data Converters 1ed. WileyIEEE Press, 2004, p. 464. [18] R. Schreier and G. Temes, Understanding Delta-Sigma Data Converters 1ed.WIEEE Press,2004 年,第 464 页。
[19] E. Gaalaas, B. Y. Liu, and N. Nishimura, "Integrated stereo delta-sigma class D amplifier," in ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005., 2005, pp. 120-588 Vol. 1. [19] E. Gaalaas、B. Y. Liu 和 N. Nishimura,"集成立体声三角积分 D 类放大器",载于 ISSCC。2005 IEEE 国际技术论文摘要。Solid-State Circuits Conference, 2005., 2005, pp.
[20] B. Ozpineci and L. M. Tolbert, "Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications," 2003. [20] B. Ozpineci 和 L. M. Tolbert,"用于电力电子应用的宽带隙半导体比较",2003 年。
[21] U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, "GaN-Based RF Power Devices and Amplifiers," Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305, 2008. [21] U. K. Mishra、L. Shen、T. E. Kazior 和 Y. F. Wu,"基于氮化镓的射频功率器件和放大器",《电气和电子工程师学会论文集》,第 96 卷,第 2 期,第 287-305 页,2008 年。
[22] E. P. Conversion, "GaN Technology Overview," ed, 2012. [22] E. P. Conversion,"GaN 技术概述",编辑,2012 年。
[23] H. Alan, "Hard Commutation of Power MOSFET," ed: Infineon, 2014. [23] H. Alan,《功率 MOSFET 的硬换向》,英飞凌,2014 年:英飞凌,2014 年。
[24] A. Sedra and K. Smith, Microelectronics Circuits, 5th Edition ed. New York: Oxford University Press: Oxford University Press 2004. [24] A. Sedra 和 K. Smith,《微电子电路》,第 5 版,纽约:纽约大学出版社。纽约:牛津大学出版社牛津大学出版社:牛津大学出版社,2004 年。
[25] J. Cerezo and I. Rectifier, "Class D Audio Amplifier Performance Relationship to MOSFET Parameters," ed: International Rectifier. [25] J. Cerezo 和 I. Rectifier,"D 类音频放大器性能与 MOSFET 参数的关系",编辑:国际整流器公司。
[26] I. D. Mosely, P. H. Mellor, and C. M. Bingham, "Effect of dead time on harmonic distortion in class-D audio power amplifiers," Electronics Letters, vol. 35, no. 12, pp. . [26] I. D. Mosely、P. H. Mellor 和 C. M. Bingham,"死区时间对 D 类音频功率放大器谐波失真的影响",《电子通讯》,第 35 卷,第 12 期,第 页。
[27] Texas Instruments, "AN-1737 Managing EMI in Class D Audio Applications," ed, 2013. [27] Texas Instruments,"AN-1737 Managing EMI in Class D Audio Applications",ed, 2013。
[28] C. R. Paul, Introduction to Electromagnetic Compatibility, 2nd Edition ed. Hoboken, NJ: John Wiley & Sons,, 2015. [28] C. R. Paul, Introduction to Electromagnetic Compatibility, 2nd Edition ed. Hoboken, NJ: John Wiley & Sons, 2015.
[29] J. Brown, "Understanding How Ferrites Can Prevent and Eliminate RF Interference to Audio Systems," ed: Audio Systems Group, Inc, 2005, p. 12. [29] J. Brown,"了解铁氧体如何防止和消除对音频系统的射频干扰",Audio Systems Group,Inc,2005 年,第 12 页:音频系统集团公司,2005 年,第 12 页。
[30] Fairchild, "AN-4162 - Understanding How Ferrites Can Prevent and Eliminate RF Interferenceto Audio Systems," ed, 2013. [30] Fairchild,"AN-4162 - Understanding How Ferrites Can Prevent and Eliminate RF Interferenceto Audio Systems",编辑,2013 年。
[31] E. Hogenauer, "An economical class of digital filters for decimation and interpolation," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 2, pp. 155162, 1981. [31] E. Hogenauer,"一类经济的数字滤波器,用于抽取和插值",《电气和电子工程师学会声学、语音和信号处理论文集》,第 29 卷,第 2 期,第 155162 页,1981 年。
[32] J. Honda and C. Huang, "Application Note AN-1135: PCB Layout with IR Class D Audio Gate Drivers," ed: International Rectifier, 2008. [32] J. Honda 和 C. Huang,"Application Note AN-1135:PCB Layout with IR Class D Audio Gate Drivers,"ed:国际整流器公司,2008 年。
[33] J. Korec and C. Bull, "History of FET Technology and the Move to NexFET History of FET Technology and the Move to NexFETTM ", ed: Texas Instruments, 2009. [33] J. Korec 和 C. Bull,"场效应晶体管技术的历史和向 NexFET 的转变 场效应晶体管技术的历史和向 NexFETTM 的转变",德州仪器,2009 年:德州仪器,2009 年。
[35] GaN Systems, "GN001 Application Brief - How to drive GaN Enhancement mode HEMT," ed, 2016. [35] GaN Systems公司,"GN001应用简介--如何驱动GaN增强型HEMT",2016年版。
[36] D. C. Dumka and T. M. Chou, "Evaluation of thermal resistance of AlGaN/GaN heterostructure on diamond substrate," in Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2014, pp. 1210-1214. [36] D. C. Dumka 和 T. M. Chou,"金刚石衬底上 AlGaN/GaN 异质结构的热阻评估",《电子系统中的热和热机械现象》(ITherm),2014 年,第 1210-1214 页。
The full layout of the PCB of both GaN and silicon boards. In both PCB boards the ground layers where separated into the digital and analog with the gate drivers are the bridge between the both ground 氮化镓电路板和硅电路板的印刷电路板的完整布局。在这两块 PCB 板上,接地层被分为数字层和模拟层,栅极驱动器是这两个接地层之间的桥梁。
layers. 层数
Figure A.1. Top layer of the GaN output stage 图 A.1.氮化镓输出级顶层
thb6_gan - Full-Bridge Output Stage ver 3 - Nov 2015 thb6_gan - 全桥输出级 ver 3 - 2015 年 11 月
00060
000006000
P1
KVCF1TEST
- 0 宗, RHL - 0 宗,RHL
3 r
BB प्तु
o o omeri m
00
0.0
0.0
0.0
I
00
00
0.0
00
毒 CCBC
0.0 10.
