这是用户在 2024-11-22 20:16 为 https://pubs.acs.org/doi/10.1021/jacs.7b03540 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
In Vivo Structure–Activity Relationships and Optimization of an Unnatural Base Pair for Replication in a Semi-Synthetic Organism
My Activity

Figure 1Loading Img
  • Subscribed
Article

In Vivo Structure–Activity Relationships and Optimization of an Unnatural Base Pair for Replication in a Semi-Synthetic Organism
体内研究结构-活性关系和非天然碱基对的优化,以便在半合成生物体中复制
Click to copy article link
点击复制文章链接
Article link copied!

View Author Information
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2017, 139, 33, 11427–11433
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.7b03540
Published August 10, 2017
Copyright © 2017 American Chemical Society

Abstract 抽象

Click to copy section link
单击以复制部分链接
Section link copied!

In an effort to expand the genetic alphabet and create semi-synthetic organisms (SSOs) that store and retrieve increased information, we have developed the unnatural base pairs (UBPs) dNaM and d5SICS or dTPT3 (dNaM-d5SICS and dNaM-dTPT3). The UBPs form based on hydrophobic and packing forces, as opposed to complementary hydrogen bonding, and while they are both retained within the in vivo environment of an Escherichia coli SSO, their development was based on structure–activity relationship (SAR) data generated in vitro. To address the likely possibility of different requirements of the in vivo environment, we screened 135 candidate UBPs for optimal performance in the SSO. Interestingly, we find that in vivo SARs differ from those collected in vitro, and most importantly, we identify four UBPs whose retention in the DNA of the SSO is higher than that of dNaM-dTPT3, which was previously the most promising UBP identified. The identification of these four UBPs further demonstrates that when optimized, hydrophobic and packing forces may be used to replace the complementary hydrogen bonding used by natural pairs and represents a significant advance in our continuing efforts to develop SSOs that store and retrieve more information than natural organisms.
为了扩展遗传字母表并创造存储和检索更多信息的半合成生物体 (SSO),我们开发了非天然碱基对 (UBP) dNaM 和 d5SICS 或 dTPT3(dNaM-d 5SICS 和 dNaM-d TPT3)。UBP 基于疏水力和堆积力形成,而不是互补氢键,虽然它们都保留在大肠杆菌 SSO 的体内环境中,但它们的开发是基于体外生成的构效关系 (SAR) 数据。为了满足体内环境可能出现的不同要求,我们筛选了 135 个候选 UBP,以便在 SSO 中实现最佳性能。有趣的是,我们发现体内 SARs 与体外收集的 SAR 不同,最重要的是,我们确定了四个 UBP,它们在 SSO DNA 中的保留率高于 dNaM-d TPT3,后者是以前发现的最有希望的 UBP。这四种 UBP 的鉴定进一步表明,优化后,疏水力和堆积力可用于替代自然对使用的互补氢键,这代表了我们不断努力开发比自然生物体存储和检索更多信息的 SSO 的重大进步。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。请求重用权限。

Copyright © 2017 American Chemical Society
版权所有 © 2017 美国化学会

Introduction 介绍

Click to copy section link
单击以复制部分链接
Section link copied!

Natural organisms store genetic information in an alphabet of four nucleotide “letters,” and the replication and retrieval of this information is mediated by their selective pairing to form two base pairs. The addition of two new letters that form an unnatural base pair (UBP) would increase the potential information content and lay the foundation for semi-synthetic organisms (SSOs) capable of producing proteins with unnatural amino acids or even possessing novel forms and functions, which is the central goal of synthetic biology. (1) We, (2) as well as the Benner (3) and Hirao (4) groups, have worked toward this goal and have each identified UBPs that are well replicated in vitro. Our efforts have focused upon a family of UBPs represented by dNaM-d5SICS and dNaM-dTPT3 (Figure 1), which utilize hydrophobic and packing forces, as opposed to complementary hydrogen bonding, to stably pair within duplex DNA and during replication. (5-10) This mode of pairing results in an edge-to-edge, Watson–Crick-like geometry during unnatural triphosphate insertion within the polymerase active site, but cross-strand intercalation once the UBP is synthesized, (11-13) which likely mandates deintercalation for continued synthesis. Thus, the extended aromatic surface area of the unnatural nucleobases may be a liability. Nonetheless, with the unnatural triphosphates imported via transgenic expression of the nucleoside triphosphate transporter PtNTT2, we developed an Escherichia coli SSO that stably retains these UBPs in its DNA. (10, 14) While the retention of the UBPs in the DNA of the SSO is not equivalent to that of a natural base pair, retention may be raised to natural-like levels through the action of Cas9 targeted to degrade the DNA that has lost the UBP. (14)
自然生物体将遗传信息存储在由四个核苷酸“字母”组成的字母表中,这些信息的复制和检索是通过它们的选择性配对形成两个碱基对来介导的。添加两个形成非天然碱基对 (UBP) 的新字母将增加潜在的信息内容,并为半合成生物 (SSO) 奠定基础,这些生物体能够产生具有非天然氨基酸的蛋白质,甚至具有新的形式和功能,这是合成生物学的中心目标。(1) 我们 (2) 以及 Benner (3) 和 Hirao (4) 小组都朝着这个目标努力,并各自确定了在体外良好复制的 UBP。我们的工作集中在以 dNaM-d 5SICS 和 dNaM-d TPT3 为代表的 UBP 家族(1),它们利用疏水和堆积力,而不是互补氢键,在双链 DNA 内和复制过程中稳定配对。(5-10) 这种配对模式在聚合酶活性位点内不自然地插入三磷酸盐时产生无边的 Watson-Crick 样几何形状,但一旦合成 UBP,就会出现交叉链插层,(11-13) 这可能要求脱嵌以继续合成。因此,非天然核碱基的扩展芳香族表面积可能是一种负担。尽管如此,随着通过核苷三磷酸转运蛋白 PtNTT2 的转基因表达输入的非天然三磷酸盐,我们开发了一种大肠杆菌 SSO,它可以将这些 UBP 稳定地保留在其 DNA 中。 (10, 14)虽然 UBP 在 SSO DNA 中的保留率不等同于天然碱基对的保留率,但可以通过 Cas9 的作用将保留率提高到天然水平,从而降解丢失 UBP 的 DNA。(14)

Figure 1 图 1

Figure 1. The dNaM-d5SICS and dNaM-dTPT3 UBPs.
图 1.dNaM-d 5SICS 和 dNaM-d TPT3 UBP

Both the dNaM-d5SICS and dNaM-dTPT3 UBPs were identified from an intensive investigation of over 150 analogs that were evaluated in vitro, initially via steady-state kinetics and later by retention in PCR-amplified DNA. (2) These studies provided the key structure–activity relationship (SAR) data used to optimize the unnatural nucleotides, but the in vivo environment of the SSO introduces additional constraints, such as toxicity, import, and polymerase availability. Thus, it is unclear whether UBPs optimized based on in vitro SAR are optimal for performance in vivo. Indeed, during in vitro optimization, we emphasized the importance of identifying multiple different UBPs whose constituent nucleotides possess varying physicochemical properties to provide flexibility during the effort to deploy them in an SSO. (8, 15)
dNaM-d 5SICS 和 dNaM-d TPT3 UBP 都是通过对 150 多种类似物的深入调查鉴定的,这些类似物在体外进行了评估,最初是通过稳态动力学,后来是通过保留在 PCR 扩增的 DNA 中。(2) 这些研究提供了用于优化非天然核苷酸的关键构效关系 (SAR) 数据,但 SSO 的体内环境引入了额外的限制,例如毒性、输入和聚合酶可用性。因此,目前尚不清楚基于体外 SAR 优化的 UBP 是否最适合体内性能。事实上,在体外优化过程中,我们强调了识别多个不同 UBP 的重要性,这些 UBP 的组成核苷酸具有不同的物理化学性质,以便在将它们部署到 SSO 中时提供灵活性。(8, 15)
To extend our SAR data to include the restraints of the in vivo SSO environment, we conducted a screen for pairs of unnatural triphosphates that when added to growth media support high level UBP retention. From an examination of 135 candidate UBPs, we generate new SAR data that differs in several interesting ways from that generated in vitro and, remarkably, at least in some cases demonstrates that replication is more permissive in vivo than in vitro. Most importantly, we discover four new UBPs that are more efficiently retained in vivo than either dNaM-d5SICS or dNaM-dTPT3. One of the constituent nucleobases in each of the new UBPs is dTPT3, suggesting that it represents an at least currently optimal solution, but it is paired with different dNaM analogs. The most promising new UBP is retained in sequences where neither dNaM-d5SICS nor dNaM-dTPT3 is retained even with Cas9, and thus represents the most promising UBP identified to date for use in our continuing efforts to develop an SSO that stably stores increased information.
为了扩展我们的 SAR 数据以包括体内 SSO 环境的限制,我们对非天然三磷酸盐对进行了筛选,当这些三磷酸盐添加到生长培养基中时,这些三磷酸盐支持高水平的 UBP 保留。通过对 135 个候选 UBP 的检查,我们生成了新的 SAR 数据,这些数据在几个有趣的方面与体外生成的数据不同,值得注意的是,至少在某些情况下表明,体内复制比体外复制更宽松。最重要的是,我们发现了四种新的 UBP,它们在体内的保留效率高于 dNaM-d 5SICS 或 dNaM-d TPT3。每个新 UBP 中的组成核碱基之一是 dTPT3,这表明它至少代表了当前的最佳解决方案,但它与不同的 dNaM 类似物配对。最有前途的新 UBP 保留在 dNaM-d 5SICS 和 dNaM-d TPT3 均未保留的序列中,即使使用 Cas9,也代表了迄今为止确定的最有前途的 UBP,可用于我们不断努力开发稳定存储更多信息的 SSO。

Experimental Section 实验部分

Click to copy section link
单击以复制部分链接
Section link copied!

