I. Foreword 一、前言
Radiation Torms ..... 5 辐射托姆斯.....5
Selection Gulde ..... 6 选择 Gulde .....6
Cross Relerence Guide ..... 8 交叉宽容指南 .....8
II. INTRODUCTION 二、引言
Tube Applications ..... 13 管材应用.....13
Construction ..... 14 建设。。。。。14
Behaviour of Gas-filled Detectors ..... 15 充气探测器的行为.....15
Operation ..... 17 操作。。。。。17
Quenching Gas ..... 18 淬火气体.....18
Characteristics. ..... 18 特性。.....18
Dead Time & Recovery ..... 20 死区时间和恢复.....20
Background ..... 22 背景。。。。。22
Temperature Range ..... 22 温度范围 .....22
Optimum Performance ..... 22 最佳性能.....22
Tube Durability ..... 22 管材耐久性.....22
Response to Radiation. ..... 24 对辐射的反应。.....24
Energy Compensation ..... 25 能量补偿.....25
Application Circuits ..... 27 应用电路.....27
Equivalent Circuit ..... 30 等效电路。。。。。30
Genera ..... 41 属。。。。。41
Capacitance ..... 41 电容。。。。。41
Operating Characteristics ..... 41 .....操作特性41
Measuring Circuits ..... 43 测量电路 .....43
Notes ..... 44 笔记。。。。。44
Limiting Values ..... 46 限制值 .....46
Mounting ..... 46 安装。。。。。46
Storage & Handling ..... 47 储存和处理.....47
Outside Pressure ..... 47 外部压力.....47
Energy Dependence ..... 47 能量依赖.....47
Life ..... 47 生命。。。。。47
Maximum Beta Absorption. ..... 48 最大 β 吸收。.....48
Characterisation Test Procedures ..... 49 表征测试程序 .....49
References ..... 55 引用。。。。。55
IV. PRODUCT DATA 四、产品数据
ZP1200 Series ..... 57 ZP1200 系列 .....57
ZP1300 Series ..... 90 ZP1300 系列 .....90
ZP1400 Series ..... 144 ZP1400 系列 .....144
ZP1600 Series ..... 196 ZP1600 系列 .....196
ZP1700 Series ..... 202 ZP1700 系列 .....202
ZP1800 Series ..... 205 ZP1800 系列 .....205
V. GLOSSARY OF TERMS ..... 210 五、术语表 .....210
CEITRTAIIIC ..... 3 CEITRTAIIIC .....3
FOREWORD 前言
Centronic Limited is a world leader in the design and manufacture of radiation detectors of all types, covering the whole range from reactor salety control detectors to Geiger Mâller tubes. Centronic Limited 是设计和制造各种类型辐射探测器的全球领导者,涵盖从反应堆销售控制探测器到盖革马勒管的整个系列。
The history of the company goes back to 1945 when it first started business as a manufacturer of Geiger Müller tubes. Over the years it has developed its product range for the detection of alpha, beta and gamma radiation from miniature devices to very long versions, many to meet customers' specific requirements. This capability was enhanced in 1992 when Centronic acquired the entire Geiger Müller tube business of Philips and relocated it into a purpose-built factory at New Addington, Croydon. 该公司的历史可以追溯到 1945 年,当时它最初是一家盖革穆勒管制造商。多年来,它开发了用于检测α、β和γ辐射的产品系列,从微型设备到超长版本,其中许多是为了满足客户的特定要求。1992 年,Centronic 收购了飞利浦的整个 Geiger Müller 管业务,并将其搬迁到克罗伊登新阿丁顿的一家专门建造的工厂,从而增强了这种能力。
QUANTITIES AND UNITS 数量和单位
Absorbed dose is a measure of energy deposition in any medium by all types of ionising radiation and 吸收剂量是所有类型的电离辐射和在任何介质中能量沉积的量度
Since an exposure of results in an energy deposition of in air it follows that is equivalent to Gy or 8.69 mGy. 由于暴露 会导致 能量沉积在空气中,因此相当于 Gy 或 8.69 mGy。
Consequently this handbook gives data for the counting rate as a function of the absorbed dose rate in air as: 因此,本手册给出了计数率与空气中吸收剂量率的函数关系的数据:
quantity 数量
old unit 旧单元
new unit 新单位
relationship 关系
暴露剂量
exposure
dose
röntgen 伦琴
no special unit
produces in air
ions carrying a charge
of:
没有特殊单位 在空气中产生携带以下电荷:
吸收剂量
absorbed
dose
rad
gray 灰色
(see also section 13, "Test Procedures") (另见第 13 节“测试程序”)
ZP Series ZP系列
TYPE
SENSITTVTYY
PLATEAU
计数 速率 (计数/秒)
COUNTING
RATE AT
(count/s)
死区时间
DEAD
TIME
背地屏蔽 (counV/min.)
BACK-
GROUND
SHIELDED
(counV/min.)
剂量率范围 (mGyh)
DOSE RATE
RANGE
(mGyh)
BAND
LENGTH
THRESHOLD
LENGTH
SLOPE
ZP1200 series ZP1200系列
ZP1200
40
400
200
0.04
28
90
10
ZP1201'
40
400
200
0.04
20
110
10
40
400
200
0.04
20
110
10
140
400
100
0.15
110
200
70
ZP1220
240
400
100
0.15
180
210
90
ZP122001
-
240
400
100
0.15
180
210
60
ZP1221
-
240
400
100
0.15
180
210
90
ZP1221/01 ZP1221/01型
-
240
400
100
0.15
180
210
60
ZP1221/02**
240
400
100
0.15
180
210
60
ZP1300 series ZP1300系列
7
500
100
0.30
11
1
ZP1301*
-
7
500
100
0.30
3405
13
1
ZP1302'
7
500
100
0.30
13
-
7
500
100
0.30
13
1
ZP1310
-
16
500
150
0.15
15
2
ZP1313
16
500
150
0.15
1600」
15
2
-
16
500
150
0.15
15
2
ZP1320
-
28
500
150
0.08
9
45
12
ZP1321-
28
500
150
0.08
9
55
12
ZP1324" ZP1324”
-
27
500
150
0.08
9
55
12
ZP1330
.