- 0.
जाष
0
06000
60000
000000000
00000
00000
00000000000000
Figure A.2. Bottom layer of the GaN output stage 图 A.2.氮化镓输出级底层
Figure A.3. Top layer of the silicon output stage 图 A.3.硅输出级顶层
thb6_Si - Full-Bridge Output Stage ver 3 - Nov 2015 thb6_Si - 全桥输出级第 3 版 - 2015 年 11 月
000000006
P1 ogVITEST
0000
○ 0.000
8
2
2
0
0
0
C UGHB
0 o 20
0.0
0
M
0
RHHB
00000
00000
C
m ong
○
! !
0 C
00
00
0
0.0
00
0.0
O.․ㅏㄴ e
0
0
0
○
re 再
000000000
06006
00000
APPENDIX B - Data Sheets of Transistors 附录 B - 晶体管数据表
Systems 系统
GS61004B
100V enhancement mode GaN transistor 100V 增强型氮化镓晶体管
Preliminary Datasheet 初步数据表
Features 特点
100 V enhancement mode power switch 100 V 增强型电源开关
Bottom-side cooled configuration 底部冷却配置
Ultra-low FOM Island Technology die 超低 FOM 岛式技术 芯片
Low inductance GaN package 低电感 GaN 封装
Easy gate drive requirements ( 0 V to 6 V ) 易于满足栅极驱动要求(0 V 至 6 V)
Transient tolerant gate drive 瞬态容差栅极驱动
Very high switching frequency ( ) 开关频率极高 ( )
Circuit Symbol 电路符号
Fast and controllable fall and rise times 快速可控的下降和上升时间
Reverse current capability 反向电流能力
Zero reverse recovery loss 零反向恢复损失
Small PCB footprint 小 PCB 基底面
RoHS 6 compliant 符合 RoHS 6 标准
Applications 应用
High efficiency power conversion 高效功率转换
High density power conversion 高密度电力转换
Enterprise and Networking Power 企业和网络力量
ZVS Phase Shifted Full Bridge ZVS 相移全桥
Half Bridge topologies 半桥拓扑
Synchronous Buck or Boost 同步降压或升压
Uninterruptable Power Supplies 不间断电源
Industrial Motor Drives 工业电机驱动器
Solar Power 太阳能
Fast Battery Charging 快速电池充电
Class D Audio amplifiers D 类音频放大器
Smart Home 智能家居
Abstract 摘要
Description The GS61004B is an enhancement mode GaN-onSilicon power transistor. The properties of GaN allow for high current, high voltage breakdown, high switching frequency and high temperature operation. GaN Systems implements patented Island Technology cell layout for high-current die performance & yield. GaN packaging enables low inductance & low thermal resistance in a small package. The GS61004B is a bottom-cooled transistor that offer very low junction-to-case thermal resistance for demanding high power applications. 描述 GS61004B 是一款增强型硅基氮化镓功率晶体管。GaN 的特性可实现高电流、高电压击穿、高开关频率和高温操作。GaN Systems 采用获得专利的 Island Technology 单元布局,可实现大电流芯片性能和产量。GaN 封装实现了小型封装中的低电感和低热阻。GS61004B 是一款底部冷却晶体管,具有极低的结壳热阻,适用于要求苛刻的高功率应用。 These features combine to provide very high efficiency power switching. 这些功能结合在一起,提供了非常高效的电源开关。
Absolute Maximum Ratings ( except as noted) 绝对最大额定值( ,注释除外)
Parameter 参数
Symbol 符号
Value 价值
Unit 单位
Operating Junction Temperature 工作结温
-55 to +150 -55至+150
Storage Temperature Range 存储温度范围
-55 to +150 -55至+150
Drain-to-Source Voltage 漏极至源极电压
100
V
Transient Drain to Source Voltage (note 1) 瞬态漏极至源极电压(注 1)
Maximum Soldering Temperature (MSL3 rated) 最高焊接温度(MSL3 额定值)
260
(3) Device mounted on 1.6 mm PCB thickness FR4, 4-layer PCB with 2 oz. copper on each layer. The recommendation for thermal vias under the thermal pad are 0.3 mm diameter ( 12 mil ) with 0.635 mm pitch ( 25 mil ). The copper layers under the thermal pad and drain pad are each. The PCB is mounted in horizontal position without air stream cooling. (3) 器件安装在 1.6 毫米厚的四层印刷电路板 FR4 上,每层 2 盎司铜。建议导热垫下的导热孔直径为 0.3 毫米(12 密耳),间距为 0.635 毫米(25 密耳)。导热垫和漏极垫下的铜层分别为 。电路板水平安装,无气流冷却。
Electrical Characteristics (Typical values at unless otherwise noted) 电气特性( 时的典型值,除非另有说明)
Parameters 参数
Sym.