General 常规

All bacteria were cultured in 100 μL of liquid 2×YT media (casein peptone 16 g/L, yeast extract 10 g/L, NaCl 5 g/L) supplemented with potassium phosphate (50 mM, pH 7) in 96-well microwell plates. When noted, antibiotics were used at the following concentrations: chloramphenicol, 5 μg/mL; ampicillin, 100 μg/mL. Cell growth, indicated as OD600, was measured using a PerkinElmer EnVision 2103 Multilabel Reader with a 590/20 nm filter. Unless otherwise stated, molecular biology reagents were purchased from New England Biolabs (Ipswich, MA) and were used according to the manufacturer’s protocols. As necessary, purification of nucleic acids was accomplished by microelution columns (Zymo Research Corp; Irvine, CA). All natural oligonucleotides were purchased from IDT (San Diego, CA), and oligonucleotides containing dNaM were synthesized by Biosearch Technologies (Petaluma, CA) with purification by reverse phase cartridge and were kindly provided by Synthorx (La Jolla, CA). Unnatural nucleotide triphosphates were prepared as previously described (Table S2) and confirmed by MALDI-TOF and UV–vis.
所有细菌均在 100 μL 液体 2×YT 培养基 (酪蛋白蛋白胨 16 g/L、酵母提取物 10 g/L、NaCl 5 g/L) 中培养,并在 96 孔微孔板中补充磷酸钾 (50 mM,pH 7)。注意到后,使用以下浓度的抗生素:氯霉素,5 μg/mL;氨苄青霉素,100 μg/mL。使用带有 590/20 nm 滤光片的 PerkinElmer EnVision 2103 多标记读数仪测量细胞生长,表示为 OD600。除非另有说明,否则分子生物学试剂购自 New England Biolabs(马萨诸塞州伊普斯威奇),并按照制造商的方案使用。必要时,通过微量洗脱柱(Zymo Research Corp;加利福尼亚州尔湾市)。所有天然寡核苷酸均购自 IDT(加利福尼亚州圣地亚哥),含有 dNaM 的寡核苷酸由 Biosearch Technologies(加利福尼亚州佩塔卢马)合成,并通过反相小柱纯化,并由 Synthorx(加利福尼亚州拉霍亚)友情提供。如前所述制备非天然核苷酸三磷酸盐 (表 S2) 并通过 MALDI-TOF 和 UV-vis 确认。

Analysis of UBP Retention
瑞联银行留存率分析

Plasmids containing the dNaM-dTPT3 UBP were prepared and used to transform E. coli strain YZ3 as described previously. (10, 14) Following transformation, the SSO was allowed to recover at 37 °C for 1 h in media containing dNaMTP (125 μM) and dTPT3TP (25 μM). Cells were pelleted by centrifugation, resuspended in fresh media lacking unnatural triphosphates, and then used to inoculate cultures containing different pairs of unnatural triphosphates at the specified concentrations. When the cell density reached an OD600 of ∼0.7, cells were pelleted, and plasmids were recovered and PCR amplified with d5SICSTP and a biotinylated analog of dNaMTP. UBP retention was determined by comparing the intensity of the streptavidin shifted and unshifted bands via PAGE as described previously (10, 14) and in Supporting Information. Plasmids with the dNaM-dTPT3 UBP were used as a starting point for the in vivo replication experiments to eliminate the need to construct separate plasmids for every candidate UBP examined and to eliminate differences in UBP retention during in vitro plasmid construction. We note that this requires each dNaM analog to pair with dTPT3 and each dTPT3 analog to pair with dNaM during the first round of replication, and similar pairing is required for the first round amplification during PCR analysis. It should also be noted that this assay detects bulk retention, and inversion of the pair by, for example, self-pairing, is not excluded.
制备含有 dNaM-d TPT3 UBP 的质粒,并如前所述用于转化大肠杆菌菌株 YZ3。(10, 14)转化后,让 SSO 在含有 dNaMTP (125 μM) 和 dTPT3TP (25 μM) 的培养基中在 37 °C 下恢复 1 小时。通过离心沉淀细胞,重悬于不含非天然三磷酸盐的新鲜培养基中,然后用于接种含有指定浓度的不同非天然三磷酸盐对的培养物。当细胞密度达到 OD600 ∼0.7 时,将细胞沉淀,回收质粒,并用 d5SICSTP 和 dNaMTP 的生物素化类似物进行 PCR 扩增。如前所述 (10, 14) 和支持信息中所述,通过 PAGE 比较链霉亲和素移动和未移动条带的强度来确定 UBP 保留。使用带有 dNaM-d TPT3 UBP 的质粒作为体内复制实验的起点,以消除为检查的每个候选 UBP 构建单独质粒的需要,并消除体外质粒构建过程中 UBP 保留的差异。我们注意到,这需要在第一轮复制期间每个 dNaM 类似物与 dTPT3 配对,每个 dTPT3 类似物与 dNaM 配对,并且在 PCR 分析期间第一轮扩增需要类似的配对。还应该注意的是,该测定检测体积保留,并且不排除通过例如自我配对来反转对。

Results 结果

Click to copy section link
单击以复制部分链接
Section link copied!

To create a template for in vivo replication assays, Golden Gate assembly was used to construct a derivative of the pUC19 plasmid in which a single dNaM-dTPT3 UBP was embedded within the TK1 sequence (local sequence AXT, X = dNaM; referred to hereafter as sequence context 1), a context within which the dNaM-dTPT3 UBP is well replicated in our SSO. (14) Plasmids were then used to transform the SSO, which was allowed to recover briefly in media containing dNaMTP and dTPT3TP. Upon resuspension in fresh media lacking triphosphates, the SSO culture was split into 100 μL aliquots and supplemented with varying concentrations of different pairs of unnatural triphosphates. Once the cultures reached an OD600 of ∼0.7, plasmids were recovered and analyzed for UBP retention (Figure 2).
为了创建用于体内复制测定的模板,使用 Golden Gate 组装构建 pUC19 质粒的衍生物,其中单个 dNaM-d TPT3 UBP 嵌入 TK1 序列(局部序列 AX T,X = dNaM;以下称为序列上下文 1)中,在该上下文中,dNaM-d TPT3 UBP 在我们的 SSO 中很好地复制。(14) 然后使用质粒转化 SSO,使其在含有 dNaMTP 和 dTPT3TP 的培养基中短暂恢复。在缺乏三磷酸盐的新鲜培养基中重悬后,将 SSO 培养物分成 100 μL 等分试样,并补充不同浓度的不同非天然三磷酸盐对。一旦培养物达到 OD600 ∼0.7,回收质粒并分析 UBP 保留(2)。

Figure 2 图 2

Figure 2. Graphical representation of screen workflow. For sequence contexts 14, X denotes NaM or an NaM analog and Y denotes TPT3 or a TPT3 analog. Retention levels of dNaM-dTPT3 are indicated with “+” symbols. See ref 14 for original report of dNaM-dTPT3 retention data.
图 2.屏幕工作流的图形表示。对于序列上下文 1-4,X 表示 NaMNaM 类似物,Y 表示 TPT3TPT3 类似物。dNaM-d TPT3 的保留水平用“+”符号表示。参见参考文献 14 了解 dNaM-d TPT3 保留数据的原始报告。

In a first phase of screening, we explored the addition of 25 μM of dTPT3TP and one of 75 different dNaMTP analogs (structures shown in Figure 3A) added at a concentration of 125 μM or 10 μM. After plasmid recovery, we observed UBP retention of >90% with 13 analogs (dMMO2TP, dDMOTP, dNaMTP, dClMOTP, dCNMOTP, d5FMTP, dFDMOTP, dFIMOTP, dZMOTP, dIMOTP, dMIMOTP, dFEMOTP, and dMMO2ATP) (Figure 4A and Supporting Information). Of the remaining analogs, four showed a retention of 50–90% (d2OMeTP, dTfMOTP dMEMOTP, dVMOTP), nine showed a retention of 20–50% (dDM5TP, d2MNTP, d45DMPyTP, dEMOTP, dDMTP, dTOK581TP, dTOK587TP, dPyMO2TP, d35DMPyTP), and the remainder showed a retention of <20%. Addition of the dNaMTP analogs at the lower concentration resulted in generally less efficient UBP retention, with only four, dMMO2TP, dClMOTP, dCNMOTP, and d5FMTP, resulting in high retention (>80%). Five, dFIMOTP, dIMOTP, dFEMOTP, dMMO2ATP, as well as dNaMTP itself, showed intermediate levels of retention (between 40–80%), and four, dFDMOTP, dVMOTP, d2OMeTP, and dZMOTP, showed slightly less retention (20–40%), with the remainder showing <20% retention.
在筛选的第一阶段,我们探索了添加 25 μM 的 dTPT3TP 和 75 种不同的 dNaMTP 类似物中的一种(结构如图 3A),添加浓度为 125 μM 或 10 μM。质粒回收后,我们观察到 13 个类似物(dMMO2TP、dDMOTP、dNaMTP、dClMOTP、dCNMOTP、d5FMTP、dFDMOTP、dFIMOTP、dZMOTP、dIMOTP、dMIMOTP、dFEMOTP 和 dMMO2ATP)的 UBP 保留率为 >90%(4A 和支持信息).在其余类似物中,4 个显示保留率为 50-90%(d2OMeTP、dTfMOTP、dMEMOTP、dVMOTP),9 个显示保留率为 20-50%(dDM5TP、d2MNTP、d45DMPyTP、dEMOTP、d DM TP、dTOK581TP、dTOK587TP、dPyMO2TP、d35DMPyTP), 其余结果显示,较低浓度的 <20 %. Addition of the dNaMTP 类似物的保留导致 UBP 保留效率通常较低,只有四种,dMMO2TP、dClMOTP、dCNMOTP 和 d5FMTP,导致高保留 (>80%)。5 个,dFIMOTP、dIMOTP、dFEMOTP、dMMO2ATP 以及 dNaMTP 本身,显示出中等水平的保留(在 40-80% 之间),4 个,dFDMOTP、dVMOTP、d2OMeTP 和 dZMOTP,显示略低的保留 (20-40%),其余显示 <20% 的保留。