75
450
350
0.02
65
70
35
ZP1400 series (End Window) ZP1400 系列 (尾窗)
Dia. 直径。
ZP1400
400
200
0.04
25
90
10
ZP1401
-
.0
400
200
0.04
25
90
10
ZP1402
-
.0
400
200
0.04
20
110
10
ZP1410
・
.0
450
250
0.02
32
175
15
ZP1430
-
- 0
450
250
0.04
44
230
25
ZP1431
.0
450
250
0.04
44
230
25
ZP1441
.
.
500
200
0.09
16
65
9
ZP1442
1
500
200
0.09
16
65
9
ZP1451
. 1
.0
500
250
0.07
29
60
14
ZP1452
10
500
250
0.07
29
60
25
ZP1470
1.
550
150
0.15
38
70
25
ZP1480
1.0
400
100
0.20
24
120
30
ZP1481
.0
400
100
0.20
24
120
30
ZP1490
.
.1.
450
250
0.06
29
65
15
ZP1600 series ZP1600系列
ZP1600 ZP1610系列
ZP1600
ZP1610
6.0.
2.5.
1600 opera 1600歌剧
400 ting 电压 1
400
ting voltage 1
0.07
660
-
110
-
25
-
ZP1700 series ZP1700系列
ZP1700
-
800
400
0.03
1000
70
ZP1800 series ZP1800系列
ZP1800
-
. 419
700
150
0.08
190
75
25
Notes 笔记
Window thickness ) 窗口厚度 )
to to 3.0 至 3.0
= With compensating filter = 带补偿滤波器
to to 3.5 至 3.5
" = Ambient dose compensater “ = 环境剂量补偿器
to to 2.5 至 2.5
Counting rate at 计数率在
C Series C系列
TYPE
SENSTTVITY
PLATEAU
计数速率为 10'Gy/h (coun//s)A
COUNTING
RATE AT
10'Gy/h
(coun//s)A
DEAO TME (美国)
DEAO
TME
(us)
BACK- GROUND SRIELDED (coUnVimin)
BACK-
GROUND
SRIELDED
(coUnVimin)
剂量率范围 (moyh)
DOSE RATE
RANGE
(moyh)
BAND
长度 (mm)
LENGTH
(mm)
THRESHOLD
LENGTH
坡度 (MY)
SLOPE
(MY)
C serles C 塞尔斯
9
500
150
0.2
1704
7
1
9
500
150
0.2
1404
7
1
.0
7
500
100
0.3
3605
11
1
.0
16
500
150
0.15
15
2
16
500
150
0.15
15
2
.0
28
500
150
0.1
9
28
12
Glass Tubes 玻璃管
TYPE
SENSITIVITY
8
8
2
E
夺贵
588
有
है
8
8
8
8
心
0
o 8
8
8
8
88
BAND
LIOUID
Glass Tubes 玻璃管
HC4
-
450
80
0.15
37
600
7
0.2
-
370
100
0.15
64
2000
15
-
0.2
-
370
100
0.15
123
5600
30
-
0.2
675
120
0.10
120
5000
30
-
0.2
25020
M2NaD M2锍
510
90
0.15
21
-
20
3.5
-10 ■ 50
0.2
25003
370
100
0.15
60
-
16
9
0.2
250050
B6TS
675
100
0.10
60
2700
-
-
0.1
*
1100
200
0.10
120
5800
26
-
2
500
200
0.15
60
2880
100
100
0.2
ve 5
1100
200
0.10
60
.
12
9
5
25 to 35 25 到 35
MZHD
370
100
0.15
20
-
7
3.5
-55 10
0.2
B6T
.1
675
100
0.10
60
0.1
25 to 35 25 到 35
Counting rate at 计数率在
With compensating filter 带补偿滤波器
** Ambient dose compensated ** 环境剂量补偿
= Supplied with waterproot rubber jacket = 提供水根橡胶护套
With increasing awareness of the environment and of protection levels, the detection and measurement of nuclear radiation becomes increasingly imponant. The Goiger Moller tube, wth its high detection sensitvity, robust conetruction and simple circuitry, continues to be one of the most widely used radiation detectors in all areas of application. 随着人们对环境和防护等级的认识不断提高,核辐射的探测和测量变得越来越重要。戈格摩尔管具有高探测灵敏度、坚固的结构和简单的电路,仍然是所有应用领域中使用最广泛的辐射探测器之一。
Contronic LId. has been manulacturing Geiger Müller tubes for over 50 years: indeed, we were the first to do so on a commercial scalo. Since the mid-1940s our continuous programme of research and development hes ensured that our range of tubes has remained one of the moet comprehensive avalable. Contronic LId.50 多年来,我们一直在制造 Geiger Müller 管:事实上,我们是第一个在商用 scalo 上这样做的公司。自 1940 年代中期以来,我们持续的研发计划确保了我们的管材系列始终是酩悦综合可用的产品之一。
Our unsurpassed experience in Geiger Maller tube design is complemented by an impressive production capability based at our centre in the UK, which is registered as complying with the requirements of ISO 9001. Rigorous production control and testing ensures that the quality of our tubes is socond-to-none. And although our capacity is largo, we can still rapidly adapt our production to meet special customer requirements. 我们在盖革马勒管设计方面拥有无与伦比的经验,并辅以我们位于英国的令人印象深刻的生产能力,该中心已注册为符合 ISO 9001 的要求。严格的生产控制和 测试确保我们的管材质量无懈可击。尽管我们的产能有限,但我们仍然可以快速调整我们的生产以满足客户的特殊要求。
When designing radiation detection equipment, specitying a Centronic type ensures rapid acceplance in the market place. This publication indicates typical applications for Geiger Müler tubes, describes the characteristics of the tubes and shows how to operate them in typical application circuits. It also defines the most commonly used terms in the published data, and gives our current range of Geiger Moller tubes. 在设计辐射探测设备时,指定 Centronic 型可确保快速进入市场。本出版物介绍了盖革·穆勒管的典型应用,描述了管材的特性,并展示了如何在典型应用电路中操作它们。它还定义了已发布数据中最常用的术语,并给出了我们当前的盖革穆勒管系列。
TUBE APPLICATIONS 管材应用
Geiger Maller tubes provide an easily-used means of both detecting and measuring the following types of radiation: 盖革马勒管提供了一种易于使用的方法,用于检测和测量以下类型的辐射:
Typical applications of Geiger Muller tubes include the following, which occur in and around nuclear power stations: 盖革穆勒管的典型应用包括以下内容,这些应用发生在核电站内和周围:
checking satisfactory performance of shielding 检查屏蔽性能是否令人满意
ensuring safety of working staff 确保工作人员的安全
warning of any release of contamination 任何污染物释放的警告
mocording exposure levels Mocording 暴露水平
detecting hazards for emergency service staff 为紧急服务人员检测危险
