这是用户在 2024-5-17 12:54 为 https://pubs.acs.org/doi/10.1021/jacs.2c13878 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
Nucleation and Growth Mode of Solid Electrolyte Interphase in Li-Ion Batteries
CONTENT TYPES

Figure 1Loading Img

Nucleation and Growth Mode of Solid Electrolyte Interphase in Li-Ion Batteries
锂离子电池中固体电解质间相的成核与生长模式

  • Yu-Xing Yao
    Yu-Xing Yao
    Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    More by Yu-Xing Yao
  • Jing Wan
    Jing Wan
    Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    More by Jing Wan
  • Ning-Yan Liang
    Ning-Yan Liang
    Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Chong Yan*
    Chong Yan
    Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
    *E-mail: yanc@bit.edu.cn
    More by Chong Yan
  • Rui Wen*
    Rui Wen
    Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    *E-mail: ruiwen@iccas.ac.cn
    More by Rui Wen
  • , and 
  • Qiang Zhang*
    Qiang Zhang
    Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    *E-mail: zhang-qiang@mails.tsinghua.edu.cn
    More by Qiang Zhang
Cite this: J. Am. Chem. Soc. 2023, 145, 14, 8001–8006
Publication Date (Web):March 29, 2023
https://doi.org/10.1021/jacs.2c13878
Copyright © 2023 American Chemical Society
  • Subscribed

Article Views

5978

Altmetric

7

Citations

LEARN ABOUT THESE METRICS
PDF (7 MB)
Supporting Info (1)»

Abstract 摘要

The solid electrolyte interphase (SEI) is regarded as the most important yet least understood component in Li-ion batteries. Considerable effort has been devoted to unravelling its chemistry, structure, and ion-transport mechanism; however, the nucleation and growth mode of SEI, which underlies all these properties, remains the missing piece. We quantify the growth mode of two representative SEIs on carbonaceous anodes based on classical nucleation theories and in situ atomic force microscopy imaging. The formation of inorganic SEI obeys the mixed 2D/3D growth model and is highly dependent on overpotential, whereby large overpotential favors 2D growth. Organic SEI strictly follows the 2D instantaneous nucleation and growth model regardless of overpotential and enables perfect epitaxial passivation of electrodes. We further demonstrate the use of large current pulses during battery formation to promote 2D inorganic SEI growth and improve capacity retention. These insights offer the potential to tailor desired interphases at the nanoscale for future electrochemical devices.
固体电解质相间层(SEI)被认为是锂离子电池中最重要但最不为人所知的成分。人们已经投入了大量精力来揭示其化学、结构和离子传输机制;然而,作为所有这些特性基础的 SEI 的成核和生长模式仍然是缺失的部分。我们基于经典成核理论和原位原子力显微镜成像,量化了碳质阳极上两种代表性 SEI 的生长模式。无机 SEI 的形成遵循二维/三维混合生长模型,并且高度依赖于过电势,大过电势有利于二维生长。有机 SEI 严格遵循二维瞬时成核和生长模型,与过电位无关,并能实现电极的完美外延钝化。我们进一步展示了在电池形成过程中使用大电流脉冲促进二维无机 SEI 生长和提高容量保持率的方法。这些见解为在纳米尺度上为未来的电化学设备定制所需的相间提供了可能性。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。申请重用许可。

Introduction 导言

ARTICLE SECTIONS
Jump To
 条款章节跳转到

The most notable feature that sets the modern Li-ion battery (LIB) apart from its aqueous counterparts (Pb–acid, Ni–Cd, or Ni–MH batteries) is the ability to operate at extreme electrode potentials far beyond the cathodic limit of electrolytes. (1−3) Such electrode/electrolyte interfaces are kinetically stabilized by the solid electrolyte interphase (SEI), a 5–50 nm thick, electron-insulating, and ion-conducting passivation film that protects highly reductive anodes. (4) Despite its trace presence, the physicochemical properties of SEI profoundly affect battery performance and safety. (5,6) Tremendous effort has been devoted to understanding the chemical nature, structure, and ion-transport mechanism of already formed SEI. (7−9) Nonetheless, the initial nucleation and growth mode of SEI on fresh electrode surfaces, which underlies all the above properties, remains elusive. (10) This knowledge is also essential for explaining SEI morphology, which governs its adhesion to the electrode and stability over long-term cycling. In classical theories, nucleation can be classified into instantaneous (I) or progressive (P) depending on whether new nuclei emerge instantly at the beginning or progressively over time, and the subsequent growth can be either two-dimensional (2D) or three-dimensional (3D). (11) Accurate quantification of the nucleation and growth mode of SEI must combine classical models with in situ observations, which, to the best of our knowledge, is still missing.
现代锂离子电池(LIB)有别于水性电池(铅酸蓄电池、镍镉电池或镍氢电池)的最显著特点是能够在远远超过电解质阴极极限的极端电极电位下工作。(1-3) 这种电极/电解质界面由固体电解质间相(SEI)在动力学上加以稳定,SEI 是一种 5-50 纳米厚的电子绝缘和离子传导钝化膜,用于保护高还原性阳极。(4)尽管 SEI 的存在微乎其微,但其物理化学特性却对电池性能和安全性产生了深远影响。(5,6)为了解已形成的 SEI 的化学性质、结构和离子传输机制,人们付出了巨大的努力。(7-9)然而,SEI 在新电极表面上的初始成核和生长模式,即上述所有特性的基础,仍然难以捉摸。(10)这些知识对于解释 SEI 形态也至关重要,因为 SEI 形态决定了 SEI 与电极的粘附性和长期循环的稳定性。(11) 要准确量化 SEI 的成核和生长模式,必须将经典模型与现场观测相结合,而据我们所知,目前还没有这种方法。
Nucleation marks the onset of a first-order phase transition and is common ground among many battery reactions involving phase change, particularly for conversion-type electrodes. For instance, the electrodeposition of a Li nucleus on Cu substrates and Li2S on carbon substrates has been investigated using electrochemical and optical methods, in which the kinetics of nucleation or dimensionality of growth are quantified to guide the rational design of advanced Li metal anodes and sulfur cathodes. (12−15) However, quantifying the nucleation and growth mode of SEI has been technically challenging due to the following reasons. (1) Unlike bulk electrode reactions, the transient formation of SEI in working batteries contributes to only a negligible amount of capacity, making its electrochemical signal too faint to capture. (2) Classical nucleation models are established on the analysis of a unimodal potentiostatic current–time transient, where nucleation sets in at a rate first slow, then faster as the electroactive area increases, and finally when growth centers coalesce, slow again. (16) However, the current transients of SEI formation in previous literature are mostly monotonically decreasing, rendering model fitting impossible. (17,18) (3) Direct visualization of nanoscale interphase evolution is difficult due to the lack of in situ characterization tools with high spatial resolution. (2) These barriers have hindered the in-depth understanding of the nucleation and growth mode of SEI.
成核标志着一阶相变的开始,是许多涉及相变的电池反应的共同点,特别是对转换型电极而言。例如,人们使用电化学和光学方法研究了锂核在铜基底上的电沉积和锂 2 S在碳基底上的电沉积,通过量化成核动力学或生长尺寸来指导先进锂金属阳极和硫阴极的合理设计。(12-15)然而,由于以下原因,量化 SEI 的成核和生长模式在技术上具有挑战性。(1) 与块状电极反应不同,SEI 在工作电池中的瞬时形成对容量的贡献微乎其微,因此其电化学信号非常微弱,难以捕捉。(2)经典的成核模型是建立在对单模态恒电位电流-时间瞬态分析的基础上的,在该模型中,成核的速度首先是缓慢的,然后随着电活性面积的增加而加快,最后当生长中心凝聚在一起时,速度又变慢了。(16)然而,以往文献中 SEI 形成的电流瞬态大多是单调递减的,因此无法拟合模型。(17,18) (3) 由于缺乏高空间分辨率的原位表征工具,直接观察纳米级相间演化十分困难。(2) 这些障碍阻碍了对 SEI 成核和生长模式的深入理解。
In this contribution, we overcome these barriers by employing (1) high-surface-area carbon black (CB) electrodes as the substrates for magnified SEI growth, (2) weakly solvating electrolytes (WSEs) that induce unimodal current–time transients, and (3) in situ electrochemical atomic force microscopy (AFM) to monitor dynamic SEI nucleation and subsequent growth on a highly oriented pyrolytic graphite (HOPG) electrode in real time. We elucidate, for the first time, the nucleation and growth mode of both inorganic and organic SEIs as a function of electrode overpotential.
在这篇论文中,我们通过以下方法克服了这些障碍:(1) 采用高表面积炭黑 (CB) 电极作为放大 SEI 生长的基底;(2) 采用可诱导单模态电流-时间瞬态的弱溶解性电解质 (WSE);(3) 采用原位电化学原子力显微镜 (AFM) 实时监控高取向热解石墨 (HOPG) 电极上的动态 SEI 成核和后续生长。我们首次阐明了无机和有机 SEI 的成核和生长模式与电极过电势的函数关系。