Figure 3 图 3

Figure 3. Structure of analogs used in current study. Shading denotes differences in retention observed in phase 1 of the screen. (A) dNaMTP analogs. Blue shading corresponds to analogs that at 125 μM showed retentions of greater than 90%; green, 50% to 90%; yellow, 20% to 50%; red, <20%. (B) dTPT3TP analogs. Blue shading corresponds to those that at 10 μM showed retentions greater than 90%; red, <10%. Ribose and phosphates omitted for clarity. For original references see Supporting Information.
图 3.当前研究中使用的类似物的结构。阴影表示在屏幕的第 1 阶段观察到的保留差异。(A) dNaMTP 类似物。蓝色阴影对应于在 125 μM 时显示保留率大于 90% 的类似物;绿色,50% 至 90%;黄色,20% 至 50%;红色,<20 %. (B) dTPT3TP 类似物。蓝色阴影对应于 10 μM 时显示保留率大于 90% 的那些;红色,<10 %. Ribose and phosphates omitted for clarity. For original references see 支持信息。

Figure 4 图 4

Figure 4. UBP retention (%). (A) dNaMTP analogs added at either 125 μM or 10 μM and dTPT3TP added at 25 μM. (B) dTPT3TP analogs added at either 125 μM or 10 μM and dNaMTP added at 125 μM. (C) Selected analogs screened against each other with dNaMTP analogs added at 25 μM and dTPT3TP analogs added at 10 μM. Data are an average of three independent trials, with error bars indicating the standard deviation. A single asterisk indicates that no cell growth was observed at the higher concentration, and a double asterisk indicates that no cell growth was observed at either concentration.
图 4.瑞联银行留存率 (%)。(A) 添加量为 125 μM 或 10 μM 的 dNaMTP 类似物,添加量为 25 μM 的 dTPT3TP。(B) 添加量为 125 μM 或 10 μM 的 dTPT3TP 类似物和添加量为 125 μM 的 dNaMTP。(C) 用 25 μM 的 dNaMTP 类似物和 10 μM 的 dTPT3TP 类似物相互筛选的选定类似物。数据是 3 项独立试验的平均值,误差线表示标准差。单星号表示在较高浓度下未观察到细胞生长,双星号表示在任一浓度下均未观察到细胞生长。

We next explored UBP retention with the addition of 125 μM dNaMTP and one of 16 different dTPT3TP analogs (structures shown in Figure 3B) at a concentration of 125 μM or 10 μM. When provided at the higher concentration, nine of the dTPT3TP analogs, dTPT3PATP, dTPT3TP, dSICSTP, dFPT1, d4SICS, dTPT1, d5SICS, dNICS, and dSNICS, showed significant UBP retention upon plasmid recovery (Figure 4B and Supporting Information). Unlike with the dNaMTP analogs, these nine UBPs showed similar or better retention when provided at the lower concentration, while dICSTP, d4MICSTP, and d5MICSTP also showed significant retention (retention of these three analogs could not be determined at higher concentrations due to toxicity). Clearly UBP retention is more optimal with the lower concentration of these analogs, and under these conditions, when combined with dNaMTP, all triphosphate analogs examined except dONICSTP, d7OTPTP, d7OFPTP, and d4OTPTP (which were toxic at both concentrations) showed retention of the UBP in excess of 70%.
接下来,我们通过添加 125 μM dNaMTP 和 16 种不同的 dTPT3TP 类似物中的一种(结构如图 3B 所示)来探索 UBP 保留,浓度为 125 μM 或 10 μM。当以较高浓度提供时,dTPT3TP 类似物中的 9 个,dTPT3PATP、dTPT3TP、dSICSTP、dFPT1、d4SICS、dTPT1、d5SICS、dNICS 和 dSNICS,在质粒回收时显示出显著的 UBP 保留(4B 和支持信息)。与 dNaMTP 类似物不同,这 9 种 UBP 在较低浓度下表现出相似或更好的保留性,而 dICSTP、d4MICSTP 和 d5MICSTP 也显示出显著的保留性(由于毒性,无法确定这三种类似物在较高浓度下的保留性)。显然,这些类似物的较低浓度下 UBP 保留效果更佳,在这些条件下,当与 dNaMTP 结合使用时,除 dONICSTP、d7OTPTP、d7OFPTP 和 d4OTPTP(在两种浓度下均有毒)外,所有检查的三磷酸类似物均显示 UBP 保留率超过 70%。
In a second phase of screening, we crossed the 12 most promising dTPT3TP analogs with the four most promising dNaMTP analogs identified in the first phase. We incorporated the UBP within the same plasmid, but embedded it within a local sequence of AXA (context 2, X = dNaM), a context in which we have found retention of dNaM-dTPT3 to be more challenging than sequence context 1. (14) Based on the first phase of screening, we also focused on concentrations of the dNaMTP and dTPT3TP analogs of 25 μM and 10 μM, respectively, to increase the dynamic range of the screen. Significant retention was only observed with pairs containing dTPT3TP or dSICSTP, but each was found to yield at least moderate retention with each of the four dNaMTP analogs (Figure 4C and Supporting Information). Retention with dSICSTP was moderate when paired with dMMO2TP (19%), but more significant with d5FMTP, dCNMOTP, and dClMOTP, with 68%, 79%, and 61% retention, respectively. The highest retentions, however, were observed with dTPT3TP (all >87%).
在第二阶段的筛选中,我们将 12 个最有前途的 dTPT3TP 类似物与第一阶段确定的 4 个最有前途的 dNaMTP 类似物杂交。我们将 UBP 掺入同一质粒中,但将其嵌入 AXA 的局部序列中(上下文 2,X = d NaM),在这种情况下,我们发现保留 dNaM-d TPT3 比序列上下文 1 更具挑战性。(14) 基于第一阶段的筛选,我们还关注了 dNaMTP 和 dTPT3TP 类似物的浓度分别为 25 μM 和 10 μM,以增加筛选的动态范围。仅在含有 dTPT3TP 或 dSICSTP 的对中观察到显著的保留,但发现每种对四种 dNaMTP 类似物中的每一种都产生至少中等的保留(4C 和支持信息)。与 dMMO2TP 配对时,dSICSTP 的保留率适中 (19%),但 d5FMTP 、 dCNMOTP 和 dClMOTP 的保留率更高,分别为 68% 、 79% 和 61% 的保留率。然而,在 dTPT3TP 中观察到最高的保留率 (均为 >87%)。
Next we explored retention with the four most promising UBPs identified, d5FM-dTPT3, dMMO2-dTPT3, dCNMO-dTPT3, and dClMO-dTPT3, when embedded within context 2, but with unnatural triphosphate concentrations of 25 μM, 10 μM, or 2.5 μM (Figure 5). While it was clear that dMMO2TP and d5FMTP were retained best at 25 μM, UBP retention was too high to differentiate in the case of dCNMOTP and dClMOTP. Thus, we examined retention with the UBP positioned in the same plasmid, but within the local sequence context of CXC (context 3, X = dNaM), which is particularly challenging for dNaM-dTPT3 retention (14) (Figure 5). The data reveal that 25 μM is the most optimal concentration for both pairs and that dCNMOTP and dTPT3TP perform better than dClMOTP and dTPT3TP, with retentions of 42% and 21%, respectively. While d5FMTP and dMMO2TP resulted in slightly higher retention in this sequence context at high concentration (49% and 45%, respectively), they resulted in significantly less retention at the lower concentrations.
接下来,我们探索了鉴定出的四种最有前途的 UBP,d5FM-d TPT3、dMMO2-d TPT3、dCNMO-d TPT3 和 dClMO-d TPT3,当嵌入上下文 2 中时,但三磷酸盐浓度为 25 μM、10 μM 或 2.5 μM(5)。虽然很明显 dMMO2TP 和 d5FMTP 在 25 μM 时保留效果最好,但 UBP 保留率太高,无法区分 dCNMOTP 和 dClMOTP。因此,我们检查了位于同一质粒中的 UBP 的保留,但在 CXC 的局部序列上下文中(上下文 3,X = d NaM),这对于 dNaM-d TPT3 保留尤其具有挑战性 (14)(5)。数据显示,25 μM 是两对的最佳浓度,dCNMOTP 和 dTPT3TP 的性能优于 dClMOTP 和 dTPT3TP,保留率分别为 42% 和 21%。虽然 d5FMTP 和 dMMO2TP 在该序列背景下在高浓度下导致略高的保留 (分别为 49% 和 45%),但它们在较低浓度下的保留率显着降低。