Min.
Typ. 类型
Max. 最大
Units 单位
Conditions 条件
Drain-to-Source Blocking Voltage 漏极至源极阻塞电压
100
V
, losS
Drain-to-Source On Resistance 漏极至源极导通电阻
Ros(on) 罗斯
15
20
,
Drain-to-Source On Resistance 漏极至源极导通电阻
RDS(on)
39
,
Gate-to-Source Threshold 门到源阈值
th)
1.1
1.3
V
Gate-to-Source Current 栅极至源极电流
las 拉斯
100
Gate Plateau Voltage 栅极平台电压
3
V
Drain-to-Source Leakage Current 漏极至源极泄漏电流
loss 损失
0.3
,
Drain-to-Source Leakage Current 漏极至源极泄漏电流
loss 损失
50
,
Internal Gate Resistance 内部栅极电阻
1.5
, open drain ,开路漏极
Input Capacitance 输入电容
328
pF
{
,
,
} {
、
、
}
Output Capacitance 输出电容
Coss 科斯
133
pF
Reverse Transfer Capacitance 反向传输电容
4
pF
有效输出电容,能量 .
Related (Note 4) .
Effective Output Capacitance, Energy
Related (Note 4)
148
pF
{
,
to 100 V
} {
、
至 100 V。
}
有效输出电容,时间 .
相关(注 5) .
Effective Output Capacitance, Time
Related (Note 5)
183
pF
Total Gate Charge 入场费总额
6.2
nC
{
to 6 V),
} {
至 6 V)、
}
Gate-to-Source Charge 门到源充电
QGS
2.4
nC
Gate-to-Drain Charge 门到排水管充电
0.9
nC
Output Charge 输出充电
Qoss 科斯
11.5
nC
Reverse Recovery Charge 逆向回收费用
0
nC
(4) is the fixed capacitance that would give the same stored energy as while is rising from 0 V to the stated (4) 是固定电容,可提供与 相同的存储能量,而 则从 0 V 升至所述的
(5) is the fixed capacitance that would give the same charging time as while is rising from 0 V to the stated (5) 是固定电容,其充电时间与 相同,而 则从 0 V 上升到所述的
Electrical Performance Graphs 电气性能图表
Figure 1 : Typical Vs. 图 1:典型的 Vs.
Figure 3: R RSS(on) . IDs at 图 3:R RSS(on) 。 处的 ID
Electrical Performance Graphs 电气性能图表
Figure 9: Typical ISD vs. 图 9:典型 ISD 与 的对比
Figure 11: Normalized Ros(on) as a function of 图 11:归一化 Ros(on) 与 的函数关系
Thermal Performance Graphs 热性能图表
Figure 14: Safe Operating Area @ 图 14:安全操作区 @
Figure 15: Derating vs. Case Temperature 图 15:降额与外壳温度的关系
Application Information 申请信息
Gate Drive 闸门车道
The recommended gate drive voltage for optimal performance and long life is +5 to 6 V . The absolute maximum gate-to-source voltage rating is +7.0 V maximum DC . The gate drive can survive transients up to +10 V and -20 V for pulses up to and duty cycle, . These specifications allow designers to easily use 5 to 6 V , or even 6.5 V gate drive voltage. 为获得最佳 性能和较长的使用寿命,建议使用 +5 至 6 V 的栅极驱动电压。栅极到源极的绝对最大额定电压为 +7.0 V(最大直流电压)。对于高达 的脉冲和 的占空比,栅极驱动可承受高达 +10 V 和 -20 V 的瞬态电压。这些规格允许设计人员轻松使用 5 至 6 V,甚至 6.5 V 的栅极驱动电压。
A standard MOSFET driver can be used if its UVLO supports 5-6 V operation for gate drive output. Gate drivers with low output impedance and high peak current are recommended for fast switching speed. GaN Systems EHEMTs have significantly lower when compared to equally sized MOSFETs, so high speed can be reached with smaller and lower cost gate drivers. 如果标准 MOSFET 驱动器的 UVLO 支持栅极驱动输出 5-6 V 工作电压,则可以使用标准 MOSFET 驱动器。建议使用具有低输出阻抗和高峰值电流的栅极驱动器,以实现快速开关速度。与同等尺寸的 MOSFET 相比,氮化镓系统 EHEMT 的 要低得多,因此使用更小、成本更低的栅极驱动器也能实现高速。
The dead time period in half bridge applications, should be minimized for optimum efficiency. Choose a 100 V half bridge driver that can support 5-6V gate drive and small dead time. The Texas Instruments LM5113 is an example of a half-bridge driver for GaN E-HEMTs. 在半桥应用中,应尽量缩短死区时间,以获得最佳效率。应选择可支持 5-6V 栅极驱动和较短死区时间的 100 V 半桥驱动器。德州仪器的 LM5113 就是用于 GaN E-HEMT 的半桥驱动器的一个例子。 It is recommended to add a voltage clamp circuit ( 5.1 or 6.2 V zener diode for example) in parallel with bootstrap capacitor to limit the bootstrap voltage for high-side switch if driver does not provide this functionality 如果驱动器不提供该功能,建议在自举电容器上并联一个电压箝位电路(例如 5.1 或 6.2 V 齐纳二极管),以限制高压侧开关的自举电压。
Parallel Operation 并行操作
