In Vivo Structure–Activity Relationships and Optimization of an Unnatural Base Pair for Replication in a Semi-Synthetic Organism
体内研究结构-活性关系和非天然碱基对的优化,以便在半合成生物体中复制Click to copy article link
点击复制文章链接Article link copied!
点击复制文章链接Article link copied!
Abstract 抽象
单击以复制部分链接Section link copied!
In an effort to expand the genetic alphabet and create semi-synthetic organisms (SSOs) that store and retrieve increased information, we have developed the unnatural base pairs (UBPs) dNaM and d5SICS or dTPT3 (dNaM-d5SICS and dNaM-dTPT3). The UBPs form based on hydrophobic and packing forces, as opposed to complementary hydrogen bonding, and while they are both retained within the in vivo environment of an Escherichia coli SSO, their development was based on structure–activity relationship (SAR) data generated in vitro. To address the likely possibility of different requirements of the in vivo environment, we screened 135 candidate UBPs for optimal performance in the SSO. Interestingly, we find that in vivo SARs differ from those collected in vitro, and most importantly, we identify four UBPs whose retention in the DNA of the SSO is higher than that of dNaM-dTPT3, which was previously the most promising UBP identified. The identification of these four UBPs further demonstrates that when optimized, hydrophobic and packing forces may be used to replace the complementary hydrogen bonding used by natural pairs and represents a significant advance in our continuing efforts to develop SSOs that store and retrieve more information than natural organisms.
为了扩展遗传字母表并创造存储和检索更多信息的半合成生物体 (SSO),我们开发了非天然碱基对 (UBP) dNaM 和 d5SICS 或 dTPT3(dNaM-d 5SICS 和 dNaM-d TPT3)。UBP 基于疏水力和堆积力形成,而不是互补氢键,虽然它们都保留在大肠杆菌 SSO 的体内环境中,但它们的开发是基于体外生成的构效关系 (SAR) 数据。为了满足体内环境可能出现的不同要求,我们筛选了 135 个候选 UBP,以便在 SSO 中实现最佳性能。有趣的是,我们发现体内 SARs 与体外收集的 SAR 不同,最重要的是,我们确定了四个 UBP,它们在 SSO DNA 中的保留率高于 dNaM-d TPT3,后者是以前发现的最有希望的 UBP。这四种 UBP 的鉴定进一步表明,优化后,疏水力和堆积力可用于替代自然对使用的互补氢键,这代表了我们不断努力开发比自然生物体存储和检索更多信息的 SSO 的重大进步。
This publication is licensed under the terms of your
institutional subscription.
Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。请求重用权限。
版权所有 © 2017 美国化学会
Introduction 介绍
单击以复制部分链接Section link copied!
自然生物体将遗传信息存储在由四个核苷酸“字母”组成的字母表中,这些信息的复制和检索是通过它们的选择性配对形成两个碱基对来介导的。添加两个形成非天然碱基对 (UBP) 的新字母将增加潜在的信息内容,并为半合成生物 (SSO) 奠定基础,这些生物体能够产生具有非天然氨基酸的蛋白质,甚至具有新的形式和功能,这是合成生物学的中心目标。(1) 我们 (2) 以及 Benner (3) 和 Hirao (4) 小组都朝着这个目标努力,并各自确定了在体外良好复制的 UBP。我们的工作集中在以 dNaM-d 5SICS 和 dNaM-d TPT3 为代表的 UBP 家族(图 1),它们利用疏水和堆积力,而不是互补氢键,在双链 DNA 内和复制过程中稳定配对。(5-10) 这种配对模式在聚合酶活性位点内不自然地插入三磷酸盐时产生无边的 Watson-Crick 样几何形状,但一旦合成 UBP,就会出现交叉链插层,(11-13) 这可能要求脱嵌以继续合成。因此,非天然核碱基的扩展芳香族表面积可能是一种负担。尽管如此,随着通过核苷三磷酸转运蛋白 PtNTT2 的转基因表达输入的非天然三磷酸盐,我们开发了一种大肠杆菌 SSO,它可以将这些 UBP 稳定地保留在其 DNA 中。 (10, 14)虽然 UBP 在 SSO DNA 中的保留率不等同于天然碱基对的保留率,但可以通过 Cas9 的作用将保留率提高到天然水平,从而降解丢失 UBP 的 DNA。(14)
dNaM-d 5SICS 和 dNaM-d TPT3 UBP 都是通过对 150 多种类似物的深入调查鉴定的,这些类似物在体外进行了评估,最初是通过稳态动力学,后来是通过保留在 PCR 扩增的 DNA 中。(2) 这些研究提供了用于优化非天然核苷酸的关键构效关系 (SAR) 数据,但 SSO 的体内环境引入了额外的限制,例如毒性、输入和聚合酶可用性。因此,目前尚不清楚基于体外 SAR 优化的 UBP 是否最适合体内性能。事实上,在体外优化过程中,我们强调了识别多个不同 UBP 的重要性,这些 UBP 的组成核苷酸具有不同的物理化学性质,以便在将它们部署到 SSO 中时提供灵活性。(8, 15)
为了扩展我们的 SAR 数据以包括体内 SSO 环境的限制,我们对非天然三磷酸盐对进行了筛选,当这些三磷酸盐添加到生长培养基中时,这些三磷酸盐支持高水平的 UBP 保留。通过对 135 个候选 UBP 的检查,我们生成了新的 SAR 数据,这些数据在几个有趣的方面与体外生成的数据不同,值得注意的是,至少在某些情况下表明,体内复制比体外复制更宽松。最重要的是,我们发现了四种新的 UBP,它们在体内的保留效率高于 dNaM-d 5SICS 或 dNaM-d TPT3。每个新 UBP 中的组成核碱基之一是 dTPT3,这表明它至少代表了当前的最佳解决方案,但它与不同的 dNaM 类似物配对。最有前途的新 UBP 保留在 dNaM-d 5SICS 和 dNaM-d TPT3 均未保留的序列中,即使使用 Cas9,也代表了迄今为止确定的最有前途的 UBP,可用于我们不断努力开发稳定存储更多信息的 SSO。
Experimental Section 实验部分
单击以复制部分链接Section link copied!
General 常规
所有细菌均在 100 μL 液体 2×YT 培养基 (酪蛋白蛋白胨 16 g/L、酵母提取物 10 g/L、NaCl 5 g/L) 中培养,并在 96 孔微孔板中补充磷酸钾 (50 mM,pH 7)。注意到后,使用以下浓度的抗生素:氯霉素,5 μg/mL;氨苄青霉素,100 μg/mL。使用带有 590/20 nm 滤光片的 PerkinElmer EnVision 2103 多标记读数仪测量细胞生长,表示为 OD600。除非另有说明,否则分子生物学试剂购自 New England Biolabs(马萨诸塞州伊普斯威奇),并按照制造商的方案使用。必要时,通过微量洗脱柱(Zymo Research Corp;加利福尼亚州尔湾市)。所有天然寡核苷酸均购自 IDT(加利福尼亚州圣地亚哥),含有 dNaM 的寡核苷酸由 Biosearch Technologies(加利福尼亚州佩塔卢马)合成,并通过反相小柱纯化,并由 Synthorx(加利福尼亚州拉霍亚)友情提供。如前所述制备非天然核苷酸三磷酸盐 (表 S2) 并通过 MALDI-TOF 和 UV-vis 确认。
Analysis of UBP Retention
瑞联银行留存率分析
制备含有 dNaM-d TPT3 UBP 的质粒,并如前所述用于转化大肠杆菌菌株 YZ3。(10, 14)转化后,让 SSO 在含有 dNaMTP (125 μM) 和 dTPT3TP (25 μM) 的培养基中在 37 °C 下恢复 1 小时。通过离心沉淀细胞,重悬于不含非天然三磷酸盐的新鲜培养基中,然后用于接种含有指定浓度的不同非天然三磷酸盐对的培养物。当细胞密度达到 OD600 ∼0.7 时,将细胞沉淀,回收质粒,并用 d5SICSTP 和 dNaMTP 的生物素化类似物进行 PCR 扩增。如前所述 (10, 14) 和支持信息中所述,通过 PAGE 比较链霉亲和素移动和未移动条带的强度来确定 UBP 保留。使用带有 dNaM-d TPT3 UBP 的质粒作为体内复制实验的起点,以消除为检查的每个候选 UBP 构建单独质粒的需要,并消除体外质粒构建过程中 UBP 保留的差异。我们注意到,这需要在第一轮复制期间每个 dNaM 类似物与 dTPT3 配对,每个 dTPT3 类似物与 dNaM 配对,并且在 PCR 分析期间第一轮扩增需要类似的配对。还应该注意的是,该测定检测体积保留,并且不排除通过例如自我配对来反转对。
Results 结果
单击以复制部分链接Section link copied!