Figure 5 图 5

Figure 5. UBP retention (%) with dTPT3TP and different dNaMTP analogs added at varying concentrations to the media. Shading indicates the level of UBP retention. Values are the average and standard deviation of three independent determinations.
图 5.向培养基中加入不同浓度的 dTPT3TP 和不同的 dNaMTP 类似物时的 UBP 保留率 (%)。底纹表示 UBP 保留级别。值是三个独立测定的平均值和标准差。

Of the 135 candidate UBPs examined, the data reveal that dCNMO-dTPT3 is most efficiently replicated in the SSO. To directly and more thoroughly compare this UBP with dNaM-dTPT3, the most efficiently replicated UBP previously identified, we examined retention of both pairs in the three sequence contexts described above, as well as a fourth, which positions the UBP within the local sequence context of CXG (context 4), which is one of the most challenging sequences for dNaM-dTPT3 (14) (Figure 6). dTPT3TP was added at a fixed concentration of 25 μM, while dNaMTP or dCNMOTP was added at a concentration of either 125 μM or 25 μM. At the higher concentration, we observed >99% retention in sequence context 1 with both dCNMOTP and dNaMTP, but while retention remained high with dCNMOTP added at the lower concentration (98%), it was decreased with dNaMTP (85%). In context 2, reduced retention was observed with dNaMTP at both the high concentration (73%) and the low concentration (36%), but retention at both concentrations remained high with dCNMOTP (>99%). In context 3, addition of dNaMTP at the higher concentration resulted in only moderate retention (26%), while addition at the lower concentration resulted in no retention. However, with dCNMOTP, significant retention was observed at both high (65%) and low concentrations (42%). Finally, with context 4, the UBP was not retained significantly at either concentration with dNaMTP, but remained moderate at high concentrations of dCNMOTP (24%).
在检查的 135 个候选 UBP 中,数据显示 dCNMO-d TPT3 在 SSO 中的复制效率最高。为了直接、更彻底地将该 UBP 与先前确定的复制效率最高的 UBP dNaM-d TPT3 进行比较,我们检查了上述三个序列上下文中两个对的保留情况,以及第四个序列,它将 UBP 定位在 CXG 的局部序列上下文中(上下文 4),这是 dNaM-d TPT3 最具挑战性的序列之一 (14)(6)。dTPT3TP 的添加浓度为 25 μM,而 dNaMTP 或 dCNMOTP 的添加浓度为 125 μM 或 25 μM。在较高浓度下,我们在序列上下文 1 中观察到 dCNMOTP 和 dNaMTP 的保留率为 >99%,但是虽然在较低浓度 (98%) 下添加 dCNMOTP 的保留率仍然很高,但随着 dNaMTP (85%) 的添加而降低。在上下文 2 中,在高浓度 (73%) 和低浓度 (36%) 下观察到 dNaMTP 的保留率降低,但使用 dCNMOTP (>99%) 在两种浓度下的保留率仍然很高。在上下文 3 中,添加较高浓度的 d NaM TP 仅导致中等保留 (26%),而添加较低浓度的 dNaMTP 导致没有保留。然而,对于 dCNMOTP,在高浓度 (65%) 和低浓度 (42%) 下均观察到显着保留。 最后,在上下文 4 中,UBP 在任一浓度下均未显著保留 dNaMTP,但在高浓度d CNMOTP (24%) 下保持适中。

Figure 6 图 6

Figure 6. UBP retention (%) with 25 μM dTPT3TP and varying concentrations of dNaMTP or dCNMOTP added to the media. Shading indicates the level of UBP retention. Values are the average and standard deviation of three independent determinations.
图 6.在培养基中添加 25 μM dTPT3TP 和不同浓度的 dNaMTP 或 dCNMOTP 后,UBP 保留率 (%)。底纹表示 UBP 保留级别。值是三个独立测定的平均值和标准差。

Discussion 讨论

Click to copy section link
单击以复制部分链接
Section link copied!

The discovery of dNaM-dTPT3 was driven by in vitro SARs that ultimately drew on over 150 unnatural nucleotides. While dNaM-dTPT3 was the most promising UBP discovered and is clearly suitable for use within a living SSO, (14) its retention is sequence context-dependent, with some sequences showing high retention and others less or none. During the in vitro discovery phase, we also identified variants whose constituent nucleotides have distinct physicochemical properties that may differentiate performance in vivo. With these analogs, we have now examined 135 variant UBPs within the in vivo environment of our SSO. Interestingly, we find in vivo SARs that are both similar to and different from those collected in vitro. For example, dICS and its methyl-derivatized analogs d4MICS and d5MICS support UBP retention in vivo reasonably well, but only at low concentration, suggesting that they are misincorporated opposite natural nucleotides at high concentrations, thereby resulting in stalled replication forks and toxicity. Indeed, in vitro, steady-state kinetic analyses suggest that these analogs can be misinserted opposite natural nucleotides in a template with reasonable efficiency. (16) However, UBPs containing these analogs cannot be PCR amplified, suggesting that the observed retention is unique to the in vivo environment. Heteroatom derivatization of the dICS scaffold is generally deleterious and results in significant toxicity, again consistent with misincorporation, as we observed previously in vitro. (17) An exception is dNICS, as this heteroatom-derivatized analog of dICS supports UBP retention reasonably well, and in fact, the additional sulfur substituent of dSNICS results in an analog that supports moderate retention at both low and high concentrations. The beneficial effect of the sulfur does not depend on aza substitution, as retention is also increased with dSICS compared to dICS. Thus, the aza and sulfur substituents appear to independently reduce mispairing in vivo. While this was observed in vitro for the sulfur substituent, the opposite was observed with aza substitution, suggesting that its ability to reduce mispairing is unique to the in vivo environment.
dNaM-d TPT3 的发现是由体外 SAR 驱动的,该 SAR 最终利用了 150 多个非天然核苷酸。虽然 dNaM-d TPT3 是发现的最有前途的 UBP,并且显然适合在活体 SSO 中使用,(14) 但它的保留性与序列上下文有关,一些序列显示出高保留率,而另一些序列则较少或没有保留。在体外发现阶段,我们还鉴定了其组成核苷酸具有不同物理化学性质的变体,这些变体可能会区分体内性能。通过这些类似物,我们现在已经在 SSO 的体内环境中研究了 135 个变体 UBP。有趣的是,我们发现体内 SAR 与体外收集的 SAR 既相似又不同。例如,dICS 及其甲基衍生类似物 d4MICS 和 d5MICS 相当好地支持 UBP 在体内的保留,但仅限于低浓度,这表明它们在高浓度下被错误掺入相反的天然核苷酸,从而导致复制叉停滞和毒性。事实上,在体外,稳态动力学分析表明,这些类似物可以以合理的效率错误地插入模板中天然核苷酸的相反位置。(16) 然而,含有这些类似物的 UBP 不能进行 PCR 扩增,这表明观察到的保留是体内环境所特有的。dICS 支架的杂原子衍生化通常是有害的,并导致显着的毒性,正如我们之前在体外观察到的那样,这与错误掺入一致。 (17) dNICS 是一个例外,因为这种杂原子衍生的 dICS 类似物相当好地支持 UBP 保留,事实上,dSNICS 的额外硫取代基导致类似物在低浓度和高浓度下都支持中等保留。硫的有益作用不依赖于 aza 取代,因为与 dICS 相比,dSICS 的保留率也有所增加。因此,aza 和硫取代基似乎可以独立地减少体内错配虽然在体外观察到硫取代基的这种情况,但在 aza 取代中观察到相反的情况,这表明其减少错配的能力是体内环境独有的。
The modification of unnatural nucleotides with linkers that allow for site-specific attachment of different functionalities is of particular interest for in vivo labeling experiments. Linker modification of dTPT3TP, resulting in dTPT3PATP, is well tolerated in vivo, as was also observed in vitro. However, dMMO2ATP is reasonably well tolerated in vivo, while dMMO2PATP, dMMO2BIOTP, and dMMO2SSBIOTP completely ablate retention, contrary to what is observed in vitro. (18) While dMMO2ATP shows a decrease in retention at low concentration, which dTPT3PATP does not, its free amine linker should facilitate in vivo labeling or cross-linking experiments. Similarly, dZMOTP and dFEMOTP are well retained in vivo when supplemented at high concentrations and provide an azide and alkyne moiety in the major groove, respectively, where they should also facilitate in vivo labeling or cross-linking.
使用允许不同功能的位点特异性连接的接头修饰非天然核苷酸对于体内标记实验特别感兴趣。dTPT3TP 的接头修饰,导致 dTPT3PATP,在体内耐受性良好,在体外也观察到。然而,dMMO2ATP 在体内具有良好的耐受性,而 dMMO2PATP、dMMO2BIOTP 和 dMMO2SSBIOTP 完全消融保留,这与在体外观察到的情况相反。(18) 虽然 dMMO2ATP 在低浓度下显示保留性降低,而 dTPT3PATP 则没有,但其游离胺接头应有助于体内标记或交联实验。同样,dZMOTP 和 dFEMOTP 在高浓度补充时在体内保留良好,并分别在大沟中提供叠氮化物和炔烃部分,它们也应促进体内标记或交联。
A large body of in vitro SAR data demonstrates convincingly that an H-bond acceptor positioned ortho to the glycosidic bond, and thus oriented into the developing minor groove upon incorporation into DNA, is generally required for efficient continued primer elongation. (19) The general requirement of an H-bond acceptor at this position is consistent with studies of natural base pairs, (20-23) which invariably have a similarly disposed H-bond acceptor that is thought to engage in critical interactions with polymerase-based H-bond donors. (24) An exception is the relatively efficient PCR amplification of DNA containing d2MN paired opposite dTPT3. (8)In vivo, d2MNTP also supports retention with dTPT3TP, but when combined with dTPT3TP, dDM5TP does as well. Moreover, while dICSTP, dNICSTP, d4MICSTP, and d5MICSTP do not support PCR amplification when paired with any analog, (8) they support reasonable retention in vivo when paired dNaMTP. Clearly, the requirements for the ortho group are somewhat different in vitro and in vivo, and at least in some cases, they are more permissive in vivo.
大量体外 SAR 数据令人信服地表明,通常需要一个 H 键受体与糖苷键邻位,从而在掺入 DNA 后定向到发育中的小沟中,这是有效持续引物延伸所必需的。(19) 该位置对 H 键受体的一般要求与天然碱基对的研究一致,(20-23) 它们总是具有一个配置相似的 H 键受体,该受体被认为与基于聚合酶的 H 键供体发生关键相互作用。(24) 一个例外是含有 d2MN 与 dTPT3 对对的 DNA 的相对有效的 PCR 扩增。(8)在体内,d2MNTP 也支持 dTPT3TP 的保留,但当与 dTPT3TP 结合时,dDM5TP 也支持保留。此外,虽然 dICSTP、dNICSTP、d4MICSTP 和 d5MICSTP 在与任何类似物配对时不支持 PCR 扩增,(8) 当配对 dNaMTP 时,它们支持合理的体内保留。显然,对邻位基团的要求在体外体内略有不同,至少在某些情况下, 它们在体内更宽松。
From a practical perspective, the most important results of the current study are the excellent in vivo performance of the d5FM-dTPT3, dMMO2-dTPT3, dCNMO-dTPT3, and dClMO-dTPT3 UBPs (Figure 7). Retention of each of these new UBPs in the SSO, in particular, dCNMO-dTPT3, is better than that of dNaM-dTPT3, which previously was the most promising UBP identified, and requires the addition of less nucleotide triphosphate to the growth media. In fact, dCNMO-dTPT3 shows at least moderate retention in sequence context 4, where dNaM-dTPT3 is retained so poorly that it cannot be rescued by Cas9, suggesting that it is lost immediately upon attempted replication. Interestingly, this contrasts with in vitro data where retention of dNaM-dTPT3 is better than retention of dCNMO-dTPT3, (8, 15) suggesting that E. coli provides a unique environment for which dCNMO-dTPT3 is more optimal. Possible contributing factors include PtNTT2-mediated uptake, stability within the cell, or recognition by different polymerases that can access the replication fork and actually mediate replication in vivo.
从实践的角度来看,当前研究最重要的结果是 d5FM-d TPT3、dMMO2-d TPT3、dCNMO-d TPT3 和 dClMO-d TPT3 UBP 的优异体内性能(7)。这些新 UBP 中的每一个在 SSO 中的保留率,特别是 dCNMO-d TPT3,都优于 dNaM-d TPT3,后者是以前确定的最有前途的 UBP,并且需要向生长培养基中添加较少的核苷酸三磷酸。事实上,dCNMO-d TPT3 在序列上下文 4 中显示出至少中等的保留,其中 dNaM-d TPT3 保留得非常差,以至于无法被 Cas9 挽救,这表明它在尝试复制后立即丢失。有趣的是,这与体外数据形成鲜明对比,其中 dNaM-d TPT3 的保留优于 dCNMO-d TPT3 的保留,(8, 15) 表明大肠杆菌提供了一个独特的环境,其中 dCNMO-d TPT3 更优化。可能的促成因素包括 PtNTT2 介导的摄取、细胞内的稳定性或不同聚合酶的识别,这些聚合酶可以访问复制叉并实际介导体内复制。

