10 World Mathematics Team Championship 2019
Junior Level Individual Round 1
How many two-digit positive integers have at least one ' 5 ' as a digit?
(A) 17
(B) 18
(C) 19
(D) 20
(E) 21
Answer : (B) 18
Suppose we can only use the digits .
The following figure is folded to make a cube. Which letter is opposite to ' M ' on the cube?
G
O
W
M
T
C
(A) G
(B) O
(C) W
(D) T
(E) C
Answer : (B)
W, G, T, and C end up adjacent to M.
. Find the value of .
(A) 15
(B) 20
(C) 25
(D) 30
(E) 35
Answer : (B) 20
.
So, is also multiplied by 4 then the answer is .
10 World Mathematics Team Championship 2019
Junior Level Individual Round 1
All sides of the building shown at below meet at right angles. If four of the sides measure 1 meter, 3 meters, 9 meters, and 17 meters as shown, then what is the perimeter of the building in meters? 建筑物下方显示的所有边都相互垂直。如果四条边的长度分别为 1 米、3 米、9 米和 17 米,那么建筑物的周长是多少米?
Answer : 3681
\(9 \times 9=81,99 \times 9=891,999 \times 9=8991, \ldots\).
So the sum of the digits of \(9 N=8999 \cdots 991\) with \(T-1\) of 9's is
\(9(T-1)+8+1=3681\)
2019 年世界数学团体锦标赛青少年接力赛第三轮
R3-A型。你写了从 1 到 2019 的所有数字。有多少个“9”加在一起?
答案 : 602
# 9 的单位数字 : 202
# 9 的十位数字:200
# 9 的百位数字:200
R3-B型。T = TNYWR(您将收到的数字)。
求 0 到 2 之间分母为 T 的分数之和。
答案:1203 总和是
2019 年世界数学团体锦标赛青少年团体赛
指导:本轮有 14 个问题(40 分钟)。
每个问题值 5 分。
提交错误答案不予扣分。
如果等腰三角形的两条边的长度是 7 和 14 ,那么这个三角形的周长是多少?
答案 : 35
由于三角形不等式,边长没有意义。
正整数的数量是多少这样等于其不同正除数的数量,包括 1 和?
答案 : 2
对于质因数分解,不同正除数的数目等于
但对于任何质数和一个正整数除了和.因此,唯一可能的值为(无主要因素)和.
整数对的数是多少满足
答案 : 8
通过平移对称性,计算整数解的数量就足够了
By casework, one can easily check that the only possible solutions to this is , i.e. there are 8 of them.
From the figure shown, three of the ten squares are to be selected. Each of the three selected squares must share a side with at least one of the other two selected squares. In how many ways can this be done? 从所示的图中,将选择十个正方形中的三个。必须选择的三个正方形中的每一个必须与另外两个选择的正方形中的至少一个共享一条边。这可以以多少种方式完成?
World Mathematics Team Championship 2019
Junior Level Team Round
Answer : 23
First we recognize that given the conditions for the three selected squares, there are only 6 possible shapes that may be chosen. These are shown below.
To determine the number of ways that three squares can be selected, we count the number of ways in which each of these 6 shapes can be chosen from the given figure. 为确定选择三个正方形的方式数量,我们计算这 6 个形状中每个形状可以从给定图形中选择的方式数。
Shape
Thus, the total ways are .
The answer of Problem #4.
One half of the water is poured out of a full container. Then one third of the remainder is poured out. Continue the process: one fourth of the remainder for the third pouring, one fifth of the remainder for the fourth pouring, etc. After how many pouring, does exactly of the original water remain? 将满容器中的一半水倒出。然后倒出剩下的三分之一。继续这个过程:第三次倒出四分之一的剩余量,第四次倒出五分之一的剩余量,等等。经过多少次倒出后,原始水量中恰好剩下 ?
Answer : 22
After the first pour remains, after the second remains, etc.
This becomes the product .
World Mathematics Team Championship 2019
Junior Level Team Round
Note that the terms cancel out leaving .
Now all that remains is to count the number of terms, as the numerators form an arithmetic sequence with a common difference of 1 and endpoints ( 1,22 ), the number of pouring is 22 . 现在剩下的就是计算项数,因为分子形成一个公差为 1 的等差数列,端点为(1,22),倒数的数量为 22。
A certain positive integer has exactly eight divisors including 1 and itself. Two of its divisors are 35 and 77 . What is the integer?
Answer : 385
and by prime factorization. The least common multiple of 35 and 77 is . We can make sure that 385 has 8 divisors; .
7. The answer of Problem #6.
The perimeter of the rectangle left below is . It is subdivided into six identical rectangle as shown
Find the perimeter of a smaller rectangle.