Design wide tracks or polygons on the PCB to distribute the gate drive signals to multiple devices. Keep the drive loop length to each device as short and equal length as possible. 在 PCB 上设计宽轨道或多边形,以便将栅极驱动信号分配到多个器件。尽可能缩短每个器件的驱动环路长度,并保持等长。
GaN enhancement mode HEMTs have a positive temperature coefficient on-state resistance which helps to balance the current. However, special care should be taken in the driver circuit and PCB layout since the device switches at very fast speed. GaN 增强型 HEMT 具有正温度系数导通电阻,有助于平衡电流。不过,由于该器件的开关速度非常快,因此在设计驱动电路和 PCB 布局时应特别小心。 It is recommended to have a symmetric PCB layout and equal gate drive loop length (star connection if possible) on all parallel devices to ensure balanced dynamic current sharing. Adding a small gate resistor (1-2 ) on each gate is strongly recommended to minimize the gate parasitic oscillation. 建议在所有并联器件上采用对称的 PCB 布局和相等的栅极驱动环路长度(如果可能,采用星形连接),以确保均衡的动态电流共享。强烈建议在每个栅极上添加一个小的栅极电阻(1-2 ),以尽量减少栅极寄生振荡。
Source Sensing 源传感
Although the GS61004B does not have a dedicated source sense pin, the GaNpX packaging utilizes no wire bonds so the source connection is already very low inductance. 虽然 GS61004B 没有专用的源检测引脚,但 GaNpX 封装不使用线键,因此源连接的电感已经非常低。 By simply using a dedicated "source sense" connection with a PCB trace from the gate driver output ground to the Source pad in a kelvin configuration with respect to the gate drive signal, the function can easily be implemented. 只需使用一个专用的 "源极检测 "连接,并在 PCB 上从栅极驱动器输出接地到源极焊盘,相对于栅极驱动器信号采用开尔文配置,即可轻松实现该功能。 It is recommended to implement a "source sense" connection to improve drive performance. 建议采用 "源感应 "连接,以提高硬盘性能。
Thermal 热能
The substrate is internally connected to the thermal pad and to the source pad on the bottom side of the GS61004B. The transistor is designed to be cooled using the printed circuit board. 基板内部连接到 GS61004B 底部的散热垫和源焊盘。晶体管设计为使用印刷电路板冷却。
Reverse Conduction 反向传导
GaN Systems enhancement mode HEMTs do not have an intrinsic body diode and there is zero reverse recovery charge. The devices are naturally capable of reverse conduction and exhibit different characteristics depending on the gate voltage. 氮化镓系统增强模式 HEMT 没有本体二极管,反向恢复电荷为零。这种器件天然具有反向传导能力,并根据栅极电压的不同表现出不同的特性。 Anti-parallel diodes are not required for GaN Systems transistors as is the case for IGBTs to achieve reverse conduction performance. 氮化镓系统晶体管不需要像 IGBT 那样的反并联二极管来实现反向传导性能。
On-state condition ): The reverse conduction characteristics of a GaN Systems enhancement mode HEMT in the on-state is similar to that of a silicon MOSFET, with the I-V curve symmetrical about the origin and it exhibits a channel resistance, Ros(on), similar to forward conduction operation. 导通状态 ):GaN 系统增强模式 HEMT 在导通状态下的反向传导特性与硅 MOSFET 相似,I-V 曲线围绕原点对称,其沟道电阻 Ros(on) 与正向传导操作相似。
Off-state condition ( ): The reverse characteristics in the off-sate are different from silicon MOSFET as the GaN device has no body diode. In the reverse direction, the device starts to conduct when the gate voltage, with respect to the drain, exceeds the gate threshold voltage. At this point the device exhibits a channel resistance. This condition can be modeled as a "body diode" with slightly higher and no reverse recovery charge. 关态条件( ):关态时的反向特性与硅 MOSFET 不同,因为氮化镓器件没有体二极管。在反向,当相对于漏极的栅极电压 超过栅极阈值电压时,器件开始导通。此时,器件表现出沟道电阻。这种情况可模拟为 "体二极管",其 稍高,且无反向恢复电荷。
If negative gate voltage is used in the off-state, the source-drain voltage must be higher than in order to turn the device on. Therefore, a negative gate voltage will add to the reverse voltage drop " " and hence increase the reverse conduction loss. 如果在关断状态下使用负栅极电压,则源极-漏极电压必须高于 才能开启器件。因此,负栅极电压将增加反向压降 " ",从而增加反向传导损耗。