The environment near nuclear power sources is generally monitored by a number of peripheral instrument stations, each with two Geiger Müller tubes. If release of activity occurs, it is immediately detected and a signal is fed to a computer-controlled monitoring system. The computers trigger alarm warnings and provide an indication of the location of probable 'downwind' areas where precautions should be taken. They also indicate the most probable 'upwind' location of the leakage source. For this type of application, our ZP1301 or ZP1313 for monitoring high level radiation, or our ZP1221/01 for monitoring low level radiation are Ideal. 核动力源附近的环境通常由许多外围仪表站监测,每个仪表站都有两个盖革穆勒管。如果发生活动释放,则立即检测到,并将信号馈送到计算机控制的监控系统。计算机会触发警报警告,并指示应采取预防措施的可能“顺风”区域的位置。它们还表明了泄漏源最可能的“逆风”位置。对于此类应用,用于监测高水平辐射的 ZP1301 或 ZP1313 或用于监测低水平辐射的 ZP1221/01 是理想的选择。
Fordetectors used at nuclear installations by the various emergency services, a suitable choice is our ZP1301. Additional applications not specifically associated with nuclear power stations include: 对于各种紧急服务部门在核设施中使用的探测器,我们的 ZP1301 是一个合适的选择。与核电站无关的其他应用包括:
external monitoring of fluid levels in processing tanks in the chemical and petroleum industries 对化工和石油工业中处理罐中的液位进行外部监测
external monitoring of levels in coal hoppers, smelting furnaces, and liquified gas containers 对煤斗、冶炼炉和液化气容器中的液位进行外部监测
thickness measurement by absorption in paint layers, thin metal sheets, and abrasive layers on 'sand papers' 通过吸收油漆层、薄金属板和“砂纸”上的磨料层来测量厚度
finding cracks or voids in metal or stone 在金属或石头上发现裂缝或空隙
tracking the radioactive isotope 'labels' frequently used as tracers in chemistry, agriculture, civil engineering, petroleum engineering, and medicine 追踪化学、农业、土木工程、石油工程和医学中经常用作示踪剂的放射性同位素“标签”
detecting tracers used for indicating a change of oil in a time-share oil pipe line, or for tracking underground movement of water 检测示踪剂,用于指示分时输油管线中的油品变化,或用于跟踪地下水的运动
oil well logging 油井测井
measuring output from nuclear sources in various types of educational experimentation 在各种类型的教育实验中测量核源的产出
In educational establishments, the robust ZP1481, for example, with its plug-in base and window guard, is ideal for beta and gamma radiation experiments. 例如,在教育机构中,坚固耐用的 ZP1481 及其插入式底座和窗户护罩是 β 和 γ 辐射实验的理想选择。
CONSTRUCTION 建设
A Geiger Müller tube, like other gas-filled detectors, has an anode and a cathode in an envelope that contains a gas at low pressure (for most tubes, in the range 50 to 100 torr). There may also be a special 'window' of radiation transparent material either at one end of the tube or in its side. Some tubes also have an integral radiation-shield as part of the outer walls where this is required for modifying the performance characteristic (see 'Energy Compensation'). 与其他充气探测器一样,盖革穆勒管在包含低压气体的包络中具有阳极和阴极(对于大多数管,在 50 到 100 托的范围内)。在管子的一端或侧面也可能有一个特殊的辐射透明材料“窗口”。一些管子还具有一体式辐射屏蔽层,作为外壁的一部分,这是修改性能特征所必需的(参见“能量补偿”)。
Figure 1 General arrangement of the main parts of a typical Geiger Müller tube 图 1 典型盖革穆勒管主要部件的一般布置
Figure 1 shows the general arrangement for a typical unshielded tube with an end window. In most tubes the anode is a wire about thick supported through the axis of, but insulated from, a gas-tight cathode tube. This simple arrangement gives a high electric field when the necessary voltage is applied, and it also helps to propagate the required avalanche of ion multiplication through the tube. 图 1 显示了带有端窗的典型非屏蔽管的总体布置。在大多数管中,阳极是一根大约 粗的导线,支撑在气密阴极管的轴上,但与气密阴极管绝缘。当施加必要的电压时,这种简单的布置会产生高电场,并且还有助于通过管子传播所需的离子倍增雪崩。
INTRODUCTION 介绍
Device types 设备类型
The design of a Geiger Müller tube is usually optimised for a specific application, and there are therefore considerable differences in shape, size, gas formulation, gas pressure, and radiation 'window'. The type of construction varies broadly with the radiation to be detected: 盖革穆勒管的设计通常针对特定应用进行了优化,因此在形状、尺寸、气体配方、气体压力和辐射“窗口”方面存在相当大的差异。结构类型因要检测的辐射而有很大差异:
Alpha particles and low energy beta particles α粒子和低能β粒子
The tube is sealed at one end by a thin mica window through which the radiation enters (similar to that shown schematically in Figure 1). 管子的一端由薄云母窗口密封,辐射通过该窗口进入(类似于图1中的示意图)。
High energy beta radiation only 仅高能 β 辐射
Tube design is similar to that for alpha particles and low energy beta radiation, but the window is thicker. Other possible designs consist of a windowless tube with either a thin metal wall or a metal-coated glass wall. 管子设计类似于α粒子和低能β辐射,但窗口更厚。其他可能的设计包括具有薄金属壁或金属涂层玻璃壁的无窗管。
Low energy X-rays 低能量 X 射线
Tubes are similar to those for alpha radiation except that they are longer. The extra length improves radiation absorption. These tubes also have thicker mica windows. A heavy gas such as argon or krypton is normally used, and the gas pressure is generally higher than that of most other types of tube (generally between 600 and 650 torr). 管子与α辐射管相似,只是它们更长。额外的长度可提高辐射吸收。这些管子也有较厚的云母窗口。通常使用氩气或氪气等重气体,气体压力通常高于大多数其他类型的管子(通常在 600 到 650 托之间)。
Gamma radiation 伽马辐射
Tubes for the detection of gamma radiation have thick walls and no windows. Most of the counts in such tubes are produced by high energy electrons that are generated in the walls of the counter tube by photo-emission. These electrons interact with the gas and trigger the discharge. For maximum sensitivity, the tube is presented transversely to the source of radiation. Some tubes are constructed so that they are suitable for either -rays or gamma rays with photon energies in excess of about (the exact value varying with the tube type). 用于检测伽马辐射的管子壁厚,没有窗户。这种管中的大多数计数是由高能电子产生的,这些电子通过光发射在计数器管壁中产生。这些电子与气体相互作用并触发放电。为了获得最大的灵敏度,管子横向呈现到辐射源。一些管子的构造使它们适用于 光子能量超过大约( 确切值随管类型而变化)的射线或伽马射线。