Answer : 330
Suppose that are row and column of the smaller rectangle, respectively.
The perimeter of a smaller rectangle is
In the six-digit number , each letter represents a digit.
Given that , the value of is
Answer : 2
The units digit of the product is 1 , and so the units digit of must be equal to 1 . Therefore, the only possible value of is 7 .
World Mathematics Team Championship 2019
Junior Level Team Round
Substituting , we get
1ABCD7
Since is carried to the tens column. Thus, the units digit of is 7 , and so the units digit of is 5 . Therefore, the only possible value of is 5 .
Substituting , we get
1 ABC 57
Since is carried to the hundreds column. Thus, the units digit of is 5 and so the units digit of is 4 . Therefore, the only possible value of is 8 .
Substituting , we get
1AB857
Since is carried to the thousands column. Thus, the units digit of is 8 and so the units digit of is 6 . Therefore, the only possible value of is 2 .
Substituting , we get
1A2857
Since , there is no carry to the ten thousands column. Thus, the units digit of is 2 . Therefore, the only possible value of is 4 .
Substituting , we get
142857
Checking, we see that the product is correct,
.
World Mathematics Team Championship 2019
Junior Level Team Round
9. The answer of Problem #8.
There are two classes. In one class, the ratio of the number of boys to the number of girls is 3:4. In the other, this ratio is 2:3. If there are boys in total, find the least possible number of girls. 有两个班。在一个班里,男生人数与女生人数的比例为 3:4。在另一个班里,这个比例为 2:3。如果总共有 个男生,请找出女生人数的最小可能值。
Answer : 27
The following tables give the possible numbers of student in each class. The corresponding numbers of girls are 29,28 , and 27 . The least number of girl that he could have is 27 . 以下表格显示每个班级可能的学生人数。女孩的对应人数为 29、28 和 27。他可能拥有的女孩最少人数为 27。
类
一个
B
总
男孩
6
14
20
女孩
8
21
29
类
一个
B
总
男孩
12
8
20
女孩
16
12
28
类
一个
B
总
男孩
18
2
20
女孩
24
3
27
有一个八位数字.该数可以被 7 整除,并且和是质数。多少对和存在?可以具有相同的数字值。
答案 : 5
如果一个数字的倍数减去该数字的倍数仍然是该数字的倍数,这并不重要。例如
可以通过此过程减少为
再应该是 7 的倍数。所以可以是、67 和 74
2019 年世界数学团体锦标赛青少年团体赛
11.问题 #10 的答案。
的一点在一边三角形的是这样的.如果面积是,求出 的面积在.
答案 : 20
如的比率和是.面积比例和与长度之比相同和因为高度和都是一样的。作为区域,所以面积是.
在魔术三角形中,六个整数 20 到 25 中的每一个都放在其中一个圆圈中,以便三角形每边的三个数字的总和 S 相同。S 的最大可能值为
Given two intersecting circles A and B with radii 7 and 5, respectively. Circle B passes through the center of circle A. Find the absolute difference of the area of A that is outside of B and the area of B that is outside of A. (Use 3 for the value of ) 给定两个半径分别为 7 和 5 的相交圆 A 和 B。圆 B 通过圆 A 的中心。找出 A 的在 B 外部的面积与 B 的在 A 外部的面积的绝对差值。(使用 3 作为 的值)
.
If reducing a number by 18 and then multiply the answer by 18 produces the same result as reducing the original number by 27 and then multiply the answer by 27 , find the original number. 如果将一个数字减去 18,然后将答案乘以 18 得到的结果与将原始数字减去 27,然后将答案乘以 27 得到的结果相同,请找出原始数字。
.
Four rectangles of identical size plus a square of area 25 make up the large square as shown on figure. If the area of this large square is 81 , what is the perimeter of each of these rectangles? 四个相同大小的矩形加上一个面积为 25 的正方形组成了如图所示的大正方形。如果这个大正方形的面积是 81,那么这些矩形的周长是多少?
Area of large square or or .
Perimeter of each rectangle .
What is the whole number portion of ?
The exact number of this fraction is between and . So, the whole number portion of this fraction is 336.
The positive integers are grouped as followed:
Find the sum of all numbers in the group that ends in 89 .