Results and Discussion 结果与讨论

ARTICLE SECTIONS
Jump To
 条款章节跳转到

SEI can be broadly classified into inorganic and organic interphases, in which the former often originates from the decomposition of inorganic Li salts and the latter from the initial decomposition of organic solvents. A WSE consisting of 1.0 M Li bis(fluorosulfonyl)imide (LiFSI) in 1,4-dioxane (1,4-DX) was selected to obtain an inorganic SEI through the reduction of the FSI anions, based on the rationale that low-polarity 1,4-DX allows most FSI anions to coordinate with Li ions, therefore facilitating their decomposition at the anode/electrolyte interfaces. (10,19) Electrolytes that generate organic SEI layers are formulated by adding 0.2 or 0.5 M ethylene carbonate (EC) into WSE, which are denoted as WSE+0.2 EC and WSE+0.5 EC, respectively. A standard electrolyte (1.0 M LiPF6 dissolved in an EC/dimethyl carbonate (DMC) mixture, 3:7 by volume), denoted as ECDMC, was applied as a reference.
SEI 大致可分为无机相和有机相,前者通常源于无机锂盐的分解,而后者则源于有机溶剂的初始分解。我们选择了由 1.0 M Li 双(氟磺酰)亚胺(LiFSI)在 1,4- 二氧六环(1,4-DX)中组成的 WSE,通过还原 FSI 阴离子来获得无机 SEI,理由是低极性的 1,4-DX 允许大多数 FSI 阴离子与锂离子配位,因此有利于它们在阳极/电解质界面上分解。(10,19)产生有机 SEI 层的电解质是通过在 WSE 中加入 0.2 或 0.5 M 碳酸乙烯(EC)配制而成的,分别称为 WSE+0.2 EC 和 WSE+0.5 EC。标准电解质(1.0 M LiPF 6 溶于 EC/dimethyl carbonate (DMC) 混合物中,体积比为 3:7)被用作参考,称为 ECDMC。
CB was selected as the model electrode for SEI nucleation and growth due to its graphitic structure, high electronic conductivity, and high specific area (64.9 m2 g–1), which results in large irreversible SEI capacity exceeding 200 mAh g–1 (Figure S1). During the galvanostatic discharge of Li | CB cells, the plateau region above 0.75 V and sloping region below 0.75 V correspond to SEI growth and Li ion intercalation, respectively (Figure 1). For a WSE, a long plateau from 1.37 to 1.10 V signifies the decomposition of LiFSI to form an inorganic SEI, including Li sulfides, Li3N, Li oxysulfide/oxynitride, Li2O, and LiF as revealed by X-ray photoelectron microscopy (XPS, Figure S2). When EC is added in a WSE, the SEI plateau moves downward to 0.95–0.75 V, which is close to that of ECDMC, indicating the suppression of LiFSI reduction and domination of EC reduction. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) of the CB surface confirms that organic SEI debris (OH and C2H) exhibits much higher intensity in WSE+0.2 EC than in WSE (Figure S3), which is originated from the Li alkyl carbonates generated via EC reduction. The galvanostatic measurements are in good accordance with the cyclic voltammetry (CV) profiles shown in Figure S4, where two distinct cathodic peaks located at 0.88 and 0.49 V are ascribed to the formation of a LiFSI-derived inorganic SEI in a WSE and EC-derived organic SEI in WSE+0.2 EC, respectively.
选择 CB 作为 SEI 成核和生长的模型电极,是因为 CB 具有石墨结构、高电子传导性和高比面积(64.9 m 2 g –1 ),这使得其不可逆 SEI 容量超过 200 mAh g –1 ( 图 S1)。在 Li | CB 电池的电静电放电过程中,0.75 V 以上的高原区和 0.75 V 以下的斜坡区分别对应于 SEI 生长和锂离子插层(图 1)。对于 WSE,从 1.37 V 到 1.10 V 的长高原表示 LiFSI 分解形成了无机 SEI,包括硫化锂、 3 N锂、氧硫化锂/氧氮化锂、 2 O锂和 LiF,如 X 射线光电子显微镜(XPS,图 S2 所示)所显示的那样。当在 WSE 中加入 EC 时,SEI 高原向下移动到 0.95-0.75 V,与 ECDMC 的高原接近,表明 LiFSI 的还原受到抑制,而 EC 的还原占主导地位。CB 表面的飞行时间二次离子质谱(TOF-SIMS)证实,有机 SEI 碎片(OH 和 C 2 H )在 WSE+0.2 EC 中的强度远高于 WSE 中的强度(图 S3),这源于 EC 还原产生的碳酸烷基锂。图 S4 所示的循环伏安 (CV) 曲线与电静态测量结果十分吻合,在图 S4 中,位于 0.88 V 和 0.49 V 的两个不同的阴极峰分别归因于在 WSE 中形成的 LiFSI 衍生的无机 SEI 和在 WSE+0.2 EC 中形成的 EC 衍生的有机 SEI。

Figure 1 图 1

Figure 1. Galvanostatic voltage curves and current–time transients of SEI nucleation and growth on CB electrodes. (a) First-cycle galvanostatic discharge of Li | CB cells at 0.1 C in different electrolytes. The magnified inset shows the nucleation overpotential of the WSE. The current–time transients of SEI nucleation and growth on CB electrodes in (b) WSE, (c) WSE+0.2 EC, and (d) WSE+0.5 EC held at different potentials.
图 1.CB 电极上 SEI 成核和生长的电静态电压曲线和瞬时电流。(a) 不同电解质中 0.1 摄氏度下 Li | CB 电池的第一周期静电放电。放大的插图显示了 WSE 的成核过电位。(b) WSE、(c) WSE+0.2 EC 和 (d) WSE+0.5 EC 在不同电位下 CB 电极上 SEI 成核和生长的瞬时电流。