Blocking Voltage 阻断电压
The blocking voltage rating, , is defined by the drain leakage current. The hard (unrecoverable) breakdown voltage is approximately higher than the rated . As a general practice, the maximum drain voltage should be de-rated in a similar manner as silicon MOSFETs. All GaN E-HEMTs do not avalanche and thus do not have an avalanche breakdown rating 额定阻塞电压 由漏极漏电流决定。硬(不可恢复)击穿电压约 高于额定 。一般来说,最大漏极电压的降额方式应与硅 MOSFET 相似。所有 GaN E-HEMT 都不会发生雪崩,因此没有雪崩击穿额定值
The absolute maximum drain-to-source rating is 100 V and doesn't change with negative gate voltage 漏极至源极的绝对最大额定值为 100 V,不会因负栅极电压而改变
Packaging and Soldering 包装和焊接
The package material is high temperature epoxy-based PCB material which is similar to FR4 but has a higher temperature rating, thus allowing the GS61004B to be specified to . The device can handle at least 3 reflow cycles 封装材料为高温环氧基 PCB 材料,与 FR4 相似,但具有更高的额定温度,因此 GS61004B 的指定温度为 。该器件可处理至少 3 次回流焊循环
It is recommended to use the reflow profile in IPC/JEDEC J-STD-020 REV D. 1 (March 2008) 建议使用 IPC/JEDEC J-STD-020 REV D. 1(2008 年 3 月)中的回流焊规范。
The basic temperature profiles for Pb -free ( assembly are 无铅( 组件的基本温度曲线为
Preheat/Soak: 60-120 seconds. 预热/浸泡: 60-120 秒。
Reflow: Ramp up rate , max. Peak temperature is and time within of peak temperature is 30 seconds. 回流:升温速率 ,最大值。峰值温度为 ,峰值温度 内的时间为 30 秒。
Important Notice - Unless expressly approved in writing by an authorized representative of GaN Systems, GaN Systems components are not designed authorized or warranted for use in lifesaving, life sustaining, military, aircraft, or space applications, nor in products or systems where failure or malfunction may result in personal injury, death, or property or environmental damage. 重要通知 - 除非经 GaN Systems 授权代表明确书面批准,否则 GaN Systems 组件不得用于救生、维持生命、军事、航空或太空应用,也不得用于故障或失灵可能导致人身伤害、死亡或财产或环境损害的产品或系统,且不对其进行设计授权或担保。 The information given in this document shall not in any event be regarded as a guarantee 本文件中提供的信息在任何情况下都不应被视为以下保证
aguide only and is subject to change without notice. The information contained herein or any use of such information does not grant, explicitly, or implicitly, to any party any patent rights, licenses, or any other intellectual property rights. 仅供参考,如有更改,恕不另行通知。此处包含的信息或对此类信息的任何使用均不明示或暗示授予任何一方任何专利权、许可证或任何其他知识产权。 GaN Systems standard terms and conditions apply. All rights reserved. 适用 GaN Systems 标准条款和条件。保留所有权利。
2 Applications 2 应用
Primary Side Isolated Converters 一次侧隔离转换器
Motor Control 电机控制
3 Description 3 说明
This NexFETTM power MOSFET is designed to minimize losses in power conversion applications. 这款 NexFETTM 功率 MOSFET 专为最大限度地降低功率转换应用中的损耗而设计。
Ordering Information 订购信息
DEVICE
MEDIA
QTY
PACKAGE
SHIP
CSD19537Q3
13-Inch Reel 13 英寸卷轴
2500
SON 3-3 3.3-mm SON 3-3 3.3 毫米
Tape and 胶带和
CSD19537Q3T
13-Inch Reel 13 英寸卷轴
250
Plastic Package 塑料包装
Reel 卷轴
(1) For all available packages, see the orderable addendum at the end of the data sheet. (1) 有关所有可用封装,请参见数据表末尾的可订购附录。
Gate Charge 闸门收费
Absolute Maximum Ratings 绝对最大额定值
Value 价值
UNIT
Drain-to-Source Voltage 漏极至源极电压
100
v
Gate-to-Source Voltage 栅极至源极电压
v
ID
连续漏电流(封装
Limited)
Continuous Drain Current (Package
Limited)
50
A
Continuous Drain Current (Silicon Limited),
53
A
Continuous Drain Current 连续漏极电流
9.7
A
IDM
Pulsed Drain Current( 脉冲漏极电流 ( )
219
A
Power Dissipation 功率耗散
2.8
W
Power Dissipation, 功率耗散,
83
w
存储温度
Operating Junction Temperature,
Storage Temperature
-55 to 150 -55至150
雪崩能量,单脉冲