Figure 7 图 7

Figure 7. Four optimal UBPs discovered in this work.
图 7.本研究中发现的四个最优 UBP。

Regardless of the specific properties that underlie their performance, it is clear that the present work has identified four new UBPs that now represent the most promising candidates for use in an SSO. These new UBPs further demonstrate the ability of hydrophobic and packing interactions to replace complementary H-bonding as the force underlying information storage. It is interesting that each of the new dNaM analogs bear smaller, single ring nucleobases. While this may have contributed to their in vivo performance by facilitating uptake, they are likely to be less prone to cross-strand intercalation and more likely to adopt edge-to-edge structures. This may also contribute to their more optimal retention and possibly even facilitate the replication of DNA with higher density UBPs. Only UBP loss was characterized in this study, as mutations involving natural nucleotides are predicted to be most problematic. (5, 25, 26) However, cross-strand intercalation may also facilitate self-pairing, which even at low levels could cause UBP inversion (where the individual nucleotides switch strands). Whatever its level, self-pairing mediated UBP inversion may be less likely with these analogs. Finally, the performance of each of the new UBPs is likely to be even further improved by use of Cas9, and we are currently exploring this possibility. The availability of a family of UBPs that are well retained in the in vivo environment of the SSO, but that also possess distinct physicochemical properties, is of great significance as our efforts to retrieve the increased information via transcription and translation will likely introduce additional requirements and restraints.
无论其性能背后的具体属性如何,很明显,本研究已经确定了四个新的 UBP,它们现在代表了在 SSO 中使用的最有希望的候选者。这些新的 UBP 进一步证明了疏水和堆积相互作用取代互补 H 键作为信息存储基础的力量的能力。有趣的是,每个新的 dNaM 类似物都带有更小的单环核碱基。虽然这可能通过促进摄取来促进它们的体内性能,但它们可能不太容易出现交叉链插层,并且更有可能采用边缘到边缘的结构。这也可能有助于它们更理想的保留,甚至可能促进具有更高密度 UBP 的 DNA 复制。本研究仅表征了 UBP 丢失,因为预计涉及天然核苷酸的突变是最有问题的。(5、25、26)然而,交叉链嵌入也可能促进自配对,即使在低水平下也可能导致 UBP 倒置(单个核苷酸交换链)。无论其水平如何,这些类似物的自配对介导的 UBP 倒置的可能性都较小。最后,使用 Cas9 可能会进一步提高每个新 UBP 的性能,我们目前正在探索这种可能性。在 SSO 的体内环境中保留良好但同时也具有不同物理化学特性的 UBP 家族的可用性具有重要意义,因为我们通过转录和翻译检索增加的信息的努力可能会引入额外的要求和限制。

Supporting Information 支持信息

Click to copy section link
单击以复制部分链接
Section link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b03540.
支持信息可在 ACS Publications 网站免费获取,网址为 DOI:10.1021/jacs.7b03540

  • Additional methods, supporting tables and figures, and references (PDF)
    其他方法、支持表格和图表以及参考资料 (PDF

Terms & Conditions  条款和条件

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS Web 版本即可获得。此类文件可以按文章下载用于研究用途(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 权限系统请求 ACS 以用于其他用途:http://pubs.acs.org/page/copyright/permissions.html

Author Information 作者信息

Click to copy section link
单击以复制部分链接
Section link copied!

  • Corresponding Author 通讯作者
  • Author 作者
    • Aaron W. Feldman - Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
      Aaron W. Feldman - 斯克里普斯研究所化学系,10550 North Torrey Pines Road, La Jolla, California 92037, 美国
  • Notes 笔记
    The authors declare no competing financial interest.
    作者声明没有竞争性的经济利益。

Acknowledgment 确认

Click to copy section link
单击以复制部分链接
Section link copied!

This work was supported by the National Institutes of Health (grant nos. GM060005 and GM118178 to F.E.R.). A.W.F. was supported by a National Science Foundation Graduate Research Fellowship (grant no. NSF/DGE-1346837).
这项工作得到了美国国立卫生研究院 (grant nos.GM060005 和 F.E.R. GM118178)。AWF 得到了美国国家科学基金会研究生研究奖学金(资助号。NSF/DGE-1346837)。

References 引用

Click to copy section link
单击以复制部分链接
Section link copied!

This article references 26 other publications.
本文引用了其他 26 种出版物。

  1. 1
    Leduc, S. The Mechanisms of Life; Rebman Company: New York, 1911.