Since the rate of electrocrystallization of new phases is a strong function of overpotential and directly reflected by current transients, potentiostatic technique was employed to probe the kinetics of SEI nucleation and growth (Figure 1b–d). When a Li | CB cell is held below the equilibrium potential of SEI formation, the current first decreases, entering a so-called incubation period preceding the major nucleation and growth. The nature of incubation is the stochastic clustering of minuscule SEI nuclei before overcoming the surface free energy barrier and reaching the size of a critical nucleus. (11) Thereafter, discrete SEI nuclei irreversibly grow larger, coalesce, and passivate the entire electrode surface, generating a unimodal current–time transient. Note that such current peaks only exist in the three WSE systems where nucleation overpotential can be observed under galvanostatic conditions (Figure 1a). In ECDMC cells where the nucleation overpotential is not detected, potentiostatic stepping results in monotonically decreasing current–time transients in which no kinetic parameter can be extracted yet (Figure S5). We believe that this is the reason that many efforts failed to provide a quantitative description of the nucleation and growth mode of SEI.
由于新相的电结晶速率是过电位的强函数,并直接反映在电流瞬态上,因此采用了恒电位技术来探究 SEI 成核和生长的动力学(图 1b-d)。当 Li | CB 电池保持在 SEI 形成的平衡电位以下时,电流会首先减小,进入主要成核和生长之前的所谓 "孵育期"。孵化期的本质是在克服表面自由能障碍并达到临界核大小之前,随机聚集的微小 SEI 核。(11) 此后,离散的 SEI 核不可逆转地变大、凝聚并钝化整个电极表面,产生单模态电流-时间瞬态。需要注意的是,这种电流峰值只存在于三种 WSE 系统中,在这些系统中,电静电条件下可观察到成核过电位(图 1a)。在未检测到成核过电位的 ECDMC 细胞中,恒电位步进会导致单调递减的电流-时间瞬态,在这种情况下还无法提取动力学参数(图 S5)。我们认为,这就是许多研究未能定量描述 SEI 成核和生长模式的原因。
The current–time transients were normalized based on the peak current (Im) and the corresponding time (tm) and compared with four classical nucleation models. First, Scharifker–Hills (SH) models (including 3DI and 3DP) describe planar diffusion-controlled 3D growth of hemispherical nuclei. (20,21) Second, Bewick–Fleischman–Thirsk (BFT) models (including 2DI and 2DP) simulate 2D lateral growth of cylindrical nuclei. (22−25) Mathematical expressions of these models are
根据峰值电流(I m )和相应时间(t m )对电流-时间瞬态进行归一化,并与四种经典成核模型进行比较。首先,Scharifker-Hills(SH)模型(包括 3DI 和 3DP)描述了半球形晶核的平面扩散控制三维生长。(20,21) 其次,Bewick-Fleischman-Thirsk(BFT)模型(包括 2DI 和 2DP)模拟圆柱形晶核的二维横向生长。(22-25)这些模型的数学表达式为
3DI:IIm=(1.9542tmt)0.5[1exp(1.2564tmt)]
(1)
3DP:IIm=(1.2254tmt)0.5[1exp(2.3367tmt)2]
(2)
2DI:IIm=ttmexp{12[1(ttm)2]}
(3)
2DP:IIm=(ttm)2exp{23[1(ttm)3]}
(4)
The nucleation and growth of LiFSI-derived inorganic SEI in WSE follows the mixed 2D/3D growth mode, exhibiting a transition from 3DP to 2DI as the overpotential increases (Figure 2a). To verify such mechanism, in situ electrochemical AFM was performed in a WSE on a HOPG electrode with an atomically flat terrace and well-defined step edges, which serves as a perfect model carbonaceous electrode. An AFM image of HOPG at open circuit potential (OCP) is displayed in Figure 2b, and the topography remains unchanged during the cathodic scan from OCP to 1.00 V (AFM image from cathodic 1.25 to 1.00 V is presented in Figure S6). Dispersive bright nanoparticles (NPs) start to appear at the edge sites of HOPG at 1.00 V (Figure 2c, yellow arrows) and gradually accumulate (Figure 2d), marking the onset of inorganic SEI nucleation. With the potential maintaining at 1.00 V, these isolated NPs are further concatenated into strands of NPs aligning at the step edges, thus protecting the HOPG from Li+–solvent co-intercalation (Figure 2e, yellow dotted box; Figure 2f). The birth of new NPs is progressive to a certain degree because they emerge continuously over time and vary greatly in size. The growth of these NPs is 3D in the initial stage, as the height of a hemisphere nucleus grows from 2.9 ± 0.5 to 6.7 ± 0.5 nm (Figure S7). However, the final height of SEI NPs is limited to 6.4–7.3 nm due to the electron-tunneling barrier upon further polarization from 1.00 to 0.73 V, during which only 2D lateral growth is permitted (Figure S8). These results coincide well with the mixed 2DI/3DP growth mode of LiFSI-derived inorganic SEI deduced from the current–time transients.
LiFSI 衍生的无机 SEI 在 WSE 中的成核和生长遵循 2D/3D 混合生长模式,随着过电势的增加,呈现出从 3DP 到 2DI 的过渡(图 2a)。为了验证这种机制,我们在 WSE 中对 HOPG 电极进行了原位电化学原子力显微镜观察,HOPG 电极具有原子级平坦的台阶和清晰的阶梯边缘,是一个完美的碳质电极模型。图 2b 显示了 HOPG 在开路电位 (OCP) 时的原子力显微镜图像,在从 OCP 到 1.00 V 的阴极扫描过程中,其形貌保持不变(图 S6 显示了从阴极 1.25 V 到 1.00 V 的原子力显微镜图像)。在 1.00 V 时,HOPG 的边缘部位开始出现分散的明亮纳米颗粒(NPs)(图 2c,黄色箭头)并逐渐累积(图 2d),标志着无机 SEI 成核的开始。随着电位维持在 1.00 V,这些孤立的 NP 进一步串联成 NP 链,排列在阶梯边缘,从而保护 HOPG 免受 Li + - 溶剂共渗(图 2e,黄色虚线框;图 2f)。新 NPs 的诞生在一定程度上是渐进的,因为它们会随着时间的推移不断出现,而且大小变化很大。这些 NP 的生长在初始阶段是三维的,半球核的高度从 2.9 ± 0.5 纳米增长到 6.7 ± 0.5 纳米(图 S7)。然而,在从 1.00 V 到 0.73 V 的进一步极化过程中,由于电子隧道障碍,SEI NPs 的最终高度被限制在 6.4-7.3 nm,在此期间只允许二维横向生长(图 S8)。这些结果与从电流-时间瞬态推断出的锂离子无机 SEI 的 2DI/3DP 混合生长模式非常吻合。

Figure 2 图 2

Figure 2. In situ monitoring of the nucleation and growth of a LiFSI-derived inorganic SEI on a HOPG electrode in a WSE. (a) Dimensionless current–time transients at different potentials in comparison with the classical 2D and 3D nucleation models. In situ AFM images of the HOPG electrode at (b) OCP and (c–e) cathodic 1.00 V. All AFM images were scanned from bottom to top. (f) 3D AFM image of (e) after SEI nucleation and growth. The scale bars are 400 nm in (b)–(d) and 600 nm in (e).
图 2.在 WSE 中原位监测 HOPG 电极上的 LiFSI 衍生无机 SEI 的成核和生长。(a) 不同电位下的无量纲电流-时间瞬态与经典二维和三维成核模型的比较。HOPG 电极在 (b) OCP 和 (c-e) 阴极 1.00 V 时的原位 AFM 图像。所有原子力显微镜图像都是从下往上扫描的。 (f) SEI 成核和生长后(e)的三维原子力显微镜图像。(b)-(d) 中的刻度线为 400 nm,(e) 中的刻度线为 600 nm。

In contrast, an EC-derived organic SEI strictly follows the 2DI model regardless of overpotential or concentration of the EC additive (Figures 3a,b). Dynamic evolution of the HOPG/electrolyte interfaces was revealed by in situ electrochemical AFM in the WSE+0.2 EC electrolyte. No discernible change of the HOPG surface is observed across cathodic 1.11–0.82 V compared with OCP (Figure 3c,d). This indicates that the reduction of FSI is suppressed in WSE+0.2 EC in accordance with the galvanostatic and CV results (Figures 1a and S4). This can be ascribed to the preferential adsorption of the Li+–EC complex at the electrode/electrolyte interfaces under the impact of cathodic polarization. (3) The onset of EC reduction occurs at 0.55–0.50 V and is evidenced by the bright lines that instantaneously appear along all step edges (Figure S9). As the potential maintains at 0.50 V, the film-like organic SEI extends across the basal plane of HOPG as the bright lines gradually thicken (Figure 3e–g). Although a few NPs resulting from FSI decomposition nucleate concurrently at the edges, their sparse distribution can hardly contribute to the function of SEI, and such SEI is still considered EC-derived. Unlike the LiFSI-derived NPs, the thickness of an EC-derived SEI remains almost constant (2.0 ± 0.2 nm) as the SEI continues to grow laterally (Figure 3h). The 3D AFM image in Figure 3i demonstrates the SEI wetting the terrace of HOPG and eventually spreading across the whole surface (Figure S10). These nanoscale observations strongly corroborate the 2DI nucleation and growth mode of the EC-derived organic SEI.
相比之下,无论过电位或导电率添加剂的浓度如何,导电率衍生的有机 SEI 都严格遵循 2DI 模型(图 3a,b)。在 WSE+0.2 EC 电解质中,原位电化学原子力显微镜揭示了 HOPG/电解质界面的动态演变。与 OCP 相比,HOPG 表面在阴极 1.11-0.82 V 的电压下没有明显变化(图 3c,d)。这表明,在 WSE+0.2 EC 中,FSI 的降低受到了抑制,这与电静电和 CV 结果一致(图 1a 和 S4)。这可能是由于在阴极极化的影响下,Li + -EC 复合物优先吸附在电极/电解质界面上。(3) 电解质还原开始于 0.55-0.50 V,所有阶跃边缘瞬间出现的亮线证明了这一点(图 S9)。当电位维持在 0.50 V 时,随着亮线逐渐变粗,膜状有机 SEI 延伸至整个 HOPG 基底面(图 3e-g)。虽然 FSI 分解产生的少量 NP 同时在边缘成核,但它们的稀疏分布很难对 SEI 的功能做出贡献,因此这种 SEI 仍被认为是 EC 衍生的。与 LiFSI 衍生的 NPs 不同,EC 衍生的 SEI 的厚度几乎保持不变(2.0 ± 0.2 nm),因为 SEI 继续横向生长(图 3h)。图 3i 中的三维原子力显微镜图像显示 SEI 润湿了 HOPG 的平台,并最终扩散到整个表面(图 S10)。这些纳米级观察结果有力地证实了 EC 衍生有机 SEI 的 2DI 成核和生长模式。