Avalanche Energy, Single Pulse
55
mJ
(1) Typical on a pad on a thick FR4 PCB (1) 典型的 位于 焊盘上的 厚 FR4 印刷电路板
Changes from Original (August 2015) to Revision A Page 从原版(2015 年 8 月)到修订版 A 的更改 页次
Corrected typo in X axis legend on Figure 11................................................................................................................... 6 更正了图 11 X 轴图例中的错字...................................................................................................................6
5 Specifications 5 规格
5.1 Electrical Characteristics 5.1 电气特性
(unless otherwise stated) (除非另有说明)
PARAMETER
TEST CONDITIONS 测试条件
MIN
TYP
MAX
UNIT
STATIC CHARACTERISTICS 静态特性
BV
Drain-to-source voltage 漏极至源极电压
100
V
IDSs IDS
Drain-to-source leakage current 漏极至源极漏电流
1
IGSS
Gate-to-source leakage current 栅极至源极漏电流
100
nA
Gate-to-source threshold voltage 栅极至源极阈值电压
2.6
3
3.6
V
Drain-to-source on-resistance 漏极至源极导通电阻
13.8
16.6
12.1
14.5
Transconductance 跨导
45
S
DYNAMIC CHARACTERISTICS 动态特性
Input capacitance 输入电容
1290
1680
pF
Coss 科斯
Output capacitance 输出电容
251
326
pF
Reverse transfer capacitance 反向传输电容
13.3
17.3
pF
Series gate resistance 串联栅极电阻
1.2
2.4
Gate charge total ( 10 V ) 栅极电荷总量 ( 10 V )
16
21
nC
Gate charge gate-to-drain 栅极电荷 栅极到漏极
2.9
nC
Gate charge gate-to-source 栅极电荷 栅极至源极
5.5
nC
Gate charge at 的栅极电荷
3.8
nC
Qoss 科斯
Output charge 输出电荷
44
nC
Turn on delay time 开启延迟时间
{
,
} {
、
.
}
5
ns
Rise time 上升时间
3
ns
Turn off delay time 关闭延迟时间
10
ns
Fall time 秋季时间
3
ns
DIODE CHARACTERISTICS 二极管特性
Diode forward voltage 二极管正向电压
0.8
1
V
Reverse recovery charge 逆向回收费用
{
,
} {
、
}
134
nC
Reverse recovery time 逆向恢复时间
36
ns
5.2 Thermal Information 5.2 温度信息
(unless otherwise stated) (除非另有说明)
THERMAL METRIC 热量公制
MIN
TYP
MAX
{
UNIT
} {
UNIT
}
Junction-to-case thermal resistance 结壳热阻
Junction-to-ambient thermal resistance 结-环境热阻
55
(1) is determined with the device mounted on a thick Cu pad on a thick FR4 PCB. is specified by design, whereas is determined by the user's board design. (1) 是在器件安装在 厚 Cu 焊盘、 厚 FR4 印刷电路板上时确定的。 由设计指定,而 则由用户的电路板设计决定。
(2) Device mounted on FR4 material with thick Cu . (2) 器件安装在带有 厚铜的 FR4 材料上。
when mounted on a minimum pad area of 2-oz (0.071-mm) thick Cu . 当安装在 2 盎司(0.071 毫米)厚铜的最小焊盘面积上时。
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 以下链接连接到德黑兰国际学院的社区资源。链接内容由各自提供者 "按原样 "提供。它们不构成 TI 规范,也不一定反映 TI 的观点;请参阅 TI 使用条款。
TI E2E Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. TI E2E 在线社区 TI 的工程师对工程师 (E2E) 社区。旨在促进工程师之间的合作。在e2e.ti.com,您可以提出问题、分享知识、探讨想法,并帮助工程师同行解决问题。
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 设计支持 TI 的设计支持 快速查找有用的 E2E 论坛以及设计支持工具和技术支持联系信息。
6.2 Trademarks 6.2 商标
NexFET, E2E are trademarks of Texas Instruments NexFET、E2E 是德州仪器的商标
All other trademarks are the property of their respective owners. 所有其他商标均为其各自所有者的财产。
6.3 Electrostatic Discharge Caution 6.3 静电放电注意事项
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates 这些器件的内置 ESD 保护功能有限。在存储或处理过程中,应将引线短接在一起或将器件置于导电泡沫中,以防止 MOS 栅极受到静电损坏。
6.4 Glossary 6.4 术语表
SLYZO22 - TI Glossary. SLYZO22 - TI 术语表。
This glossary lists and explains terms, acronyms, and definitions. 本词汇表列出并解释了术语、缩略语和定义。
7 Mechanical, Packaging, and Orderable Information 7 机械、包装和可订购信息
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. 以下页面包括机械、包装和订购信息。这些信息是指定设备的最新数据。这些数据如有更改,恕不另行通知,本文件也将进行修订。 For browser-based versions of this data sheet, refer to the left-hand navigation. 有关本数据表的浏览器版本,请参阅左侧导航栏。
7.1 Q3 Package Dimensions 7.1 Q3 封装尺寸
Top View 俯视图
Side View 侧视图
Bottom View 底部视图
Front View 正面图
DIM
MILLIMETERS
INCHES
MIN
NOM
MAX