BEHAVIOUR OF GAS-FILLED DETECTORS 充气探测器的行为
Geiger Müller tubes are members of the gas-filled radiation detector family which also includes ionisation chambers and proportional counters. The simplest gas-filled radiation detectors consist merely of two electrodes in a low pressure gas chamber; the walls of the chamber are constructed to permit penetration by the radiation of interest. Geiger Müller 管是充气辐射探测器系列的成员,该系列还包括电离室和比例计数器。最简单的充气辐射探测器仅由低压气室中的两个电极组成;腔室的墙壁结构允许感兴趣的辐射穿透。
Figure 2 shows a simplified detector circuit with a tube similar to that shown in Figure 1. Voltage is applied between the cathode (the wall of the tubular gas container) and the anode (the central wire, insulated from the tube wall). Current in the external circuit is governed by the conductivity of the gas inside the tube and consequently by its ionisation. 图2显示了一个简化的探测器电路,其管子类似于图1所示。在阴极(管状气体容器的壁)和阳极(中心线,与管壁绝缘)之间施加电压。外部电路中的电流由管内气体的电导率控制,因此由其电离控制。
Figure 2 Simplified gas-filled detector and circuit 图2 简化的充气探测器和电路
Ionisation absent. If none of the gas molecules are ionised, the gas behaves as an insulator and no current flows in the external circuit. 无电离。如果没有气体分子被电离,则气体充当绝缘体,没有电流流入外部电路。
Ionisation present. If some of the gas molecules are ionised by a particle or radiation quantum having recently entered the detector, some current could flow. The immediately subsequent events, however, depend on the electric field applied between the electrodes: 存在电离。如果一些气体分子被最近进入探测器的粒子或辐射量子电离,则可能会产生一些电流。然而,紧随其后的事件取决于施加在电极之间的电场:
If the field is weak, newly-produced ions and electrons simply recombine. 如果场很弱,新产生的离子和电子就会简单地重新组合。
If the electric field high is enough, the positive ions and the electrons become fully separated, being attracted towards the electrodes. Those ions that reach the cathode will be neutralised by electrons from the cathode. This transfer of electrons, and the arrival of electrons at the anode, causes a current pulse in the external circuit. Provided that sufficientions and electrons arrive more orless simultaneously, the current pulse can be detected by sensing the associated voltage across the resistor in the external circuit. 如果电场足够高,正离子和电子就会完全分离,被吸引到电极上。那些到达阴极的离子将被来自阴极的电子中和。这种电子的转移以及电子到达阳极时,会在外部电路中产生电流脉冲。如果充足和电子或多或少同时到达,则可以通过检测外部电路中电阻两端的相关电压来检测电流脉冲。
Figure 3 shows the characteristic curves for gas-filled detectors with both alpha and beta particle radiation. The form of these curves is determined to some extent by: 图 3 显示了同时具有 α 和 β 粒子辐射的充气探测器的特性曲线。这些曲线的形式在某种程度上由以下因素决定:
the design of the detector 探测器的设计
the gas used 使用的气体
the gas pressure 气体压力
In general, however, increasing voltage reveals five regions (see Figure 3): 然而,一般来说,增加电压会显示五个区域(见图3):
Figure 3 Variation of charge collected (i) due to alpha particles and (ii) due to beta particles both shown as a function of the applied voltage 图 3 收集的电荷的变化 (i) 由于 α 粒子和 (ii) 由于 β 粒子,两者都显示为施加电压的函数
Region 1 区域 1
The low electric field in Region I has negligible effect. Most ions recombine and current is small. Detectors are not usually operated in this region. 区域 I 的低电场影响可以忽略不计。大多数离子重新组合,电流很小。检测器通常不在此区域运行。
Region Il: Ionisation Chamber Region 区域 Il:电离室区域
Separatedions and electrons are forced todrift towards the electrode in Region II, and because recombination is delayed or prevented, many reach the electrodes. Current in this region depends almost exclusively upon the number of ions generated by the radiation, and is almost independent of the exact value of the applied voltage. Ionisation chambers operate in this region. 分离的离子和电子被迫漂移到区域II中的电极,并且由于复合被延迟或阻止,许多电子到达电极。该区域的电流几乎完全取决于辐射产生的离子数量,并且几乎与施加电压的确切值无关。电离室在该区域运行。
In Region III, electrons are accelerated to high velocities and produce secondary ions by collision, leading to a multiplication of charge. Particles moving through the counter can produce a large current and voltage pulse in suitable circuitry, with the amplitude proportional to the energy of the ionising particles. Proportional counters operate in this region. 在第三区,电子被加速到高速并通过碰撞产生二次离子,导致电荷倍增。通过计数器的粒子可以在合适的电路中产生较大的电流和电压脉冲,其振幅与电离粒子的能量成正比。比例计数器在此区域运行。
Ion multiplication gains of up to are attainable in this method of operation. (The upper end of Region III is generally known as 'the region of limited proportionality' where output becomes more dependent on applied voltage than on initial ionisation). 在这种操作方法中,可以实现高达 的离子倍增增益。(区域III的上限通常被称为“有限比例区域”,其中输出更多地依赖于施加的电压,而不是初始电离)。
Region IV: Geiger Region 第四区:盖革地区
Ion multiplication escalates in Region IV and, in the ensuing 'avalanche', virtually all primary and secondary electrons are accelerated sufficiently to create more secondary and tertiary ions. Though the detector can no longer distinguish between the different kinds of radiation or between different energies in this region. detection sensitivity is excellent. Geiger Müller tubes operate in this region which is also often called the 'Geiger Müller plateau '. 离子增殖在第四区升级,在随后的“雪崩”中,几乎所有的一级和二级电子都得到了足够的加速,以产生更多的二级和三级离子。尽管探测器无法再区分不同种类的辐射或该区域中的不同能量。检测灵敏度极佳。盖革穆勒管在这个地区运作,通常也被称为“盖革穆勒高原”。