Figure 3 图 3

Figure 3. In situ monitoring of the nucleation and growth of EC-derived organic SEI on HOPG in the WSE+0.2 EC electrolyte. Dimensionless current–time transients at different potentials in (a) WSE+0.2 EC and (b) WSE+0.5 EC in comparison with the classical 2D and 3D nucleation models. In situ AFM images of the HOPG electrode at (c) OCP, (d) 1.11–0.82 V, and (e–g) 0.50 V during a cathodic scan at 1.0 mV s–1. All AFM images were scanned from bottom to top. (h) Height section profiles along the four dotted lines in (d)–(g). (i) 3D AFM image of (g) after SEI nucleation and growth. The scale bars are 400 nm.
图 3.在 WSE+0.2 EC 电解质中原位监测 EC 衍生的有机 SEI 在 HOPG 上的成核和生长情况。在 (a) WSE+0.2 EC 和 (b) WSE+0.5 EC 不同电位下的无量纲电流-时间瞬态与经典二维和三维成核模型的对比。在 1.0 mV s –1 的阴极扫描过程中,HOPG 电极在 (c) OCP、(d) 1.11-0.82 V 和 (e-g) 0.50 V 下的原位 AFM 图像。所有原子力显微镜图像都是从下往上扫描的。 (h) 沿着(d)-(g)中四条虚线的高度剖面图。(i) SEI 成核和生长后(g)的三维 AFM 图像。比例尺为 400 nm。

The nucleation and growth mechanisms of these two representative SEIs are inferred schematically in Figure 4. During the initial nucleation of the LiFSI-derived SEI, inorganic NPs are randomly scattered at the edge of graphite (Figure 4b). The growth of these NPs is a combination of two modes: 3D growth confined by a limited height (≈7 nm), above which electron-tunneling is prohibited, and 2D lateral growth that merges NPs together. In the end, the NPs are stacked into a rough film with strong spatial heterogeneity, loosely attached to the edge of graphite (Figure 4c). The proportion of 2D growth is positively correlated to the overpotential applied, as an ultrahigh overpotential leads to near-perfect 2DI growth (Figure 2a). On the other hand, the early stage nucleation of the EC-derived organic SEI is featured by the instant 1D coverage of step edges by a filamentary structure (Figure 4d). The subsequent SEI growth is mainly contributed by the 2D lateral extension of such structure toward the basal plane of graphite, developing into a smooth film that clings tightly to the electrode surface (Figure 4e). This type of SEI is ultrathin (≈2 nm), dense, and highly uniform, consistent with the excellent film-forming capability of EC, which is now an indispensable component in the electrolyte of nearly all commercial LIBs.
图 4 展示了这两种代表性 SEI 的成核和生长机制。在 LiFSI 衍生 SEI 的初始成核过程中,无机 NPs 随机散布在石墨边缘(图 4b)。这些 NPs 的生长结合了两种模式:三维生长受限于有限的高度(≈7 nm),在此高度之上禁止电子隧道;二维横向生长则将 NPs 合并在一起。最后,NPs 堆叠成具有强烈空间异质性的粗糙薄膜,松散地附着在石墨边缘(图 4c)。二维生长的比例与施加的过电位呈正相关,因为超高过电位会导致近乎完美的二维生长(图 2a)。另一方面,EC 衍生的有机 SEI 早期成核的特点是阶梯边缘瞬间被丝状结构的一维覆盖(图 4d)。随后的 SEI 生长主要由这种结构向石墨基底面的二维横向延伸促成,并发展成紧贴电极表面的光滑薄膜(图 4e)。这种 SEI 超薄(≈2 nm)、致密且高度均匀,与导电瓷的出色成膜能力相一致,而导电瓷目前几乎是所有商用 LIB 电解液中不可或缺的成分。

Figure 4 图 4

Figure 4. Schematics of SEI formation on a HOPG electrode. (a) The pristine HOPG electrode. (b) Initial nucleation and (c) subsequent growth of the LiFSI-derived inorganic SEI. (d) Initial nucleation and (e) subsequent growth of the EC-derived organic SEI.
图 4.在 HOPG 电极上形成 SEI 的示意图。(a) 原始 HOPG 电极。(b) LiFSI 衍生的无机 SEI 的初始成核和 (c) 随后的生长。(d) 源自 EC 的有机 SEI 的初始成核和 (e) 随后生长。

It is generally acknowledged that the formation of an ideal SEI, whose nature is a thin passivating layer, should follow the 2D growth mechanism. The 3D growth mode, even adopted partially, can induce rough or porous structures that undermine the surface uniformity, mechanical stability, and electrode adhesion of SEI. To draw a link between the nucleation and growth mode of SEI and its electrochemical properties, graphite | LiFePO4 (LFP) cells are evaluated in the aforementioned electrolytes (Figure 5). The ultrastable LFP cathode is employed so that the performance of the full cell is mainly determined by the stability of the SEI on the working graphite anode. The WSE cell with the mixed 2D/3D SEI growth mode retains only 58.9% of its initial capacity after 300 cycles at 1.0 C, most likely due to the failure of the nonuniform and brittle SEI. By contrast, the WSE+0.2 EC cell with the perfect 2DI growth mode achieves a capacity retention of 80.6%. These results concur well with our published work (19) in which half-cell configurations were adopted and further indicate that 2D is indeed superior to 3D in terms of SEI growth mode. Previous analysis has pointed out that high overpotential is conducive to the 2D growth of inorganic SEI in WSE; however, standard practice in the LIB industry dictates that a slow charge rate (0.1 C) should be used during cell formation, as is the case for the WSE cell. (26) In light of this, a short period of 4.0 C high-rate pulse charging was added before normal charging of the WSE cell to promote 2D SEI growth, which is denoted as WSE+pulse (Figures S11 and S12). Interestingly, the capacity retention of WSE+pulse after 300 cycles increased from 58.9% to 78.2%, close to that of WSE+0.2 EC (Figure 5). This result is further substantiated by the cycling performance of Li | graphite cells, where larger SEI formation rate correlates to higher Coulombic efficiency (CE) and capacity retention (Figure S13).
一般认为,理想 SEI 的形成应遵循二维生长机制,其本质是一层薄薄的钝化层。即使部分采用三维生长模式,也会诱发粗糙或多孔结构,从而破坏 SEI 的表面均匀性、机械稳定性和电极附着力。为了将 SEI 的成核和生长模式与其电化学特性联系起来,在上述电解质中对石墨 | LiFePO 4 (LFP) 电池进行了评估(图 5)。采用了超稳定 LFP 阴极,因此整个电池的性能主要取决于工作石墨阳极上 SEI 的稳定性。采用 2D/3D SEI 混合生长模式的 WSE 电池在 1.0 C 下循环 300 次后,其初始容量仅保留了 58.9%,这很可能是由于不均匀和脆性 SEI 的失效。相比之下,采用完美 2DI 生长模式的 WSE+0.2 EC 电池的容量保持率达到了 80.6%。这些结果与我们已发表的采用半电池配置的研究成果(19)十分吻合,并进一步表明就 SEI 生长模式而言,二维确实优于三维。先前的分析指出,高过电位有利于无机 SEI 在 WSE 中的二维生长;然而,锂离子电池行业的标准做法规定,在电池形成过程中应使用缓慢的充电速率(0.1 C),WSE 电池就是这种情况。(26)有鉴于此,在对 WSE 电池进行正常充电之前,增加了一个短时间的 4.0 C 高速率脉冲充电,以促进二维 SEI 生长,即 WSE+ 脉冲(图 S11 和 S12)。有趣的是,300 次循环后,WSE+pulse 的容量保持率从 58.9% 提高到 78.2%,接近 WSE+0.2 EC(图 5)。锂离子石墨电池的循环性能进一步证实了这一结果,其中较大的 SEI 形成率与较高的库仑效率(CE)和容量保持率相关(图 S13)。