MIN
NOM
MAX
A
0.950
1.000
1.100
0.037
0.039
0.043
A1
0.000
0.000
0.050
0.000
0.000
0.002
b
0.280
0.340
0.400
0.011
0.013
0.016
b1
0.310 NOM
0.012 NOM
c
0.150
0.200
0.250
0.006
0.008
0.010
D
3.200
3.300
3.400
0.126
0.130
0.134
D2
1.650
1.750
1.800
0.065
0.069
0.071
d
0.150
0.200
0.250
0.006
0.008
0.010
d1
0.300
0.350
0.400
0.012
0.014
0.016
E
3.200
3.300
3.400
0.126
0.130
0.134
E2
2.350
2.450
2.550
0.093
0.096
0.100
e
0.650 TYP
0.026 TYP
H
0.35
0.450
0.550
0.014
0.018
0.022
K
0.650 TYP
0.026 TYP
L
0.35
0.450
0.550
0.014
0.018
0.022
L1
0
-
0
0
0
0
0
-
0
0
0
7.2 Recommended PCB Pattern 7.2 建议的印刷电路板图案
For recommended circuit layout for PCB designs, see application note SLPA005 - Reducing Ringing Through PCB Layout Techniques. 有关 PCB 设计的电路布局建议,请参阅应用说明 SLPA005 - 通过 PCB 布局技术减少振铃。
7.3 Recommended Stencil Opening 7.3 建议的钢网开口
All dimensions are in mm, unless otherwise specified. 除非另有说明,否则所有尺寸均以毫米为单位。
Camber not to exceed 1 mm in 100 mm , noncumulative over 250 mm 倾角每 100 毫米不超过 1 毫米,250 毫米以上不累计
Material: black static dissipative polystyrene 材料:黑色静电消散聚苯乙烯
All dimensions are in mm (unless otherwise specified). 所有尺寸均以毫米为单位(除非另有说明)。
Thickness: 厚度:
MSL1 (IR and Convection) PbF-Reflow Compatible 与 MSL1 (红外线和对流)PbF 回流焊兼容
PACKAGING INFORMATION 包装信息
Orderable Device 可订购设备
Package Type 包装类型
包裹
绘制
Package
Drawing
Pins 别针
包裹
aty
Package
aty
Eco Plan 生态计划
MSL Peak Temp MSL 峰值温度
Op Temp ( ) 操作温度 ( )
Samples 样品
CSD19537Q3
ACTIVE
VSON-CLIP
DQG
8
2500
CU SN 中大 SN
Level-1-260C-UNLIM
-55 to 150 -55至150
CSD19537
Samples 样品
CSD19537Q3T
ACTIVE
vSON-CLIP
DQG
8
250
CU SN 中大 SN
Level-1-260C-UNLIM
-55 to 150 -55至150
CSD19537
Samples 样品
The marketing status values are defined as follows: 营销状态值定义如下:
IFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect IFEBUY:德州仪器宣布该设备将停产,终身购买期有效
RRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design . RRND:不建议用于新设计。器件已投入生产,为现有客户提供支持,但 TI 不建议在新设计中使用该器件。
REVIEW: Device has been announced but is not in production. Samples may or may not be availabli. 评论:设备已发布,但尚未投产。可能有样品,也可能没有样品。
BSOLETE: TI has discontinued the production of the device. BSOLETE:德州仪器已停止生产该设备。
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check httpy/www.ti.com/productcontent for the latest availability formation and additional product content details. 环保计划 - 计划中的环保分类:无铅 (RoHS)、无铅 (RoHS 豁免) 或绿色 (RoHS & no Sb/Br) - 请查看 httpy/www.ti.com/productcontent,了解最新的可用性形成和其他产品内容详情。
BD: The Pb -Free/Green conversion plan has not been defined BD: 无铅/绿色转换计划尚未确定
b-Free (RoHS): Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that 无铅(RoHS):Ti 术语 "无铅 "或 "无铅 "是指半导体产品符合当前 RoHS 对所有 6 种物质的要求,包括以下要求
Pb-Free (RoHS Exempt): This component has a RoHS exemption for ether 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between he die and leadirame. Th 无铅(RoHS 豁免):该元件已获得 RoHS 豁免:1)裸片与封装之间使用的铅基倒装芯片焊接凸点,或 2)裸片与铅膜之间使用的铅基裸片粘合剂。详情
(RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine ( Br ) and Antimony (Sb) based flame retardants (Br or Sb do not exceed by weight homogeneous material) (RoHS 和无 Sb/Br):TI 对 "绿色 "的定义是:不含铅(符合 RoHS 规范),不含以溴(Br)和锑(Sb)为基础的阻燃剂(Br 或 Sb 不超过 (按均质材料重量计))。
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. MSL,峰值温度。- 根据 JEDEC 行业标准分类的湿度灵敏度等级和峰值焊接温度。
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device 设备上可能会有与徽标、批次跟踪代码信息或环境类别有关的附加标记
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " " will appear on a device. 括号内将包含多个设备标记。一个设备上只能有一个包含在括号内并以""分隔的设备标记。 If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. 如果某行是缩进的,那么它是前一行的延续,两行合起来就是该设备的整个设备标记。