The last number from each row and the sum of each sum form the following patterns:
Row 1
1
Sum: 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Given 2 identical squares and each of area 100. Place Square on top of Square with corner at the center of . Let and be points where the sides of intersect the sides of . If , find the area of the overlapped four-sided region . 给定 2 个面积均为 100 的相同正方形 和 。将正方形 放在正方形 的顶部,使角 位于 的中心。让 和 成为 的边与 的边相交的点。如果 ,找出重叠的四边形区域 的面积。
Extend and so that they intersect with sides and , respectively. This would divide the Square into 4 equal sized quadrilaterals and so the area of is equal to of the area of Square . Since area of is 100 , area of is . Note that the length of does not affect the problem. 扩展 和 ,使它们分别与边 和 相交。这将把正方形 分成 4 个相等大小的四边形,因此 的面积等于正方形 的面积的 。由于 的面积为 100, 的面积为 。请注意, 的长度不影响问题。
Suppose a school is offering 3 sports A, B, and C to all its students. Students may join none, one, two, or all three sports. The following table shows their students' participation in those sports. How many students are in this school? 假设一所学校为所有学生提供 3 项运动 A、B 和 C。学生可以参加零项、一项、两项或全部三项运动。以下表格显示了学生参与这些运动的情况。这所学校有多少学生?
Students who join no sport 180
Students who join sport A 160
Students who join sport B 210
Students who join sport C 300
Students who join sports A & B 50
Students who join sports B & C 70
Students who join sports A & C 80
Students who join sports A, B, & C 30
Let Number of students who join no sport
Number of students who join just sport A
Number of students who join just sport B
参加just sport C的学生人数
只参加体育运动的学生人数和而不是
只参加体育运动的学生人数和而不是
只参加运动 A 和 C 而不参加运动 B 的学生人数
参加体育运动的学生人数和 C
因此,学生总数
.
给定一个广场.让成为广场的中心和线段对角线。如果是边的中点,找到该区域的面积.
给定一个广场.连接和并让是此扩展与侧的交点应该是一侧的中点也。
面积广场的一半面积三角形面积三角形面积
JUNIOR LEVEL November 2021 - 12 Annual WMTC
1A. The figure shown below consists of nine squares, each of side length 4 units. Let be a point located on the side of a square as shown in the figure so that the straight line connecting and divides this figure into two regions with the same area. Find . 1A. 下图所示的图形由九个边长为 4 个单位的正方形组成。让 是位于正方形边上的一个点,如图所示,连接 和 的直线将这个图形分成两个面积相同的区域。找到 。
This figure has an area of . According to the problem, divides this figure in halves.
So, half of area of this figure is
Area of Area of one square which means . Since .
1B. Let TNYWR. Each of the lines drawn on this regular hexagon (6-sided figure) is an axis of symmetry. If the area of hexagon is and points and are the midpoints of the opposite sides, what is the area of shaded region? 1B. 让 TNYWR。在这个正六边形(6 边形)上画的每一条线都是对称轴。如果六边形的面积是 ,点 和 是对边的中点,那么阴影区域的面积是多少?
The area to the right side of the vertical line is . The other line removed of this area. So, the area of the shaded region is .
JUNIOR LEVEL November 2021 - 12 Annual WMTC
2A. Let where is reduced to the simplest fraction. Find .
3.
.
So, .
2B. Let TNYWR. If both the difference and quotient of two numbers are , find the sum of these two numbers.
Let and be these two numbers. According to the problem, and . So, or and . Therefore, .
JUNIOR LEVEL November 2021 - 12 Annual WMTC
3A. How many rectangles of different perimeters but with a common area of 2020? (Sides of these rectangles are all measured in whole numbers)
6. .
Possible rectangles with area 2020 are:
3B. Let . The areas of three adjacent faces of a rectangular box are , and 12 . What is the volume of this rectangular box?
Let , and be edge lengths of this rectangular box. Then, .
Let be the number of 4 -digit numbers that are divisible by both 6 and 8 . Find .
and .
Since and , there are 4-digit numbers that are divisible by both 6 and 8 and .
Let TNYWR from Problem #6. A book has less than 1000 pages. In numbering the pages of this book, digits were used. What is the last page number in the book?
Pages 1 to 9 ( 9 digits, 9 pages)
Pages 10 to digits, pages)
第 100 页至数字页面
总:页面。
从 1 到 100 有多少个数字将 7 作为它们的质因数之一?
(太大)数字
(太大),(太大)...5 个数字
(太大),(太大)数字.
让来自问题 #8。如图所示,四个圆(每个圆的半径为 T)的排列方式使每个圆正好与其他两个圆相切(恰好在一个点上接触另外两个圆)。求这 4 个圆之间的空间面积(阴影区域)。(假设). 让 from Problem #8. 四个半径为 T 的圆排列在一起,使得每个圆恰好与其他两个圆相切(在一个点上恰好接触其他两个圆),如图所示。找出这 4 个圆之间的空间面积(阴影区域)。(假设 )。