Figure 5 图 5

Figure 5. Growth regime of SEI dictates graphite | LFP battery performance. (a) Cell capacity and CE during 1.0 C cycling. (b) Voltage profiles of the graphite | LFP cells at the 50th (solid lines) and 300th (dashed lines) cycle. During each cycle, the WSE+pulse cell was first charged by a current pulse of 4.0 C to 3.3 V and held at 3.3 V until the residual current drops below 0.1 C before normal charging and discharging.
图 5.SEI 的生长机制决定了石墨 | LFP 电池的性能。(a) 1.0 C 循环期间的电池容量和 CE。(b) 第 50 次(实线)和第 300 次(虚线)循环时石墨 | LFP 电池的电压曲线。在每个循环中,WSE+脉冲电池首先通过 4.0 C 的电流脉冲充电至 3.3 V,并保持在 3.3 V,直到剩余电流降至 0.1 C 以下,然后再进行正常充放电。

The present findings reveal two crucial aspects for regulating interface properties in future LIBs. (1) Electrolyte design. In WSE+0.2 EC, the reduction of EC overpowers the reduction of FSI anion even though the former occurs at a slightly lower potential than the latter. This is possibly due to the 2DI growth mode of EC-derived SEI that propagates rapidly across the electrode surface. Therefore, to maximize the effect of salt-type electrolyte additives, their reduction potential needs to be considerably higher than that of organic additives. (2) Formation protocols. For cells with salt-type inorganic film formers, large current pulses may be employed during cell formation to facilitate 2D SEI growth, thus improving the interphase quality.
本研究结果揭示了调节未来锂离子电池界面特性的两个关键方面。(1) 电解质设计。在 WSE+0.2 EC 中,EC 的还原超过了 FSI 阴离子的还原,即使前者发生在比后者稍低的电位。这可能是 EC 衍生的 SEI 的 2DI 生长模式在电极表面快速传播所致。因此,要最大限度地发挥盐类电解质添加剂的作用,其还原电位必须大大高于有机添加剂。(2) 形成规程。对于使用盐类无机成膜剂的电池,可在电池形成过程中使用大电流脉冲,以促进二维 SEI 生长,从而提高相间质量。

Conclusions 结论

ARTICLE SECTIONS
Jump To
 条款章节跳转到

We quantify the nucleation and growth mode of two representative SEIs based on model-dependent analysis of chronoamperometry curves and in situ electrochemical AFM imaging. The LiFSI-derived inorganic SEI follows a mixed 2DI/3DP growth mode, with the proportion of the 2DI mode positively correlated to electrode overpotential. The EC-derived organic SEI follows the 2DI regime regardless of overpotential, enabling perfect epitaxial passivation of the electrode surface. We further demonstrate the feasibility of using large current pulses during Li-ion cell formation to promote 2D growth of the inorganic SEI and boost capacity retention, despite the general belief that small current is more beneficial for SEI uniformity. These findings reveal the formation mechanisms of nanoscale interphases on an unprecedented level of detail and open up broad prospects for fine-tuning interface properties in future electrochemical devices.
我们根据对时变曲线和原位电化学原子力显微镜成像的模型分析,量化了两种代表性 SEI 的成核和生长模式。LiFSI 衍生的无机 SEI 遵循 2DI/3DP 混合生长模式,其中 2DI 模式的比例与电极过电位呈正相关。无论过电位如何,EC 衍生的有机 SEI 都遵循 2DI 模式,从而实现了电极表面的完美外延钝化。我们进一步证明了在锂离子电池形成过程中使用大电流脉冲促进无机 SEI 的二维生长和提高容量保持率的可行性,尽管人们普遍认为小电流更有利于 SEI 的均匀性。这些发现以前所未有的详细程度揭示了纳米级相间的形成机制,为微调未来电化学设备的界面特性开辟了广阔的前景。

Supporting Information 辅助信息

ARTICLE SECTIONS
Jump To
 条款章节跳转到

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c13878.
辅助信息可从 https://pubs.acs.org/doi/10.1021/jacs.2c13878 免费获取。

  • Experimental section, including electrolytes and electrode materials, in situ electrochemical AFM characterization, electrochemical measurements, and ex situ material characterizations; Supplementary Figures 1–13 (PDF)
    实验部分,包括电解质和电极材料、原位电化学 AFM 表征、电化学测量和原位材料表征;补充图 1-13 ( PDF)

Nucleation and Growth Mode of Solid Electrolyte Interphase in Li-Ion Batteries

15 views

0 shares

0 downloads

SI1
Supporting Information for
证明资料
Nucleation and Growth Mode of So
So 的成核和生长模式
lid Electrolyte Interphase in L
电解质在 L
i-
Ion Batteries  离子电池
Yu-Xing Yao 姚宇星
1, ‡
, Jing Wan , 荆万
3, ‡
, Ning-Yan Liang 梁宁妍
1
, Chong Yan
2,
*, Rui Wen
3,
*, and  *,以及
Qiang Zhang 张强
1,
*
1
Beijing Key Laboratory of Green C
绿色化学北京市重点实验室
hemical Reaction Engineering a
化学反应工程 a
nd Technology,  技术、
Department of Chemical Engineering, Tsinghua University, Beijin
清华大学化学工程系,北京
g 100084, China.  g 100084,中国。
2
Advanced Research Institute of Multidisciplinary Science, Beiji
北碚多学科高等研究院
ng Institute of  研究所
Technology, Beijing 100081, China.
中国北京,100081。
3
Key Laboratory of Molecular Na
nostructure and Nanotechnology, B
eijing National
Laboratory for Molecular Sciences
, CAS Research/Education Cente
r for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy
of Sciences, Beijing
100190, China.
These authors contributed equally.
*E-mail: yanc@bit.edu.cn, ruiwen@iccas.ac.cn, zhang-qiang@mails
.tsinghua.edu.cn
SI2
I. Experimental Section
Electrolytes and electrode materials.
Battery-grade ethylene carbonate (EC),
dimethyl carbonate (DMC), lithium hexafluorophosphate (LiPF
6
), and lithium
bis(fluorosulfonyl)imide (LiFSI) were all commercially availabl
e from Duoduo Chem
Co., Ltd. 1,4-dioxane (1,4-DX, 99.8%) was purchased from Innoch
em (Beijing)
Technology Co., Ltd. Mesocarbon microbeads (MCMB, Hefei Kejing
Materials
Technology Co., Ltd., 99.96%) and carbon black (CB, Alfa Aesar,
99.9%) served as
working electrodes and Li foil (China Energy Lithium Co., Ltd.,
99.95%) served as
counter electrodes. Electrolytes were prepared using an electro
nic balance and pipette
in an argon-filled glove box with water and oxygen content both
below 0.1 ppm.
The CB electrode was prepared
by mixing CB and polyvinylidene d
ifluoride (PVDF,
Sigma-Aldrich) at a mass ratio of
9:1 in N-methyl-2-pyrrolidone
(NMP, Aldrich, 99.9%)
to form a homogeneous slurry and casting onto a Cu foil, before
drying at 80°C for 12
h. The active material loading of
the CB electrode is 1.0 mg cm
−2
. The MCMB electrode
consists of MCMB, CB, and PVDF at a mass ratio of 8:1:1 and was
prepared by coating
the NMP-based electrode slurry onto a Cu foil and drying at 80°C
for 12 h. The active
material loading of the MCMB electrode is 1.4 mg cm
−2
. These electrodes were
punched into Φ13 disks before use.
Commercial graphite and LiFePO
4
(LFP) electrodes for assembling full cells were
purchased from Guangdong Canrd
New Energy Technology Co., Ltd.
The graphite
electrode contains 95.7 wt.% activ
e material and has an areal l
oading of 5.8 mg cm
−2
.
The LFP electrode contains 91.5 wt
.% active material and has an
areal loading of 11.5
mg cm
−2
. To maximize the available capacity from the cathode and preve
nt Li plating
due to electrode misalignment, the LFP cathode (Φ13) was made s
lightly smaller than
the graphite anode (Φ15).
In situ
electrochemical AFM characterization.
Highly oriented pyrolytic graphite
(HOPG) served as the working el
ectrode. Li wires were employed
as the counter and
reference electrode. The above ele
ctrodes were assembled in a h
ome-made