Region V 第五区
Further escalation of avalanche in Region V produces total ionisation of the gas between the electrodes. A self-sustaining discharge, which will continue as long as voltage is applied, can be instigated by a single pulse. This type of discharge can be harmful to the detector and lengthy operation in this region should be avoided. V区雪崩的进一步升级导致电极之间的气体完全电离。只要施加电压,就可以持续进行自我维持放电,可以由单个脉冲激发。这种类型的放电可能对探测器有害,应避免在该区域长时间运行。
OPERATION 操作
Despite variations in construction, all Geiger Müller tubes are designed to operate under the conditions of Region IV (Figure 3). The following description of the discharge is deliberately simplified (quenching gas is described later): 尽管结构各不相同,但所有盖革穆勒管都设计为在 IV 区条件下运行(图 3)。以下对放电的描述被特意简化(淬火气体将在后面描述):
Initiation of the discharge 开始放电
When a particle or energy quantum enters the detection gas (usually neon, argon, or helium, and sometimes krypton), some initial gas ionisation may occur, creating electrons and positive ions. If the correct operating voltage is applied to the tube, electrons in the gas near the anode and positive ions in the gas near the cathode are collected almost instantaneously. The remainder of the electrons and ions, together with products of ion multiplication, follow in rapid succession. The resulting current pulse produces a fast-rising voltage pulse across the series resistor chain in the external circuit, and the pulse can be detected by a 'scaler' or counter. 当粒子或能量量子进入探测气体(通常是氖、氩或氦,有时是氪)时,可能会发生一些初始气体电离,从而产生电子和正离子。如果对管子施加正确的工作电压,则阳极附近气体中的电子和阴极附近气体中的正离子几乎会立即被收集。其余的电子和离子,以及离子倍增的产物,迅速连续地跟随。产生的电流脉冲在外部电路中的串联电阻链上产生快速上升的电压脉冲,该脉冲可由“定标器”或计数器检测。
Collapse of the discharge 放电坍塌
The main energy for the discharge is derived from the self capacitance of the tube and from stray capacitances. When these are significantly discharged, tube current collapses and gas de-ionisation follows. While this de-ionisation continues, the recharging of the capacitances gives an almost exponential tail to the pulse in the external circuit, the rate of fall depending on the RC values. 放电的主要能量来自管子的自电容和杂散电容。当这些被显着放电时,管电流会崩溃,气体去离子化随之而来。当这种去电离继续进行时,电容的再充电会给外部电路中的脉冲带来几乎指数级的尾巴,下降速率取决于RC值。
Recovery from the discharge 从放电中恢复
When the primary discharge is complete, residual positive ions drift towards the cathode and combine with electrons from the cathode surface. Residual positive ions near the anode weaken the field strength temporarily, and this reduces tube sensitivity for a short period after each discharge. Recovery from this lower sensitivity is described later (see 'Dead Time and Recovery'). 当一次放电完成时,残留的正离子漂移到阴极并与来自阴极表面的电子结合。阳极附近的残余正离子会暂时减弱场强,这会在每次放电后的短时间内降低管的灵敏度。从这种较低的灵敏度中恢复将在后面描述(参见'死区时间和恢复')。
QUENCHING GAS 淬火气体
Together with the normal gas selected for the discharge, a small amount of additional 'quenching gas' is also included. 除了选择用于排放的正常气体外,还包括少量额外的“淬火气体”。
Purpose of quenching gas 淬火气体的目的
If the tube were allowed to operate simply as outlined above, then after the main discharge, the impact of some of the residual high energy positive ions on the cathode would cause the emission of some secondary electrons. These newly-released electrons would be accelerated towards the anode and the subsequent high energy collisions with gas atoms would trigger a spurious repetition of the discharge. 如果允许管子简单地按照上述方式运行,那么在主放电之后,一些残留的高能正离子对阴极的影响将导致一些二次电子的发射。这些新释放的电子将加速到阳极,随后与气体原子的高能碰撞将触发放电的虚假重复。
This process would be repeated several or many times, and so a string of spurious discharges would follow the single initial ionisation. Such repeated triggering or oscillation is avoided by the addition of a 'quenching gas', 这个过程会重复几次或多次,因此在单个初始电离之后会出现一连串的虚假放电。通过添加“淬火气体”可以避免这种反复触发或振荡,
Action of quenching gas 淬火气体的作用
The quenching gas has an ionisation potential less than that of the main detection gas. De-ionisation of the main gas is hastened because the slow-moving residual ions of the main gas combine with electrons taken from the quenching gas. The newly-formed positive ions of the quenching gas drift towards the cathode, and on impact they are merely neutralised, there being insufficient total energy to cause emission of secondary electrons. 淬火气体的电离电位小于主检测气体的电离电位。由于主气体中缓慢移动的残余离子与从淬火气体中提取的电子结合,因此加速了主气体的去电离。淬火气体中新形成的正离子向阴极漂移,在撞击时它们只是被中和,总能量不足以引起二次电子的发射。
Types of quenching gas 淬火气体的种类
Quenching gases in modern tubes generally contain traces of halogens, usually chlorine or bromine. These atoms can recirculate after being ionised and neutralised, there being no permanent change in their nature. As a result, long life and stable characteristics are typical of Geiger Müller tubes with halogen-quenching. (Older tube designs had quenching gases consisting of organic vapours; the quenching action thus broke down the quenching gas molecules irreversibly, gradually modifying the characteristics of the tube and limiting its life. All our tubes are halogen-quenched except B12C, M6C and ZP1610). 现代管中的淬灭气体通常含有微量的卤素,通常是氯或溴。这些原子在被电离和中和后可以再循环,它们的性质没有永久性的变化。因此,长寿命和稳定的特性是具有卤素淬火的盖革穆勒管的典型特征。(较旧的管子设计具有由有机蒸气组成的淬火气体;因此,淬火作用不可逆地分解了淬火气体分子,逐渐改变了管子的特性并限制了其寿命。除B12C、M6C和ZP1610外,我们所有的管子都是卤素淬火的。