    1勒杜克,S.生命的机制;雷布曼公司:纽约,1911 年。
  2. 2
    Malyshev, D. A.; Romesberg, F. E. Angew. Chem., Int. Ed. 2015, 54, 11930 11944 DOI: 10.1002/anie.201502890

    2
    马雷舍夫,DA; Romesberg, F. E.Angew. Chem., 国际教育 2015 54 11930 11944 DOI: 10.1002/anie.201502890
  3. 3
    Zhang, L.; Yang, Z.; Sefah, K.; Bradley, K. M.; Hoshika, S.; Kim, M. J.; Kim, H. J.; Zhu, G.; Jimenez, E.; Cansiz, S.; Teng, I. T.; Champanhac, C.; McLendon, C.; Liu, C.; Zhang, W.; Gerloff, D. L.; Huang, Z.; Tan, W.; Benner, S. A. J. Am. Chem. Soc. 2015, 137, 6734 6737 DOI: 10.1021/jacs.5b02251

    3
    张 L.; 杨 Z.; 塞法 K.; 布拉德利,KM; 星香 S.; 金 M.J.; 金 (Kim, H.J.); 朱 G.; 希门尼斯,E.; 坎西兹,S.; 滕,IT。; 尚帕尼亚克; 麦克伦登 C.; 刘 C.; 张伟; Gerloff, D. L.; 黄 Z.; 时间,W.; 本纳,SAJ. Am. Chem. Soc. 2015 137 67346737 DOI: 10.1021/jacs.5b02251
  4. 4
    Kimoto, M.; Hirao, I. In Chemical Biology of Nucleic Acids: Fundamentals and Clinical Applications; Erdmann, A. V.; Markiewicz, T. W.; Barciszewski, J., Eds.; Springer: Berlin, Heidelberg, 2014; p 131 148.

    4木本,M.;平尾,I.核酸化学生物学:基础和临床应用;厄德曼,AV;马凯维奇,TW;Barciszewski, J., 编辑;施普林格:柏林,海德堡,2014 年;第 131-148 页。
  5. 5
    Leconte, A. M.; Hwang, G. T.; Matsuda, S.; Capek, P.; Hari, Y.; Romesberg, F. E. J. Am. Chem. Soc. 2008, 130, 2336 2343 DOI: 10.1021/ja078223d

    5
    勒孔特,上午; GT; 松田 S.; 恰佩克; 哈里,Y.; Romesberg, F. E.J. Am. Chem. Soc. 2008 130 2336 2343 DOI: 10.1021/JA078223D
  6. 6
    Lavergne, T.; Malyshev, D. A.; Romesberg, F. E. Chem. - Eur. J. 2012, 18, 1231 1239 DOI: 10.1002/chem.201102066

    6
    拉弗涅,T.; 马雷舍夫,DA; Romesberg, F. E.化学 - Eur. J. 2012 18 1231 1239 DOI: 10.1002/化学201102066
  7. 7
    Malyshev, D. A.; Dhami, K.; Quach, H. T.; Lavergne, T.; Ordoukhanian, P.; Torkamani, A.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 12005 12010 DOI: 10.1073/pnas.1205176109

    7
    马雷舍夫,DA。; 达米,K.; 夸奇,HT; 拉弗涅,T.; Ordoukhanian, P.; 托卡马尼,A.; Romesberg, F. E.美国国家科学院院刊 2012 109 12005 12010 DOI: 10.1073/pnas.1205176109
  8. 8
    Dhami, K.; Malyshev, D. A.; Ordoukhanian, P.; Kubelka, T.; Hocek, M.; Romesberg, F. E. Nucleic Acids Res. 2014, 42, 10235 10244 DOI: 10.1093/nar/gku715

    8
    达米,K.; 马雷舍夫,DA; Ordoukhanian, P.; 库贝尔卡,T.; 霍切克 M.; Romesberg, F. E.核酸研究 2014 42 10235 10244 DOI: 10.1093/NAR/GKU715
  9. 9
    Li, L.; Degardin, M.; Lavergne, T.; Malyshev, D. A.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2014, 136, 826 829 DOI: 10.1021/ja408814g

    9
    李 L.; 德加丁; 拉弗涅,T.; 马雷舍夫,DA; 达米,K.; Ordoukhanian, P.; Romesberg, F. E.J. Am. Chem. Soc. 2014 136 826 829 DOI: 10.1021/JA408814G
  10. 10
    Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Correa, I. R., Jr.; Romesberg, F. E. Nature 2014, 509, 385 388 DOI: 10.1038/nature13314

    10
    马雷舍夫,DA; 达米,K.; 拉弗涅,T.; 陈 T.; 戴 N.; 福斯特,JM; 小科雷亚; Romesberg, F. E.自然 2014 509 385 388 DOI: 10.1038/自然13314
  11. 11
    Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Dwyer, T. J.; Ordoukhanian, P.; Romesberg, F. E.; Marx, A. Nat. Chem. Biol. 2012, 8, 612 614 DOI: 10.1038/nchembio.966

    11
    贝茨,K.; 马雷舍夫,DA; 拉弗涅,T.; 韦尔特,W.; 迪德里希斯,K.; 德怀尔,TJ; Ordoukhanian, P.; Romesberg, F. E.; 马克思,A.Nat. Chem. Biol. 2012 8 612 614 DOI: 10.1038/nchembio.966
  12. 12
    Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Romesberg, F. E.; Marx, A. J. Am. Chem. Soc. 2013, 135, 18637 18643 DOI: 10.1021/ja409609j

    12
    贝茨,K.; 马雷舍夫,DA; 拉弗涅,T.; 韦尔特,W.; 迪德里希斯,K.; Romesberg, F. E.; 马克思,A.J. Am. Chem. Soc. 2013 135 18637 18643 DOI: 10.1021/JA409609J
  13. 13
    Malyshev, D. A.; Pfaff, D. A.; Ippoliti, S. I.; Hwang, G. T.; Dwyer, T. J.; Romesberg, F. E. Chem. - Eur. J. 2010, 16, 12650 12659 DOI: 10.1002/chem.201000959

    13
    马雷舍夫,D. A.; 普法夫,DA; 伊波利蒂,SI; GT; 德怀尔,TJ; Romesberg, F. E.化学 - Eur. J. 2010 16 12650 12659 DOI: 10.1002/化学201000959
  14. 14
    Zhang, Y.; Lamb, B. M.; Feldman, A. W.; Zhou, A. X.; Lavergne, T.; Li, L.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1317 1322 DOI: 10.1073/pnas.1616443114

    14
    张倩; 兰姆,BM; 费尔德曼,AW; 周, A. X.; 拉弗涅,T.; 李丽; Romesberg, F. E.美国国家科学院院刊 2017 114 1317 1322 DOI: 10.1073/pnas.1616443114
  15. 15
    Lavergne, T.; Degardin, M.; Malyshev, D. A.; Quach, H. T.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2013, 135, 5408 5419 DOI: 10.1021/ja312148q

    15
    拉弗涅,T.; 德加丁; 马雷舍夫,DA; 夸奇,HT; 达米,K.; Ordoukhanian, P.; Romesberg, F. E.J. Am. Chem. Soc. 2013 135 5408 5419 DOI: 10.1021/JA312148Q
  16. 16
    Wu, Y.; Ogawa, A. K.; Berger, M.; McMinn, D. L.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc. 2000, 122, 7621 7632 DOI: 10.1021/ja0009931

    16
    吴 Y.; 小川 A. K.; 伯杰 M.; 麦克明,DL; 舒尔茨,PG; Romesberg, F. E.J. Am. Chem. Soc. 2000 122 7621 7632 DOI: 10.1021/JA0009931
  17. 17
    Henry, A. A.; Yu, C.; Romesberg, F. E. J. Am. Chem. Soc. 2003, 125, 9638 9646 DOI: 10.1021/ja035398o

    17
    亨利,AA; 于娟; Romesberg, F. E.J. Am. Chem. Soc. 2003 125 96389646 DOI: 10.1021/JA035398O
  18. 18
    Seo, Y. J.; Malyshev, D. A.; Lavergne, T.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2011, 133, 19878 19888 DOI: 10.1021/ja207907d

    18
    徐 Y. J.; 马雷舍夫,DA; 拉弗涅,T.; Ordoukhanian, P.; Romesberg, F. E.J. Am. Chem. Soc. 2011 133 19878 19888 DOI: 10.1021/JA207907D
  19. 19
    Matsuda, S.; Leconte, A. M.; Romesberg, F. E. J. Am. Chem. Soc. 2007, 129, 5551 5557 DOI: 10.1021/ja068282b

    19
    松田; 莱孔特,上午; Romesberg, F. E.J. Am. Chem. Soc. 2007 129 5551 5557 DOI: 10.1021/JA068282B
  20. 20
    Spratt, T. E. Biochemistry 2001, 40, 2647 2652 DOI: 10.1021/bi002641c

    20
    Spratt, TE 生物化学 2001 40 2647 2652 DOI: 10.1021/BI002641C
  21. 21
    Meyer, A. S.; Blandino, M.; Spratt, T. E. J. Biol. Chem. 2004, 279, 33043 33046 DOI: 10.1074/jbc.C400232200

    21
    迈耶,A. S.; 布兰迪诺; 斯普拉特,TEJ. Biol. 化学。 2004 279 33043 33046 DOI: 10.1074/jbc.
  22. 22
    Morales, J. C.; Kool, E. T. J. Am. Chem. Soc. 1999, 121, 2323 2324 DOI: 10.1021/ja983502+

    22
    莫拉莱斯,J. C.; 库尔,ETJ. Am. Chem. Soc. 1999 121 2323 2324 DOI: 10.1021/JA983502+
  23. 23
    Morales, J. C.; Kool, E. T. Biochemistry 2000, 39, 12979 12988 DOI: 10.1021/bi001578o

    23
    莫拉莱斯,J. C.; 库尔,ET生物化学 2000 39 12979 12988 DOI: 10.1021/BI001578O
  24. 24
    Li, Y.; Waksman, G. Protein Sci. 2001, 10, 1225 1233 DOI: 10.1110/ps.250101

    24
    李英; Waksman, G. 蛋白质科学。 2001 10 12251233 DOI: 10.1110/ps.250101
  25. 25
    Seo, Y. J.; Hwang, G. T.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2009, 131, 3246 3252 DOI: 10.1021/ja807853m

    25
    徐,YJ; GT; Ordoukhanian, P.; Romesberg, F. E.J. Am. Chem. Soc. 2009 131 3246 3252 DOI: 10.1021/JA807853M
  26. 26
    Morris, S. E.; Feldman, A. W.; Romesberg, F. E. ACS Synth. Biol. 2017, published online June 27. DOI:  DOI: 10.1021/acssynbio.7b00115 .