Terms & Conditions  条款和条件

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子版辅助信息文件无需订阅 ACS Web Editions 即可获得。此类文件可按文章下载,供研究使用(如果相关文章链接了公共使用许可,则该许可可能允许其他用途)。如需其他用途,可通过 RightsLink 许可系统向 ACS 申请许可:http://pubs.acs.org/page/copyright/permissions.html。

Author Information 作者信息

ARTICLE SECTIONS
Jump To
 条款章节跳转到

  • Corresponding Authors 通讯作者
    • Chong Yan - Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, ChinaOrcidhttps://orcid.org/0000-0001-9521-4981 Email: yanc@bit.edu.cn
      庄严 - 北京理工大学多学科科学高等研究院,中国北京 100081; Orcid https://orcid.org/0000-0001-9521-4981;电子邮件:yanc@bit.edu.cn
    • Rui Wen - Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, ChinaOrcidhttps://orcid.org/0000-0003-2644-7452 Email: ruiwen@iccas.ac.cn
      Rui Wen - 分子纳米结构与纳米技术重点实验室、北京分子科学国家实验室、中科院卓越分子科学研究/教育中心、中国科学院化学研究所,北京 100190; Orcid https://orcid.org/0000-0003-2644-7452;电子邮件:ruiwen@iccas.ac.cn
    • Qiang Zhang - Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, ChinaOrcidhttps://orcid.org/0000-0002-3929-1541 Email: zhang-qiang@mails.tsinghua.edu.cn
      Qiang Zhang - 清华大学化工系绿色化学反应工程与技术北京市重点实验室,北京 100084; Orcid https://orcid.org/0000-0002-3929-1541;Email: zhang-qiang@mails.tsinghua.edu.cn
  • Authors 作者
    • Yu-Xing Yao - Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, ChinaOrcidhttps://orcid.org/0000-0001-6350-1206
      Yu-Xing Yao - 清华大学化工系绿色化学反应工程与技术北京市重点实验室,北京 100084; Orcid https://orcid.org/0000-0001-6350-1206
    • Jing Wan - Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
      Jing Wan - 分子纳米结构与纳米技术重点实验室、北京分子科学国家实验室、中科院分子科学卓越研究/教育中心、中国科学院化学研究所,中国北京 100190
    • Ning-Yan Liang - Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
      梁宁燕 - 清华大学化工系绿色化学反应工程与技术北京市重点实验室,北京 100084
  • Author Contributions 作者供稿

    Y.-X.Y. and J.W. contributed equally.
    Y.-X.Y. 和 J.W. 的贡献相同。

  • Notes 说明
    The authors declare no competing financial interest.
    作者声明不存在任何经济利益冲突。

Acknowledgments 致谢

ARTICLE SECTIONS
Jump To
 条款章节跳转到

This work was supported by the National Key Research and Development Program (2021YFB2500300), the National Natural Science Foundation of China (22109083, 22005172, and 21825501), Key Research and Development Program of Yunnan Province (202103AA080019), and Tsinghua University Initiative Scientific Research Program.
这项工作得到了国家重点研发计划(2021YFB2500300)、国家自然科学基金(22109083、22005172 和 21825501)、云南省重点研发计划(202103AA080019)和清华大学主动科学研究计划的支持。

This article references 26 other publications.
这篇文章引用了 26 篇其他出版物。

  1. 1
    Liang, Y.; Yao, Y. Designing Modern Aqueous Batteries. Nat. Rev. Mater. 2023, 8, 109122,  DOI: 10.1038/s41578-022-00511-3

    1Liang, Y.; Yao, Y. Designing Modern Aqueous Batteries.Nat.Rev. Mater.2023, 8, 109- 122, DOI: 10.1038/s41578-022-00511-3
  2. 2
    Yao, Y. X.; Yan, C.; Zhang, Q. Emerging Interfacial Chemistry of Graphite Anodes in Lithium-Ion Batteries. Chem. Commun. 2020, 56, 1457014584,  DOI: 10.1039/D0CC05084A

    2Yao,Y. X.;Yan,C.;Zhang,Q.锂离子电池中石墨阳极的新兴界面化学。Chem.Chem.2020, 56, 14570- 14584, doi: 10.1039/d0cc05084a
  3. 3
    Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114, 1150311618,  DOI: 10.1021/cr500003w

    3Xu, K.锂离子电池中的电解质和相间物及其他。Chem.Rev. 2014, 114, 11503- 11618, DOI: 10.1021/cr500003w
  4. 4
    Peled, E.; Menkin, S. Review─SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164, A1703A1719,  DOI: 10.1149/2.1441707jes

    4Peled, E.; Menkin, S. Review─SEI:过去、现在和未来。J. Electrochem.Soc. 2017, 164, A1703- A1719, DOI: 10.1149/2.1441707jes
  5. 5
    Han, B.; Zou, Y.; Xu, G.; Hu, S.; Kang, Y.; Qian, Y.; Wu, J.; Ma, X.; Yao, J.; Li, T.; Zhang, Z.; Meng, H.; Wang, H.; Deng, Y.; Li, J.; Gu, M. Additive Stabilization of SEI on Graphite Observed Using Cryo-Electron Microscopy. Energy Environ. Sci. 2021, 14, 48824889,  DOI: 10.1039/D1EE01678D