CHARACTERISTICS 特性
Figure 4 shows a simplified version of part of the characteristic curve of a Geiger Müller tube. This characteristic is obtained by plotting the count rate in pulses per second as a function of supply voltage in a constant radiation field. Note that the constant radiation field strength used for obtaining this curve is fixed so that a rate of 100 to 300 counts per second is obtained at the operating voltage (the centre of the Geiger Müller plateau). The main features of this characteristic are given below. 图 4 显示了 Geiger Müller 管部分特性曲线的简化版本。该特性是通过在恒定辐射场中绘制以每秒脉冲为单位的计数率作为电源电压的函数来获得的。请注意,用于获得该曲线的恒定辐射场强是固定的,因此在工作电压(盖革穆勒高原的中心)下获得每秒 100 到 300 次计数的速率。下面给出了该特性的主要特征。
Figure 4 Characteristic curve of Geiger Müller tube showing the count rate as a function of the applied anode voltage 图 4 Geiger Müller 管的特性曲线,显示计数率与施加的阳极电压的函数关系
INTRODUCTION 介绍
Low applied voltage 低施加电压
At very low voltages, the count rate is insignificant. Tubes cannot generally be operated usefully in this region. 在非常低的电压下,计数率微不足道。管子通常不能在该区域有效操作。
Starting voltage 起动电压
The starting voltage is defined as the lowest voltage applied to a counter tube at which pulses can be detected by a system with certain defined characteristics'. The value of varios with design of tube but is generally between and . 起始电压 被定义为施加在计数器管上的最低电压,在该电压下,具有某些定义特性的系统可以检测到脉冲。管子设计的 变量值通常介于 和 之间。
Threshold voltage 阈值电压
Abstract 抽象
Above the starting voltage the count rate increases rapidly. The voltage is increased by between and to reach the threshold voltage . Above all fully distinguishable ionising events produce the same size normal output pulses, the charge collected by the anode per ionisation event being substantially independent of the number of ions originally created. The threshold voltage depends on the conditions defined for the circuit. 高于启动电压 时,计数率迅速增加。电压在 和 之间 增加以达到阈值电压 。最重要的是 ,完全可区分的电离事件会产生相同大小的正常输出脉冲,每个电离事件的阳极收集的电荷基本上与最初产生的离子数量无关。阈值电压 取决于为电路定义的条件。
Plateau 高原
The threshold voltage also marks the beginning of the Geiger Müller plateau for the conditions under which the circuit is operating. The plateau extends for about . The large voltage range of the plateau, and its very low gradient, permit accurate measurements of radiation intensity without the need for stabilised power supplies. (The slight gradient is not a problem and is explained below). 阈值电压 也标志着电路运行条件下盖革·穆勒高原的开始。高原延伸约 .高原的电压范围大,梯度非常低,可以精确测量辐射强度,而不需要稳定的电源。(轻微的梯度不是问题,下面解释)。
Plateau length volts 平台长度 伏特
Plateau slope 高原坡
Plateau slope 高原坡
The small positive slope that always occurs on the plateau is caused in the following way: 高原上总是出现的小正斜率是由以下方式引起的:
Increasing voltage lengthens the active volume of the tube slightly (the spatial region where ions are in an adequate electric field to ensure that they have a chance of initiating an avalanche discharge). The number of counts thus increases for a given radiation intensity. 增加电压会略微延长管子的有源体积(离子处于足够电场中以确保它们有机会引发雪崩放电的空间区域)。因此,对于给定的辐射强度,计数数量会增加。
Since even a quenched discharge leaves some residual charges or molecules in an excited state, there remains a possibility of a second discharge being induced. The probability of this occurring is low but rises with increasing voltage. The small number of such spurious counts will add slightly to the initial count rate and thus contribute to the slope of the plateau. 由于即使是淬灭放电也会使一些残余电荷或分子处于激发态,因此仍有可能诱导第二次放电。这种情况发生的可能性很低,但随着电压的增加而上升。少量的这种虚假计数将略微增加初始计数率,从而有助于高原的斜率。
Instability beyond plateau 高原以外的不稳定性
At the upper end of the plateau there is a sharp rise in the count rate. The relationship between the count rate and the radiation intensity is no longer linear. The tube circuit becomes unstable and oscillations may occur. 在高原的上端,计数率急剧上升。计数率和辐射强度之间的关系不再是线性的。电子管电路变得不稳定,可能会发生振荡。
Output signal connection 输出信号连接
In theory, the output signal from a Geiger Müller tube can be taken from an RC network connected either in the anode circuit or in the cathode circuit of the tube (see Figure 2). These two different approaches are outlined below: 从理论上讲,Geiger Müller管的输出信号可以从连接在管的阳极电路或阴极电路中的RC网络中获取(见图2)。下面概述了这两种不同的方法:
Cathode connection - preferred In practice, cathode connection should always be used if possible (as indicated in Figure 2 and shown in more detail in the application circuits later). This is mainly because it is less likely to affect the characteristics of the tube. The extra capacitance of the output circuitry added to the cathode is considerably less significant than when added to the relatively small anode. Cathode pick-up also obviates the need for the high voltage capacitor that is generally required by circuits with anode HT supply. (This capacitor is required because the HT normally has to be blocked at the point where the output signal is coupled to the scaler circuit). 阴极连接 - 首选 在实践中,如果可能,应始终使用阴极连接(如图 2 所示,并在后面的应用电路中更详细地显示)。这主要是因为它不太可能影响管子的特性。添加到阴极的输出电路的额外电容远不如添加到相对较小的阳极时重要。阴极拾取还避免了对高压电容器的需求,而高压电容器通常是阳极HT电源电路所必需的。(此电容器是必需的,因为 HT 通常必须在输出信号耦合到定标器电路的点被阻断)。