    26莫里斯,SE;费尔德曼,AW;Romesberg, FE ACS 合成器。Biol.2017,6 月 27 日在线发布。DOI: DOI: 10.1021/acssynbio.7b00115 .

Cited By 施引文献

Click to copy section link
单击以复制部分链接
Section link copied!

This article is cited by 28 publications.
本文被 28 篇出版物引用。

  1. Gongming Zhu, Haiyang Zhang, Liyang Han, Honglei Wang, Anlian Zhu, Lingjun Li. Solvent-Driven Room-Temperature Curtius Rearrangements to Access Nucleotides Bearing Substituted Fused Pyridones. Organic Letters 2024, 26 (20) , 4356-4360. https://doi.org/10.1021/acs.orglett.4c01403
    朱功明, 张海洋, 韩立阳, 王洪磊, 朱安莲, 李玲军. 溶剂驱动的室温 Curtius 重排,以获得带有取代的熔融吡啶酮的核苷酸。 有机快报 202426 (20) , 4356-4360。https://doi.org/10.1021/acs.orglett.4c01403
  2. Honglei Wang, Luying Wang, Nana Ma, Wuyuan Zhu, Bianbian Huo, Anlian Zhu, Lingjun Li. Access to Photostability-Enhanced Unnatural Base Pairs via Local Structural Modifications. ACS Synthetic Biology 2022, 11 (1) , 334-342. https://doi.org/10.1021/acssynbio.1c00451
  3. Koji Hashimoto, Emil C. Fischer, Floyd E. Romesberg. Efforts toward Further Integration of an Unnatural Base Pair into the Biology of a Semisynthetic Organism. Journal of the American Chemical Society 2021, 143 (23) , 8603-8607. https://doi.org/10.1021/jacs.1c03860
  4. Michael P. Ledbetter, Jonathan M. Craig, Rebekah J. Karadeema, Matthew T. Noakes, Hwanhee C. Kim, Sarah J. Abell, Jesse R. Huang, Brooke A. Anderson, Ramanarayanan Krishnamurthy, Jens H. Gundlach, Floyd E. Romesberg. Nanopore Sequencing of an Expanded Genetic Alphabet Reveals High-Fidelity Replication of a Predominantly Hydrophobic Unnatural Base Pair. Journal of the American Chemical Society 2020, 142 (5) , 2110-2114. https://doi.org/10.1021/jacs.9b09808
  5. Piotr Leonczak, Puneet Srivastava, Omprakash Bande, Guy Schepers, Eveline Lescrinier, Piet Herdewijn. N8-Glycosylated 8-Azapurine and Methylated Purine Nucleobases: Synthesis and Study of Base Pairing Properties. The Journal of Organic Chemistry 2019, 84 (21) , 13394-13409. https://doi.org/10.1021/acs.joc.9b01576
  6. Aaron W. Feldman, Vivian T. Dien, Rebekah J. Karadeema, Emil C. Fischer, Yanbo You, Brooke A. Anderson, Ramanarayanan Krishnamurthy, Jason S. Chen, Lingjun Li, Floyd E. Romesberg. Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism. Journal of the American Chemical Society 2019, 141 (27) , 10644-10653. https://doi.org/10.1021/jacs.9b02075
  7. Giacomo Padroni, Jamie M. Withers, Andrea Taladriz-Sender, Linus F. Reichenbach, John A. Parkinson, Glenn A. Burley. Sequence-Selective Minor Groove Recognition of a DNA Duplex Containing Synthetic Genetic Components. Journal of the American Chemical Society 2019, 141 (24) , 9555-9563. https://doi.org/10.1021/jacs.8b12444
  8. Vivian T. Dien, Matthew Holcomb, Aaron W. Feldman, Emil C. Fischer, Tammy J. Dwyer, Floyd E. Romesberg. Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet. Journal of the American Chemical Society 2018, 140 (47) , 16115-16123. https://doi.org/10.1021/jacs.8b08416
  9. Tanay Debnath, G. Andrés Cisneros. Investigation of the stability of D5SIC-DNAM-incorporated DNA duplex in Taq polymerase binary system: a systematic classical MD approach. Physical Chemistry Chemical Physics 2024, 26 (9) , 7287-7295. https://doi.org/10.1039/D3CP05571J
  10. Bianbian Huo, Chao Wang, Xiaoqi Hu, Honglei Wang, Gongming Zhu, Anlian Zhu, Lingjun Li. Peripheral substitution effects on unnatural base pairs: A case of brominated TPT3 to enhance replication fidelity. Bioorganic Chemistry 2023, 140 , 106827. https://doi.org/10.1016/j.bioorg.2023.106827
  11. Robert Dörrenhaus, Philip K. Wagner, Stephanie Kath-Schorr. Two are not enough: synthetic strategies and applications of unnatural base pairs. Biological Chemistry 2023, 404 (10) , 883-896. https://doi.org/10.1515/hsz-2023-0169
  12. Honglei Wang, Wuyuan Zhu, Chao Wang, Xiaohuan Li, Luying Wang, Bianbian Huo, Hui Mei, Anlian Zhu, Guisheng Zhang, Lingjun Li. Locating, tracing and sequencing multiple expanded genetic letters in complex DNA context via a bridge-base approach. Nucleic Acids Research 2023, 51 (9) , e52-e52. https://doi.org/10.1093/nar/gkad218
  13. Indu Negi, Bimaldeep Singh, Amanpreet Singh Mahmi, Purshotam Sharma. Structural Properties of Hachimoji Nucleic Acids and Their Building Blocks: Comparison of Genetic Systems with Four, Six and Eight Alphabets. ChemPhysChem 2023, 24 (5) https://doi.org/10.1002/cphc.202200714
  14. Floyd E. Romesberg. Discovery, implications and initial use of semi-synthetic organisms with an expanded genetic alphabet/code. Philosophical Transactions of the Royal Society B: Biological Sciences 2023, 378 (1871) https://doi.org/10.1098/rstb.2022.0030
  15. Leping Sun, Xingyun Ma, Binliang Zhang, Yanjia Qin, Jiezhao Ma, Yuhui Du, Tingjian Chen. From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma. RSC Chemical Biology 2022, 3 (10) , 1173-1197. https://doi.org/10.1039/D2CB00116K
  16. Bianbian Huo, Xiguang Zhang, Chao Wang, Honglei Wang, Gongming Zhu, Wuyuan Zhu, Anlian Zhu, Hui Mei, Lingjun Li. Mechanistic Insight into the Photoinduced Damage of an Unnatural Base Pair. Chemistry – A European Journal 2022, 28 (53) https://doi.org/10.1002/chem.202201730
  17. Floyd E. Romesberg. Creation, Optimization, and Use of Semi-Synthetic Organisms that Store and Retrieve Increased Genetic Information. Journal of Molecular Biology 2022, 434 (8) , 167331. https://doi.org/10.1016/j.jmb.2021.167331
  18. Paola Handal-Marquez, Anupama Anupama, Valerie Pezo, Philippe Marlière, Piet Herdewijn, Vitor B. Pinheiro. Beneath the XNA world: Tools and targets to build novel biology. Current Opinion in Systems Biology 2020, 24 , 142-152. https://doi.org/10.1016/j.coisb.2020.10.013
  19. Michiko Kimoto, Ichiro Hirao. Genetic alphabet expansion technology by creating unnatural base pairs. Chemical Society Reviews 2020, 49 (21) , 7602-7626. https://doi.org/10.1039/D0CS00457J
  20. Rodrigo Galindo-Murillo, Joaquín Barroso-Flores. Hydrophobic unnatural base pairs show a Watson-Crick pairing in micro-second molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics 2020, 38 (14) , 4098-4106. https://doi.org/10.1080/07391102.2019.1671898
  21. S. A. Mukba, P. K. Vlasov, P. M. Kolosov, E. Y. Shuvalova, T. V. Egorova, E. Z. Alkalaeva. Expanding the Genetic Code: Unnatural Base Pairs in Biological Systems. Molecular Biology 2020, 54 (4) , 475-484. https://doi.org/10.1134/S0026893320040111
  22. Emil C. Fischer, Koji Hashimoto, Yorke Zhang, Aaron W. Feldman, Vivian T. Dien, Rebekah J. Karadeema, Ramkrishna Adhikary, Michael P. Ledbetter, Ramanarayanan Krishnamurthy, Floyd E. Romesberg. New codons for efficient production of unnatural proteins in a semisynthetic organism. Nature Chemical Biology 2020, 16 (5) , 570-576. https://doi.org/10.1038/s41589-020-0507-z
  23. Michiko Kimoto, Ichiro Hirao. New Research Area, Xenobiology, by Integrating Chemistry and Biology. Journal of Synthetic Organic Chemistry, Japan 2020, 78 (5) , 465-475. https://doi.org/10.5059/yukigoseikyokaishi.78.465
  24. Andreas Marx, Karin Betz. The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases. Chemistry – A European Journal 2020, 26 (16) , 3446-3463. https://doi.org/10.1002/chem.201903525
  25. Floyd E. Romesberg. Synthetic Biology: The Chemist's Approach. Israel Journal of Chemistry 2019, 59 (1-2) , 91-94. https://doi.org/10.1002/ijch.201900014
  26. Vivian T Dien, Sydney E Morris, Rebekah J Karadeema, Floyd E Romesberg. Expansion of the genetic code via expansion of the genetic alphabet. Current Opinion in Chemical Biology 2018, 46 , 196-202. https://doi.org/10.1016/j.cbpa.2018.08.009
  27. Ichiro Hirao, Michiko Kimoto, Kyung Hyun Lee. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method. Biochimie 2018, 145 , 15-21. https://doi.org/10.1016/j.biochi.2017.09.007
  28. Pascal Röthlisberger, Cécile Gasse, Marcel Hollenstein. Nucleic Acid Aptamers: Emerging Applications in Medical Imaging, Nanotechnology, Neurosciences, and Drug Delivery. International Journal of Molecular Sciences 2017, 18 (11) , 2430. https://doi.org/10.3390/ijms18112430