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. 引线/球形表面处理 - 可订购设备可能有多种材料表面处理选项。表面处理选项之间用竖线隔开。如果表面处理值超过最大列宽,引线/滚珠表面处理值可能会分成两行。
mportant Information and Disclaimer:The information provided on this page represents 's knowledge and belief as of the date that it is provided. TIbases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. 重要信息和免责声明:本页面提供的信息代表了 截至提供之日的知识和信念。TI 基于其对第三方提供的信息的了解和信念,不对此类信息的准确性做出任何陈述或保证。 Efforts are underway to better integrate information from third parties. 目前正在努力更好地整合来自第三方的信息。 TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. 德州仪器已采取并将继续采取合理措施提供具有代表性的准确信息,但可能没有对进货材料和化学品进行破坏性测试或化学分析。 II and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. II 和 TI 供应商将某些信息视为专有信息,因此 CAS 编号和其他有限信息可能无法公布。
Addendum-Page 1 增编--第 1 页
IMPORTANT NOTICE 重要通知
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, lates issue. 德州仪器公司及其子公司(TI)保留根据最新一期 JESD46 对其半导体产品和服务进行修正、增强、改进和其他更改的权利,以及根据最新一期 JESD48 终止任何产品或服务的权利。 Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. 买家在下订单前应获取最新的相关信息,并应核实此类信息的时效性和完整性。 All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment. 所有半导体产品(此处也称为 "元件")的销售均受 Tl 在确认订单时提供的销售条款和条件的约束。
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. 根据德州仪器半导体产品销售条款和条件中的保证,德州仪器保证其元件的性能符合销售时适用的规格。 Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. 在德州仪器认为必要的范围内使用测试和其他质量控制技术来支持本保修。除非适用法律另有规定,否则不一定对每个部件的所有参数进行测试。
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. TI 对买方产品的应用协助或设计不承担任何责任。买方应对其使用 TI 元件的产品和应用负责。 To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards 为最大限度地降低与买方产品和应用有关的风险,买方应提供充分的设计和操作保障措施
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. 德州儀器不保證或聲明已明示或默示授予與使用德州儀器元件或服務的任何組合、機器或流程有關的任何專利權、版權、掩膜作品權或其他智慧財產權的許可。 Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. 德州仪器发布的有关第三方产品或服务的信息不构成使用此类产品或服务的许可,也不构成对此类产品或服务的保证或认可。 Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. 使用此类信息可能需要第三方根据其专利或其他知识产权授予许可,或 TI 根据其专利或其他知识产权授予许可。
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. 允许复制 TI 数据手册或数据表中的 TI 信息的重要部分,但复制时不得作任何改动,并须附带所有相关保证、条件、限制和声明。 TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. TI 不对此类更改文件负责或承担任何责任。第三方信息可能受到其他限制。
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. 在转售 TI 组件或服务时,如果声明与 TI 为该组件或服务声明的参数不同或超出该参数,则相关 TI 组件或服务的所有明示和暗示保证均无效,并且是一种不公平和欺骗性的商业行为。 TI is not responsible or liable for any such statements. TI 不对任何此类声明负责或承担责任。
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by . 买方承认并同意,尽管 可能会提供任何应用相关信息或支持,但买方应自行负责遵守与其产品有关的所有法律、法规和安全相关要求,以及在其应用中对 TI 元件的任何使用。 Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. 买方声明并同意,买方拥有一切必要的专业知识,能够建立和实施保障措施,预测故障的危险后果,监控故障及其后果,降低可能造成损害的故障发生的可能性,并采取适当的补救措施。 Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. 对于在安全关键型应用中使用任何 TI 元件所造成的任何损失,买方将对 TI 及其代表进行全额赔偿。
In some cases, TI components may be promoted specifically to facilitate safety-related applications. 在某些情况下,德州仪器的元件可能会专门用于促进与安全相关的应用。 With such components, TI 's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms TI 的目标是通过此类元件帮助客户设计和创建自己的最终产品解决方案,以满足适用的功能安全标准和要求。尽管如此,此类元件仍须遵守以下条款
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use 除非双方授权官员签署了专门规范此类使用的特别协议,否则 TI 元件不得用于 FDA III 级(或类似的生命攸关的医疗设备)。
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. 只有 TI 专门指定为军用级或 "增强塑料 "的 TI 元件才是为军事/航空航天应用或环境而设计和使用的。 Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. 买方承认并同意,将未如此指定的 TI 组件用于军事或航空航天用途的风险完全由买方承担,并且买方应自行负责遵守与此类用途相关的所有法律和法规要求。
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. 德州仪器特别指定某些元件符合 ISO/TS16949 要求,主要用于汽车。在使用非指定产品的情况下,德州仪器将不对任何不符合 ISO/TS16949 的情况负责。