Anode connection - non-preferred 阳极连接 - 非首选
Anode connection should be used only if it is, for some reason, unavoidable. This situation may occur, for example, in some types of remote probes where the cathode needs to be grounded. The circuit capacitance added to the small anode capacitance may produce undesirable effects that are difficult to eradicate. 仅当由于某种原因不可避免时,才应使用阳极连接。例如,在某些类型的远程探头中,阴极需要接地,可能会发生这种情况。在小阳极电容上增加的电路电容可能会产生难以消除的不良影响。
Operation in the plateau 在高原作业
As indicated previously, the amplitude of the output signal that can be derived from a Geiger Müller tube is always a function of the supply voltage of the circuit, the starting voltage of the particular tube, and the specific component values in the RC network. However, for given circuit components, operation with the supply voltage set nominally in the centre of the plateau gives a counting rate substantially independent of the applied voltage over the range of the plateau when the tube is operated in a uniform radiation field. 如前所述,可以从盖革穆勒管导出的输出信号的幅度始终是电路电源电压、特定管的启动电压 和 RC 网络中特定组件值的函数。然而,对于给定的电路元件,当管子在均匀的辐射场中工作时,当管子在均匀的辐射场中工作时,在标称上设置在平台中心的情况下,计数速率基本上与平台范围内的施加电压无关。
This is the circuit arrangement generally used for Geiger Müller tubes in normal applications. The output pulses are fed into a threshold detector which is usually set to delect any pulse with an amplitude of, say, or more of the maximum obtainable pulse height. Full details of the method of processing the output pulses are described later under 'Application Circuits'. 这是普通应用中通常用于盖革穆勒管的电路布置。输出脉冲被馈入阈值检测器,该检波器通常设置为对幅度等 于或大于最大可获得脉冲高度的任何脉冲进行采摘。输出脉冲处理方法的全部细节将在后面的“应用电路”中描述。
DEAD TIME AND RECOVERY 死区时间和恢复
The maximum counting performance of a tube is determined by two interrelated characteristic times. These are known as 'dead time' and 'recovery time', and both relate to the period immediately following a full-size discharge. The meanings of terms are defined below in relation to Figure 5. 管子的最大计数性能由两个相互关联的特征时间决定。这些被称为“死区时间”和“恢复时间”,两者都与全尺寸放电后的一段时间有关。术语的含义如下图 5 所示。
Dead time 死区时间
Figure 5 Possible heights of a second pulse as a function of time subsequent to a single initial full-size pulse. 图 5 第二个脉冲的可能高度随单个初始全尺寸脉冲之后的时间函数。
The dead time, which has a major influence on the total recovery time, is the very brief period following a discharge, during which the Geiger Müller tube is incapable of responding to any subsequent ionising event. This short period lasts while the effective circuit capacitance is recharged. Normally, most of the residual positive ions are collected by the electric field during this period, but the field is nevertheless too low to allow another discharge, even if further lonising events occur. 死区时间对总恢复时间有重大影响,是放电后的非常短暂的时期,在此期间,盖革穆勒管无法响应任何后续的电离事件。在有效电路电容充电时,这个短暂的周期会持续。通常,在此期间,大部分残留的正离子被电场收集,但电场仍然太低,即使发生进一步的放电事件,也无法再次放电。
Dead time and applied voltage 死区时间和施加电压
Dead time varies with applied voltage. Figures in the selection guide are typical for the working mid-point of the plateau with a stated series resistance, and with the counting threshold set to of maximum pulse amplitude. 死区时间随施加的电压而变化。选型指南中的数字是平台工作中点的典型数字,具有规定的串联电阻,并且计数阈值设置为 最大脉冲幅度。
INTRODUCTION 介绍
Dead time and count rate 死区时间和计数率
The dead time after each ionisation discharge will limit the maximum count rate because events that occur in the dead period cannot produce a count. 每次电离放电后的死区时间将限制最大计数率,因为在死区发生的事件无法产生计数。
The relationship between dead time , the true count rate , and the measured count rate , is: 死区时间 、真实计数率 和测量计数率 之间的关系为:
This expression is valid only when . 仅当 时,此表达式才有效。
At high dose rates the probability of an ionising event occurring within the dead time is high and so a significant number of counts are lost. Tube dead time therefore has a more marked effect on detector circuit performance at higher dose rates. This effect is usually seen as a non-linearity in the tube characteristic relating dose rate to count rate. A typical example of this slight but inherent non-linearity in the characteristic of the tube itself is shown in Figure 6. (Certain kinds of inadequate circuit design can also cause an additional apparent exaggeration of this non-linearity which is then called 'foldback'. Circuits should be correctly designed to minimise the foldback effect). 在高剂量速率下,死区内发生电离事件的概率很高,因此会丢失大量计数。因此,在较高剂量率下,管死时间对检测器电路性能的影响更为显著。这种效应通常被视为与剂量率和计数率相关的试管特性中的非线性。图 6 显示了管子本身特性中这种轻微但固有的非线性的典型示例。(某些类型的电路设计不足也会导致这种非线性的额外明显夸大,这被称为“折返”。电路设计应正确,以尽量减少折返效应)。
Figure 6 Count rate versus dose rate for a typical Geiger Müller tube 图 6 典型 Geiger Müller 管的计数率与剂量率
Ionising events repeated at close to the maximum count rate will produce output pulses of limited amplitude (see 'Recovery Time'). Because of this, as the count rate increases, the detector takes less time on average to recover from each event, and so the effective dead time falls. The difference between the true and observed count rate therefore increases. For large detectors the change in effective dead time is slight, but for small detectors the change is significant. 在接近最大计数速率时重复的电离事件将产生有限振幅的输出脉冲(参见“恢复时间”)。因此,随着计数率的增加,检测器从每个事件中恢复所需的时间平均减少,因此有效死区时间会下降。因此,真实计数率和观察到的计数率之间的差异会增加。对于大型探测器,有效死区时间的变化很小,但对于小型探测器,变化很大。
