- Journal List 期刊列表
- Front Neurosci 神经科学前沿 CPU 医学学科重要ESI学科分类:神经科学与行为简介JCI 0.79IF(5) 4.3SCU 医学DSCI升级版 医学3区SCI基础版 医学3区SCI Q2IF 3.2CUG 医学T3XJU 二区
-
PMC4263095IF: 3.2 Q2 B3
PMC4263095如果:3.2 Q2 B3
作为一个图书馆,NLM 提供科学文献的访问。纳入 NLM 数据库并不意味着认可或同意, NLM 或国立卫生研究院的内容。
Learn more: PMC Disclaimer | PMC Copyright Notice
了解更多: 免责声明 | PMC版权声明
2014 年 12 月 11 日在线发布。doi : 10.3389/fnins.2014.00402如果:3.2 Q2 B3
PMCID: PMC4263095如果:3.2 Q2 B3
Heart rate variability: a tool to explore the sleeping brain?
心率变异性:探索睡眠大脑的工具?
Florian Chouchou
1NeuroPain Unit, Lyon Neuroscience Research Centre, CRNL – INSERM U 1028/CNRS UMR 5292, University of Lyon, France
2Department of Psychology, University of Namur, Namur, Belgium
Martin Desseilles
2Department of Psychology, University of Namur, Namur, Belgium
3Cyclotron Research Centre, University of Liège, Liège, Belgium
作者信息文章注释版权和许可信息PMC 免责声明
Abstract 抽象的
Sleep is divided into two main sleep stages: (1) non-rapid eye movement sleep (non-REMS), characterized among others by reduced global brain activity; and (2) rapid eye movement sleep (REMS), characterized by global brain activity similar to that of wakefulness. Results of heart rate variability (HRV) analysis, which is widely used to explore autonomic modulation, have revealed higher parasympathetic tone during normal non-REMS and a shift toward sympathetic predominance during normal REMS. Moreover, HRV analysis combined with brain imaging has identified close connectivity between autonomic cardiac modulation and activity in brain areas such as the amygdala and insular cortex during REMS, but no connectivity between brain and cardiac activity during non-REMS. There is also some evidence for an association between HRV and dream intensity and emotionality. Following some technical considerations, this review addresses how brain activity during sleep contributes to changes in autonomic cardiac activity, organized into three parts: (1) the knowledge on autonomic cardiac control, (2) differences in brain and autonomic activity between non-REMS and REMS, and (3) the potential of HRV analysis to explore the sleeping brain, and the implications for psychiatric disorders.
睡眠分为两个主要睡眠阶段:(1)非快速眼动睡眠(non-REMS),其特点是整体大脑活动减少; (2)快速眼动睡眠(REMS),其特征是与清醒时相似的整体大脑活动。广泛用于探索自主调节的心率变异性 (HRV) 分析结果显示,正常非快速眼动睡眠期间副交感神经张力较高,而正常快速眼动睡眠期间交感神经占优势。此外,HRV分析与脑成像相结合,发现自主心脏调节与REMS期间杏仁核和岛叶皮层等大脑区域的活动之间存在密切联系,但非REMS期间大脑与心脏活动之间没有联系。还有一些证据表明 HRV 与梦的强度和情绪之间存在关联。在一些技术考虑之后,本综述讨论了睡眠期间的大脑活动如何影响自主心脏活动的变化,分为三个部分:(1)自主心脏控制的知识,(2)非快速眼动睡眠期和非快速眼动睡眠期之间大脑和自主活动的差异REMS,(3) HRV 分析探索睡眠大脑的潜力,以及对精神疾病的影响。
关键词:睡眠、心率变异性、ANS、快速眼动睡眠、非快速眼动睡眠、情绪
Introduction 介绍
The autonomic nervous system (ANS) connects the body's nervous system to the main physiological systems, and is largely modulated by reflex loops, the hypothalamic and brainstem centers, and the afferent and efferent pathways. For example, the baroreflex and chemoreflex loops—both autonomic cardiovascular reflexes—involve pathways from baroreceptors and chemoreceptors to central processes and subsequently the sympathetic and parasympathetic motor arms (Guyenet, 2013). However, the concept has been extended to include higher central nervous system centers, whereby modulation of higher brain structures mediates cardiovascular responses. Brain imaging and electrophysiological studies have demonstrated the involvement of certain subcortical and cortical regions (for a review, see Beissner et al., 2013), including the amygdala and the midcingulate and insular cortices, enabling integration of simple (e.g., sensory) and complex (e.g., emotional) information in autonomic cardiovascular activity (Critchley and Harrison, 2013).
自主神经系统(ANS)将人体的神经系统与主要生理系统连接起来,很大程度上受到反射环、下丘脑和脑干中心以及传入和传出通路的调节。例如,压力反射和化学反射环路(均为自主心血管反射)涉及从压力感受器和化学感受器到中枢过程以及随后的交感和副交感运动臂的路径(Guyenet, 2013 )。然而,这一概念已扩展到包括高级中枢神经系统中心,从而调节高级大脑结构介导心血管反应。脑成像和电生理学研究已经证明某些皮质下和皮质区域的参与(有关综述,请参阅 Beissner 等人, 2013 ),包括杏仁核、中扣带回和岛叶皮质,从而能够整合简单(例如感觉)和复杂的皮质自主心血管活动中的(例如情绪)信息(Critchley 和 Harrison, 2013 )。
Heart rate variability (HRV) analysis, used to assess autonomic cardiac activity, highlighted higher parasympathetic tone during non-rapid eye movement sleep (non-REMS) compared to a sympathovagal balance shift from parasympathetic predominance toward sympathetic hyperactivity during rapid eye movement sleep (REMS) (Mendez et al., 2006; Cabiddu et al., 2012). Moreover, REMS and non-REMS were linked to differential brain activity: non-REMS is characterized by slow EEG rhythms such as delta wave, with events such as sleep spindles and K-complexes, associated with lower brain activity compared to wakefulness; whereas REMS is characterized by low-amplitude, high-frequency EEG rhythms, rapid eye movements (REM), and muscular atonia despite global brain activity similar to wakefulness (called “paradoxical” sleep) (Desseilles et al., 2008, 2011b; Dang-Vu et al., 2010; Dang-Vu, 2012).
用于评估自主心脏活动的心率变异性 (HRV) 分析强调,与快速眼动睡眠 (REMS) 期间交感迷走神经平衡从副交感优势转向交感神经亢进的转变相比,非快速眼动睡眠 (非 REMS) 期间副交感神经张力较高。 )(Mendez 等人, 2006 年;Cabiddu 等人, 2012 年)。此外,REMS 和非 REMS 与不同的大脑活动有关:非 REMS 的特点是脑电图节律缓慢,例如 δ 波,伴有睡眠纺锤波和 K 复合体等事件,与清醒时相比,大脑活动较低;而 REMS 的特点是低幅度、高频脑电图节律、快速眼动 (REM) 和肌肉无力,尽管整体大脑活动与清醒状态相似(称为“矛盾”睡眠)(Desseilles 等人, 2008 年, 2011b ;Dang -Vu 等人, 2010 ;Dang-Vu, 2012 )。
To address whether brain activity modulation during sleep contributes to changes in autonomic cardiac modulation from non-REMS to REMS, we develop three points: (1) the current knowledge on autonomic cardiac control, (2) differences in cerebral and autonomic activity between non-REMS and REMS, and (3) using HRV analysis to explore the sleeping brain, and implications for psychiatric disorders.
为了解决睡眠期间的大脑活动调节是否有助于自主心脏调节从非快速眼动睡眠到快速眼动睡眠的变化,我们提出了三点:(1)当前关于自主心脏控制的知识,(2)非快速眼动睡眠期间大脑和自主活动的差异REMS 和 REMS,以及 (3) 使用 HRV 分析来探索睡眠大脑及其对精神疾病的影响。
Technical considerations 技术考虑
Cardiac activity is controlled by the sympathetic and parasympathetic systems (Guyenet, 2013), which induce heart rate oscillations at different rhythms. Mathematical methods (e.g., time- and frequency-domain analysis) are used to study these rhythms and consequently autonomic cardiac modulations, including time- and frequency-domain analysis (Rajendra Acharya et al., 2006). In this mini-review, we focus on the most frequent methods for exploring autonomic cardiac modulation in combination with brain imaging [functional magnetic resonance imaging (fMRI) or positron emission tomography scan (PET scan)]. We excluded long-term heart rate (HR) oscillations due to debatable physiological interpretations and irrelevance to the study question (more than 5 min).
心脏活动由交感神经和副交感神经系统控制(Guyenet, 2013 ),它们会引起不同节律的心率振荡。数学方法(例如,时域和频域分析)用于研究这些节律以及因此的自主心脏调节,包括时域和频域分析(Rajendra Acharya 等, 2006 )。在这篇小综述中,我们重点关注与脑成像[功能磁共振成像(fMRI)或正电子发射断层扫描(PET 扫描)] 相结合探索自主心脏调节的最常用方法。由于有争议的生理解释以及与研究问题无关(超过 5 分钟),我们排除了长期心率 (HR) 振荡。
Time-domain analysis 时域分析
This method describes HR using a mean or standard deviation. The standard deviation of normal-to-normal intervals (SDNN) represents the variability over the entire recording period, obtaining the overall autonomic modulation regardless of sympathetic or parasympathetic arm (Rajendra Acharya et al., 2006). Other indices describe parasympathetic tone, calculated from differences between consecutive heart beats, representing short-term variability (European Society of Cardiology, North American Society of Pacing and Electrophysiology, 1996). These measures include the root mean square successive difference (rMSSD), number of interval differences of successive heart beats greater than 50 ms (NN50), and proportion of NN50 (pNN50, NN50 divided by total number of heart beats).
该方法使用平均值或标准差来描述 HR。正常到正常间隔 (SDNN) 的标准差代表整个记录期间的变异性,无论交感神经或副交感神经臂如何,都获得整体自主调节(Rajendra Acharya 等人, 2006 )。其他指数描述副交感神经张力,根据连续心跳之间的差异计算,代表短期变异性(欧洲心脏病学会,北美起搏和电生理学会, 1996 )。这些测量包括均方根连续差值 (rMSSD)、连续心跳大于 50 毫秒的间隔差数 (NN50) 以及 NN50 比例(pNN50、NN50 除以心跳总数)。
Frequency-domain analysis: fourier transforms
频域分析:傅里叶变换
The Fourier transform decomposes a function according to its contained frequencies to build a spectral power spectrum for each frequency. To examine autonomic cardiac modulation in an HR Fourier spectrum, total spectral power (0–0.4 Hz) is considered (low-frequency—LF, 0.04–0.15 Hz; high-frequency—HF, 0.15–0.4 Hz) (European Society of Cardiology, North American Society of Pacing and Electrophysiology, 1996; Rajendra Acharya et al., 2006).
傅里叶变换根据函数所包含的频率来分解函数,以构建每个频率的频谱功率谱。为了检查 HR 傅立叶频谱中的自主心脏调制,需要考虑总频谱功率 (0–0.4 Hz)(低频 — LF,0.04–0.15 Hz;高频 — HF,0.15–0.4 Hz)(欧洲心脏病学会) ,北美起搏和电生理学学会, 1996 年;Rajendra Acharya 等人, 2006 年)。
Total spectral power indicates overall HRV and allows assessing overall autonomic cardiac modulation (e.g., SDNN). HF power represents short-term HR variation. Studies showed that injected atropine completely eliminated HF power (Akselrod et al., 1981; Pomeranz et al., 1985). Thus, HF power is modulated by parasympathetic activity only, corresponding to peak respiratory rate (0.18–0.40 Hz). Pharmacological studies showed that muscarinic cholinergic blocker (atropine) or beta-adrenergic blocker (ß-blocker) lowered LF power, enhanced by dual blockade (atropine + ß-blocker) (Akselrod et al., 1981; Pomeranz et al., 1985). Both parasympathetic and sympathetic cardiac activity would therefore be associated with HR power in the LF band. Saul et al. (1990) and others (Pagani et al., 1997) showed a concomitant increase in LF power and muscle sympathetic nerve activity measured by microneurography. Furthermore, under atropine, LF power increased during orthostatic testing (Taylor et al., 1998), and atropine is known to increase sympathetic modulation. Although these studies showed sympathetic cardiac modulation in LF power, changes in LF power can be interpreted only in relation to HF power. Accordingly, normalized indexes such as LF/HF ratio, LF% [LF/(LF + HF)*100], and HF% [HF/(LF + HF)*100] are used to examine this relationship.
总频谱功率指示总体 HRV,并允许评估总体自主心脏调节(例如 SDNN)。高频功率代表短期心率变化。研究表明,注射阿托品完全消除了高频功率(Akselrod 等, 1981 ;Pomeranz 等, 1985 )。因此,高频功率仅由副交感神经活动调节,对应于峰值呼吸频率(0.18-0.40 Hz)。药理学研究表明,毒蕈碱胆碱能阻滞剂(阿托品)或 β-肾上腺素能阻滞剂(β-阻滞剂)可降低 LF 功率,并通过双重阻滞(阿托品 + β-阻滞剂)增强(Akselrod 等, 1981 ;Pomeranz 等, 1985 ) 。因此,副交感和交感心脏活动都与 LF 频段的 HR 功率相关。索尔等人。 ( 1990 ) 和其他人 ( Pagani 等人, 1997 ) 表明,通过显微神经造影测量,低频功率和肌肉交感神经活动随之增加。此外,在阿托品作用下,低频功率在体位测试期间增加(Taylor et al., 1998 ),并且已知阿托品可以增加交感神经调节。尽管这些研究表明交感心脏对低频功率的调节,但低频功率的变化只能通过与高频功率的关系来解释。因此,使用 LF/HF 比、LF% [LF/(LF + HF) * 100] 和 HF% [HF/(LF + HF) * 100] 等标准化指标来检验这种关系。
To summarize, whereas HF power is modulated by parasympathetic modulation, LF power is controlled by both sympathetic and parasympathetic activity and normalized indexes allow approaching sympathetic modulation (Pagani et al., 1986; Lombardi and Stein, 2011).
总而言之,虽然高频功率是通过副交感神经调制来调制的,但低频功率是由交感神经和副交感神经活动两者控制的,并且归一化指数允许接近交感神经调制(Pagani等人, 1986 ;Lombardi和Stein, 2011 )。
Non-linear approach: complexity of HRV
非线性方法:HRV 的复杂性
Alternatively, non-linear approach was proposed to study cardiac autonomic control (Voss et al., 1995). In the last years, emergent interest of non-linear dynamics that characterize autonomic cardiovascular control lead to a growing literature (Voss et al., 1995; Porta et al., 2007, 2012). The study of the complexity of the different feedback loops impacting on the cardiac function has led to novel indexes capable of reflecting the complexity of the signal. Although several non-linear methods have been developed, we will briefly present entropy-derived measures, which have been recently applied for the assessment of autonomic cardiovascular complexity during sleep such as approximate entropy, sample entropy, corrected conditional entropy and Shannon entropy (Vigo et al., 2010; Viola et al., 2011). The increase the complexity of the cardiac signal, reflected by the increase in these non-linear indexes is usually associated to vagal modulation and its decrease is usually interpreted be the result of an increased sympathetic drive and vagal withdrawal (Porta et al., 2007).
或者,提出了非线性方法来研究心脏自主控制(Voss 等人, 1995 )。在过去的几年中,人们对以自主心血管控制为特征的非线性动力学的兴趣不断涌现,导致越来越多的文献出现(Voss 等, 1995 ;Porta 等, 2007,2012 )。对影响心脏功能的不同反馈回路的复杂性的研究产生了能够反映信号复杂性的新指标。尽管已经开发了几种非线性方法,但我们将简要介绍熵衍生的测量,这些测量最近已应用于评估睡眠期间的自主心血管复杂性,例如近似熵、样本熵、校正条件熵和香农熵(Vigo等人)等人, 2010 ;维奥拉等人, 2011 )。这些非线性指标的增加反映了心脏信号复杂性的增加,这通常与迷走神经调节有关,其减少通常被解释为交感神经驱动力和迷走神经退缩增加的结果(Porta等人, 2007 ) 。
Time-frequency transforms: transit changes in HRV
时频变换:HRV 的传输变化
Wavelet or Wigner-Ville transforms (Rajendra Acharya et al., 2006) are time-frequency methods used to analyse HR by tracking signal frequency over time. By examining transit changes in LF and HF power and the LF/HF ratio, they describe sympathetic and parasympathetic activity over time, effectively characterizing transit autonomic cardiac changes to short-time tasks (Pichot et al., 1999; Chouchou et al., 2011). These methods allow the study of transient changes in the autonomic nervous system for short periods, from which seconds to minutes. Similarly to evoked-potentials in response to different types of stimuli such as somatosensory, visual or auditory, averaging of several stimuli allows to retrieve a characteristic physiological response of stimuli used. These methods were used during wakefulness to assess autonomic reactivity to tilt tests (Oliveira et al., 2008; Orini et al., 2012) or exercise (Tiinanen et al., 2009) and during sleep to assess autonomic reactivity to periodic leg movements (Sforza et al., 2005), sleep apneas (Chouchou et al., 2014), and experimental pain (Chouchou et al., 2011).
小波或 Wigner-Ville 变换(Rajendra Acharya 等, 2006 )是时频方法,用于通过随时间跟踪信号频率来分析 HR。通过检查低频和高频功率以及低频/高频比率的传输变化,他们描述了交感神经和副交感神经活动随时间的变化,有效地表征了短时任务的传输自主心脏变化(Pichot 等, 1999 ;Chouchou 等, 2011) )。这些方法允许研究自主神经系统在短时间内(从几秒到几分钟)的短暂变化。与响应不同类型的刺激(例如体感、视觉或听觉)的诱发电位类似,对多个刺激进行平均可以检索所使用的刺激的特征性生理反应。这些方法用于在清醒期间评估自主神经对倾斜测试的反应(Oliveira 等人, 2008 ;Orini 等人, 2012 )或运动(Tiinanen 等人, 2009 ),以及在睡眠期间评估自主神经对周期性腿部运动的反应( Sforza 等人, 2005 年)、睡眠呼吸暂停(Chouchou 等人, 2014 年)和实验性疼痛(Chouchou 等人, 2011 年)。
HRV in human imaging studies
HRV 在人体成像研究中的应用
Using only 2–3 skin electrodes (on chest, hands, or feet), HRV provides a simple, easily implemented way to assess ANS activity during in-scanner behavioral, emotional, and sensorimotor tasks known to modulate ANS activity. Fourier transforms, non-linear analysis and temporal analysis are particularly useful for steady-state examination, obtaining a simple index of overall autonomic modulation during imaging (fMRI and PET scan) (Critchley, 2009; Goswami et al., 2011). Time-frequency analysis provides an index of sympathetic and parasympathetic modulation evoked by exteroceptive or interoceptive stimuli for short periods (Sforza et al., 2005; Oliveira et al., 2008; Tiinanen et al., 2009; Chouchou et al., 2011, 2014; Orini et al., 2012). These are simple, non-invasive methods to examine central nervous system activity and identify neural networks involved in autonomic modulation.
仅使用 2-3 个皮肤电极(胸部、手部或脚部),HRV 提供了一种简单、易于实施的方法来评估已知可调节 ANS 活动的扫描仪内行为、情绪和感觉运动任务期间的 ANS 活动。傅立叶变换、非线性分析和时间分析对于稳态检查特别有用,可以在成像(fMRI 和 PET 扫描)期间获得整体自主调节的简单指数(Critchley, 2009 ;Goswami 等人, 2011 )。时频分析提供了短期外感受或内感受刺激引起的交感神经和副交感神经调节的指数(Sforza 等人, 2005 ;Oliveira 等人, 2008 ;Tiinanen 等人, 2009 ;Chouchou 等人, 2011 , 2014 ;奥里尼等人, 2012 )。这些是检查中枢神经系统活动并识别参与自主调节的神经网络的简单、非侵入性方法。
Central and peripheral control of autonomic cardiac activity
自主心脏活动的中枢和外周控制
Autonomic cardiac activity depends on reflex loops, hypothalamic-brainstem structures, and various somatic and visceral information. Sympathetic activity is underpinned by a neuronal network in the rostral ventrolateral medulla, spinal cord, and hypothalamus (paraventricular nucleus and lateral hypothalamus) (Guyenet, 2013). Parasympathetic activity is underpinned by neurons in the nucleus ambigus and dorsal motor nucleus of the vagus nerve (Ter Horst and Postema, 1997; Pickering and Paton, 2006). These centers receive inputs directly or via the solitary tract nucleus, from stretch-sensitive afferents of ventilation (lung afferents), arterial pressure (carotid and aortic receptors) afferents, muscle receptor afferents (Guyenet, 2013) activated by stretch and metabolites, chemoreceptor afferents activated by hypoxia and hypercapnia, and inputs from somatic and visceral afferents (Guyenet, 2013). Imaging studies showing core brain regions involved in ANS control revealed differential contribution of subcortical and cortical regions to autonomic cardiac control according to autonomic arousal tasks (somatosensory, motor, emotional, cognitive). A “central autonomic network” (CAN) has emerged, reproducible mainly in the amygdala, insular, and midcingulate cortices (Beissner et al., 2013; Critchley and Harrison, 2013) (Figure (Figure1A).1A). Critchley et al. (2003), using cognitive and sensorimotor tasks, showed that LF power positively correlated with changes in neural activity within the anterior cingulate, bilateral insular, hypothalamus, parietal, and somatosensory cortices (LF power was orthogonalised with respect to the HF regressor to remove shared variance within sympathetic and parasympathetic activities in LF power). For parasympathetic modulation, HF power positively correlated with changes in neural activity within the anterior cingulate and bilateral insula cortex and somatosensory cortices. Among others, HF and LF power correlated with neural activity changes within the amygdala, insula, hippocampus, and ventromedial prefrontal cortex for emotional tasks (Lane et al., 2009; Thayer et al., 2012). These observations suggest that the ANS is controlled by different regions involved in identifying, storing, and regulating emotions (Critchley and Harrison, 2013).
自主心脏活动取决于反射环、下丘脑-脑干结构以及各种躯体和内脏信息。交感神经活动由延髓头侧腹外侧、脊髓和下丘脑(室旁核和下丘脑外侧)的神经元网络支撑(Guyenet, 2013 )。副交感神经活动由迷走神经的疑核和背运动核中的神经元支撑(Ter Horst 和 Postema, 1997 ;Pickering 和 Paton, 2006 )。这些中心直接或通过孤束核接收输入,来自通气的拉伸敏感传入神经(肺传入神经)、动脉压(颈动脉和主动脉受体)传入神经、由拉伸和代谢物激活的肌肉受体传入神经(Guyenet, 2013 )、化学感受器传入神经由缺氧和高碳酸血症以及躯体和内脏传入的输入激活(Guyenet, 2013 )。影像学研究显示,参与 ANS 控制的核心大脑区域揭示了根据自主唤醒任务(体感、运动、情绪、认知),皮质下和皮质区域对自主心脏控制的不同贡献。一个“中央自主网络”(CAN)已经出现,主要在杏仁核、岛叶和中扣带皮层中重现(Beissner et al., 2013 ;Critchley and Harrison, 2013 )(图(图1A) 。1A )。克里奇利等人。 ( 2003 ),使用认知和感觉运动任务,表明低频功率与前扣带回、双侧岛叶、下丘脑、顶叶和体感皮质内的神经活动变化呈正相关(低频功率与高频回归量正交,以消除共享的低频功率中交感神经和副交感神经活动的差异)。对于副交感神经调节,高频功率与前扣带回、双侧岛叶皮质和体感皮质内的神经活动变化呈正相关。其中,高频和低频功率与情绪任务中杏仁核、岛叶、海马和腹内侧前额皮质内的神经活动变化相关(Lane 等, 2009 ;Thayer 等, 2012 )。这些观察结果表明,ANS 是由参与识别、存储和调节情绪的不同区域控制的(Critchley 和 Harrison, 2013 )。
Although cardiac activity is largely modulated through reflex loops and hypothalamic-brainstem centers, the CAN appears responsible for rapid changes in behavior-related autonomic activity, particularly sensory, emotional, and cognitive dimensions. The highest levels of sensory and emotional information are integrated by autonomic cardiac activity. Accordingly, HRV could allow an integrated examination of the interactions between peripheral processes of cardiac autonomic modulation reflex loops and central information processing systems, including emotions.
尽管心脏活动很大程度上是通过反射环和下丘脑脑干中心调节的,但 CAN 似乎负责行为相关自主活动的快速变化,特别是感觉、情绪和认知维度。最高水平的感觉和情感信息由自主心脏活动整合。因此,HRV 可以对心脏自主调节反射环路的外围过程和中央信息处理系统(包括情绪)之间的相互作用进行综合检查。
Parasympathetic cardiac predominance during non-REMS: homeostatic cardiovascular control
非快速眼动睡眠期间副交感心脏占主导地位:稳态心血管控制
Humans have three vigilance states: wakefulness, REMS (paradoxical or stage R, according to the American Association of Sleep Medicine, Iber et al., 2007), and non-REMS. Non-REMS is further divided into three stages: from the lightest stages 1 (N1) and 2 (N2) to the deepest stages 3 [slow wave sleep (SWS), N3], defined by electroencephalographic (EEG), electromyographic (EMG), and electroculographic (EOG) characteristics (Iber et al., 2007). The REMS and non-REMS stages string together to form ultradian cycles, which repeat throughout the sleep period (Figure (Figure2A).2A). SWS dominates in the first part, and REMS in the last part.
人类具有三种警觉状态:清醒、REMS(根据美国睡眠医学协会的说法,矛盾或 R 阶段,Iber 等人, 2007 年)和非 REMS。非REMS进一步分为三个阶段:从最浅的阶段1(N1)和2(N2)到最深的阶段3[慢波睡眠(SWS),N3],由脑电图(EEG)、肌电图(EMG)定义和电图 (EOG) 特征(Iber 等人, 2007 )。 REMS 和非 REMS 阶段串联在一起形成超电周期,在整个睡眠期间重复(图(图2A) .2A )。 SWS 在第一部分占主导地位,REMS 在最后部分占主导地位。
The wakefulness–sleep transition is accompanied by about a 15% decrease in blood pressure, HR, and cardiac output in normotensive subjects (Smith et al., 1998). HR is markedly decreased when falling asleep and when entering stable non-REMS without arousal (Carrington et al., 2005). These cardiovascular changes are accompanied by increased HF power and decreased LF power and LF/HF ratio, indicating lower cardiac sympathetic modulation with predominant parasympathetic heart modulation (Critchley et al., 2003; Mendez et al., 2006; Lane et al., 2009; Cabiddu et al., 2012; Thayer et al., 2012), and more pronounced in SWS (Van de Borne et al., 1994; Bonnet and Arand, 1997; Carrington et al., 2005) (Figure (Figure1B).1B). The increased complexity of HRV detected during non-REMS study using non-linear indexes also illustrated predominance of parasympathetic control of the heart and sympathetic withdrawal during non-REMS (Vigo et al., 2010; Viola et al., 2011). These HRV-derived changes in cardiac sympathetic modulation are corroborated by studies using other cardiac sympathetic indices such as the cardiac pre-ejection period (Burgess et al., 2004), QT interval (Molnar et al., 1996), muscle sympathetic nerve activity (Somers et al., 1993), and circulating catecholamine concentration (Irwin et al., 1999).
在血压正常的受试者中,清醒-睡眠转变伴随着血压、心率和心输出量约 15% 的下降(Smith 等, 1998 )。当入睡时和进入稳定的非快速眼动睡眠期而没有唤醒时,HR 显着降低(Carrington 等, 2005 )。这些心血管变化伴随着高频功率的增加和低频功率和低频/高频比的降低,表明心脏交感神经调节较低,副交感心脏调节占主导地位(Critchley等人, 2003年;Mendez等人, 2006年;Lane等人, 2009年) ;Cabiddu 等人, 2012 ;Thayer 等人, 2012 ),并且在 SWS 中更为明显(Van de Borne 等人, 1994 ;Bonnet 和 Arand, 1997 ;Carrington 等人, 2005 )(图(图 1B) 1B ) 。在使用非线性指标的非快速眼动睡眠研究期间检测到的 HRV 复杂性的增加也说明了非快速眼动睡眠期间副交感神经控制心脏和交感神经退缩的优势(Vigo 等人, 2010 ;Viola 等人, 2011 )。这些 HRV 衍生的心脏交感调节变化得到了使用其他心脏交感指数的研究的证实,例如心脏射血前期 (Burgess 等, 2004 )、QT 间期 (Molnar 等, 1996 )、肌肉交感神经活动(Somers 等, 1993 )和循环儿茶酚胺浓度(Irwin 等, 1999 )。
Autonomic cardiac changes during non-REMS may be in relation with global activity and reflex loop changes. First, non-REMS is characterized by slow EEG rhythms accompanied by decreased brain activity compared to wakefulness (Desseilles et al., 2008, 2011b; Dang-Vu et al., 2010; Dang-Vu, 2012), especially in subcortical (brainstem, thalamus, basal ganglia, basal forebrain) and cortical (prefrontal cortex, anterior cingulate cortex, precuneus) regions (Figure (Figure2B).2B). A PET imaging study (Desseilles et al., 2006) found no relationship between brain activity and autonomic cardiac modulation during non-REMS. These studies suggest that decreased activity in subcortical and cortical regions involves a lower central command in cardiac autonomic control. Second, changes in reflex loop activity may contribute to autonomic cardiac modulation changes. Both baroreflex sensitivity (Cortelli et al., 2012) and baroreflex contribution (Silvani et al., 2008) increase during non-REMS (compared to wakefulness), while cardiopulmonary coupling between respiratory frequency and parasympathetic cardiac modulation increases from 8 to 15% (Van de Borne et al., 1995). Altogether, results indicate that parasympathetic predominance and decreased sympathetic modulation during non-REMS is linked to both greater baroreflex and respiratory contributions to ANS activity and decreased brain activity, leading to decreased central modulation of autonomic activity.
非快速眼动睡眠期间自主心脏的变化可能与整体活动和反射环的变化有关。首先,非快速眼动睡眠期的特点是脑电图节律缓慢,并伴有与清醒状态相比大脑活动减少(Desseilles et al., 2008 , 2011b ;Dang-Vu et al., 2010 ;Dang-Vu, 2012 ),特别是在皮层下(脑干) 、丘脑、基底神经节、基底前脑)和皮质(前额叶皮质、前扣带皮层、楔前叶)区域(图(图2B )。2B )。 PET 成像研究(Desseilles 等, 2006 )发现非快速眼动睡眠期间大脑活动与自主心脏调节之间没有关系。这些研究表明,皮层下和皮层区域活动的减少涉及心脏自主控制的中枢指挥能力降低。其次,反射环活动的变化可能导致自主心脏调节的变化。在非快速眼动睡眠期间(与清醒状态相比),压力反射敏感性(Cortelli 等人, 2012 )和压力反射贡献(Silvani 等人, 2008 )均增加,而呼吸频率和副交感心脏调节之间的心肺耦合从 8% 增加至 15%( Van de Borne 等人, 1995 )。总而言之,结果表明,非快速眼动睡眠期间副交感神经的优势和交感神经调节的减少与压力反射和呼吸对 ANS 活动的贡献更大以及大脑活动的减少有关,从而导致自主神经活动的中枢调节减少。
In sum, the ANS balance of cardiac control during non-REMS could be due to homeostatic control of the cardiovascular system by ascending visceral information rather than descending cortical information.
总之,非快速眼动睡眠期间心脏控制的 ANS 平衡可能是由于心血管系统通过上行内脏信息而不是下行皮质信息进行稳态控制。
Sympathetic cardiac predominance during REMS
REMS 期间交感心脏优势
Central and peripheral cardiovascular system control
中枢和外周心血管系统控制
Unlike non-REMS, REMS is marked by increased HR, LF power, and LF/HF ratio and reduced HF power, rising toward wakefulness (Van de Borne et al., 1994; Mendez et al., 2006; Cabiddu et al., 2012), showing increased and predominant sympathetic modulation (Figure (Figure1C).1C). Non-linear indexes demonstrated decreased complexity of HRV detected during REMS, also indicating predominance of sympathetic control of the heart and parasympathetic withdrawal during non-REMS (Vigo et al., 2010; Viola et al., 2011). Similar sympathetic cardiac changes were reported in muscle sympathetic nerve activity (Somers et al., 1993) and circulating catecholamine concentration (Irwin et al., 1999). The findings are inconsistent on autonomic cardiac reflexes during REMS: baroreflex was higher compared to non-REMS (Monti et al., 2002; Iellamo et al., 2004), whereas other studies found no difference between REMS and wakefulness (Silvani et al., 2008). Moreover, during non-REMS, respiratory drive regulation was strongly influenced by peripheral inputs, whereas respiration regulation was under central control during REMS (Rostig et al., 2005). However, brain activity patterns during REMS differed from those in non-REMS and wakefulness, with greater activity in certain brain structures during REMS compared to waking (pontine tegmentum, thalamus, basal forebrain, amygdala, hippocampus, anterior cingulate cortex, temporo-occipital areas) and decreased activity in others (dorsolateral prefrontal cortex, posterior cingulate cortex, precuneus, inferior parietal cortex, Figure Figure2C).2C). Importantly, REMS is also classified into two distinct categories: phasic REM, with rapid eye movements, and tonic REMS, without these movements. Changes in autonomic modulation during REMS are particularly marked during phasic REMS for both heart rate (Coote, 1982) and muscle nerve sympathetic activity (Shimizu et al., 1992). This phasic autonomic activity tends to coincide with eye movements and other events specific to phasic REM, such as theta bursts in the hippocampus (Rowe et al., 1999; Pedemonte et al., 2005). A PET imaging study in humans found a strong relationship between the amygdala, insular cortex, and SDNN of the HRV (Desseilles et al., 2006), indicating strong central control of cardiac modulation during REMS by brain regions known to be involved in ANS modulation during wakefulness.
与非快速眼动睡眠期不同,快速眼动睡眠期的特点是心率、低频功率和低频/高频比增加,高频功率降低,逐渐觉醒(Van de Borne 等人, 1994 年;Mendez 等人, 2006 年;Cabiddu 等人, 2012 ),显示交感神经调节增加且占主导地位(图(图1C) 。1C )。非线性指数表明在 REMS 期间检测到的 HRV 复杂性降低,也表明非 REMS 期间心脏的交感神经控制和副交感神经退缩占主导地位(Vigo 等人, 2010 ;Viola 等人, 2011 )。肌肉交感神经活动(Somers 等, 1993 )和循环儿茶酚胺浓度(Irwin 等, 1999 )也报告了类似的交感心脏变化。关于 REMS 期间自主心脏反射的研究结果不一致:与非 REMS 相比,压力感受反射更高(Monti 等人, 2002 年;Iellamo 等人, 2004 年),而其他研究发现 REMS 和清醒之间没有差异(Silvani 等人,2004 年)。 , 2008 )。此外,在非REMS期间,呼吸驱动调节受到外周输入的强烈影响,而在REMS期间呼吸调节受到中央控制(Rostig等, 2005 )。 然而,REMS 期间的大脑活动模式与非 REMS 和清醒时的大脑活动模式不同,与清醒时相比,REMS 期间某些大脑结构的活动更大(桥脑被盖、丘脑、基底前脑、杏仁核、海马、前扣带皮层、颞枕区) )和其他人(背外侧前额叶皮层、后扣带皮层、楔前叶、下顶叶皮层,图图2C)的活动减少。 2C )。重要的是,REMS 也分为两个不同的类别:具有快速眼球运动的阶段性 REM 和没有这些运动的强直性 REMS。 REMS 期间自主调节的变化在心率 (Coote, 1982 ) 和肌肉神经交感活动 (Shimizu 等人, 1992 ) 的阶段性 REMS 期间尤其明显。这种阶段性自主活动往往与眼球运动和阶段性 REM 特有的其他事件一致,例如海马体中的 theta 爆发(Rowe 等人, 1999 ;Pedemonte 等人, 2005 )。一项人类 PET 成像研究发现,杏仁核、岛叶皮质和 HRV 的 SDNN 之间存在密切关系(Desseilles 等人, 2006 年),这表明已知参与 ANS 调节的大脑区域在 REMS 期间对心脏调节具有强大的中枢控制作用清醒时。
Thus, autonomic cardiac regulation during REMS appears to be shared between central control (with the insula and amygdala) and homeostatic control of the cardiovascular system through somato-visceral information.
因此,REMS 期间的自主心脏调节似乎是通过躯体内脏信息在心血管系统的中央控制(岛叶和杏仁核)和稳态控制之间共享的。
Autonomic cardiac modulation and dreams
自主心脏调节和梦
Whereas dreams occur during either REMS or SWS, subjects awakened from REMS reported dreaming 80–85% of the time, vs. only 10–15% when awakened from SWS (Hobson, 1990). REMS dreams are longer, more vivid, bizarre, emotionally intense, and illogical than SWS dreams (Desseilles et al., 2011a). Note that anger and fear are common during dreams, occurring in 57% of all dreams (Merritt et al., 1994).
尽管做梦发生在 REMS 或 SWS 期间,但从 REMS 中醒来的受试者报告说,80-85% 的时间都在做梦,而从 SWS 中醒来时,这一比例仅为 10-15% (Hobson, 1990 )。 REMS 梦比 SWS 梦更长、更生动、更奇异、情感更强烈且不合逻辑(Desseilles 等人, 2011a )。请注意,愤怒和恐惧在梦中很常见,占所有梦中的 57%(Merritt et al., 1994 )。
Importantly, some dream studies investigating the relationship between dream content and autonomic cardiac modulation (Baust and Engel, 1971; Hauri and Van de Castle, 1973) found associations between dream intensity and emotionality and HRV. Hauri and Van de Castle (Baust and Engel, 1971) found strong associations between dream emotionality and intensity during REMS and HRV, and between dream involvement and mean HR. For non-REMS, only mentation intensity and SDNN were related. Accordingly, during REMS, insular and amygdalar interactions involved in cardiovascular regulation (Desseilles et al., 2006) might reflect cortical and subcortical network activity underlying intense emotions, particularly fear and anxiety, often experienced in dreams. More recently, daily worry has been shown to be related to cardiac autonomic changes marked by sympathetic predominance during wakefulness but also during sleep (Brosschot et al., 2007). Overall, these studies suggest that autonomic cardiac modulations during sleep could inform us on sleep mentation and consequently the sleep stages and main brain structures involved.
重要的是,一些研究梦内容与自主心脏调节之间关系的梦研究(Baust 和 Engel, 1971 ;Hauri 和 Van de Castle, 1973 )发现梦强度与情绪和 HRV 之间存在关联。 Hauri 和 Van de Castle(Baust 和 Engel, 1971 )发现 REMS 和 HRV 期间的梦情绪和强度之间以及梦参与度和平均 HR 之间存在很强的关联。对于非 REMS,只有心理状态强度和 SDNN 相关。因此,在快速眼动睡眠期间,参与心血管调节的岛叶和杏仁核相互作用(Desseilles et al., 2006 )可能反映了强烈情绪背后的皮层和皮层下网络活动,特别是梦中经常经历的恐惧和焦虑。最近,日常忧虑已被证明与心脏自主神经变化有关,其特点是清醒时和睡眠期间交感神经占主导地位(Brosschot 等, 2007 )。总的来说,这些研究表明,睡眠期间的自主心脏调节可以告诉我们睡眠心理状态,从而了解睡眠阶段和所涉及的主要大脑结构。
Moreover, whereas the association between REMS and dreams effectively reduces the characterisation of the neural correlates of dreaming to a comparison between REMS and wakefulness or non-REMS, note that neither dreaming nor REMS are stable, homogeneous, or unique states (Cavallero et al., 1992; Stickgold et al., 2001). Indeed, dreaming can be described along a continuum from thought-like mentation typical of early non-REMS to florid, vivid, and dreamlike experiences typical of REMS. Other studies suggested a shift toward more dreamlike hallucinations and fewer directed thoughts with both REMS duration and total sleep duration (Fosse et al., 2004). These findings suggest that REMS is a facilitating neurophysiological state for dreaming, although dreams are experienced in other sleep stages. This assumption also reflects the importance in emotional memory of noradrenaline (Sara, 2009), which appears to be involved when dream content is especially negative. Finally, progressively increasing sympathetic activity along the sleep duration, independently of sleep stage, was linked to circadian rhythm (Trinder et al., 2001; Carrington et al., 2005). An alternative, complementary interpretation is to link the sympathetic increase to the quality of cognitive dream content during sleep along a continuum: from thought-like mentation in early non-REMS to florid, vivid, dreamlike experiences in REMS, often with fear and anxiety, which might also contribute to sympathetic predominance as sleep progresses.
此外,尽管 REMS 和梦之间的关联有效地将梦的神经相关性特征降低为 REMS 与清醒或非 REMS 之间的比较,但请注意,梦和 REMS 都不是稳定的、同质的或独特的状态(Cavallero 等,2017)。 , 1992 ;斯蒂克戈尔德等人, 2001 )。事实上,梦可以被描述为一个连续体,从早期非快速眼动睡眠期典型的类似思想的心理状态到快速眼动睡眠期典型的绚丽、生动和梦幻般的经历。其他研究表明,REMS 持续时间和总睡眠持续时间都朝着更多梦幻般的幻觉和更少的定向思维转变(Fosse 等, 2004 )。这些研究结果表明,尽管在其他睡眠阶段也会做梦,但快速眼动睡眠期是一种促进做梦的神经生理状态。这一假设也反映了去甲肾上腺素在情绪记忆中的重要性(Sara, 2009 ),当梦的内容特别消极时,它似乎会参与其中。最后,随着睡眠持续时间逐渐增加的交感神经活动,与睡眠阶段无关,与昼夜节律相关(Trinder 等, 2001 ;Carrington 等, 2005 )。另一种补充解释是将交感神经的增加与睡眠期间认知梦内容的质量联系起来,沿着一个连续体:从早期非快速眼动睡眠中的类似思想的心理状态到快速眼动睡眠中华丽、生动、梦幻般的体验,通常伴有恐惧和焦虑,随着睡眠的进行,这也可能有助于交感神经的优势。
Along this line, cardiac sympathetic predominance during REMS was studied in several clinical conditions, including REMS behavior disorders (RBD) (Postuma et al., 2010). These disorders are characterized by intermittent loss of REMS atonia, usually seen in REMS, and by elaborate motor activity associated with dream mentation. RBD patients showed autonomic dysfunctions during sleep (reduced tonic and phasic autonomic activity), which tend to appear earlier than autonomic dysfunction during wakefulness (Ferini-Strambi et al., 1996). This result contrasts with the psychophysiological parallels that occur during dreams: sleep mentation during either REMS or non-REMS (Baust and Engel, 1971; Hauri and Van de Castle, 1973). Moreover, given that symptomatic RBD cases were associated with several frequent and debilitating neurological disorders, including the neurodegenerative disorders dementia and Parkinson's disease, and that autonomic dysfunctions might be detected earlier in sleep than in wakefulness and immediately improved by clonazepam (Ferini-Strambi and Zucconi, 2000), HRV measures and analysis during sleep could be used to detect and treat RBD conditions and other potentially co-occurring conditions.
沿着这个思路,在几种临床情况下研究了 REMS 期间心脏交感神经的优势,包括 REMS 行为障碍 (RBD) (Postuma et al., 2010 )。这些疾病的特征是快速眼动睡眠期肌张力障碍的间歇性丧失(通常见于快速眼动睡眠期),以及与梦境心理相关的复杂运动活动。 RBD 患者在睡眠期间表现出自主神经功能障碍(强直性和阶段性自主神经活动减少),往往比清醒时的自主神经功能障碍出现得更早(Ferini-Strambi 等, 1996 )。这一结果与梦中发生的心理生理学相似之处形成对比:REMS 或非 REMS 期间的睡眠心理(Baust 和 Engel, 1971 ;Hauri 和 Van de Castle, 1973 )。此外,考虑到有症状的 RBD 病例与几种常见的、使人衰弱的神经系统疾病有关,包括神经退行性疾病、痴呆和帕金森病,并且自主神经功能障碍可能在睡眠中比清醒时更早被发现,并通过氯硝西泮立即得到改善(Ferini-Strambi 和 Zucconi) , 2000 ),睡眠期间的 HRV 测量和分析可用于检测和治疗 RBD 病症和其他潜在并发病症。
Implications for psychiatric disorders
对精神疾病的影响
HRV analysis could be used to characterize sympathetic and parasympathetic hyperactivity or hypoactivity in many psychiatric disorders (Yeragani et al., 2002; Bär et al., 2007; Kemp et al., 2010). More broadly, anxiety and depressive disorders are associated with sympathetic overactivity, and anxiolytic and antidepressant treatments are known to affect ANS control (Chouchou et al., 2013). Thus, HRV could be a pharmacological or psychotherapeutic aid to reduce the trial and error and side effects of pharmacological treatments designed to restore ANS activity (Spoormaker et al., 2006).
HRV 分析可用于表征许多精神疾病中交感神经和副交感神经的亢进或减退(Yeragani 等, 2002 ;Bär 等, 2007 ;Kemp 等, 2010 )。更广泛地说,焦虑症和抑郁症与交感神经过度活跃有关,已知抗焦虑药和抗抑郁药治疗会影响 ANS 控制(Chouchou 等, 2013 )。因此,HRV 可以作为一种药理学或心理治疗辅助手段,以减少旨在恢复 ANS 活性的药物治疗的试验和错误以及副作用(Spoormaker 等, 2006 )。
Moreover, emotional states during dreaming may be as intense as during wakefulness (Spoormaker et al., 2006), potentially causing behavioral stress. The ability to perceive emotional state while dreaming is supported by Revonsuo's (Revonsuo, 1995) dreams and virtual realities thesis, and concurs with the observation that lucidly dreamed motor action increases peripheral effector function (i.e., autonomic activity, Erlacher and Schredl, 2008). This suggests that actions and emotions perceived during sleep can modulate cardiac autonomic activity, similarly to during wakefulness. Therapeutically, because wakefulness interventions such as imagery rehearsal therapy (IRT) have been shown to modulate dream mentation during sleep (Krakow and Zadra, 2006), they might also decrease overactive autonomic activity in depression and anxiety, which are frequently associated with negative emotionality during wakefulness and sleep (Beck and Ward, 1961). However, the literature suggests that autonomic changes in depression are linked to antidepressant treatments, and not the disease (Bär et al., 2004). The etiology of cardiac autonomic changes in depression needs to be clarified in order to help prevent associated cardiovascular events (Bär et al., 2004).
此外,做梦时的情绪状态可能与清醒时一样强烈(Spoormaker et al., 2006 ),可能会导致行为压力。 Revonsuo(Revonsuo, 1995 )的梦与虚拟现实论文支持了做梦时感知情绪状态的能力,并与清醒梦运动动作增加外周效应器功能(即自主活动,Erlacher 和 Schredl, 2008 )的观察结果一致。这表明睡眠期间感知的行为和情绪可以调节心脏自主活动,类似于清醒期间。在治疗上,由于诸如意象排练疗法(IRT)之类的觉醒干预措施已被证明可以调节睡眠期间的梦境心理(Krakow 和 Zadra, 2006 ),因此它们还可能减少抑郁和焦虑中过度活跃的自主神经活动,而抑郁和焦虑通常与睡眠期间的负面情绪有关。觉醒和睡眠(Beck 和 Ward, 1961 )。然而,文献表明抑郁症的自主神经变化与抗抑郁治疗有关,而不是与疾病有关(Bär 等, 2004 )。需要澄清抑郁症中心脏自主神经变化的病因,以帮助预防相关的心血管事件(Bär 等, 2004 )。
Sleep deprivation (SD) involves changes in brain activity in regions that regulate mood and emotions (García-Gómez et al., 2007). These changes can be understood as changes in autonomic modulations, because SD increases stress and anxiety, negative emotions, and sympathetic tone, which cannot by themselves contribute to change brain mechanisms for emotional regulation (Yoo et al., 2007). Interestingly, SD is used to reduce depression in bipolar patients, often combined with light therapy to resynchronise sleep (Bunney and Bunney, 2013). Thus, SD may affect ANS modulation in patients with a deregulated ANS, marked by decreased parasympathetic activity and sympathetic overactivity (Meerlo et al., 2008). The lower energy expenditure following SD and its links to the ANS provide a promising avenue for understanding the positive impact of SD on bipolar depression (Pénicaud et al., 2000; Benedict et al., 2011).
睡眠剥夺(SD)涉及调节情绪和情绪的大脑区域活动的变化(García-Gómez et al., 2007 )。这些变化可以理解为自主神经调节的变化,因为SD会增加压力和焦虑、负面情绪和交感神经张力,而这些变化本身并不能改变大脑的情绪调节机制(Yoo et al., 2007 )。有趣的是,SD 用于减轻双相情感障碍患者的抑郁症,通常与光疗结合以重新同步睡眠(Bunney 和 Bunney, 2013 )。因此,SD 可能会影响 ANS 失调患者的 ANS 调节,其特点是副交感神经活动减少和交感神经过度活跃(Meerlo 等人, 2008 )。 SD 后较低的能量消耗及其与 ANS 的联系为了解 SD 对双相抑郁症的积极影响提供了一个有希望的途径(Pénicaud 等, 2000 ;Benedict 等, 2011 )。
Finally, to better understanding of involvement of cognitions and emotions in autonomic cardiac control, experimental protocols associated with HRV analysis and brain imaging are necessary. These different types of analysis presented in this mini-review provides the possibility for more accurate measurement of interactions between autonomic cardiac activities before and after stimulation and brain processing of somatosensory, visual or auditory stimuli, as well as emotions (Critchley and Harrison, 2013). Furthermore, multivariate signal processing techniques (Porta and Faes, 2013) are particularly relevant for understanding the interactions between the different feedback loops and the influence of higher centers on cardiac function and provide opportunities for better understanding the heart-brain interaction during wake as well as during sleep.
最后,为了更好地理解认知和情绪在自主心脏控制中的参与,与 HRV 分析和脑成像相关的实验方案是必要的。本小综述中提出的这些不同类型的分析为更准确地测量刺激前后自主心脏活动与体感、视觉或听觉刺激以及情绪的大脑处理之间的相互作用提供了可能性(Critchley 和 Harrison, 2013 ) 。此外,多变量信号处理技术(Porta 和 Faes, 2013 )对于理解不同反馈回路之间的相互作用以及高级中心对心脏功能的影响特别相关,并为更好地理解清醒和清醒期间的心脑相互作用提供了机会。睡眠期间。
Conclusion 结论
Brain activity changes during different sleep stages are involved in autonomic regulation, marked by higher parasympathetic tone during non-REMS and sympathetic predominance during REMS. Cardiac autonomic modulation during REMS might partially depend on central nervous system modulation, allowing potential exploration of higher brain structure activity through peripheral autonomic modulation. These are simple, non-invasive methods to study brain activity that could obtain valuable information about emotional states in psychiatric disorders and dream content. However, the precise involvement of higher structures in cardiac autonomic control during REMS remains unclear, along with the link between autonomic modulation and dream content.
不同睡眠阶段的大脑活动变化与自主调节有关,其特点是非快速眼动睡眠期间副交感神经张力较高,而快速眼动睡眠期间交感神经占主导地位。 REMS 期间的心脏自主调节可能部分依赖于中枢神经系统调节,从而可以通过外周自主调节来探索更高的大脑结构活动。这些是研究大脑活动的简单、非侵入性方法,可以获得有关精神疾病和梦内容的情绪状态的有价值的信息。然而,REMS 期间心脏自主控制中高级结构的精确参与以及自主调节与梦内容之间的联系仍不清楚。
Conflict of interest statement
利益冲突声明
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
作者声明,该研究是在不存在任何可能被视为潜在利益冲突的商业或财务关系的情况下进行的。
References 参考
- Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger R. D., Cohen R. J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science
213, 220–222. [PubMed] [Google Scholar]
Akselrod S.、Gordon D.、Ubel FA、Shannon DC、Berger RD、Cohen RJ (1981)。心率波动的功率谱分析:逐次心跳心血管控制的定量探针。科学213 , 220–222。 [考研] [谷歌学术] - Bär K. J., Boettger M. K., Koschke M., Schulz S., Chokka P., Yeragani V. K., et al.. (2007). Non-linear complexity measures of heart rate variability in acute schizophrenia. Clin. Neurophysiol. 118, 2009–2015. 10.1016/j.clinph.2007.06.012IF: 3.7 Q1 B3 [] [CrossRef] [Google Scholar]
Bär KJ、Boettger MK、Koschke M.、Schulz S.、Chokka P.、Yeragani VK 等人 (2007)。急性精神分裂症心率变异性的非线性复杂性测量。临床。神经生理学。 118,2009-2015 。 10.1016/j.clinph.2007.06.012 IF: 3.7 Q1 B3 [] [交叉引用] [谷歌学术] - Bär K. J., Greiner W., Jochum T., Friedrich M., Wagner G., Sauer H. (2004). The influence of major depression and its treatment on heart rate variability and pupillary light reflex parameters. J Affec. Disord. 82, 245–252. 10.1016/j.jad.2003.12.016IF: 4.9 Q1 B2 [] [CrossRef] [Google Scholar]
Bär KJ、Greiner W.、Jochum T.、Friedrich M.、Wagner G.、Sauer H. (2004)。重度抑郁症及其治疗对心率变异性和瞳孔对光反射参数的影响。 J Affec。混乱。 82、245–252 。 10.1016/j.jad.2003.12.016 IF: 4.9 Q1 B2 [] [交叉引用] [谷歌学术] - Baust W., Engel R. (1971). The correlation of heart and respiratory frequency in natural sleep of man and their relation to dream content. Electroencephalogr. Clin. Neurophysiol. 30, 262–263. [PubMed] [Google Scholar]
鲍斯特·W.,恩格尔·R.(1971)。人自然睡眠时心率与呼吸频率的相关性及其与梦内容的关系。脑电图学家。临床。神经生理学。 30、262-263 。 [考研] [谷歌学术] - Beck A. T., Ward C. H. (1961). Dreams of depressed patients characteristic themes in manifest content. Arch. Gen. Psychiatry. 5, 462–467. [PubMed] [Google Scholar]
贝克 AT,沃德 CH (1961)。抑郁症患者的梦在表现内容上有特色主题。拱。精神病学将军。 5、462-467 。 [考研] [谷歌学术] - Beissner F., Meissner K., Bär K. J., Napadow V. (2013). The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 33, 10503–10511. 10.1523/JNEUROSCI.1103-13.2013IF: 4.4 Q1 B2 [PubMed] [CrossRef] [Google Scholar]
贝斯纳 F.、迈斯纳 K.、巴尔 KJ、纳帕多 V. (2013)。自主大脑:自主功能中央处理的激活可能性估计荟萃分析。 J.神经科学。 33、10503–10511 。 10.1523/JNEUROSCI.1103-13.2013 IF:4.4 Q1 B2 [ PubMed ] [ CrossRef ] [ Google Scholar ] - Benedict C., Lassen A., Mahnke C., Schultes B., Schiöth H. B., Born J., et al.. (2011). Acute sleep deprivation reduces energy expenditure in healthy men. Am. J. Clin. Nutr. 93, 1229–1236. 10.3945/ajcn.110.006460IF: 6.5 Q1 B1 [] [CrossRef] [Google Scholar]
Benedict C.、Lassen A.、Mahnke C.、Schultes B.、Schiöth HB、Born J. 等人 (2011)。严重睡眠不足会降低健康男性的能量消耗。是。 J.克林。营养。 93、1229–1236 。 10.3945/ajcn.110.006460 IF: 6.5 Q1 B1 [] [交叉引用] [谷歌学术] - Bonnet M. H., Arand D. L. (1997). Heart rate variability: sleep stage, time of night, and arousal influences. Electroencephalogr. Clin. Neurophysiol. 102, 390–396. [PubMed] [Google Scholar]
邦尼特 MH,阿兰德 DL (1997)。心率变异性:睡眠阶段、夜间时间和觉醒影响。脑电图学家。临床。神经生理学。 102、390–396 。 [考研] [谷歌学术] - Brosschot J. F., Van Dijk E., Thayer J. F. (2007). Daily worry is related to low heart rate variability during waking and the subsequent nocturnal sleep period. Int. J. Psychophysiol. 63, 39–47. 10.1016/j.ijpsycho.2006.07.016IF: 2.5 Q2 B3 [] [CrossRef] [Google Scholar]
布罗肖特 JF、范迪克 E.、塞耶 JF (2007)。日常忧虑与清醒时和随后的夜间睡眠期间的低心率变异性有关。国际。 J.心理生理学。 63、39-47 。 10.1016/j.ijpsycho.2006.07.016如果:2.5 Q2 B3 [] [交叉引用] [谷歌学术] - Bunney B. G., Bunney W. E. (2013). Mechanisms of rapid antidepressant effects of sleep deprivation therapy: clock genes and circadian rhythms. Biol. Psychiatry. 73, 1164–1171. 10.1016/j.biopsych.2012.07.020IF: 9.6 Q1 B1 [] [CrossRef] [Google Scholar]
邦尼 BG,邦尼 WE (2013)。睡眠剥夺疗法快速抗抑郁作用的机制:时钟基因和昼夜节律。生物。精神病学。 73、1164–1171 。 10.1016/j.biopsych.2012.07.020如果:9.6 Q1 B1 [] [交叉引用] [谷歌学术] - Burgess H, J., Penev P. D., Schneider R., Van Cauter E. (2004). Estimating cardiac autonomic activity during sleep: impedance cardiography, spectral analysis, and Poincaré plots. Clin. Neurophysiol. 115, 19–28. 10.1016/S1388-2457(03)00312-2IF: 3.7 Q1 B3 [] [CrossRef] [Google Scholar]
Burgess H, J.、Penev PD、Schneider R.、Van Cauter E. (2004)。估计睡眠期间心脏自主活动:阻抗心动图、频谱分析和庞加莱图。临床。神经生理学。 115、19-28 。 10.1016/S1388-2457(03)00312-2 IF: 3.7 Q1 B3 [] [交叉引用] [谷歌学术] - Cabiddu R., Cerutti S., Viardot G., Werner S., Bianchi A. M. (2012). Modulation of the sympatho-vagal balance during sleep: frequency domain study of heart rate variability and respiration. Front. Physiol. 3:45. 10.3389/fphys.2012.00045IF: 3.2 Q2 B3 [PubMed] [CrossRef] [Google Scholar]
Cabiddu R.、Cerutti S.、Viardot G.、Werner S.、Bianchi AM (2012)。睡眠期间交感迷走神经平衡的调节:心率变异性和呼吸的频域研究。正面。生理学。 3:45 。 10.3389/fphys.2012.00045 IF:3.2 Q2 B3 [ PubMed ] [ CrossRef ] [ Google Scholar ] - Carrington M. J., Barbieri R., Colrain I. M., Crowley K. E., Kim Y., Trinder J. (2005). Changes in cardiovascular function during the sleep onset period in young adults. J. Appl. Physiol. (1985)
98, 468–476. 10.1152/japplphysiol.00702.2004IF: 3.3 Q1 B3 [] [CrossRef] [Google Scholar]
Carrington MJ、Barbieri R.、Colrain IM、Crowley KE、Kim Y.、Trinder J. (2005)。年轻人入睡期间心血管功能的变化。 J.应用程序。生理学。 (1985) 98 , 468–476。 10.1152/japplphyol.00702.2004 IF: 3.3 Q1 B3 [] [交叉引用] [谷歌学术] - Cavallero C., Cicogna P., Natale V., Occhionero M., Zito A. (1992). Slow wave sleep dreaming. Sleep
15, 562–566. [PubMed] [Google Scholar]
Cavallero C.、Cicogna P.、Natale V.、Occhionero M.、Zito A. (1992)。慢波睡眠做梦。睡眠15,562–566 。 [考研] [谷歌学术] - Chouchou F., Pichot V., Barthélémy J. C., Bastuji H., Roche F. (2014). Cardiac sympathetic modulation in response to apneas/hypopneas through heart rate variability analysis. PLoS ONE. 9:e86434. 10.1371/journal.pone.0086434IF: 2.9 Q1 B3 [PubMed] [CrossRef] [Google Scholar]
Choouchou F.、Pichot V.、Barthélémy JC、Bastuji H.、Roche F. (2014)。通过心率变异性分析,心脏交感神经调节对呼吸暂停/呼吸不足的反应。公共科学图书馆一号。 9 :e86434。 10.1371/journal.pone.0086434 IF:2.9 Q1 B3 [ PubMed ] [ CrossRef ] [ Google Scholar ] - Chouchou F., Pichot V., Pépin J. L., Tamisier R., Celle S., Maudoux D., et al.. (2013). Sympathetic overactivity due to sleep fragmentation is associated with elevated diurnal systolic blood pressure in healthy elderly subjects: the PROOF-SYNAPSE study. Eur. Heart J. 34, 2122–2131. 10.1093/eurheartj/eht208IF: 37.6 Q1 B1 [] [CrossRef] [Google Scholar]
Chouchou F.、Pichot V.、Pépin JL、Tamisier R.、Celle S.、Maudoux D. 等人 (2013)。睡眠碎片导致的交感神经过度活跃与健康老年受试者的昼夜收缩压升高有关:PROOF-SYNAPSE 研究。欧元。心 J . 34,2122–2131 。 10.1093/eurheartj/eht208如果:37.6 Q1 B1 [] [交叉引用] [谷歌学术] - Chouchou F., Pichot V., Perchet C., Legrain V., Garcia-Larrea L., Roche F., et al.. (2011). Autonomic pain responses during sleep: a study of heart rate variability. Eur. J. Pain. 15, 554–560. 10.1016/j.ejpain.2010.11.011IF: 3.5 Q1 B2 [] [CrossRef] [Google Scholar]
Chouchou F.、Pichot V.、Perchet C.、Legrain V.、Garcia-Larrea L.、Roche F. 等人 (2011)。睡眠期间自主神经疼痛反应:心率变异性研究。欧元。 J. 佩恩. 15、554-560 。 10.1016/j.ejpain.2010.11.011 IF: 3.5 Q1 B2 [] [交叉引用] [谷歌学术] - Coote J. H. (1982). Respiratory and circulatory control during sleep. J. Exp. Biol. 100, 223–244. [PubMed] [Google Scholar]
库特·JH (1982)。睡眠期间的呼吸和循环控制。 J.Exp。生物。 100、223–244 。 [考研] [谷歌学术] - Cortelli P., Lombardi C., Montagna P., Parati G. (2012). Baroreflex modulation during sleep and in obstructive sleep apnea syndrome. Auton. Neurosci. 169, 7–11. 10.1016/j.autneu.2012.02.005IF: 3.2 Q2 B4 [] [CrossRef] [Google Scholar]
Cortelli P.、Lombardi C.、Montagna P.、Parati G. (2012)。睡眠期间和阻塞性睡眠呼吸暂停综合征中的压力感受反射调节。奥顿。神经科学。 169、7-11 。 10.1016/j.autneu.2012.02.005如果:3.2 Q2 B4 [] [交叉引用] [谷歌学术] - Critchley H. D. (2009). Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants. Int. J. Psychophysiol. 73, 88–94. 10.1016/j.ijpsycho.2009.01.012IF: 2.5 Q2 B3 [PubMed] [CrossRef] [Google Scholar]
克里奇利高清 (2009)。神经、认知和情感整合的心理生理学:功能磁共振成像和自主神经指标。国际。 J.心理生理学。 73、88-94 。 10.1016/j.ijpsycho.2009.01.012 IF:2.5 Q2 B3 [ PubMed ] [ CrossRef ] [ Google Scholar ] - Critchley H. D., Harrison N. A. (2013). Visceral influences on brain and behavior. Neuron
77, 624–638. 10.1016/j.neuron.2013.02.008IF: 14.7 Q1 B1 [] [CrossRef] [Google Scholar]
克里奇利 HD,哈里森 NA (2013)。内脏对大脑和行为的影响。神经元77、624–638 。 10.1016/j.神经元.2013.02.008如果:14.7 Q1 B1 [] [交叉引用] [谷歌学术] - Critchley H. D., Mathias C. J., Josephs O., O'Doherty J., Zanini S., Dewar B. K., et al.. (2003). Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain
126, 2139–2152. 10.1093/brain/awg216IF: 10.6 Q1 B1 [] [CrossRef] [Google Scholar]
Critchley HD、Mathias CJ、Josephs O.、O'Doherty J.、Zanini S.、Dewar BK 等人 (2003)。人类扣带皮层和自主控制:神经影像学和临床证据的融合。大脑126,2139–2152 。 10.1093/大脑/awg216如果:10.6 Q1 B1 [] [交叉引用] [谷歌学术] - Dang-Vu T. T. (2012). Neuronal oscillations in sleep: insights from functional neuroimaging. Neuromolecular Med. 14, 154–1167. 10.1007/s12017-012-8166-1IF: 3.3 Q2 B4 [] [CrossRef] [Google Scholar]
Dang-Vu TT (2012)。睡眠中的神经元振荡:功能神经影像学的见解。神经分子医学。 14、154-1167 。 10.1007/s12017-012-8166-1 IF: 3.3 Q2 B4 [] [交叉引用] [谷歌学术] - Dang-Vu T. T., Schabus M., Desseilles M., Sterpenich V., Bonjean M., Maquet P. (2010). Functional neuroimaging insights into the physiology of human sleep. Sleep
33, 1589–1603. [PMC free article] [PubMed] [Google Scholar]
Dang-Vu TT、Schabus M.、Desseilles M.、Sterpenich V.、Bonjean M.、Maquet P. (2010)。功能性神经影像学对人类睡眠生理学的见解。睡眠33,1589–1603 。 [ PMC 免费文章] [ PubMed ] [ Google Scholar ] - Desseilles M., Dang-Vu T., Schabus M., Sterpenich V., Maquet P., Schwartz S. (2008). Neuroimaging insights into the pathophysiology of sleep disorders. Sleep
31, 777–794. [PMC free article] [PubMed] [Google Scholar]
Dessilles M.、Dang-Vu T.、Schabus M.、Sterpenich V.、Maquet P.、Schwartz S. (2008)。神经影像学对睡眠障碍病理生理学的见解。睡眠31,777–794 。 [ PMC 免费文章] [ PubMed ] [ Google Scholar ] - Desseilles M., Dang-Vu T. T., Sterpenich V., Schwartz S. (2011a). Cognitive and emotional processes during dreaming: a neuroimaging view. Conscious. Cogn. 20, 998–1008. 10.1016/j.concog.2010.10.005IF: 2.1 Q2 B3 [] [CrossRef] [Google Scholar]
Dessilles M.、Dang-Vu TT、Sterpenich V.、Schwartz S. (2011a)。梦中的认知和情感过程:神经影像学观点。有意识的。科恩。 20、998–1008 。 10.1016/j.conco.2010.10.005如果:2.1 Q2 B3 [] [交叉引用] [谷歌学术] - Desseilles M., Vu T. D., Laureys S., Peigneux P., Dequeldre C., Phillips C., et al.. (2006). A prominent role for amygdaloid complexes in the Variability in Heart Rate (VHR) during Rapid Eye Movement (REM) sleep relative to wakefulness. Neuroimage
32, 1008–1015. 10.1016/j.neuroimage.2006.06.008IF: 4.7 Q1 B2 [] [CrossRef] [Google Scholar]
Desseilles M.、Vu TD、Laureys S.、Peigneux P.、Dequeldre C.、Phillips C. 等人(2006 年)。杏仁核复合物在快速眼动 (REM) 睡眠期间相对于清醒时的心率 (VHR) 变异中发挥着重要作用。神经影像32,1008–1015 。 10.1016/j.neuroimage.2006.06.008 IF: 4.7 Q1 B2 [] [交叉引用] [谷歌学术] - Desseilles M., Vu T. D., Maquet P. (2011b). Functional neuroimaging in sleep, sleep deprivation, and sleep disorders. Handb. Clin. Neurol. 98, 71–94. 10.1016/B978-0-444-52006-7.00006-XIF: NA NA NA [] [CrossRef] [Google Scholar]
Dessilles M.、Vu TD、Maquet P. (2011b)。睡眠、睡眠剥夺和睡眠障碍中的功能性神经影像学。手动的临床。内罗尔. 98、71–94 。 10.1016/B978-0-444-52006-7.00006-X如果:不适用不适用[] [交叉引用] [谷歌学术] - Erlacher D., Schredl M. (2008). Dreaming, cardiovascular responses to dreamed physical exercise during REM lucid dreaming. Philos. Psychol. 18, 112–121
10.1037/1053-0797.18.2.112IF: 0.8 Q3 B4 [] [Google Scholar]
埃拉彻 D.、施雷德尔 M. (2008)。做梦,在快速眼动清醒梦期间,心血管对梦到的体育锻炼的反应。菲洛斯.心理。 18、112–121 10.1037/1053-0797.18.2.112如果:0.8 Q3 B4 [] [谷歌学术] - European Society of Cardiology, North American Society of Pacing and Electrophysiology . (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 17, 354–381. [PubMed] [Google Scholar]
欧洲心脏病学会、北美起搏和电生理学会。 (1996)。心率变异性。测量标准、生理解释和临床使用。欧洲心脏病学会和北美起搏和电生理学会的工作组。欧洲心脏杂志。 17、354-381 。 [考研] [谷歌学术] - Ferini-Strambi L., Oldani A., Zucconi M., Smirne S. (1996). Cardiac autonomic activity during wakefulness and sleep in REM sleep behavior disorder. Sleep
19, 367–369. [PubMed] [Google Scholar]
Ferini-Strambi L.、Oldani A.、Zuconi M.、Smirne S. (1996)。快速眼动睡眠行为障碍中清醒和睡眠期间的心脏自主活动。睡眠19,367–369 。 [考研] [谷歌学术] - Ferini-Strambi L., Zucconi M. (2000). REM sleep behavior disorder. Clin. Neurophysiol. 111, S136–S140. 10.1016/S1388-2457(00)00414-4IF: 3.7 Q1 B3 [] [CrossRef] [Google Scholar]
费里尼-斯特兰比 L.、祖科尼 M. (2000)。快速眼动睡眠行为障碍。临床。神经生理学。 111 、S136-S140。 10.1016/S1388-2457(00)00414-4 IF: 3.7 Q1 B3 [] [交叉引用] [谷歌学术] - Fosse R., Stickgold R., Hobson J. A. (2004). Thinking and hallucinating: reciprocal changes in sleep. Psychophysiology
41, 298–305. 10.1111/j.1469-8986.2003.00146.xIF: 2.9 Q1 B2 [] [CrossRef] [Google Scholar]
福斯 R.、斯蒂克戈尔德 R.、霍布森 JA (2004)。思考与幻觉:睡眠的相互变化。心理生理学41 , 298–305。 10.1111/j.1469-8986.2003.00146.x如果:2.9 Q1 B2 [] [交叉引用] [谷歌学术] - García-Gómez R. G., López-Jaramillo P., Tomaz C. (2007). The role played by the autonomic nervous system in the relation between depression and cardiovascular disease. Rev. Neurol. 44, 225–233. [PubMed] [Google Scholar]
加西亚-戈麦斯 RG、洛佩斯-哈拉米略 P.、托马斯 C. (2007)。自主神经系统在抑郁症与心血管疾病关系中的作用。尼罗尔牧师。 44、225–233 。 [考研] [谷歌学术] - Goswami R., Frances M. F., Shoemaker J. K. (2011). Representation of somatosensory inputs within the cortical autonomic network. Neuroimage
54, 1211–1220. 10.1016/j.neuroimage.2010.09.050IF: 4.7 Q1 B2 [] [CrossRef] [Google Scholar]
Goswami R.、Frances MF、Shoemaker JK (2011)。皮质自主网络内体感输入的表示。神经影像54,1211–1220 。 10.1016/j.neuroimage.2010.09.050 IF: 4.7 Q1 B2 [] [交叉引用] [谷歌学术] - Guyenet P. G. (2013). The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346. 10.1038/nrn1902IF: 28.7 Q1 B1 [] [CrossRef] [Google Scholar]
盖耶内 PG (2013)。交感神经控制血压。纳特。神经科学牧师。 7、335-346 。 10.1038/nrn1902如果:28.7 Q1 B1 [] [交叉引用] [谷歌学术] - Hauri P., Van de Castle R. L. (1973). Psychophysiological parallels in dreams. Psychosom. Med. 35, 297–308. [PubMed] [Google Scholar]
Hauri P.,范德卡斯尔 RL (1973)。梦中的心理生理相似之处。心智体。医学。 35、297-308 。 [考研] [谷歌学术] - Hobson J. A. (1990). Sleep and dreaming. J. Neurosci. 10, 371–382. [PMC free article] [PubMed] [Google Scholar]
霍布森 JA (1990)。睡觉做梦。 J.神经科学。 10、371-382 。 [ PMC 免费文章] [ PubMed ] [ Google Scholar ] - Iber C., Ancoli-Israel S., Chesson A. L., Quan S. F. (2007). For the American Academy of Sleep Medicine. Westchester, IL: The AASM Manual for the Scoring of Sleep and Associated Events. [Google Scholar]
Iber C.、Ancoli-Israel S.、Chesson AL、Quan SF (2007)。美国睡眠医学会。伊利诺伊州威彻斯特:AASM 睡眠及相关事件评分手册。 [谷歌学术] - Iellamo F., Placidi F., Marciani M. G., Romiqi A., Tombini M., Aquilani S., et al.. (2004). Baroreflex buffering of sympathetic activation during sleep: evidence from autonomic assessment of sleep macroarchitecture and microarchitecture. Hypertension
43, 814–819. 10.1161/01.HYP.0000121364.74439.6aIF: 6.9 Q1 B1 [] [CrossRef] [Google Scholar]
Iellamo F.、Placidi F.、Marciani MG、Romiqi A.、Tombini M.、Aquilani S. 等人 (2004)。睡眠期间交感神经激活的压力感受反射缓冲:来自睡眠宏观结构和微结构自主神经评估的证据。高血压43 , 814–819。 10.1161/01.HYP.0000121364.74439.6a IF: 6.9 Q1 B1 [] [交叉引用] [谷歌学术] - Irwin M., Thompson J., Gilin J. C., Ziegler M. (1999). Effects of sleep and sleep deprivation on catecholamine and interleukin-2 levels in humans: clinical implications. J. Clin. Endocrinol. Metab. 84, 1979–1985. [PubMed] [Google Scholar]
欧文 M.、汤普森 J.、吉林 JC、齐格勒 M. (1999)。睡眠和睡眠剥夺对人类儿茶酚胺和白细胞介素 2 水平的影响:临床意义。 J.克林。内分泌。代谢物。 84,1979-1985 。 [考研] [谷歌学术] - Kemp A. H., Quintana D. S., Gray M. A., Felmingham K. L., Brown K., Gatt J. M. (2010). Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol. Psychiatry. 67, 1067–1074. 10.1016/j.biopsych.2009.12.012IF: 9.6 Q1 B1 [] [CrossRef] [Google Scholar]
Kemp AH、Quintana DS、Gray MA、Felmingham KL、Brown K.、Gatt JM (2010)。抑郁症和抗抑郁治疗对心率变异性的影响:回顾和荟萃分析。生物。精神病学。 67、1067–1074 。 10.1016/j.biopsych.2009.12.012如果:9.6 Q1 B1 [] [交叉引用] [谷歌学术] - Krakow B., Zadra A. (2006). Clinical management of chronic nightmares: imagery rehearsal therapy. Philos. Psychol. 4, 45–70. 10.1207/s15402010bsm0401_4IF: 2.2 Q3 B3 [] [CrossRef] [Google Scholar]
克拉科夫 B.,扎德拉 A. (2006)。慢性噩梦的临床管理:意象排练疗法。菲洛斯.心理。 4、45-70 。 10.1207/s15402010bsm0401_4如果:2.2 Q3 B3 [] [交叉引用] [谷歌学术] - Lane R. D., McRae K., Reiman E. M., Chen K., Ahern G. L., Thayer J. (2009). Neural correlates of heart rate variability during emotion. Neuroimage
44, 213–222. 10.1016/j.neuroimage.2008.07.056IF: 4.7 Q1 B2 [] [CrossRef] [Google Scholar]
Lane RD、McRae K.、Reiman EM、Chen K.、Ahern GL、Thayer J. (2009)。情绪期间心率变异性的神经相关性。神经影像44 , 213–222。 10.1016/j.neuroimage.2008.07.056 IF: 4.7 Q1 B2 [] [交叉引用] [谷歌学术] - Lombardi F., Stein P. K. (2011). Origin of heart rate variability and turbulence: an appraisal of autonomic modulation of cardiovascular function. Front. Physiol. 2:95. 10.3389/fphys.2011.00095IF: 3.2 Q2 B3 [PubMed] [CrossRef] [Google Scholar]
Lombardi F.,斯坦因 PK (2011)。心率变异性和紊乱的起源:心血管功能自主调节的评估。正面。生理学。 2:95 。 10.3389/fphys.2011.00095 IF:3.2 Q2 B3 [ PubMed ] [ CrossRef ] [ Google Scholar ] - Meerlo P., Sgoifo A., Suchecki D. (2008). Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med. Rev. 12, 197–210. 10.1016/j.smrv.2007.07.007IF: 11.2 Q1 B1 [] [CrossRef] [Google Scholar]
Meerlo P.、Sgoifo A.、Suchecki D. (2008)。睡眠受限和中断:对自主功能、神经内分泌应激系统和应激反应的影响。睡眠医学。牧师。 12、197-210 。 10.1016/j.smrv.2007.07.007如果:11.2 Q1 B1 [] [交叉引用] [谷歌学术] - Mendez M., Bianchi A. M., Villantieri O., Cerutti S. (2006). Time-varying analysis of the heart rate variability during REM and non REM sleep stages. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 3576–3579. 10.1109/IEMBS.2006.260067IF: NA NA NA [] [CrossRef] [Google Scholar]
Mendez M.、Bianchi AM、Villantieri O.、Cerutti S. (2006)。快速眼动睡眠阶段和非快速眼动睡眠阶段心率变异性的时变分析。会议。过程。 IEEE 工程师。医学。生物。苏克。 1,3576-3579 。 10.1109/IEMBS.2006.260067如果:不适用不适用[] [交叉引用] [谷歌学术] - Merritt J. M., Stickgold R., Pace-Schott E., Williams J., Hobson J. A. (1994). Emotional profiles in the dreams of men and women. Conscious. Cogn. 3, 46–60. [Google Scholar]
Merritt JM、Stickgold R.、Pace-Schott E.、Williams J.、Hobson JA (1994)。男人和女人梦中的情感轮廓。有意识的。科恩。 3、46-60 。 [谷歌学术] - Molnar J., Zhang F., Ehlert F. A., Rosenthal J. E. (1996). Diurnal pattern of QTc interval: how long is prolonged? Possible relation to circadian triggers of cardiovascular events. J. Am. Coll. Cardiol. 27, 76–83. [PubMed] [Google Scholar]
Molnar J.、Zhang F.、Ehlert FA、Rosenthal JE (1996)。 QTc 间期的每日模式:延长多长时间?可能与心血管事件的昼夜节律触发因素有关。 J. Am.科尔。心脏。 27、76–83 。 [考研] [谷歌学术] - Monti A. C., Medigue, Nedelcoux H., Escourrou P. (2002). Autonomic control of the cardiovascular system during sleep in normal subjects. Eur. J. Appl. Physiol. 87, 174–181. 10.1007/s00421-002-0597-1IF: 2.8 Q1 B3 [] [CrossRef] [Google Scholar]
蒙蒂 AC、梅迪格、Nedelcoux H.、Escourrou P. (2002)。正常人睡眠期间心血管系统的自主控制。欧元。 J.应用程序。生理学。 87、174–181 。 10.1007/s00421-002-0597-1如果:2.8 Q1 B3 [] [交叉引用] [谷歌学术] - Oliveira M. M., da Silva N., Timóteo A. T., Feliciano J., Silva S., Xavier R., et al.. (2008). Alterations in autonomic response head-up tilt testing in paroxysmal atrial fibrillation patients: a wavelet analysis. Rev. Port. Cardiol. 2009, 243–257. [PubMed] [Google Scholar]
Oliveira MM、da Silva N.、Timóteo AT、Feliciano J.、Silva S.、Xavier R. 等人 (2008)。阵发性心房颤动患者自主反应平视倾斜测试的改变:小波分析。牧师波特。心脏。 2009,243–257 。 [考研] [谷歌学术] - Orini M., Laguna P., Mainardi L. T., Bailón R. (2012). Assessment of the dynamic interactions between heart rate and arterial pressure by the cross time-frequency analysis. Physiol. Meas. 33, 315–331. 10.1088/0967-3334/33/3/315IF: 2.3 Q3 B4 [] [CrossRef] [Google Scholar]
Orini M.、Laguna P.、Mainardi LT、Bailón R. (2012)。通过交叉时频分析评估心率和动脉压之间的动态相互作用。生理学。测量。 33、315–331 。 10.1088/0967-3334/33/3/315如果:2.3 Q3 B4 [] [交叉引用] [谷歌学术] - Pagani M., Lombardi C., Guzzetti S., Rimoldi O., Furlan R., Pizzinelli P., et al.. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 59, 178–193. [PubMed] [Google Scholar]
Pagani M.、Lombardi C.、Guzzetti S.、Rimoldi O.、Furlan R.、Pizzinelli P. 等人 (1986)。心率和动脉压变异的功率谱分析作为人和有意识的狗交感迷走神经相互作用的标志。循环。资源。 59、178-193 。 [考研] [谷歌学术] - Pagani M., Montano N., Porta A., Abboud F. M., Birkett C., Somers V. K. (1997). Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation
95, 1441–1448. [PubMed] [Google Scholar]
帕加尼 M.、蒙塔诺 N.、Porta A.、阿布德 FM、伯基特 C.、萨默斯 VK (1997)。心血管变异的光谱成分与人类肌肉交感神经活动的直接测量之间的关系。流通量95,1441–1448 。 [考研] [谷歌学术] - Pedemonte M., Roddriguer-Alvez A., Velluiti R. A. (2005). Electroencephalographic frequencies associated with heart changes in RR interval variability during paradoxical sleep. Auton. Neurosci. 123, 82–86. 10.1016/j.autneu.2005.09.002IF: 3.2 Q2 B4 [] [CrossRef] [Google Scholar]
Pedemonte M.、Roddriguer-Alvez A.、Velluiti RA (2005)。反常睡眠期间 RR 间隔变异性与心脏变化相关的脑电图频率。奥顿。神经科学。 123、82–86 。 10.1016/j.autneu.2005.09.002如果:3.2 Q2 B4 [] [交叉引用] [谷歌学术] - Pénicaud L., Cousin B., Leloup C., Lorsignol A., Casteilla L. (2000). The autonomic nervous system, adipose tissue plasticity, and energy balance. Nutrition
16, 903–908. 10.1016/S0899-9007(00)00427-5IF: 3.2 Q2 B3 [] [CrossRef] [Google Scholar]
Pénicaud L.、Cousin B.、Leloup C.、Lorsignol A.、Casteilla L. (2000)。自主神经系统、脂肪组织可塑性和能量平衡。营养16、903–908 。 10.1016/S0899-9007(00)00427-5 IF: 3.2 Q2 B3 [] [交叉引用] [谷歌学术] - Pichot V., Gaspoz J. M., Molliex S., Antoniadis A., Busso T., Roche F., et al.. (1999). Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. J. Appl. Physiol. 86, 1081–1091. [PubMed] [Google Scholar]
Pichot V.、Gaspoz JM、Molliex S.、Antoniadis A.、Busso T.、Roche F. 等人 (1999)。小波变换可量化心率变异性并评估其瞬时变化。 J.应用程序。生理学。 86、1081–1091 。 [考研] [谷歌学术] - Pickering A. E., Paton J. F. (2006). A decerebrate, artificially-perfused in situ preparation of rat: utility for the study of autonomic and nociceptive processing. J. Neurosci. Methods
126, 260–271. 10.1016/j.jneumeth.2006.01.011IF: 2.7 Q2 B4 [] [CrossRef] [Google Scholar]
皮克林 AE、佩顿 JF (2006)。大鼠的去大脑、人工灌注原位制备:用于研究自主神经和伤害性处理的实用性。 J.神经科学。方法126、260–271 。 10.1016/j.jneumeth.2006.01.011如果:2.7 Q2 B4 [] [交叉引用] [谷歌学术] - Pomeranz B., Macaulay M. A., Kurtz I., Adam D., Gordon D., Kilborn K. M., et al.. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. 248, H151–H153. [PubMed] [Google Scholar]
Pomeranz B.、Macaulay MA、Kurtz I.、Adam D.、Gordon D.、Kilborn KM 等人 (1985)。通过心率频谱分析评估人类自主功能。是。 J.生理学。 248 ,H151-H153。 [考研] [谷歌学术] - Porta A., Castiglioni P., Di Rienzo M., Bari V., Bassani T., Marchi A., et al.. (2012). Short-term complexity indexes of heart period and systolic arterial pressure variabilities provide complementary information. J. Appl. Physiol. (1985). 113, 1810–1820. 10.1152/japplphysiol.00755.2012IF: 3.3 Q1 B3 [] [CrossRef] [Google Scholar]
Porta A.、Castiglioni P.、Di Rienzo M.、Bari V.、Bassani T.、Marchi A. 等人 (2012)。心脏周期和收缩动脉压变异的短期复杂性指数提供了补充信息。 J.应用程序。生理学。 (1985) 。 113,1810-1820 。 10.1152/japplphyol.00755.2012 IF: 3.3 Q1 B3 [] [交叉引用] [谷歌学术] - Porta A., Faes L. (2013). Assessing causality in brain dynamics and cardiovascular control. Philos. Trans. A. Math. Phys. Eng. Sci. 371, 20120517. 10.1098/rsta.2012.0517IF: 4.3 Q1 B3 [PubMed] [CrossRef] [Google Scholar]
Porta A.,Faes L.(2013)。评估大脑动力学和心血管控制的因果关系。菲洛斯.跨。 A、数学。物理。工程师。科学。 371 , 20120517.10.1098/rsta.2012.0517 IF:4.3 Q1 B3 [ PubMed ] [ CrossRef ] [ Google Scholar ] - Porta A., Gnecchi-Ruscone T., Tobaldini E., Guzzetti S., Furlan R., Montano N. (2007). Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J. Appl. Physiol. (1985). 103, 1143–1149. 10.1152/japplphysiol.00293.2007IF: 3.3 Q1 B3 [] [CrossRef] [Google Scholar]
Porta A.、Gnecchi-Ruscone T.、Tobaldini E.、Guzzetti S.、Furlan R.、Montano N. (2007)。在分级平视倾斜期间,基于熵的心脏周期变异性复杂性逐渐降低。 J.应用程序。生理学。 (1985) 。 103、1143–1149 。 10.1152/japplphyol.00293.2007 IF: 3.3 Q1 B3 [] [交叉引用] [谷歌学术] - Postuma R. B., Lanfranchi P. A., Blais H., Gagnon J. F., Montplaisir J. Y. (2010). Cardiac autonomic dysfunction in idiopathic REM sleep behavior disorder. Mov. Disord. 25, 2304–2310. 10.1002/mds.23347IF: 7.4 Q1 B1 [] [CrossRef] [Google Scholar]
Postuma RB、Lanfranchi PA、Blais H.、Gagnon JF、Montplaisir JY (2010)。特发性快速眼动睡眠行为障碍中的心脏自主神经功能障碍。移动。混乱。 25,2304–2310 。 10.1002/MDS.23347 IF: 7.4 Q1 B1 [] [交叉引用] [谷歌学术] - Rajendra Acharya U., Paul Joseph K., Kannathal N., Lim C. M., Suri J. S. (2006). Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031–1051. 10.1007/s11517-006-0119-0IF: 2.6 Q2 B4 [] [CrossRef] [Google Scholar]
Rajendra Acharya U.、Paul Joseph K.、Kannathal N.、Lim CM、Suri JS (2006)。心率变异性:回顾。医学。生物。工程师。计算。 44、1031–1051 。 10.1007/s11517-006-0119-0如果:2.6 Q2 B4 [] [交叉引用] [谷歌学术] - Revonsuo A. (1995). Consciousness, dreams and virtual realities. Philos. Psychol. 8, 35–58. [Google Scholar]
Revonsuo A. (1995)。意识、梦想和虚拟现实。菲洛斯.心理。 8、35-58 。 [谷歌学术] - Rostig S., Kantelhardt J. W., Penzel T., Cassel W., Peter J. H., Vogelmeier C., et al.. (2005). Nonrandom variability of respiration during sleep in healthy humans. Sleep
28, 411–417. [PubMed] [Google Scholar]
Rostig S.、Kantelhardt JW、Penzel T.、Cassel W.、Peter JH、Vogelmeier C. 等人 (2005)。健康人睡眠期间呼吸的非随机变异。睡眠28,411–417 。 [考研] [谷歌学术] - Rowe K., Moreno R., Lau T. R., Wallooppillai U., Nearing B. D., Kocsis B., et al.. (1999). Heart rate surges during REM sleep are associated with theta rhythm and PGO activity in cats. Am. J. Physiol. 277, R843–R849. [PubMed] [Google Scholar]
Rowe K.、Moreno R.、Lau TR、Wallooppillai U.、Nearing BD、Kocsis B. 等人 (1999)。猫在快速眼动睡眠期间的心率激增与 θ 节律和 PGO 活动有关。是。 J.生理学。 277 ,R843–R849。 [考研] [谷歌学术] - Sara S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10, 211–223. 10.1038/nrn2573IF: 28.7 Q1 B1 [] [CrossRef] [Google Scholar]
萨拉·SJ(2009)。蓝斑和去甲肾上腺素能调节认知。纳特。神经科学牧师。 10、211-223 。 10.1038/nrn2573如果:28.7 Q1 B1 [] [交叉引用] [谷歌学术] - Saul J. P., Rea R. F., Eckberg D. L., Berger R. D., Cohen R. J. (1990). Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity. Am. J. Physiol. 258, H713–H721. [PubMed] [Google Scholar]
索尔 JP、Rea RF、Eckberg DL、Berger RD、Cohen RJ (1990)。自主神经活动反射变化期间的心率和肌肉交感神经变异性。是。 J.生理学。 258 、H713-H721。 [考研] [谷歌学术] - Sforza E., Pichot V., Barthelemy J. C., Haba-Rubio J., Roche F. (2005). Cardiovascular variability during periodic leg movements: a spectral analysis approach. Clin. Neurophysiol. 116, 1096–1104. 10.1016/j.clinph.2004.12.018IF: 3.7 Q1 B3 [] [CrossRef] [Google Scholar]
Sforza E.、Pichot V.、Barthelemy JC、Haba-Rubio J.、Roche F. (2005)。周期性腿部运动期间的心血管变异性:频谱分析方法。临床。神经生理学。 116、1096–1104 。 10.1016/j.clinph.2004.12.018 IF: 3.7 Q1 B3 [] [交叉引用] [谷歌学术] - Shimizu T., Takahashi Y., Suzuki K., Kogawa S., Tashiro T., Takahasi K., et al.. (1992). Muscle nerve sympathetic activity during sleep and its change with arousal response. J. Sleep Res. 1, 178–185. [PubMed] [Google Scholar]
清水 T.、高桥 Y.、铃木 K.、小川 S.、田代 T.、高桥 K. 等人 (1992)。睡眠期间肌肉神经交感神经活动及其随唤醒反应的变化。 J.睡眠研究。 1,178-185 。 [考研] [谷歌学术] - Silvani A., Grimaldi D., Vandi S., Barletta G., Vetrugno R., Provini F., et al.. (2008). Sleep-dependent changes in the coupling between heart period and blood pressure in human subjects. Am. J. Physiol. Integr. Comp. Physiol. 294, R1686–R1692. 10.1152/ajpregu.00756.2007IF: 2.2 Q3 B3 [] [CrossRef] [Google Scholar]
Silvani A.、Grimaldi D.、Vandi S.、Barletta G.、Vetrugno R.、Provini F. 等人 (2008)。人类受试者的心跳周期和血压之间的耦合随睡眠而变化。是。 J.生理学。积分。比较。生理学。 294 ,R1686-R1692。 10.1152/ajpregu.00756.2007如果:2.2 Q3 B3 [] [交叉引用] [谷歌学术] - Smith R. P., Veale D., Pépin J. L., Lévy P. (1998). Obstructive sleep apnoea and the autonomic nervous system. Sleep Med. Rev. 2, 69–92. [PubMed] [Google Scholar]
Smith RP、Veale D.、Pépin JL、Lévy P. (1998)。阻塞性睡眠呼吸暂停和自主神经系统。睡眠医学。牧师。 2、69-92 。 [考研] [谷歌学术] - Somers V. K., Dyken M. E., Mark A. L., Abboud F. M. (1993). Sympathetic-nerve activity during sleep in normal subjects. N. Eng. J. Med. 328, 303–307. [PubMed] [Google Scholar]
Somers VK、Dyken ME、Mark AL、Abboud FM (1993)。正常受试者睡眠期间的交感神经活动。 N. 工程。医学杂志。 328、303-307 。 [考研] [谷歌学术] - Spoormaker V. I., Schredl M., van den Bout J. (2006). Nightmares: from anxiety symptom to sleep disorder. Sleep Med. Rev. 10, 19–31. 10.1016/j.smrv.2005.06.001IF: 11.2 Q1 B1 [] [CrossRef] [Google Scholar]
Spoormaker VI、Schredl M.、van den Bout J. (2006)。噩梦:从焦虑症状到睡眠障碍。睡眠医学。牧师。 10、19-31 。 10.1016/j.smrv.2005.06.001如果:11.2 Q1 B1 [] [交叉引用] [谷歌学术] - Stickgold R., Malia A., Fosse R., Propper R., Hobson J. A. (2001). Brain-mind states: I. Longitudinal field study of sleep/wake factors influencing mentation report length. Sleep
24, 171–179. [PubMed] [Google Scholar]
Stickgold R.、Malia A.、Fosse R.、Propper R.、Hobson JA (2001)。大脑-心智状态: I. 影响心智报告长度的睡眠/觉醒因素的纵向实地研究。睡眠24 、 171–179 。 [考研] [谷歌学术] - Taylor J. A., Carr D. L., Myers C. W., Eckberg D. L. (1998). Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation
98, 547–555. [PubMed] [Google Scholar]
泰勒·JA、卡尔·DL、迈尔斯·CW、埃克伯格·DL (1998)。人类极低频 RR 间期振荡的机制。流通量98、547–555 。 [考研] [谷歌学术] - Ter Horst G. J., Postema F. (1997). Forebrain parasympathetic control of heart activity: retrograde transneuronal viral labeling in rats. Am. J. Physiol. 273, H2926–H2930. [PubMed] [Google Scholar]
特霍斯特 GJ、波斯特玛 F. (1997)。心脏活动的前脑副交感神经控制:大鼠逆行跨神经元病毒标记。是。 J.生理学。 273 ,H2926-H2930。 [考研] [谷歌学术] - Thayer J. F., Åhs F., Fredrikson M., Sollers J. J., Wager T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756. 10.1016/j.neubiorev.2011.11.009IF: 7.5 Q1 B1 [] [CrossRef] [Google Scholar]
Thayer JF、Åhs F.、Fredrikson M.、Sollers JJ、Wager TD (2012)。心率变异性和神经影像学研究的荟萃分析:心率变异性作为压力和健康标志的影响。神经科学。生物行为。牧师。 36、747–756 。 10.1016/j.neubiorev.2011.11.009 IF: 7.5 Q1 B1 [] [交叉引用] [谷歌学术] - Tiinanen S., Kiviniemi A., Tulppo M., Seppanen T. (2009). Time-frequency representation of cardiovascular signals during handgrip exercise. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 1762–1765. 10.1109/IEMBS.2009.5333097IF: NA NA NA [] [CrossRef] [Google Scholar]
Tiinanen S.、Kiviniemi A.、Tulppo M.、Seppanen T. (2009)。握力运动期间心血管信号的时频表示。会议。过程。 IEEE 工程师。医学。生物。苏克。 2009 年,1762 年至 1765 年。 10.1109/IEMBS.2009.5333097如果:不适用不适用[] [交叉引用] [谷歌学术] - Trinder J., Kleiman J., Carrington M., Smith S., Breen S., Tan N., et al.. (2001). Autonomic activity during human sleep as a function of time and sleep stage. J. Sleep Res. 10, 253–264. 10.1046/j.1365-2869.2001.00263.xIF: 3.4 Q2 B3 [] [CrossRef] [Google Scholar]
Trinder J.、Kleiman J.、Carrington M.、Smith S.、Breen S.、Tan N. 等人(2001 年)。人类睡眠期间的自主活动是时间和睡眠阶段的函数。 J.睡眠研究。 10、253-264 。 10.1046/j.1365-2869.2001.00263.x IF: 3.4 Q2 B3 [] [交叉引用] [谷歌学术] - Van de Borne P., Biston P., Paiva M., Nguyen H., Linkowshi P., Degaute J. P. (1995). Cardiorespiratory transfer during sleep: a study in healthy young men. Am. J. Physiol. 269, H952–H958. [PubMed] [Google Scholar]
Van de Borne P.、Biston P.、Paiva M.、Nguyen H.、Linkowshi P.、Degaute JP (1995)。睡眠期间的心肺转移:一项针对健康年轻男性的研究。是。 J.生理学。 269 、H952-H958。 [考研] [谷歌学术] - Van de Borne P., Nguyen H., Biston P., Linkowshi P., Degaute J. P. (1994). Effects of wake and sleep stages on the 24-h autonomic control of blood pressure and heart rate in recumbent men. Am. J. Physiol. 266, H548–H554. [PubMed] [Google Scholar]
Van de Borne P.、Nguyen H.、Biston P.、Linkowshi P.、Degaute JP (1994)。觉醒和睡眠阶段对卧位男性 24 小时血压和心率自主控制的影响。是。 J.生理学。 266 ,H548–H554。 [考研] [谷歌学术] - Vigo D. E., Dominguez J., Guinjoan S. M., Scaramal M., Ruffa E., Solernó J., et al.. (2010). Nonlinear analysis of heart rate variability within independent frequency components during the sleep-wake cycle. Auton Neurosci. 154, 84–88. 10.1016/j.autneu.2009.10.007IF: 3.2 Q2 B4 [] [CrossRef] [Google Scholar]
Vigo DE、Dominguez J.、Guinjoan SM、Scaramal M.、Ruffa E.、Solernó J. 等人 (2010)。对睡眠-觉醒周期期间独立频率分量内的心率变异性进行非线性分析。奥顿神经科学。 154、84–88 。 10.1016/j.autneu.2009.10.007如果:3.2 Q2 B4 [] [交叉引用] [谷歌学术] - Viola A. U., Tobaldini E., Chellappa S. L., Casali K. R., Porta A., Montano N. (2011). Short-term complexity of cardiac autonomic control during sleep: REM as a potential risk factor for cardiovascular system in aging. PLoS ONE
6:e19002. 10.1371/journal.pone.0019002IF: 2.9 Q1 B3 [PubMed] [CrossRef] [Google Scholar]
维奥拉 AU、托巴尔迪尼 E.、切拉帕 SL、卡萨利 KR、Porta A.、蒙塔诺 N. (2011)。睡眠期间心脏自主控制的短期复杂性:快速眼动作为衰老过程中心血管系统的潜在危险因素。 《公共科学图书馆 ONE》 6 :e19002。 10.1371/journal.pone.0019002 IF:2.9 Q1 B3 [ PubMed ] [ CrossRef ] [ Google Scholar ] - Voss A., Kurths J., Kleiner H. J., Witt A., Wessel N. (1995). Improved analysis of heart rate variability by methods of nonlinear dynamics. J. Electrocardiol. 28, 81–88. [PubMed] [Google Scholar]
Voss A.、Kurths J.、Kleiner HJ、Witt A.、Wessel N. (1995)。通过非线性动力学方法改进了心率变异性分析。 J.心电图。 28、81-88 。 [考研] [谷歌学术] - Yeragani V. K., Rao K. A., Smitha M. R., Pohl R. B., Balon R., Srinivasan K. (2002). Diminished chaos of heart rate time series in patients with major depression. Biol. Psychiatry. 51, 733–744. 10.1016/S0006-3223(01)01347-6IF: 9.6 Q1 B1 [] [CrossRef] [Google Scholar]
Yeragani VK、Rao KA、Smitha MR、Pohl RB、Balon R.、Srinivasan K. (2002)。重度抑郁症患者心率时间序列的混乱度减少。生物。精神病学。 51、733–744 。 10.1016/S0006-3223(01)01347-6如果:9.6 Q1 B1 [] [交叉引用] [谷歌学术] - Yoo S. S., Gujar N., Hu P., Jolesz F. A., Walker M. P. (2007). The human emotional brain without sleep–a prefrontal amygdala disconnect. Curr. Biol. 17, R877–R878. 10.1016/j.cub.2007.08.007IF: 8.1 Q1 B1 [] [CrossRef] [Google Scholar]
Yoo SS、Gujar N.、Hu P.、Jolesz FA、Walker MP (2007)。没有睡眠的人类情感大脑——前额杏仁核脱节。电流。生物。 17 、R877-R878。 10.1016/j.cub.2007.08.007如果:8.1 Q1 B1 [] [交叉引用] [谷歌学术]
神经科学前沿的文章由Frontiers Media SA提供