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2017, 139, 33, 11427–11433
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.7b03540
Published August 10, 2017
Copyright © 2017 American Chemical Society

Article Views

2533

Altmetric

8

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. The dNaM-d5SICS and dNaM-dTPT3 UBPs.

    Figure 2

    Figure 2. Graphical representation of screen workflow. For sequence contexts 14, X denotes NaM or an NaM analog and Y denotes TPT3 or a TPT3 analog. Retention levels of dNaM-dTPT3 are indicated with “+” symbols. See ref 14 for original report of dNaM-dTPT3 retention data.

    Figure 3

    Figure 3. Structure of analogs used in current study. Shading denotes differences in retention observed in phase 1 of the screen. (A) dNaMTP analogs. Blue shading corresponds to analogs that at 125 μM showed retentions of greater than 90%; green, 50% to 90%; yellow, 20% to 50%; red, <20%. (B) dTPT3TP analogs. Blue shading corresponds to those that at 10 μM showed retentions greater than 90%; red, <10%. Ribose and phosphates omitted for clarity. For original references see Supporting Information.

    Figure 4

    Figure 4. UBP retention (%). (A) dNaMTP analogs added at either 125 μM or 10 μM and dTPT3TP added at 25 μM. (B) dTPT3TP analogs added at either 125 μM or 10 μM and dNaMTP added at 125 μM. (C) Selected analogs screened against each other with dNaMTP analogs added at 25 μM and dTPT3TP analogs added at 10 μM. Data are an average of three independent trials, with error bars indicating the standard deviation. A single asterisk indicates that no cell growth was observed at the higher concentration, and a double asterisk indicates that no cell growth was observed at either concentration.

    Figure 5

    Figure 5. UBP retention (%) with dTPT3TP and different dNaMTP analogs added at varying concentrations to the media. Shading indicates the level of UBP retention. Values are the average and standard deviation of three independent determinations.

    Figure 6

    Figure 6. UBP retention (%) with 25 μM dTPT3TP and varying concentrations of dNaMTP or dCNMOTP added to the media. Shading indicates the level of UBP retention. Values are the average and standard deviation of three independent determinations.

    Figure 7

    Figure 7. Four optimal UBPs discovered in this work.

  • References


    This article references 26 other publications.

    1. 1
      Leduc, S. The Mechanisms of Life; Rebman Company: New York, 1911.
    2. 2
      Malyshev, D. A.; Romesberg, F. E. Angew. Chem., Int. Ed. 2015, 54, 11930 11944 DOI: 10.1002/anie.201502890
    3. 3
      Zhang, L.; Yang, Z.; Sefah, K.; Bradley, K. M.; Hoshika, S.; Kim, M. J.; Kim, H. J.; Zhu, G.; Jimenez, E.; Cansiz, S.; Teng, I. T.; Champanhac, C.; McLendon, C.; Liu, C.; Zhang, W.; Gerloff, D. L.; Huang, Z.; Tan, W.; Benner, S. A. J. Am. Chem. Soc. 2015, 137, 6734 6737 DOI: 10.1021/jacs.5b02251
    4. 4
      Kimoto, M.; Hirao, I. In Chemical Biology of Nucleic Acids: Fundamentals and Clinical Applications; Erdmann, A. V.; Markiewicz, T. W.; Barciszewski, J., Eds.; Springer: Berlin, Heidelberg, 2014; p 131 148.
    5. 5
      Leconte, A. M.; Hwang, G. T.; Matsuda, S.; Capek, P.; Hari, Y.; Romesberg, F. E. J. Am. Chem. Soc. 2008, 130, 2336 2343 DOI: 10.1021/ja078223d
    6. 6
      Lavergne, T.; Malyshev, D. A.; Romesberg, F. E. Chem. - Eur. J. 2012, 18, 1231 1239 DOI: 10.1002/chem.201102066
    7. 7
      Malyshev, D. A.; Dhami, K.; Quach, H. T.; Lavergne, T.; Ordoukhanian, P.; Torkamani, A.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 12005 12010 DOI: 10.1073/pnas.1205176109
    8. 8
      Dhami, K.; Malyshev, D. A.; Ordoukhanian, P.; Kubelka, T.; Hocek, M.; Romesberg, F. E. Nucleic Acids Res. 2014, 42, 10235 10244 DOI: 10.1093/nar/gku715
    9. 9
      Li, L.; Degardin, M.; Lavergne, T.; Malyshev, D. A.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2014, 136, 826 829 DOI: 10.1021/ja408814g
    10. 10
      Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Correa, I. R., Jr.; Romesberg, F. E. Nature 2014, 509, 385 388 DOI: 10.1038/nature13314
    11. 11
      Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Dwyer, T. J.; Ordoukhanian, P.; Romesberg, F. E.; Marx, A. Nat. Chem. Biol. 2012, 8, 612 614 DOI: 10.1038/nchembio.966
    12. 12
      Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Romesberg, F. E.; Marx, A. J. Am. Chem. Soc. 2013, 135, 18637 18643 DOI: 10.1021/ja409609j
    13. 13
      Malyshev, D. A.; Pfaff, D. A.; Ippoliti, S. I.; Hwang, G. T.; Dwyer, T. J.; Romesberg, F. E. Chem. - Eur. J. 2010, 16, 12650 12659 DOI: 10.1002/chem.201000959
    14. 14
      Zhang, Y.; Lamb, B. M.; Feldman, A. W.; Zhou, A. X.; Lavergne, T.; Li, L.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1317 1322 DOI: 10.1073/pnas.1616443114
    15. 15
      Lavergne, T.; Degardin, M.; Malyshev, D. A.; Quach, H. T.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2013, 135, 5408 5419 DOI: 10.1021/ja312148q
    16. 16
      Wu, Y.; Ogawa, A. K.; Berger, M.; McMinn, D. L.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc. 2000, 122, 7621 7632 DOI: 10.1021/ja0009931
    17. 17
      Henry, A. A.; Yu, C.; Romesberg, F. E. J. Am. Chem. Soc. 2003, 125, 9638 9646 DOI: 10.1021/ja035398o
    18. 18
      Seo, Y. J.; Malyshev, D. A.; Lavergne, T.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2011, 133, 19878 19888 DOI: 10.1021/ja207907d
    19. 19
      Matsuda, S.; Leconte, A. M.; Romesberg, F. E. J. Am. Chem. Soc. 2007, 129, 5551 5557 DOI: 10.1021/ja068282b
    20. 20
      Spratt, T. E. Biochemistry 2001, 40, 2647 2652 DOI: 10.1021/bi002641c
    21. 21
      Meyer, A. S.; Blandino, M.; Spratt, T. E. J. Biol. Chem. 2004, 279, 33043 33046 DOI: 10.1074/jbc.C400232200
    22. 22
      Morales, J. C.; Kool, E. T. J. Am. Chem. Soc. 1999, 121, 2323 2324 DOI: 10.1021/ja983502+
    23. 23
      Morales, J. C.; Kool, E. T. Biochemistry 2000, 39, 12979 12988 DOI: 10.1021/bi001578o
    24. 24
      Li, Y.; Waksman, G. Protein Sci. 2001, 10, 1225 1233 DOI: 10.1110/ps.250101
    25. 25
      Seo, Y. J.; Hwang, G. T.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2009, 131, 3246 3252 DOI: 10.1021/ja807853m
    26. 26
      Morris, S. E.; Feldman, A. W.; Romesberg, F. E. ACS Synth. Biol. 2017, published online June 27. DOI:  DOI: 10.1021/acssynbio.7b00115 .
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b03540.

    • Additional methods, supporting tables and figures, and references (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.