Clearly, for optimum counting performance, circuit designers should always use counting equipment or a scalar circuit with a resolution time significantly shorter than the minimum attainable dead time of the tube. 显然,为了获得最佳计数性能,电路设计人员应始终使用计数设备或标量电路,其分辨率时间明显短于管子可达到的最小死区时间。
Reducing dead time 减少死区时间
Dead time can be reduced somewhat by decreasing the value of the series anode resistor. This expedient can be used with either the non-preferred anode signal connection method or the preferred cathode connection. In either case, however, the reduction in value of the resistor might adversely affect the quenching and so the method should be used with caution. 通过降低串联阳极电阻的值,可以在一定程度上减少死区时间。这种权宜之计可以与非优选的阳极信号连接方法或优选的阴极连接一起使用。然而,无论哪种情况,电阻值的降低都可能对淬火产生不利影响,因此应谨慎使用该方法。
Dead time can also safely be minimised by ensuring that the anode resistor is connected directly to the anode clip on the tube, thus reducing the circuit capacitance that is added directly to the anode. This also enhances the physical durability of the tube under conditions of vibration or physical shock. The method of attaching the anode resistor is described briefly under 'Tube Durability-series resistor'. 通过确保阳极电阻器直接连接到管子上的阳极夹,还可以安全地将死区时间降至最低,从而减少直接添加到阳极的电路电容。这也增强了管子在振动或物理冲击条件下的物理耐久性。连接阳极电阻器的方法在“管耐久性系列电阻器”中简要描述。
The advantage of having a short connection lead between anode and external circuit can be seen, for example, with the tube type ZP1300. This has an exceptionally short dead time of s at high count rates when it is connected directly to the circuit without an anode lead, but the insertion of only of anode lead can double the effective dead time. 例如,在阳极和外部电路之间具有短连接引线的优势可见一斑,例如,管型 ZP1300。当它在没有阳极引线的情况下直接连接到电路时,它在高计数率下具有非常短的 死区时间,但仅 插入阳极引线可以使有效死区时间增加一倍。
INTRODUCTION 介绍
Recovery time 恢复时间
Figure 5 shows the dead time and this can be seen to be the initial part of the full recovery time. After the dead time, but before the field is completely restored, only a limited discharge can be supported. If additional time elapses before a subsequent discharge occurs, the voltage across the detector tube rises. The next ionising event can then produce a more substantial discharge and a larger output pulse. The amplitude of such subsequent pulses will eventually rise to the normal maximum after a full recovery period. 图 5 显示了死区时间,可以看出这是完整恢复时间的初始部分。在死区之后,但在场地完全恢复之前,只能支持有限的放电。如果在发生后续放电之前经过额外的时间,则检测器管两端的电压会升高。然后,下一个电离事件可以产生更实质性的放电和更大的输出脉冲。在完全恢复期后,这种后续脉冲的振幅最终将上升到正常最大值。
The recovery time is defined as 'the minimum time between two successive normal pulses', as shown in Figure 5. Recovery time is approximately twice the dead time. 恢复时间定义为“两个连续正常脉冲之间的最短时间”,如图5所示。恢复时间大约是死区时间的两倍。
BACKGROUND 背景
The background is the count rate in the absence of all other radiation that the detector is intended to measure. The most important sources of background radiation are: 背景是探测器要测量的所有其他辐射的情况下的计数率。最重要的背景辐射源是:
gamma radiation from the environment and from cosmic radiation 来自环境和宇宙辐射的伽马辐射
mesons from cosmic radiation 来自宇宙辐射的介子
beta particles from impurities in the materials from which the detector is made 来自制造检测器的材料中杂质的β颗粒
From published experimental data, the gamma contribution accounts for of the background, and cosmicmesons account for . For some applications the background count can be reduced by shielding the tube with lead or steel, thus excluding most of the gamma radiation. 从已发表的实验数据来看,伽马贡献 占了背景,而宇宙介子占了 。对于某些应用,可以通过用铅或钢屏蔽管来减少背景计数,从而排除大部分伽马辐射。
TEMPERATURE RANGE 温度范围
Halogen-quenched tubes can generally be operated in the temperature range to , though tubes of older design can be operated over only part of this range. Our high temperature tubes operate up to , depending on the tube type. Published data should always be consulted. 卤素淬火管通常可以在 的温度范围内 工作, 尽管旧设计的管子只能在这个范围的一部分内工作。我们的高温管工作温度 高达 ,具体取决于管子类型。应始终查阅已发布的数据。
OPTIMUM PERFORMANCE 最佳性能
To ensure optimum performance it is advisable to avoid having more than one parameter at its limit value, particularly when one of these is the temperature limit. For example, operation at with an anode resistor of minimum value and also with maximum anode voltage should be avoided. 为确保最佳性能,建议避免在其极限值处使用多个参数,尤其是当其中一个参数是温度极限时。例如,应避免在最小值的阳极电阻和最大阳极电压下 工作。
TUBE DURABILITY 管材耐久性
Under working conditions, halogen-quenched tubes are very resilient and will recover from most forms of operational over-stressing because they have the following features: 在工作条件下,卤素淬火管具有很强的弹性,并且可以从大多数形式的操作过应力中恢复过来,因为它们具有以下特点:
tube characteristics are not impaired by a large but temporary over-voltage 管材特性不会因大而暂时的过电压而受损
tubes are unaffected by a temporary reversal of polarity of the supply voltage 电子管不受电源电压极性暂时反转的影响
exposure of tubes to excessive radiation has no deleterious effects 将管子暴露在过度辐射下不会产生有害影响