为了创建用于体内复制测定的模板,使用 Golden Gate 组装构建 pUC19 质粒的衍生物,其中单个 dNaM-d TPT3 UBP 嵌入 TK1 序列(局部序列 AX T,X = dNaM;以下称为序列上下文 1)中,在该上下文中,dNaM-d TPT3 UBP 在我们的 SSO 中很好地复制。(14) 然后使用质粒转化 SSO,使其在含有 dNaMTP 和 dTPT3TP 的培养基中短暂恢复。在缺乏三磷酸盐的新鲜培养基中重悬后,将 SSO 培养物分成 100 μL 等分试样,并补充不同浓度的不同非天然三磷酸盐对。一旦培养物达到 OD600 ∼0.7,回收质粒并分析 UBP 保留(图 2)。
在筛选的第一阶段,我们探索了添加 25 μM 的 dTPT3TP 和 75 种不同的 dNaMTP 类似物中的一种(结构如图 3A),添加浓度为 125 μM 或 10 μM。质粒回收后,我们观察到 13 个类似物(dMMO2TP、dDMOTP、dNaMTP、dClMOTP、dCNMOTP、d5FMTP、dFDMOTP、dFIMOTP、dZMOTP、dIMOTP、dMIMOTP、dFEMOTP 和 dMMO2ATP)的 UBP 保留率为 >90%(图 4A 和支持信息).在其余类似物中,4 个显示保留率为 50-90%(d2OMeTP、dTfMOTP、dMEMOTP、dVMOTP),9 个显示保留率为 20-50%(dDM5TP、d2MNTP、d45DMPyTP、dEMOTP、d DM TP、dTOK581TP、dTOK587TP、dPyMO2TP、d35DMPyTP), 其余结果显示,较低浓度的 <20 %. Addition of the dNaMTP 类似物的保留导致 UBP 保留效率通常较低,只有四种,dMMO2TP、dClMOTP、dCNMOTP 和 d5FMTP,导致高保留 (>80%)。5 个,dFIMOTP、dIMOTP、dFEMOTP、dMMO2ATP 以及 dNaMTP 本身,显示出中等水平的保留(在 40-80% 之间),4 个,dFDMOTP、dVMOTP、d2OMeTP 和 dZMOTP,显示略低的保留 (20-40%),其余显示 <20% 的保留。
接下来,我们通过添加 125 μM dNaMTP 和 16 种不同的 dTPT3TP 类似物中的一种(结构如图 3B 所示)来探索 UBP 保留,浓度为 125 μM 或 10 μM。当以较高浓度提供时,dTPT3TP 类似物中的 9 个,dTPT3PATP、dTPT3TP、dSICSTP、dFPT1、d4SICS、dTPT1、d5SICS、dNICS 和 dSNICS,在质粒回收时显示出显著的 UBP 保留(图 4B 和支持信息)。与 dNaMTP 类似物不同,这 9 种 UBP 在较低浓度下表现出相似或更好的保留性,而 dICSTP、d4MICSTP 和 d5MICSTP 也显示出显著的保留性(由于毒性,无法确定这三种类似物在较高浓度下的保留性)。显然,这些类似物的较低浓度下 UBP 保留效果更佳,在这些条件下,当与 dNaMTP 结合使用时,除 dONICSTP、d7OTPTP、d7OFPTP 和 d4OTPTP(在两种浓度下均有毒)外,所有检查的三磷酸类似物均显示 UBP 保留率超过 70%。
在第二阶段的筛选中,我们将 12 个最有前途的 dTPT3TP 类似物与第一阶段确定的 4 个最有前途的 dNaMTP 类似物杂交。我们将 UBP 掺入同一质粒中,但将其嵌入 AXA 的局部序列中(上下文 2,X = d NaM),在这种情况下,我们发现保留 dNaM-d TPT3 比序列上下文 1 更具挑战性。(14) 基于第一阶段的筛选,我们还关注了 dNaMTP 和 dTPT3TP 类似物的浓度分别为 25 μM 和 10 μM,以增加筛选的动态范围。仅在含有 dTPT3TP 或 dSICSTP 的对中观察到显著的保留,但发现每种对四种 dNaMTP 类似物中的每一种都产生至少中等的保留(图 4C 和支持信息)。与 dMMO2TP 配对时,dSICSTP 的保留率适中 (19%),但 d5FMTP 、 dCNMOTP 和 dClMOTP 的保留率更高,分别为 68% 、 79% 和 61% 的保留率。然而,在 dTPT3TP 中观察到最高的保留率 (均为 >87%)。
接下来,我们探索了鉴定出的四种最有前途的 UBP,d5FM-d TPT3、dMMO2-d TPT3、dCNMO-d TPT3 和 dClMO-d TPT3,当嵌入上下文 2 中时,但三磷酸盐浓度为 25 μM、10 μM 或 2.5 μM(图 5)。虽然很明显 dMMO2TP 和 d5FMTP 在 25 μM 时保留效果最好,但 UBP 保留率太高,无法区分 dCNMOTP 和 dClMOTP。因此,我们检查了位于同一质粒中的 UBP 的保留,但在 CXC 的局部序列上下文中(上下文 3,X = d NaM),这对于 dNaM-d TPT3 保留尤其具有挑战性 (14)(图 5)。数据显示,25 μM 是两对的最佳浓度,dCNMOTP 和 dTPT3TP 的性能优于 dClMOTP 和 dTPT3TP,保留率分别为 42% 和 21%。虽然 d5FMTP 和 dMMO2TP 在该序列背景下在高浓度下导致略高的保留 (分别为 49% 和 45%),但它们在较低浓度下的保留率显着降低。
在检查的 135 个候选 UBP 中,数据显示 dCNMO-d TPT3 在 SSO 中的复制效率最高。为了直接、更彻底地将该 UBP 与先前确定的复制效率最高的 UBP dNaM-d TPT3 进行比较,我们检查了上述三个序列上下文中两个对的保留情况,以及第四个序列,它将 UBP 定位在 CXG 的局部序列上下文中(上下文 4),这是 dNaM-d TPT3 最具挑战性的序列之一 (14)(图 6)。dTPT3TP 的添加浓度为 25 μM,而 dNaMTP 或 dCNMOTP 的添加浓度为 125 μM 或 25 μM。在较高浓度下,我们在序列上下文 1 中观察到 dCNMOTP 和 dNaMTP 的保留率为 >99%,但是虽然在较低浓度 (98%) 下添加 dCNMOTP 的保留率仍然很高,但随着 dNaMTP (85%) 的添加而降低。在上下文 2 中,在高浓度 (73%) 和低浓度 (36%) 下观察到 dNaMTP 的保留率降低,但使用 dCNMOTP (>99%) 在两种浓度下的保留率仍然很高。在上下文 3 中,添加较高浓度的 d NaM TP 仅导致中等保留 (26%),而添加较低浓度的 dNaMTP 导致没有保留。然而,对于 dCNMOTP,在高浓度 (65%) 和低浓度 (42%) 下均观察到显着保留。 最后,在上下文 4 中,UBP 在任一浓度下均未显著保留 dNaMTP,但在高浓度d CNMOTP (24%) 下保持适中。
Discussion 讨论
单击以复制部分链接Section link copied!
dNaM-d TPT3 的发现是由体外 SAR 驱动的,该 SAR 最终利用了 150 多个非天然核苷酸。虽然 dNaM-d TPT3 是发现的最有前途的 UBP,并且显然适合在活体 SSO 中使用,(14) 但它的保留性与序列上下文有关,一些序列显示出高保留率,而另一些序列则较少或没有保留。在体外发现阶段,我们还鉴定了其组成核苷酸具有不同物理化学性质的变体,这些变体可能会区分体内性能。通过这些类似物,我们现在已经在 SSO 的体内环境中研究了 135 个变体 UBP。有趣的是,我们发现体内 SAR 与体外收集的 SAR 既相似又不同。例如,dICS 及其甲基衍生类似物 d4MICS 和 d5MICS 相当好地支持 UBP 在体内的保留,但仅限于低浓度,这表明它们在高浓度下被错误掺入相反的天然核苷酸,从而导致复制叉停滞和毒性。事实上,在体外,稳态动力学分析表明,这些类似物可以以合理的效率错误地插入模板中天然核苷酸的相反位置。(16) 然而,含有这些类似物的 UBP 不能进行 PCR 扩增,这表明观察到的保留是体内环境所特有的。dICS 支架的杂原子衍生化通常是有害的,并导致显着的毒性,正如我们之前在体外观察到的那样,这与错误掺入一致。 (17) dNICS 是一个例外,因为这种杂原子衍生的 dICS 类似物相当好地支持 UBP 保留,事实上,dSNICS 的额外硫取代基导致类似物在低浓度和高浓度下都支持中等保留。硫的有益作用不依赖于 aza 取代,因为与 dICS 相比,dSICS 的保留率也有所增加。因此,aza 和硫取代基似乎可以独立地减少体内错配。虽然在体外观察到硫取代基的这种情况,但在 aza 取代中观察到相反的情况,这表明其减少错配的能力是体内环境独有的。
使用允许不同功能的位点特异性连接的接头修饰非天然核苷酸对于体内标记实验特别感兴趣。dTPT3TP 的接头修饰,导致 dTPT3PATP,在体内耐受性良好,在体外也观察到。然而,dMMO2ATP 在体内具有良好的耐受性,而 dMMO2PATP、dMMO2BIOTP 和 dMMO2SSBIOTP 完全消融保留,这与在体外观察到的情况相反。(18) 虽然 dMMO2ATP 在低浓度下显示保留性降低,而 dTPT3PATP 则没有,但其游离胺接头应有助于体内标记或交联实验。同样,dZMOTP 和 dFEMOTP 在高浓度补充时在体内保留良好,并分别在大沟中提供叠氮化物和炔烃部分,它们也应促进体内标记或交联。
大量体外 SAR 数据令人信服地表明,通常需要一个 H 键受体与糖苷键邻位,从而在掺入 DNA 后定向到发育中的小沟中,这是有效持续引物延伸所必需的。(19) 该位置对 H 键受体的一般要求与天然碱基对的研究一致,(20-23) 它们总是具有一个配置相似的 H 键受体,该受体被认为与基于聚合酶的 H 键供体发生关键相互作用。(24) 一个例外是含有 d2MN 与 dTPT3 对对的 DNA 的相对有效的 PCR 扩增。(8)在体内,d2MNTP 也支持 dTPT3TP 的保留,但当与 dTPT3TP 结合时,dDM5TP 也支持保留。此外,虽然 dICSTP、dNICSTP、d4MICSTP 和 d5MICSTP 在与任何类似物配对时不支持 PCR 扩增,(8) 当配对 dNaMTP 时,它们支持合理的体内保留。显然,对邻位基团的要求在体外和体内略有不同,至少在某些情况下, 它们在体内更宽松。
从实践的角度来看,当前研究最重要的结果是 d5FM-d TPT3、dMMO2-d TPT3、dCNMO-d TPT3 和 dClMO-d TPT3 UBP 的优异体内性能(图 7)。这些新 UBP 中的每一个在 SSO 中的保留率,特别是 dCNMO-d TPT3,都优于 dNaM-d TPT3,后者是以前确定的最有前途的 UBP,并且需要向生长培养基中添加较少的核苷酸三磷酸。事实上,dCNMO-d TPT3 在序列上下文 4 中显示出至少中等的保留,其中 dNaM-d TPT3 保留得非常差,以至于无法被 Cas9 挽救,这表明它在尝试复制后立即丢失。有趣的是,这与体外数据形成鲜明对比,其中 dNaM-d TPT3 的保留优于 dCNMO-d TPT3 的保留,(8, 15) 表明大肠杆菌提供了一个独特的环境,其中 dCNMO-d TPT3 更优化。可能的促成因素包括 PtNTT2 介导的摄取、细胞内的稳定性或不同聚合酶的识别,这些聚合酶可以访问复制叉并实际介导体内复制。