    5Han, B.; Zou, Y.; Xu, G.; Hu, S.; Kang, Y.; Qian, Y.; Wu, J.; Ma, X.; Yao, J.; Li, T.; Zhang, Z.; Meng, H.; Wang, H.; Deng, Y.; Li, J.; Gu, M..Additive Stabilization of SEI on Graphite Observed Using Cryo-Electron Microscopy.Energy Environ.2021, 14, 4882- 4889, DOI: 10.1039/D1EE01678D
  6. 6
    Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4, 743770,  DOI: 10.1016/j.joule.2020.02.010
  7. 7
    Wang, L.; Menakath, A.; Han, F.; Wang, Y.; Zavalij, P. Y.; Gaskell, K. J.; Borodin, O.; Iuga, D.; Brown, S. P.; Wang, C.; Xu, K.; Eichhorn, B. W. Identifying the Components of the Solid-Electrolyte Interphase in Li-Ion Batteries. Nat. Chem. 2019, 11, 789796,  DOI: 10.1038/s41557-019-0304-z
  8. 8
    Zhou, Y.; Su, M.; Yu, X.; Zhang, Y.; Wang, J. G.; Ren, X.; Cao, R.; Xu, W.; Baer, D. R.; Du, Y.; Borodin, O.; Wang, Y.; Wang, X. L.; Xu, K.; Xu, Z.; Wang, C.; Zhu, Z. Real-Time Mass Spectrometric Characterization of the Solid-Electrolyte Interphase of a Lithium-Ion Battery. Nat. Nanotechnol. 2020, 15, 224230,  DOI: 10.1038/s41565-019-0618-4
  9. 9
    Jorn, R.; Raguette, L.; Peart, S. Investigating the Mechanism of Lithium Transport at Solid Electrolyte Interphases. J. Phys. Chem. C 2020, 124, 1626116270,  DOI: 10.1021/acs.jpcc.0c03018
  10. 10
    Yan, C.; Jiang, L. L.; Yao, Y. X.; Lu, Y.; Huang, J. Q.; Zhang, Q. Nucleation and Growth Mechanism of Anion-Derived Solid Electrolyte Interphase in Rechargeable Batteries. Angew. Chem., Int. Ed. 2021, 60, 85218525,  DOI: 10.1002/anie.202100494
  11. 11
    Scharifker, B. R.; Mostany, J. Nucleation and Growth of New Phases on Electrode Surfaces. In Developments in Electrochemistry: Science Inspired by Martin Fleischmann; John Wiley & Sons, 2014; pp 6575. DOI: 10.1002/9781118694404.ch4 .
  12. 12
    Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett. 2017, 17, 11321139,  DOI: 10.1021/acs.nanolett.6b04755
  13. 13
    Biswal, P.; Stalin, S.; Kludze, A.; Choudhury, S.; Archer, L. A. Nucleation and Early Stage Growth of Li Electrodeposits. Nano Lett. 2019, 19, 81918200,  DOI: 10.1021/acs.nanolett.9b03548
  14. 14
    Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and Kinetics of Li2S Precipitation in Lithium-Sulfur Batteries. Adv. Mater. 2015, 27, 52035209,  DOI: 10.1002/adma.201501559
  15. 15
    Li, Z.; Zhou, Y.; Wang, Y.; Lu, Y.-C. Solvent-Mediated Li2S Electrodeposition: A Critical Manipulator in Lithium-Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1802207,  DOI: 10.1002/aenm.201802207
  16. 16
    Avrami, M. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 1939, 7, 11031112,  DOI: 10.1063/1.1750380
  17. 17
    Antonopoulos, B. K.; Maglia, F.; Schmidt-Stein, F.; Schmidt, J. P.; Hoster, H. E. Formation of the Solid Electrolyte Interphase at Constant Potentials: A Model Study on Highly Oriented Pyrolytic Graphite. Batteries Supercaps 2018, 1, 110121,  DOI: 10.1002/batt.201800029
  18. 18
    Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166, E97-E106  DOI: 10.1149/2.0231904jes
  19. 19
    Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Regulating Interfacial Chemistry in Lithium-Ion Batteries by a Weakly Solvating Electrolyte. Angew. Chem., Int. Ed. 2021, 60, 40904097,  DOI: 10.1002/anie.202011482
  20. 20
    Scharifker, B.; Hills, G. Theoretical and Experimental Studies of Multiple Nucleation. Electrochim. Acta 1983, 28, 879889,  DOI: 10.1016/0013-4686(83)85163-9
  21. 21
    Hyde, M. E.; Compton, R. G. A Review of the Analysis of Multiple Nucleation with Diffusion Controlled Growth. J. Electroanal. Chem. 2003, 549, 112,  DOI: 10.1016/S0022-0728(03)00250-X
  22. 22
    Bewick, A.; Fleischmann, M.; Thirsk, H. R. Kinetics of the Electrocrystallization of Thin Films of Calomel. Trans. Faraday Soc. 1962, 58, 22002216,  DOI: 10.1039/tf9625802200
  23. 23
    Fleischmann, M.; Thirsk, H. R. The Growth of Thin Passivating Layers on Metallic Surfaces. J. Electrochem. Soc. 1963, 110, 688,  DOI: 10.1149/1.2425851
  24. 24
    Fleischmann, M.; Thirsk, H. R. Electrochemical Kinetics of Formation of Monolayers of Solid Phases. Electrochim. Acta 1964, 9, 757771,  DOI: 10.1016/0013-4686(64)80063-3
  25. 25
    Milchev, A.; Krastev, I. Two-Dimensional Progressive and Instantaneous Nucleation with Overlap: The Case of Multi-Step Electrochemical Reactions. Electrochim. Acta 2011, 56, 23992403,  DOI: 10.1016/j.electacta.2010.11.025
  26. 26
    Zhu, T.; Hu, Q.; Yan, G.; Wang, J.; Wang, Z.; Guo, H.; Li, X.; Peng, W. Manipulating the Composition and Structure of Solid Electrolyte Interphase at Graphite Anode by Adjusting the Formation Condition. Energy Technol. 2019, 7, 1900273,  DOI: 10.1002/ente.201900273

Cited By

ARTICLE SECTIONS
Jump To
Citation Statements
  • Supporting
    Supporting1
  • Mentioning
    Mentioning4
  • Contrasting
    Contrasting0
Explore this article's citation statements on scite.ai

This article is cited by 4 publications.

  1. Keqi Qu, Xuejun Lu, Na Jiang, Jiankun Wang, Zui Tao, Guanjie He, Qi Yang, Jieshan Qiu. Eutectic Electrolytes Convoying Low-Temperature Metal-Ion Batteries. ACS Energy Letters 2024, 9 (3) , 1192-1209. https://doi.org/10.1021/acsenergylett.4c00113
  2. Zhenpu Shi, Juhong Xu, Yujiao Wang, Yudong Pang, Wanli Zhao, Hongyun Yue, Zongxian Yang, Shu-Ting Yang, Yanhong Yin. Highly Catalytic CoP@N, P-Codoped Porous Carbon Synthesized by a Supramolecular Gel and Salt Template Method for Li–S Batteries. ACS Sustainable Chemistry & Engineering 2023, 11 (45) , 16267-16278. https://doi.org/10.1021/acssuschemeng.3c04714
  3. Solomon T. Oyakhire, Sheng-Lun Liao, Sanzeeda Baig Shuchi, Mun Sek Kim, Sang Cheol Kim, Zhiao Yu, Rafael A. Vilá, Paul E. Rudnicki, Yi Cui, Stacey F. Bent. Proximity Matters: Interfacial Solvation Dictates Solid Electrolyte Interphase Composition. Nano Letters 2023, 23 (16) , 7524-7531. https://doi.org/10.1021/acs.nanolett.3c02037
  4. Baoxu Peng, Bingbing Li, Aimin Ge, Chengyang Xu, Ken-ichi Inoue, Shen Ye. Role of Oxygen in the Formation of the Solid-Electrolyte Interphase Evaluated by Online Electrochemical Mass Spectrometry and Electrochemical Atomic Force Microscopy. The Journal of Physical Chemistry C 2023, 127 (26) , 12528-12540. https://doi.org/10.1021/acs.jpcc.3c02726
  • Abstract

    Figure 1

    Figure 1. Galvanostatic voltage curves and current–time transients of SEI nucleation and growth on CB electrodes. (a) First-cycle galvanostatic discharge of Li | CB cells at 0.1 C in different electrolytes. The magnified inset shows the nucleation overpotential of the WSE. The current–time transients of SEI nucleation and growth on CB electrodes in (b) WSE, (c) WSE+0.2 EC, and (d) WSE+0.5 EC held at different potentials.

    Figure 2

    Figure 2. In situ monitoring of the nucleation and growth of a LiFSI-derived inorganic SEI on a HOPG electrode in a WSE. (a) Dimensionless current–time transients at different potentials in comparison with the classical 2D and 3D nucleation models. In situ AFM images of the HOPG electrode at (b) OCP and (c–e) cathodic 1.00 V. All AFM images were scanned from bottom to top. (f) 3D AFM image of (e) after SEI nucleation and growth. The scale bars are 400 nm in (b)–(d) and 600 nm in (e).

    Figure 3

    Figure 3. In situ monitoring of the nucleation and growth of EC-derived organic SEI on HOPG in the WSE+0.2 EC electrolyte. Dimensionless current–time transients at different potentials in (a) WSE+0.2 EC and (b) WSE+0.5 EC in comparison with the classical 2D and 3D nucleation models. In situ AFM images of the HOPG electrode at (c) OCP, (d) 1.11–0.82 V, and (e–g) 0.50 V during a cathodic scan at 1.0 mV s–1. All AFM images were scanned from bottom to top. (h) Height section profiles along the four dotted lines in (d)–(g). (i) 3D AFM image of (g) after SEI nucleation and growth. The scale bars are 400 nm.