无论其性能背后的具体属性如何,很明显,本研究已经确定了四个新的 UBP,它们现在代表了在 SSO 中使用的最有希望的候选者。这些新的 UBP 进一步证明了疏水和堆积相互作用取代互补 H 键作为信息存储基础的力量的能力。有趣的是,每个新的 dNaM 类似物都带有更小的单环核碱基。虽然这可能通过促进摄取来促进它们的体内性能,但它们可能不太容易出现交叉链插层,并且更有可能采用边缘到边缘的结构。这也可能有助于它们更理想的保留,甚至可能促进具有更高密度 UBP 的 DNA 复制。本研究仅表征了 UBP 丢失,因为预计涉及天然核苷酸的突变是最有问题的。(5、25、26)然而,交叉链嵌入也可能促进自配对,即使在低水平下也可能导致 UBP 倒置(单个核苷酸交换链)。无论其水平如何,这些类似物的自配对介导的 UBP 倒置的可能性都较小。最后,使用 Cas9 可能会进一步提高每个新 UBP 的性能,我们目前正在探索这种可能性。在 SSO 的体内环境中保留良好但同时也具有不同物理化学特性的 UBP 家族的可用性具有重要意义,因为我们通过转录和翻译检索增加的信息的努力可能会引入额外的要求和限制。
Supporting Information 支持信息
单击以复制部分链接Section link copied!
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b03540.
支持信息可在 ACS Publications 网站免费获取,网址为 DOI:10.1021/jacs.7b03540。
Terms & Conditions 条款和条件
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS Web 版本即可获得。此类文件可以按文章下载用于研究用途(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 权限系统请求 ACS 以用于其他用途:http://pubs.acs.org/page/copyright/permissions.html。
Acknowledgment 确认
单击以复制部分链接Section link copied!
This work was supported by the National Institutes of Health (grant nos. GM060005 and GM118178 to F.E.R.). A.W.F. was supported by a National Science Foundation Graduate Research Fellowship (grant no. NSF/DGE-1346837).
这项工作得到了美国国立卫生研究院 (grant nos.GM060005 和 F.E.R. GM118178)。AWF 得到了美国国家科学基金会研究生研究奖学金(资助号。NSF/DGE-1346837)。
References 引用
单击以复制部分链接Section link copied!
This article references
26 other publications.
本文引用了其他 26 种出版物。
- 2Malyshev, D. A.; Romesberg, F. E. Angew. Chem., Int. Ed. 2015, 54, 11930– 11944 DOI: 10.1002/anie.201502890Google Scholar 谷歌学术2https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXhsVSjtLrL&md5=56b77b89dbbf47428bf446e8de15ca82The expanded genetic alphabetMalyshev, Denis A.; Romesberg, Floyd E.Angewandte Chemie, International Edition (2015), 54 (41), 11930-11944CODEN: ACIEF5; ISSN:1433-7851. (Wiley-VCH Verlag GmbH & Co. KGaA)A review. All biol. information, since the last common ancestor of all life on Earth, has been encoded by a genetic alphabet consisting of only four nucleotides that form two base pairs. Long-standing efforts to develop two synthetic nucleotides that form a third, unnatural base pair (UBP) have recently yielded three promising candidates, one based on alternative hydrogen bonding, and two based on hydrophobic and packing forces. All three of these UBPs are replicated and transcribed with remarkable efficiency and fidelity, and the latter two thus demonstrate that hydrogen bonding is not unique in its ability to underlie the storage and retrieval of genetic information. This Review highlights these recent developments as well as the applications enabled by the UBPs, including the expansion of the evolution process to include new functionality and the creation of semi-synthetic life that stores increased information.
2马雷舍夫,DA; Romesberg, F. E.Angew. Chem., 国际教育 2015, 54, 11930– 11944 DOI: 10.1002/anie.201502890Google Scholar内容2https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXhsVSjtLrL&md5=56b77b89dbbf47428bf446e8de15ca82 的更多扩展的遗传字母表Malyshev, Denis A.;罗梅斯伯格,弗洛伊德 E.Angewandte Chemie,国际版 (2015 年), 54 (41)、 公元 11930 年 - 11944 元科登: ACIEF5; 国际标准书号:1433-7851。 (Wiley-VCH Verlag GmbH & Co. KGaA)评论。 自地球上所有生命的最后一个共同祖先以来,所有生物信息都是由一个遗传字母编码的,该字母表仅由四个核苷酸组成,形成两个碱基对。 长期以来,人们一直在努力开发形成第三个非天然碱基对 (UBP) 的合成核苷酸,最近产生了三种有前途的候选核苷酸,一种基于替代氢键,另一种基于疏水和堆积力。 所有这三种 UBP 都以极高的效率和保真度进行复制和转录,因此,后两者表明氢键在遗传信息的存储和检索能力方面并不独特。 本综述重点介绍了这些最新发展以及 UBP 实现的应用,包括扩展进化过程以包括新功能和创建存储更多信息的半合成生命。 - 3Zhang, L.; Yang, Z.; Sefah, K.; Bradley, K. M.; Hoshika, S.; Kim, M. J.; Kim, H. J.; Zhu, G.; Jimenez, E.; Cansiz, S.; Teng, I. T.; Champanhac, C.; McLendon, C.; Liu, C.; Zhang, W.; Gerloff, D. L.; Huang, Z.; Tan, W.; Benner, S. A. J. Am. Chem. Soc. 2015, 137, 6734– 6737 DOI: 10.1021/jacs.5b02251Google Scholar 谷歌学术3https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXot1Sru70%253D&md5=8f8f6e892516e704800cf45cc0aea51aEvolution of functional six-nucleotide DNAZhang, Liqin; Yang, Zunyi; Sefah, Kwame; Bradley, Kevin M.; Hoshika, Shuichi; Kim, Myong-Jung; Kim, Hyo-Joong; Zhu, Guizhi; Jimenez, Elizabeth; Cansiz, Sena; Teng, I-Ting; Champanhac, Carole; McLendon, Christopher; Liu, Chen; Zhang, Wen; Gerloff, Dietlind L.; Huang, Zhen; Tan, Weihong; Benner, Steven A.Journal of the American Chemical Society (2015), 137 (21), 6734-6737CODEN: JACSAT; ISSN:0002-7863. (American Chemical Society)Axiomatically, the d. of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addn. could also add functional groups not found in natural DNA, but useful for mol. performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson-Crick geometry. These were added to a library of oligonucleotides used in a lab. in vitro evolution (LIVE) expt.; the GACTZP library was challenged to deliver mols. that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding mols. not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than std. libraries.
3张 L.; 杨 Z.; 塞法 K.; 布拉德利,KM; 星香 S.; 金 M.J.; 金 (Kim, H.J.); 朱 G.; 希门尼斯,E.; 坎西兹,S.; 滕,IT。; 尚帕尼亚克; 麦克伦登 C.; 刘 C.; 张伟; Gerloff, D. L.; 黄 Z.; 时间,W.; 本纳,SAJ. Am. Chem. Soc. 2015, 137, 6734–6737 DOI: 10.1021/jacs.5b02251Google Scholar内容3https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXot1Sru70%253D&md5=8f8f6e892516e704800cf45cc0aea51a 的更多功能性六核苷酸DNA的进化张立琴;杨遵义;塞法,夸梅;布拉德利,凯文 M.;星香,Shuichi;Kim, Myong-Jung;Kim, Hyo-Joong;朱桂芝;伊丽莎白·希门尼斯;参议院 Cansiz;滕一婷;Champanhac, 卡罗尔;麦克伦登,克里斯托弗;刘晨;张温;格洛夫,迪特林德 L.;黄珍;时间,Weihong ;本纳,史蒂文 A.美国化学会杂志 (2015 年), 票价 137 元 (21)、 6734-6737科登: JACSAT公司; SSS:0002-7863。 (美国化学学会)从公理上讲,存储在 DNA 中的信息 d. 只有四个核苷酸 (GACT),高于二进制代码中的d.,但低于合成生物学家成功地将独立复制的核苷酸添加到遗传系统时可能达到的水平。 这种添加还可以添加天然 DNA 中没有的官能团,但对分子性能很有用。 在这里,我们考虑了两个新的核苷酸(Z 和 P,6-氨基-5-硝基-3-(1'-β-D-2'-脱氧核糖基-呋喃糖基)-2(1H)-吡啶酮和 2-氨基-8-(1'-β-D-2'-脱氧呋喃核糖基)-咪唑[1,2-a]-1,3,5-三嗪-4(8H)-酮)。 这些旨在通过完整的 Watson-Crick 几何结构进行配对。 这些被添加到实验室使用的寡核苷酸文库中。体外进化 (LIVE) 实验;GACTZP 文库面临交付 mols 的挑战。选择性地与肝癌细胞结合,但不与未转化的肝细胞结合。 与经典的体外选择不同,低水平突变允许该系统进化以产生结合分子。不一定存在于原始库中。 回收了十几种结合物种。 最好的序列中有 Z 和/或 P。 几个项目有多个、附近和相邻的 Z 和 P。 只有较弱的粘合剂根本不包含 Z 或 P。 这表明该系统探索了该遗传系统可用的大部分序列空间,并且 GACTZP 文库是比标准文库更丰富的功能库。 - 4Kimoto, M.; Hirao, I. In Chemical Biology of Nucleic Acids: Fundamentals and Clinical Applications; Erdmann, A. V.; Markiewicz, T. W.; Barciszewski, J., Eds.; Springer: Berlin, Heidelberg, 2014; p 131– 148.
4木本,M.;平尾,I.核酸化学生物学:基础和临床应用;厄德曼,AV;马凯维奇,TW;Barciszewski, J., 编辑;施普林格:柏林,海德堡,2014 年;第 131-148 页。 - 6Lavergne, T.; Malyshev, D. A.; Romesberg, F. E. Chem. - Eur. J. 2012, 18, 1231– 1239 DOI: 10.1002/chem.201102066Google Scholar 谷歌学术6https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXhs1Ghur3L&md5=e3fe084c25ab1596e07e721de72d4408Major groove substituents and polymerase recognition of a class of predominantly hydrophobic unnatural base pairsLavergne, Thomas; Malyshev, Denis A.; Romesberg, Floyd E.Chemistry - A European Journal (2012), 18 (4), 1231-1239, S1231/1-S1231/27CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)Expansion of the genetic alphabet with an unnatural base pair is a long-standing goal of synthetic biol. The authors have developed a class of unnatural base pairs, formed between d5SICS and analogs of dMMO2 that are efficiently and selectively replicated by the Klenow fragment (Kf) DNA polymerase. In an effort to further characterize and optimize replication, the authors report the synthesis of five new dMMO2 analogs bearing different substituents designed to be oriented into the developing major groove and an anal. of their insertion opposite d5SICS by Kf and Thermus aquaticus DNA polymerase I (Taq). We also expand the anal. of the previously optimized pair, dNaM-d5SICS, to include replication by Taq. Finally, the efficiency and fidelity of PCR amplification of the base pairs by Taq or Deep Vent polymerases was examd. The resulting structure-activity relationship data suggest that the major determinants of efficient replication are the minimization of desolvation effects and the introduction of favorable hydrophobic packing, and that Taq is more sensitive than Kf to structural changes. In addn., the authors identify an analog (dNMO1) that is a better partner for d5SICS than any of the previously identified dMMO2 analogs with the exception of dNaM. They also found that dNaM-d5SICS is replicated by both Kf and Taq with rates approaching those of a natural base pair.
6拉弗涅,T.; 马雷舍夫,DA; Romesberg, F. E.化学 - Eur. J. 2012, 18, 1231– 1239 DOI: 10.1002/化学201102066Google Scholar内容6一类主要疏水性非天然碱基对的主要沟取代基和聚合酶识别Lavergne, Thomas;马雷舍夫,丹尼斯 A.;罗梅斯伯格,弗洛伊德 E.化学 - A European Journal (2012 年)、 18 (4)、 1231-1239、S1231/1-S1231/27科登: CEUJED; 国际标准书号:0947-6539。 (Wiley-VCH Verlag GmbH & Co. KGaA)用非自然碱基对扩展遗传字母表是合成生物学的一个长期目标。 作者开发了一类非天然碱基对,形成于 d5SICS 和 dMMO2 类似物之间,它们被 Klenow 片段 (Kf) DNA 聚合酶有效且选择性地复制。 为了进一步表征和优化复制,作者报告了五种带有不同取代基的新型 dMMO2 类似物的合成,这些取代基被设计成通过 Kf 和水生热藻 DNA 聚合酶 I (Taq) 插入与 d5SICS 相反的 d5SICS 的肛门。 我们还扩展了先前优化的对 dNaM-d5SICS 的分析,以包括 Taq 的复制。 最后,检查了 Taq 或 Deep Vent 聚合酶对碱基对的 PCR 扩增的效率和保真度。 由此产生的结构-活性关系数据表明,有效复制的主要决定因素是脱溶剂效应的最小化和有利疏水堆积的引入,并且 Taq 比 Kf 对结构变化更敏感。 在附录中,作者确定了一种类似物 (dNMO1),它比以前确定的任何 dMMO2 类似物都更适合 d5SICS 的伴侣,但 dNaM 除外。 他们还发现 dNaM-d5SICS 可以被 Kf 和 Taq 复制,其速率接近天然碱基对的速率。 - 7Malyshev, D. A.; Dhami, K.; Quach, H. T.; Lavergne, T.; Ordoukhanian, P.; Torkamani, A.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 12005– 12010 DOI: 10.1073/pnas.1205176109
7马雷舍夫,DA。; 达米,K.; 夸奇,HT; 拉弗涅,T.; Ordoukhanian, P.; 托卡马尼,A.; Romesberg, F. E.美国国家科学院院刊 2012, 109, 12005– 12010 DOI: 10.1073/pnas.1205176109 - 10Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Correa, I. R., Jr.; Romesberg, F. E. Nature 2014, 509, 385– 388 DOI: 10.1038/nature13314Google Scholar 谷歌学术10https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXotVyqtb8%253D&md5=97b4b184cda52cc809b1705e5e88ad8eA semi-synthetic organism with an expanded genetic alphabetMalyshev, Denis A.; Dhami, Kirandeep; Lavergne, Thomas; Chen, Tingjian; Dai, Nan; Foster, Jeremy M.; Correa, Ivan R.; Romesberg, Floyd E.Nature (London, United Kingdom) (2014), 509 (7500), 385-388CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)Organisms are defined by the information encoded in their genomes, and since the origin of life this information has been encoded using a two-base-pair genetic alphabet (A-T and G-C). In vitro, the alphabet has been expanded to include several unnatural base pairs (UBPs). We have developed a class of UBPs formed between nucleotides bearing hydrophobic nucleobases, exemplified by the pair formed between d5SICS and dNaM (d5SICS-dNaM), which is efficiently PCR-amplified and transcribed in vitro, and whose unique mechanism of replication has been characterized. However, expansion of an organism's genetic alphabet presents new and unprecedented challenges: the unnatural nucleoside triphosphates must be available inside the cell; endogenous polymerases must be able to use the unnatural triphosphates to faithfully replicate DNA contg. the UBP within the complex cellular milieu; and finally, the UBP must be stable in the presence of pathways that maintain the integrity of DNA. Here we show that an exogenously expressed algal nucleotide triphosphate transporter efficiently imports the triphosphates of both d5SICS and dNaM (d5SICSTP and dNaMTP) into Escherichia coli, and that the endogenous replication machinery uses them to accurately replicate a plasmid contg. d5SICS-dNaM. Neither the presence of the unnatural triphosphates nor the replication of the UBP introduces a notable growth burden. Lastly, we find that the UBP is not efficiently excised by DNA repair pathways. Thus, the resulting bacterium is the first organism to propagate stably an expanded genetic alphabet.
10马雷舍夫,DA; 达米,K.; 拉弗涅,T.; 陈 T.; 戴 N.; 福斯特,JM; 小科雷亚; Romesberg, F. E.自然 2014, 509, 385– 388 DOI: 10.1038/自然13314Google Scholar10内容?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXotVyqtb8%253D&md5=97b4b184cda52cc809b1705e5e88ad8e一种具有扩展遗传字母表的半合成生物Malyshev, Denis A.;达米,基兰迪普;拉弗涅,托马斯;陈廷健;戴楠;福斯特,杰里米 M.;科雷亚,伊万 R.;罗梅斯伯格,弗洛伊德 E.Nature (英国 伦敦) (2014 年)、 509 元 (7500)、 385-388 元科登: 纳图阿斯; 国际标准书号:0028-0836。 (自然出版集团)生物体是由其基因组中编码的信息定义的,自生命起源以来,这些信息一直使用两个碱基对的遗传字母表(A-T 和 G-C)进行编码。 在体外,字母表已扩展到包括几个非天然碱基对 (UBP)。 我们开发了一类在带有疏水核碱基的核苷酸之间形成的 UBP,以 d5SICS 和 dNaM 之间形成的一对 (d5SICS-dNaM) 为例,它在体外被有效地 PCR 扩增和转录,并且其独特的复制机制已被表征。 然而,生物体遗传字母表的扩展带来了前所未有的新挑战:非天然的核苷三磷酸盐必须在细胞内可用;内源性聚合酶必须能够使用非天然的三磷酸盐来忠实地复制 DNA contg。复杂细胞环境中的 UBP;最后,UBP 必须在存在维持 DNA 完整性的通路的情况下保持稳定。 在这里,我们表明外源表达的藻类核苷酸三磷酸转运蛋白有效地将 d5SICS 和 dNaM 的三磷酸盐(d5SICSTP 和 dNaMTP)输入到大肠杆菌中,并且内源性复制机制使用它们来准确复制质粒浓度。d5SICS-dNaM 的。 非天然三磷酸盐的存在和 UBP 的复制都没有带来显著的生长负担。 最后,我们发现 UBP 不能被 DNA 修复途径有效切除。 因此,所得细菌是第一个稳定繁殖扩展的遗传字母表的生物体。 - 11Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Dwyer, T. J.; Ordoukhanian, P.; Romesberg, F. E.; Marx, A. Nat. Chem. Biol. 2012, 8, 612– 614 DOI: 10.1038/nchembio.966Google Scholar 谷歌学术11https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XnvVyrurw%253D&md5=3f53105607a419a1d1326125178d682dKlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometryBetz, Karin; Malyshev, Denis A.; Lavergne, Thomas; Welte, Wolfram; Diederichs, Kay; Dwyer, Tammy J.; Ordoukhanian, Phillip; Romesberg, Floyd E.; Marx, AndreasNature Chemical Biology (2012), 8 (7), 612-614CODEN: NCBABT; ISSN:1552-4450. (Nature Publishing Group)Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.
11贝茨,K.; 马雷舍夫,DA; 拉弗涅,T.; 韦尔特,W.; 迪德里希斯,K.; 德怀尔,TJ; Ordoukhanian, P.; Romesberg, F. E.; 马克思,A.Nat. Chem. Biol. 2012, 8, 612– 614 DOI: 10.1038/nchembio.966Google Scholar内容11KlenTaq 聚合酶通过诱导 Watson-Crick 几何Betz, Karin 复制非自然碱基对;马雷舍夫,丹尼斯 A.;拉弗涅,托马斯;韦尔特,沃尔夫拉姆;迪德里希斯,凯;德怀尔,塔米 J.;奥尔杜哈尼安,菲利普;罗梅斯伯格,弗洛伊德 E.;Marx, AndreasNature 化学生物学 (2012 年)、 8 (7)、 612-614科登: NCBABT 的; 国际标准书号:1552-4450。 (自然出版集团)已经开发了许多候选非天然 DNA 碱基对,但一些最佳复制对采用游离 DNA 中的嵌入结构,这很难与已知的聚合酶识别机制相协调。 在这里,我们展示了 KlenTaq DNA 聚合酶在不同复制阶段的晶体结构,即 dNaM-d5SICS,并表明聚合酶本身会产生有效的复制结果,从而诱导所需的天然样结构。 - 13Malyshev, D. A.; Pfaff, D. A.; Ippoliti, S. I.; Hwang, G. T.; Dwyer, T. J.; Romesberg, F. E. Chem. - Eur. J. 2010, 16, 12650– 12659 DOI: 10.1002/chem.201000959Google Scholar 谷歌学术13https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3cXhtlCksrnI&md5=da5cf1e3c584834fe385ea153c05f7bcSolution Structure, Mechanism of Replication, and Optimization of an Unnatural Base PairMalyshev, Denis A.; Pfaff, Danielle A.; Ippoliti, Shannon I.; Hwang, Gil Tae; Dwyer, Tammy J.; Romesberg, Floyd E.Chemistry - A European Journal (2010), 16 (42), 12650-12659, S12650/1-S12650/28CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)As part of an ongoing effort to expand the genetic alphabet for in vitro and eventual in vivo applications, we have synthesized a wide variety of predominantly hydrophobic unnatural base pairs and evaluated their replication in DNA. Collectively, the results have led us to propose that these base pairs, which lack stabilizing edge-on interactions, are replicated by means of a unique intercalative mechanism. Here, we report the synthesis and characterization of three novel derivs. of the nucleotide analog dMMO2, which forms an unnatural base pair with the nucleotide analog d5SICS. Replacing the para-Me substituent of dMMO2 with an annulated furan ring (yielding dFMO) has a dramatically neg. effect on replication, while replacing it with a methoxy (dDMO) or with a thiomethyl group (dTMO) improves replication in both steady-state assays and during PCR amplification. Thus, dTMO-d5SICS, and esp. dDMO-d5SICS, represent significant progress toward the expansion of the genetic alphabet. To elucidate the structure-activity relationships governing unnatural base pair replication, we detd. the soln. structure of duplex DNA contg. the parental dMMO2-d5SICS pair, and also used this structure to generate models of the deriv. base pairs. The results strongly support the intercalative mechanism of replication, reveal a surprisingly high level of specificity that may be achieved by optimizing packing interactions, and should prove invaluable for the further optimization of the unnatural base pair.
13马雷舍夫,D. A.; 普法夫,DA; 伊波利蒂,SI; 黄 GT; 德怀尔,TJ; Romesberg, F. E.化学 - Eur. J. 2010, 16, 12650– 12659 DOI: 10.1002/化学201000959Google Scholar13?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3cXhtlCksrnI&md5=da5cf1e3c584834fe385ea153c05f7bc非自然碱基对的溶液结构、复制机制和优化Malyshev, Denis A.;普法夫,丹妮尔 A.;Ippoliti, 香农 I.;黄吉泰;德怀尔,塔米 J.;罗梅斯伯格,弗洛伊德 E.化学 - A European Journal (2010 年), 16 (42)、 12650-12659、S12650/1-S12650/28科登: CEUJED; 国际标准书号:0947-6539。 (Wiley-VCH Verlag GmbH & Co. KGaA)作为扩展体外和最终体内应用的遗传字母表的持续努力的一部分,我们合成了多种主要疏水性的非天然碱基对,并评估了它们在 DNA 中的复制。 总的来说,结果使我们提出,这些缺乏稳定边缘相互作用的碱基对是通过独特的插层机制来复制的。 在这里,我们报告了三个新衍生物的综合和表征。核苷酸类似物 dMMO2 的 dMMO2 与核苷酸类似物 d5SICS 形成非天然碱基对。 用环状呋喃环取代 dMMO2 的对位 Me 取代基(产生 dFMO)对复制有显著的负效应,而用甲氧基 (dDMO) 或硫代甲基 (dTMO) 取代它可改善稳态检测和 PCR 扩增过程中的复制。 因此,dTMO-d5SICS 和 dDMO-d5SICS 代表了遗传字母表扩展的重大进展。 为了阐明控制非自然碱基对复制的结构-活性关系,我们 detd.双链体 DNA contg 的结构。亲本 dMMO2-d5SICS 对,并且还使用此结构生成 Deriv. 碱基对的模型。 结果强烈支持复制的插层机制,揭示了通过优化包装相互作用可以实现的令人惊讶的高特异性水平,并且应该证明对于进一步优化非天然碱基对非常有价值。 - 15Lavergne, T.; Degardin, M.; Malyshev, D. A.; Quach, H. T.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2013, 135, 5408– 5419 DOI: 10.1021/ja312148q
15拉弗涅,T.; 德加丁; 马雷舍夫,DA; 夸奇,HT; 达米,K.; Ordoukhanian, P.; Romesberg, F. E.J. Am. Chem. Soc. 2013, 135, 5408– 5419 DOI: 10.1021/JA312148Q - 24Li, Y.; Waksman, G. Protein Sci. 2001, 10, 1225– 1233 DOI: 10.1110/ps.250101Google Scholar 谷歌学术24https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3MXksFCjs7o%253D&md5=9ac830d10eab2c5f5700f6896eb1927dCrystal structures of a ddATP-, ddTTP-, ddCTP-, and ddGTP-trapped ternary complex of Klentaq1: insights into nucleotide incorporation and selectivityLi, Ying; Waksman, GabrielProtein Science (2001), 10 (6), 1225-1233CODEN: PRCIEI; ISSN:0961-8368. (Cold Spring Harbor Laboratory Press)The mechanism by which DNA polymerase I enzymes function has been the subject of extensive biochem. and structural studies. The authors previously detd. the structure of a ternary complex of the large fragment of DNA polymerase I from Thermus aquaticus (Klentaq1) bound to a primer/template DNA and a dideoxycytidine 5'-triphosphate (ddCTP). In this report, the authors present the details of the 2.3-Å resoln. crystal structures of three addnl. ternary complexes of Klentaq1 bound to a primer/template DNA and a dideoxyguanosine 5'-triphosphate (ddGTP), a dideoxythymidine 5'-triphosphate (ddTTP), or a dideoxyadenosine 5'-triphosphate (ddATP). Comparison of the active site of the four ternary complexes reveals that the protein residues around the nascent base pair (that formed between the incoming dideoxynucleoside triphosphate [ddNTP] and the template base) form a snug binding pocket into which only a correct Watson-Crick base pair can fit. Except in the ternary complex bound to dideoxyguanosine 5'-triphosphate, there are no sequence specific contacts between the protein side chains and the nascent base pair, suggesting that steric constraints imposed by the protein onto the nascent base pair is the major contributor to nucleotide selectivity at the polymerase active site. The protein around the polymerase active site also shows plasticity, which may be responsible for the substrate diversity of the enzyme. Two conserved side chains, Q754 and R573, form hydrogen bonds with the N3 atom in the purine base and O2 atom in the pyrimidine base at the minor groove side of the base pair formed by the incorporated ddNMP and the corresponding template base in all the four ternary complexes. These hydrogen-bonding interactions may provide a means of detecting misincorporation at this position.
24李英; Waksman, G. 蛋白质科学。 2001, 10, 1225–1233 DOI: 10.1110/ps.250101Google Scholar24内容?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3MXksFCjs7o%253D&md5=9ac830d10eab2c5f5700f6896eb1927dKlentaq1 的 ddATP-、ddTTP-、ddCTP- 和 ddGTP 捕获的三元复合物的晶体结构:核苷酸掺入和选择性的见解Li, Ying;Waksman, Gabriel蛋白质科学 (2001 年) 10 (6)、 1225 年至 1233 年科登: 普雷西; 国际标准书号:0961-8368。 (冷泉港实验室出版社)DNA 聚合酶 I 酶的功能机制一直是广泛的生物化学和结构研究的主题。 作者之前 detd.来自水生热菌 (Klentaq1) 的 DNA 聚合酶 I 大片段的三元复合物的结构,与引物/模板 DNA 和二脱氧胞苷 5'-三磷酸 (ddCTP) 结合。 在本报告中,作者介绍了 2.3-Å 溶液的详细信息。三个 addnl 的晶体结构。Klentaq1 的三元复合物与引物/模板 DNA 和二脱氧鸟苷 5'-三磷酸 (ddGTP)、二脱氧胸苷 5'-三磷酸 (ddTTP) 或 5'-三磷酸二脱氧腺苷 (ddATP) 结合。 四种三元复合物的活性位点的比较表明,新生碱基对周围的蛋白质残基(在进入的二脱氧核苷三磷酸 [ddNTP] 和模板碱基之间形成)形成一个紧密的结合口袋,只有正确的 Watson-Crick 碱基对才能放入其中。 除了与二脱氧鸟苷 5'-三磷酸结合的三元复合物外,蛋白质侧链和新生碱基对之间没有序列特异性接触,这表明蛋白质施加在新生碱基对上的空间限制是聚合酶活性位点核苷酸选择性的主要贡献者。 聚合酶活性位点周围的蛋白质也显示出可塑性,这可能是酶底物多样性的原因。 两条保守的侧链 Q754 和 R573 与嘌呤碱基中的 N3 原子和嘧啶碱基中的 O2 原子形成氢键,位于由掺入的 ddNMP 和所有四个三元配合物中的相应模板碱基形成的碱基对的小沟侧。 这些氢键相互作用可能提供了一种检测该位置错误掺入的方法。 - 26Morris, S. E.; Feldman, A. W.; Romesberg, F. E. ACS Synth. Biol. 2017, published online June 27. DOI: DOI: 10.1021/acssynbio.7b00115 .
26莫里斯,SE;费尔德曼,AW;Romesberg, FE ACS 合成器。Biol.2017,6 月 27 日在线发布。DOI: DOI: 10.1021/acssynbio.7b00115 .
Cited By 施引文献
单击以复制部分链接Section link copied!
This article is cited by 28 publications.
本文被 28 篇出版物引用。
- Gongming Zhu, Haiyang Zhang, Liyang Han, Honglei Wang, Anlian Zhu, Lingjun Li. Solvent-Driven Room-Temperature Curtius Rearrangements to Access Nucleotides Bearing Substituted Fused Pyridones. Organic Letters 2024, 26
(20)
, 4356-4360. https://doi.org/10.1021/acs.orglett.4c01403
朱功明, 张海洋, 韩立阳, 王洪磊, 朱安莲, 李玲军. 溶剂驱动的室温 Curtius 重排,以获得带有取代的熔融吡啶酮的核苷酸。 有机快报 2024, 26 (20) , 4356-4360。https://doi.org/10.1021/acs.orglett.4c01403 - Honglei Wang, Luying Wang, Nana Ma, Wuyuan Zhu, Bianbian Huo, Anlian Zhu, Lingjun Li. Access to Photostability-Enhanced Unnatural Base Pairs via Local Structural Modifications. ACS Synthetic Biology 2022, 11 (1) , 334-342. https://doi.org/10.1021/acssynbio.1c00451
- Koji Hashimoto, Emil C. Fischer, Floyd E. Romesberg. Efforts toward Further Integration of an Unnatural Base Pair into the Biology of a Semisynthetic Organism. Journal of the American Chemical Society 2021, 143 (23) , 8603-8607. https://doi.org/10.1021/jacs.1c03860
- Michael P. Ledbetter, Jonathan M. Craig, Rebekah J. Karadeema, Matthew T. Noakes, Hwanhee C. Kim, Sarah J. Abell, Jesse R. Huang, Brooke A. Anderson, Ramanarayanan Krishnamurthy, Jens H. Gundlach, Floyd E. Romesberg. Nanopore Sequencing of an Expanded Genetic Alphabet Reveals High-Fidelity Replication of a Predominantly Hydrophobic Unnatural Base Pair. Journal of the American Chemical Society 2020, 142 (5) , 2110-2114. https://doi.org/10.1021/jacs.9b09808
- Piotr Leonczak, Puneet Srivastava, Omprakash Bande, Guy Schepers, Eveline Lescrinier, Piet Herdewijn. N8-Glycosylated 8-Azapurine and Methylated Purine Nucleobases: Synthesis and Study of Base Pairing Properties. The Journal of Organic Chemistry 2019, 84 (21) , 13394-13409. https://doi.org/10.1021/acs.joc.9b01576
- Aaron W. Feldman, Vivian T. Dien, Rebekah J. Karadeema, Emil C. Fischer, Yanbo You, Brooke A. Anderson, Ramanarayanan Krishnamurthy, Jason S. Chen, Lingjun Li, Floyd E. Romesberg. Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism. Journal of the American Chemical Society 2019, 141 (27) , 10644-10653. https://doi.org/10.1021/jacs.9b02075
- Giacomo Padroni, Jamie M. Withers, Andrea Taladriz-Sender, Linus F. Reichenbach, John A. Parkinson, Glenn A. Burley. Sequence-Selective Minor Groove Recognition of a DNA Duplex Containing Synthetic Genetic Components. Journal of the American Chemical Society 2019, 141
(24)
, 9555-9563. https://doi.org/10.1021/jacs.8b12444
- Vivian T. Dien, Matthew Holcomb, Aaron W. Feldman, Emil C. Fischer, Tammy J. Dwyer, Floyd E. Romesberg. Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet. Journal of the American Chemical Society 2018, 140
(47)
, 16115-16123. https://doi.org/10.1021/jacs.8b08416
- Tanay Debnath, G. Andrés Cisneros. Investigation of the stability of D5SIC-DNAM-incorporated DNA duplex in
Taq
polymerase binary system: a systematic classical MD approach. Physical Chemistry Chemical Physics 2024, 26
(9)
, 7287-7295. https://doi.org/10.1039/D3CP05571J
- Bianbian Huo, Chao Wang, Xiaoqi Hu, Honglei Wang, Gongming Zhu, Anlian Zhu, Lingjun Li. Peripheral substitution effects on unnatural base pairs: A case of brominated TPT3 to enhance replication fidelity. Bioorganic Chemistry 2023, 140 , 106827. https://doi.org/10.1016/j.bioorg.2023.106827
- Robert Dörrenhaus, Philip K. Wagner, Stephanie Kath-Schorr. Two are not enough: synthetic strategies and applications of unnatural base pairs. Biological Chemistry 2023, 404
(10)
, 883-896. https://doi.org/10.1515/hsz-2023-0169
- Honglei Wang, Wuyuan Zhu, Chao Wang, Xiaohuan Li, Luying Wang, Bianbian Huo, Hui Mei, Anlian Zhu, Guisheng Zhang, Lingjun Li. Locating, tracing and sequencing multiple expanded genetic letters in complex DNA context via a bridge-base approach. Nucleic Acids Research 2023, 51
(9)
, e52-e52. https://doi.org/10.1093/nar/gkad218
- Indu Negi, Bimaldeep Singh, Amanpreet Singh Mahmi, Purshotam Sharma. Structural Properties of Hachimoji Nucleic Acids and Their Building Blocks: Comparison of Genetic Systems with Four, Six and Eight Alphabets. ChemPhysChem 2023, 24
(5)
https://doi.org/10.1002/cphc.202200714
- Floyd E. Romesberg. Discovery, implications and initial use of semi-synthetic organisms with an expanded genetic alphabet/code. Philosophical Transactions of the Royal Society B: Biological Sciences 2023, 378
(1871)
https://doi.org/10.1098/rstb.2022.0030
- Leping Sun, Xingyun Ma, Binliang Zhang, Yanjia Qin, Jiezhao Ma, Yuhui Du, Tingjian Chen. From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma. RSC Chemical Biology 2022, 3
(10)
, 1173-1197. https://doi.org/10.1039/D2CB00116K
- Bianbian Huo, Xiguang Zhang, Chao Wang, Honglei Wang, Gongming Zhu, Wuyuan Zhu, Anlian Zhu, Hui Mei, Lingjun Li. Mechanistic Insight into the Photoinduced Damage of an Unnatural Base Pair. Chemistry – A European Journal 2022, 28
(53)
https://doi.org/10.1002/chem.202201730
- Floyd E. Romesberg. Creation, Optimization, and Use of Semi-Synthetic Organisms that Store and Retrieve Increased Genetic Information. Journal of Molecular Biology 2022, 434
(8)
, 167331. https://doi.org/10.1016/j.jmb.2021.167331
- Paola Handal-Marquez, Anupama Anupama, Valerie Pezo, Philippe Marlière, Piet Herdewijn, Vitor B. Pinheiro. Beneath the XNA world: Tools and targets to build novel biology. Current Opinion in Systems Biology 2020, 24 , 142-152. https://doi.org/10.1016/j.coisb.2020.10.013
- Michiko Kimoto, Ichiro Hirao. Genetic alphabet expansion technology by creating unnatural base pairs. Chemical Society Reviews 2020, 49
(21)
, 7602-7626. https://doi.org/10.1039/D0CS00457J
- Rodrigo Galindo-Murillo, Joaquín Barroso-Flores. Hydrophobic unnatural base pairs show a Watson-Crick pairing in micro-second molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics 2020, 38
(14)
, 4098-4106. https://doi.org/10.1080/07391102.2019.1671898
- S. A. Mukba, P. K. Vlasov, P. M. Kolosov, E. Y. Shuvalova, T. V. Egorova, E. Z. Alkalaeva. Expanding the Genetic Code: Unnatural Base Pairs in Biological Systems. Molecular Biology 2020, 54
(4)
, 475-484. https://doi.org/10.1134/S0026893320040111
- Emil C. Fischer, Koji Hashimoto, Yorke Zhang, Aaron W. Feldman, Vivian T. Dien, Rebekah J. Karadeema, Ramkrishna Adhikary, Michael P. Ledbetter, Ramanarayanan Krishnamurthy, Floyd E. Romesberg. New codons for efficient production of unnatural proteins in a semisynthetic organism. Nature Chemical Biology 2020, 16
(5)
, 570-576. https://doi.org/10.1038/s41589-020-0507-z
- Michiko Kimoto, Ichiro Hirao. New Research Area, Xenobiology, by Integrating Chemistry and Biology. Journal of Synthetic Organic Chemistry, Japan 2020, 78
(5)
, 465-475. https://doi.org/10.5059/yukigoseikyokaishi.78.465
- Andreas Marx, Karin Betz. The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases. Chemistry – A European Journal 2020, 26
(16)
, 3446-3463. https://doi.org/10.1002/chem.201903525
- Floyd E. Romesberg. Synthetic Biology: The Chemist's Approach. Israel Journal of Chemistry 2019, 59
(1-2)
, 91-94. https://doi.org/10.1002/ijch.201900014
- Vivian T Dien, Sydney E Morris, Rebekah J Karadeema, Floyd E Romesberg. Expansion of the genetic code via expansion of the genetic alphabet. Current Opinion in Chemical Biology 2018, 46 , 196-202. https://doi.org/10.1016/j.cbpa.2018.08.009
- Ichiro Hirao, Michiko Kimoto, Kyung Hyun Lee. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method. Biochimie 2018, 145 , 15-21. https://doi.org/10.1016/j.biochi.2017.09.007
- Pascal Röthlisberger, Cécile Gasse, Marcel Hollenstein. Nucleic Acid Aptamers: Emerging Applications in Medical Imaging, Nanotechnology, Neurosciences, and Drug Delivery. International Journal of Molecular Sciences 2017, 18
(11)
, 2430. https://doi.org/10.3390/ijms18112430
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism
Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet
Expansion of the Genetic Alphabet: A Chemist’s Approach to Synthetic Biology
A Tool for the Import of Natural and Unnatural Nucleoside Triphosphates into Bacteria
Natural-like Replication of an Unnatural Base Pair for the Expansion of the Genetic Alphabet and Biotechnology Applications
References
This article references 26 other publications.
- 1Leduc, S. The Mechanisms of Life; Rebman Company: New York, 1911.There is no corresponding record for this reference.
- 2Malyshev, D. A.; Romesberg, F. E. Angew. Chem., Int. Ed. 2015, 54, 11930– 11944 DOI: 10.1002/anie.2015028902https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXhsVSjtLrL&md5=56b77b89dbbf47428bf446e8de15ca82The expanded genetic alphabetMalyshev, Denis A.; Romesberg, Floyd E.Angewandte Chemie, International Edition (2015), 54 (41), 11930-11944CODEN: ACIEF5; ISSN:1433-7851. (Wiley-VCH Verlag GmbH & Co. KGaA)A review. All biol. information, since the last common ancestor of all life on Earth, has been encoded by a genetic alphabet consisting of only four nucleotides that form two base pairs. Long-standing efforts to develop two synthetic nucleotides that form a third, unnatural base pair (UBP) have recently yielded three promising candidates, one based on alternative hydrogen bonding, and two based on hydrophobic and packing forces. All three of these UBPs are replicated and transcribed with remarkable efficiency and fidelity, and the latter two thus demonstrate that hydrogen bonding is not unique in its ability to underlie the storage and retrieval of genetic information. This Review highlights these recent developments as well as the applications enabled by the UBPs, including the expansion of the evolution process to include new functionality and the creation of semi-synthetic life that stores increased information.
- 3Zhang, L.; Yang, Z.; Sefah, K.; Bradley, K. M.; Hoshika, S.; Kim, M. J.; Kim, H. J.; Zhu, G.; Jimenez, E.; Cansiz, S.; Teng, I. T.; Champanhac, C.; McLendon, C.; Liu, C.; Zhang, W.; Gerloff, D. L.; Huang, Z.; Tan, W.; Benner, S. A. J. Am. Chem. Soc. 2015, 137, 6734– 6737 DOI: 10.1021/jacs.5b022513https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXot1Sru70%253D&md5=8f8f6e892516e704800cf45cc0aea51aEvolution of functional six-nucleotide DNAZhang, Liqin; Yang, Zunyi; Sefah, Kwame; Bradley, Kevin M.; Hoshika, Shuichi; Kim, Myong-Jung; Kim, Hyo-Joong; Zhu, Guizhi; Jimenez, Elizabeth; Cansiz, Sena; Teng, I-Ting; Champanhac, Carole; McLendon, Christopher; Liu, Chen; Zhang, Wen; Gerloff, Dietlind L.; Huang, Zhen; Tan, Weihong; Benner, Steven A.Journal of the American Chemical Society (2015), 137 (21), 6734-6737CODEN: JACSAT; ISSN:0002-7863. (American Chemical Society)Axiomatically, the d. of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addn. could also add functional groups not found in natural DNA, but useful for mol. performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson-Crick geometry. These were added to a library of oligonucleotides used in a lab. in vitro evolution (LIVE) expt.; the GACTZP library was challenged to deliver mols. that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding mols. not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than std. libraries.
- 4Kimoto, M.; Hirao, I. In Chemical Biology of Nucleic Acids: Fundamentals and Clinical Applications; Erdmann, A. V.; Markiewicz, T. W.; Barciszewski, J., Eds.; Springer: Berlin, Heidelberg, 2014; p 131– 148.There is no corresponding record for this reference.
- 5Leconte, A. M.; Hwang, G. T.; Matsuda, S.; Capek, P.; Hari, Y.; Romesberg, F. E. J. Am. Chem. Soc. 2008, 130, 2336– 2343 DOI: 10.1021/ja078223dThere is no corresponding record for this reference.
- 6Lavergne, T.; Malyshev, D. A.; Romesberg, F. E. Chem. - Eur. J. 2012, 18, 1231– 1239 DOI: 10.1002/chem.2011020666https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXhs1Ghur3L&md5=e3fe084c25ab1596e07e721de72d4408Major groove substituents and polymerase recognition of a class of predominantly hydrophobic unnatural base pairsLavergne, Thomas; Malyshev, Denis A.; Romesberg, Floyd E.Chemistry - A European Journal (2012), 18 (4), 1231-1239, S1231/1-S1231/27CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)Expansion of the genetic alphabet with an unnatural base pair is a long-standing goal of synthetic biol. The authors have developed a class of unnatural base pairs, formed between d5SICS and analogs of dMMO2 that are efficiently and selectively replicated by the Klenow fragment (Kf) DNA polymerase. In an effort to further characterize and optimize replication, the authors report the synthesis of five new dMMO2 analogs bearing different substituents designed to be oriented into the developing major groove and an anal. of their insertion opposite d5SICS by Kf and Thermus aquaticus DNA polymerase I (Taq). We also expand the anal. of the previously optimized pair, dNaM-d5SICS, to include replication by Taq. Finally, the efficiency and fidelity of PCR amplification of the base pairs by Taq or Deep Vent polymerases was examd. The resulting structure-activity relationship data suggest that the major determinants of efficient replication are the minimization of desolvation effects and the introduction of favorable hydrophobic packing, and that Taq is more sensitive than Kf to structural changes. In addn., the authors identify an analog (dNMO1) that is a better partner for d5SICS than any of the previously identified dMMO2 analogs with the exception of dNaM. They also found that dNaM-d5SICS is replicated by both Kf and Taq with rates approaching those of a natural base pair.
- 7Malyshev, D. A.; Dhami, K.; Quach, H. T.; Lavergne, T.; Ordoukhanian, P.; Torkamani, A.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 12005– 12010 DOI: 10.1073/pnas.1205176109There is no corresponding record for this reference.
- 8Dhami, K.; Malyshev, D. A.; Ordoukhanian, P.; Kubelka, T.; Hocek, M.; Romesberg, F. E. Nucleic Acids Res. 2014, 42, 10235– 10244 DOI: 10.1093/nar/gku715There is no corresponding record for this reference.
- 9Li, L.; Degardin, M.; Lavergne, T.; Malyshev, D. A.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2014, 136, 826– 829 DOI: 10.1021/ja408814gThere is no corresponding record for this reference.
- 10Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Correa, I. R., Jr.; Romesberg, F. E. Nature 2014, 509, 385– 388 DOI: 10.1038/nature1331410https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXotVyqtb8%253D&md5=97b4b184cda52cc809b1705e5e88ad8eA semi-synthetic organism with an expanded genetic alphabetMalyshev, Denis A.; Dhami, Kirandeep; Lavergne, Thomas; Chen, Tingjian; Dai, Nan; Foster, Jeremy M.; Correa, Ivan R.; Romesberg, Floyd E.Nature (London, United Kingdom) (2014), 509 (7500), 385-388CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)Organisms are defined by the information encoded in their genomes, and since the origin of life this information has been encoded using a two-base-pair genetic alphabet (A-T and G-C). In vitro, the alphabet has been expanded to include several unnatural base pairs (UBPs). We have developed a class of UBPs formed between nucleotides bearing hydrophobic nucleobases, exemplified by the pair formed between d5SICS and dNaM (d5SICS-dNaM), which is efficiently PCR-amplified and transcribed in vitro, and whose unique mechanism of replication has been characterized. However, expansion of an organism's genetic alphabet presents new and unprecedented challenges: the unnatural nucleoside triphosphates must be available inside the cell; endogenous polymerases must be able to use the unnatural triphosphates to faithfully replicate DNA contg. the UBP within the complex cellular milieu; and finally, the UBP must be stable in the presence of pathways that maintain the integrity of DNA. Here we show that an exogenously expressed algal nucleotide triphosphate transporter efficiently imports the triphosphates of both d5SICS and dNaM (d5SICSTP and dNaMTP) into Escherichia coli, and that the endogenous replication machinery uses them to accurately replicate a plasmid contg. d5SICS-dNaM. Neither the presence of the unnatural triphosphates nor the replication of the UBP introduces a notable growth burden. Lastly, we find that the UBP is not efficiently excised by DNA repair pathways. Thus, the resulting bacterium is the first organism to propagate stably an expanded genetic alphabet.
- 11Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Dwyer, T. J.; Ordoukhanian, P.; Romesberg, F. E.; Marx, A. Nat. Chem. Biol. 2012, 8, 612– 614 DOI: 10.1038/nchembio.96611https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XnvVyrurw%253D&md5=3f53105607a419a1d1326125178d682dKlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometryBetz, Karin; Malyshev, Denis A.; Lavergne, Thomas; Welte, Wolfram; Diederichs, Kay; Dwyer, Tammy J.; Ordoukhanian, Phillip; Romesberg, Floyd E.; Marx, AndreasNature Chemical Biology (2012), 8 (7), 612-614CODEN: NCBABT; ISSN:1552-4450. (Nature Publishing Group)Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.
- 12Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Romesberg, F. E.; Marx, A. J. Am. Chem. Soc. 2013, 135, 18637– 18643 DOI: 10.1021/ja409609jThere is no corresponding record for this reference.
- 13Malyshev, D. A.; Pfaff, D. A.; Ippoliti, S. I.; Hwang, G. T.; Dwyer, T. J.; Romesberg, F. E. Chem. - Eur. J. 2010, 16, 12650– 12659 DOI: 10.1002/chem.20100095913https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3cXhtlCksrnI&md5=da5cf1e3c584834fe385ea153c05f7bcSolution Structure, Mechanism of Replication, and Optimization of an Unnatural Base PairMalyshev, Denis A.; Pfaff, Danielle A.; Ippoliti, Shannon I.; Hwang, Gil Tae; Dwyer, Tammy J.; Romesberg, Floyd E.Chemistry - A European Journal (2010), 16 (42), 12650-12659, S12650/1-S12650/28CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)As part of an ongoing effort to expand the genetic alphabet for in vitro and eventual in vivo applications, we have synthesized a wide variety of predominantly hydrophobic unnatural base pairs and evaluated their replication in DNA. Collectively, the results have led us to propose that these base pairs, which lack stabilizing edge-on interactions, are replicated by means of a unique intercalative mechanism. Here, we report the synthesis and characterization of three novel derivs. of the nucleotide analog dMMO2, which forms an unnatural base pair with the nucleotide analog d5SICS. Replacing the para-Me substituent of dMMO2 with an annulated furan ring (yielding dFMO) has a dramatically neg. effect on replication, while replacing it with a methoxy (dDMO) or with a thiomethyl group (dTMO) improves replication in both steady-state assays and during PCR amplification. Thus, dTMO-d5SICS, and esp. dDMO-d5SICS, represent significant progress toward the expansion of the genetic alphabet. To elucidate the structure-activity relationships governing unnatural base pair replication, we detd. the soln. structure of duplex DNA contg. the parental dMMO2-d5SICS pair, and also used this structure to generate models of the deriv. base pairs. The results strongly support the intercalative mechanism of replication, reveal a surprisingly high level of specificity that may be achieved by optimizing packing interactions, and should prove invaluable for the further optimization of the unnatural base pair.
- 14Zhang, Y.; Lamb, B. M.; Feldman, A. W.; Zhou, A. X.; Lavergne, T.; Li, L.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1317– 1322 DOI: 10.1073/pnas.1616443114There is no corresponding record for this reference.
- 15Lavergne, T.; Degardin, M.; Malyshev, D. A.; Quach, H. T.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2013, 135, 5408– 5419 DOI: 10.1021/ja312148qThere is no corresponding record for this reference.
- 16Wu, Y.; Ogawa, A. K.; Berger, M.; McMinn, D. L.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc. 2000, 122, 7621– 7632 DOI: 10.1021/ja0009931There is no corresponding record for this reference.
- 17Henry, A. A.; Yu, C.; Romesberg, F. E. J. Am. Chem. Soc. 2003, 125, 9638– 9646 DOI: 10.1021/ja035398oThere is no corresponding record for this reference.
- 18Seo, Y. J.; Malyshev, D. A.; Lavergne, T.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2011, 133, 19878– 19888 DOI: 10.1021/ja207907dThere is no corresponding record for this reference.
- 19Matsuda, S.; Leconte, A. M.; Romesberg, F. E. J. Am. Chem. Soc. 2007, 129, 5551– 5557 DOI: 10.1021/ja068282bThere is no corresponding record for this reference.
- 20Spratt, T. E. Biochemistry 2001, 40, 2647– 2652 DOI: 10.1021/bi002641cThere is no corresponding record for this reference.
- 21Meyer, A. S.; Blandino, M.; Spratt, T. E. J. Biol. Chem. 2004, 279, 33043– 33046 DOI: 10.1074/jbc.C400232200There is no corresponding record for this reference.
- 22Morales, J. C.; Kool, E. T. J. Am. Chem. Soc. 1999, 121, 2323– 2324 DOI: 10.1021/ja983502+There is no corresponding record for this reference.
- 23Morales, J. C.; Kool, E. T. Biochemistry 2000, 39, 12979– 12988 DOI: 10.1021/bi001578oThere is no corresponding record for this reference.
- 24Li, Y.; Waksman, G. Protein Sci. 2001, 10, 1225– 1233 DOI: 10.1110/ps.25010124https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3MXksFCjs7o%253D&md5=9ac830d10eab2c5f5700f6896eb1927dCrystal structures of a ddATP-, ddTTP-, ddCTP-, and ddGTP-trapped ternary complex of Klentaq1: insights into nucleotide incorporation and selectivityLi, Ying; Waksman, GabrielProtein Science (2001), 10 (6), 1225-1233CODEN: PRCIEI; ISSN:0961-8368. (Cold Spring Harbor Laboratory Press)The mechanism by which DNA polymerase I enzymes function has been the subject of extensive biochem. and structural studies. The authors previously detd. the structure of a ternary complex of the large fragment of DNA polymerase I from Thermus aquaticus (Klentaq1) bound to a primer/template DNA and a dideoxycytidine 5'-triphosphate (ddCTP). In this report, the authors present the details of the 2.3-Å resoln. crystal structures of three addnl. ternary complexes of Klentaq1 bound to a primer/template DNA and a dideoxyguanosine 5'-triphosphate (ddGTP), a dideoxythymidine 5'-triphosphate (ddTTP), or a dideoxyadenosine 5'-triphosphate (ddATP). Comparison of the active site of the four ternary complexes reveals that the protein residues around the nascent base pair (that formed between the incoming dideoxynucleoside triphosphate [ddNTP] and the template base) form a snug binding pocket into which only a correct Watson-Crick base pair can fit. Except in the ternary complex bound to dideoxyguanosine 5'-triphosphate, there are no sequence specific contacts between the protein side chains and the nascent base pair, suggesting that steric constraints imposed by the protein onto the nascent base pair is the major contributor to nucleotide selectivity at the polymerase active site. The protein around the polymerase active site also shows plasticity, which may be responsible for the substrate diversity of the enzyme. Two conserved side chains, Q754 and R573, form hydrogen bonds with the N3 atom in the purine base and O2 atom in the pyrimidine base at the minor groove side of the base pair formed by the incorporated ddNMP and the corresponding template base in all the four ternary complexes. These hydrogen-bonding interactions may provide a means of detecting misincorporation at this position.
- 25Seo, Y. J.; Hwang, G. T.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2009, 131, 3246– 3252 DOI: 10.1021/ja807853mThere is no corresponding record for this reference.
- 26Morris, S. E.; Feldman, A. W.; Romesberg, F. E. ACS Synth. Biol. 2017, published online June 27. DOI: DOI: 10.1021/acssynbio.7b00115 .There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b03540.
Additional methods, supporting tables and figures, and references (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.