    Figure 4

    Figure 4. Schematics of SEI formation on a HOPG electrode. (a) The pristine HOPG electrode. (b) Initial nucleation and (c) subsequent growth of the LiFSI-derived inorganic SEI. (d) Initial nucleation and (e) subsequent growth of the EC-derived organic SEI.

    Figure 5

    Figure 5. Growth regime of SEI dictates graphite | LFP battery performance. (a) Cell capacity and CE during 1.0 C cycling. (b) Voltage profiles of the graphite | LFP cells at the 50th (solid lines) and 300th (dashed lines) cycle. During each cycle, the WSE+pulse cell was first charged by a current pulse of 4.0 C to 3.3 V and held at 3.3 V until the residual current drops below 0.1 C before normal charging and discharging.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 26 other publications.

    1. 1
      Liang, Y.; Yao, Y. Designing Modern Aqueous Batteries. Nat. Rev. Mater. 2023, 8, 109122,  DOI: 10.1038/s41578-022-00511-3
    2. 2
      Yao, Y. X.; Yan, C.; Zhang, Q. Emerging Interfacial Chemistry of Graphite Anodes in Lithium-Ion Batteries. Chem. Commun. 2020, 56, 1457014584,  DOI: 10.1039/D0CC05084A
    3. 3
      Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114, 1150311618,  DOI: 10.1021/cr500003w
    4. 4
      Peled, E.; Menkin, S. Review─SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164, A1703A1719,  DOI: 10.1149/2.1441707jes
    5. 5
      Han, B.; Zou, Y.; Xu, G.; Hu, S.; Kang, Y.; Qian, Y.; Wu, J.; Ma, X.; Yao, J.; Li, T.; Zhang, Z.; Meng, H.; Wang, H.; Deng, Y.; Li, J.; Gu, M. Additive Stabilization of SEI on Graphite Observed Using Cryo-Electron Microscopy. Energy Environ. Sci. 2021, 14, 48824889,  DOI: 10.1039/D1EE01678D
    6. 6
      Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4, 743770,  DOI: 10.1016/j.joule.2020.02.010
    7. 7
      Wang, L.; Menakath, A.; Han, F.; Wang, Y.; Zavalij, P. Y.; Gaskell, K. J.; Borodin, O.; Iuga, D.; Brown, S. P.; Wang, C.; Xu, K.; Eichhorn, B. W. Identifying the Components of the Solid-Electrolyte Interphase in Li-Ion Batteries. Nat. Chem. 2019, 11, 789796,  DOI: 10.1038/s41557-019-0304-z
    8. 8
      Zhou, Y.; Su, M.; Yu, X.; Zhang, Y.; Wang, J. G.; Ren, X.; Cao, R.; Xu, W.; Baer, D. R.; Du, Y.; Borodin, O.; Wang, Y.; Wang, X. L.; Xu, K.; Xu, Z.; Wang, C.; Zhu, Z. Real-Time Mass Spectrometric Characterization of the Solid-Electrolyte Interphase of a Lithium-Ion Battery. Nat. Nanotechnol. 2020, 15, 224230,  DOI: 10.1038/s41565-019-0618-4
    9. 9
      Jorn, R.; Raguette, L.; Peart, S. Investigating the Mechanism of Lithium Transport at Solid Electrolyte Interphases. J. Phys. Chem. C 2020, 124, 1626116270,  DOI: 10.1021/acs.jpcc.0c03018
    10. 10
      Yan, C.; Jiang, L. L.; Yao, Y. X.; Lu, Y.; Huang, J. Q.; Zhang, Q. Nucleation and Growth Mechanism of Anion-Derived Solid Electrolyte Interphase in Rechargeable Batteries. Angew. Chem., Int. Ed. 2021, 60, 85218525,  DOI: 10.1002/anie.202100494
    11. 11
      Scharifker, B. R.; Mostany, J. Nucleation and Growth of New Phases on Electrode Surfaces. In Developments in Electrochemistry: Science Inspired by Martin Fleischmann; John Wiley & Sons, 2014; pp 6575. DOI: 10.1002/9781118694404.ch4 .
    12. 12
      Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett. 2017, 17, 11321139,  DOI: 10.1021/acs.nanolett.6b04755
    13. 13
      Biswal, P.; Stalin, S.; Kludze, A.; Choudhury, S.; Archer, L. A. Nucleation and Early Stage Growth of Li Electrodeposits. Nano Lett. 2019, 19, 81918200,  DOI: 10.1021/acs.nanolett.9b03548
    14. 14
      Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and Kinetics of Li2S Precipitation in Lithium-Sulfur Batteries. Adv. Mater. 2015, 27, 52035209,  DOI: 10.1002/adma.201501559
    15. 15
      Li, Z.; Zhou, Y.; Wang, Y.; Lu, Y.-C. Solvent-Mediated Li2S Electrodeposition: A Critical Manipulator in Lithium-Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1802207,  DOI: 10.1002/aenm.201802207
    16. 16
      Avrami, M. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 1939, 7, 11031112,  DOI: 10.1063/1.1750380
    17. 17
      Antonopoulos, B. K.; Maglia, F.; Schmidt-Stein, F.; Schmidt, J. P.; Hoster, H. E. Formation of the Solid Electrolyte Interphase at Constant Potentials: A Model Study on Highly Oriented Pyrolytic Graphite. Batteries Supercaps 2018, 1, 110121,  DOI: 10.1002/batt.201800029
    18. 18
      Attia, P. M.; Das, S.; Harris, S. J.; Bazant, M. Z.; Chueh, W. C. Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. J. Electrochem. Soc. 2019, 166, E97-E106  DOI: 10.1149/2.0231904jes
    19. 19
      Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Regulating Interfacial Chemistry in Lithium-Ion Batteries by a Weakly Solvating Electrolyte. Angew. Chem., Int. Ed. 2021, 60, 40904097,  DOI: 10.1002/anie.202011482
    20. 20
      Scharifker, B.; Hills, G. Theoretical and Experimental Studies of Multiple Nucleation. Electrochim. Acta 1983, 28, 879889,  DOI: 10.1016/0013-4686(83)85163-9
    21. 21
      Hyde, M. E.; Compton, R. G. A Review of the Analysis of Multiple Nucleation with Diffusion Controlled Growth. J. Electroanal. Chem. 2003, 549, 112,  DOI: 10.1016/S0022-0728(03)00250-X
    22. 22
      Bewick, A.; Fleischmann, M.; Thirsk, H. R. Kinetics of the Electrocrystallization of Thin Films of Calomel. Trans. Faraday Soc. 1962, 58, 22002216,  DOI: 10.1039/tf9625802200
    23. 23
      Fleischmann, M.; Thirsk, H. R. The Growth of Thin Passivating Layers on Metallic Surfaces. J. Electrochem. Soc. 1963, 110, 688,  DOI: 10.1149/1.2425851
    24. 24
      Fleischmann, M.; Thirsk, H. R. Electrochemical Kinetics of Formation of Monolayers of Solid Phases. Electrochim. Acta 1964, 9, 757771,  DOI: 10.1016/0013-4686(64)80063-3
    25. 25
      Milchev, A.; Krastev, I. Two-Dimensional Progressive and Instantaneous Nucleation with Overlap: The Case of Multi-Step Electrochemical Reactions. Electrochim. Acta 2011, 56, 23992403,  DOI: 10.1016/j.electacta.2010.11.025
    26. 26
      Zhu, T.; Hu, Q.; Yan, G.; Wang, J.; Wang, Z.; Guo, H.; Li, X.; Peng, W. Manipulating the Composition and Structure of Solid Electrolyte Interphase at Graphite Anode by Adjusting the Formation Condition. Energy Technol. 2019, 7, 1900273,  DOI: 10.1002/ente.201900273
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c13878.

    • Experimental section, including electrolytes and electrode materials, in situ electrochemical AFM characterization, electrochemical measurements, and ex situ material characterizations; Supplementary Figures 1–13 (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect