这是用户在 2024-4-19 3:27 为 https://app.immersivetranslate.com/pdf-pro/9e8ce5f0-6936-4b38-92e3-fde8c6b0c8fb 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_04_18_8e4c150777fe37c1f7f9g

Maritime Communications: A Survey on Enabling Technologies, Opportunities, and Challenges
海上通信:关于启用技术、机遇和挑战的调查

Fahad S. Alqurashi , Student Member, IEEE, Abderrahmen Trichili , Senior Member, IEEE,
Fahad S. Alqurashi ,IEEE 学生会员,Abderrahmen Trichili ,IEEE 高级会员,
Nasir Saeed , Senior Member, IEEE, Boon S. Ooi , Senior Member, IEEE,
Nasir Saeed ,IEEE 高级会员,Boon S. Ooi ,IEEE 高级会员,
and Mohamed-Slim Alouini , Fellow, IEEE
以及 Mohamed-Slim Alouini ,IEEE 院士

Abstract 摘要

Water covers of the Earth's surface, where the steady increase in oceanic activities has promoted the need for reliable maritime communication technologies. The existing maritime communication systems involve terrestrial, aerial, and space networks. This article presents a holistic overview of the different forms of maritime communications and provides the latest advances in various marine technologies. This article first introduces the different techniques used for maritime communications over the radio frequency (RF) and optical bands. Then, we present the channel models for RF and optical bands, modulation and coding schemes, coverage and capacity, and radio resource management in maritime communications. After that, this article presents some emerging use cases of maritime networks, such as the Internet of Ships and the ship-to-underwater Internet of Things. Finally, we highlight a few exciting open challenges and identify a set of future research directions for maritime communication, including bringing broadband connectivity to the deep sea, using terahertz and visible light signals for on-board applications, and data-driven modeling for radio and optical marine propagation.
水覆盖了地球表面的百分之七十,海洋活动的持续增加促进了可靠海上通信技术的需求。现有的海上通信系统涉及陆地、空中和空间网络。本文全面介绍了不同形式的海上通信,并提供了各种海洋技术的最新进展。本文首先介绍了在无线电频率(RF)和光学波段上用于海上通信的不同技术。然后,我们介绍了 RF 和光学波段的信道模型、调制和编码方案、覆盖范围和容量,以及海上通信中的无线资源管理。之后,本文介绍了一些新兴的海上网络用例,如船舶互联网和船舶到水下物联网。 最后,我们强调了一些激动人心的开放性挑战,并确定了海洋通信未来研究方向的一组,包括将宽带连接带入深海,使用太赫兹和可见光信号进行机载应用,以及基于数据驱动的无线电和光学海洋传播建模。

Index Terms-Automatic identification system (AIS), free space optics (FSOs), Internet of Ships (IoS), maritime communication, satellite communication, very high frequency (VHF)/ultra-high frequency (UHF).
索引词-自动识别系统(AIS),自由空间光学(FSOs),船舶物联网(IoS),海洋通信,卫星通信,超高频(VHF)/超高频(UHF)。

I. INTRODUCTION I. 引言

T HE RECENT progress in terrestrial communication technologies has unlocked unprecedented data rates, enabling various new applications. With the upcoming sixth generation (6G) era, the capacity growth is expected to improve by 10 to 100 times [1], [2]. Despite the recent advancements in wireless communications on land, offering reliable, and high-speed data rates for marine communication remains challenging. Maritime communication is crucial due to the dramatic increase in oceanic activities, including naval shipping
最近陆地通信技术的进步已经解锁了前所未有的数据速率,使各种新应用成为可能。随着即将到来的第六代(6G)时代,预计容量增长将提高 10 到 100 倍[1],[2]。尽管近年来陆地无线通信取得了进展,为海洋通信提供可靠和高速数据速率仍然具有挑战性。由于海洋活动的急剧增加,包括海军航运,海上通信至关重要。
Manuscript received 13 September 2022; accepted 28 October 2022. Date of publication 4 November 2022; date of current version 6 February 2023. This work was supported in part by the Office of the Sponsored Research (OSR) at King Abdullah University of Science and Technology (KAUST) and in part by the Research and Sponsored Projects Office at UAE University (UAEU). (Corresponding author: Nasir Saeed.)
手稿收到日期为 2022 年 9 月 13 日;接受日期为 2022 年 10 月 28 日。出版日期为 2022 年 11 月 4 日;当前版本日期为 2023 年 2 月 6 日。本工作部分得到了沙特阿卜杜拉国王科技大学(KAUST)赞助研究办公室(OSR)和阿联酋大学(UAEU)研究与赞助项目办公室的支持。(通讯作者:纳西尔·赛义德。)
Fahad S. Alqurashi, Abderrahmen Trichili, Boon S. Ooi, and Mohamed-Slim Alouini are with the Computer, Electrical and Mathematical Sciences and Engineering Department, King Abdullah University of Science and Technology, Thuwal 21955, Makkah, Saudi Arabia (e-mail: fahad.alqurashi@kaust.edu.sa; abderrahmen.trichili@kaust.edu.sa; boon.ooi@kaust.edu.sa; slim.alouini @kaust.edu.sa).
Fahad S. Alqurashi,Abderrahmen Trichili,Boon S. Ooi 和 Mohamed-Slim Alouini 就职于沙特阿拉伯麦加 Thuwal 21955 的科技大学计算机、电气和数学科学与工程系(电子邮件:fahad.alqurashi@kaust.edu.sa;abderrahmen.trichili@kaust.edu.sa;boon.ooi@kaust.edu.sa;slim.alouini@kaust.edu.sa)。
Nasir Saeed is with the Department of Electrical and Communications Engineering, United Arab Emirates University, Al Ain, UAE (e-mail: mr.nasir.saeed @ieee.org).
Nasir Saeed 就职于阿联酋艾因的阿拉伯联合酋长国大学电气与通信工程系(电子邮件:mr.nasir.saeed@ieee.org)。
Digital Object Identifier 10.1109/JIOT.2022.3219674 and logistics, offshore oil exploration, wind farming, fishing, and tourism, among others. Maritime communication is equally needed for Internet of Things (IoT) applications, such as environmental monitoring and climate change control. Nevertheless, fourth generation (4G), and fifth generation (5G) are limited in maritime environments as base stations cannot be installed far offshore and in oceans, restricting their use to onshore scenarios only. For these reasons, satellites are a crucial pillar in maritime communications. Satellites are essential in providing connectivity in unconnected oceans at the expense of high proprietary terminal and operation costs, in addition to the limited available bandwidth [3], [4]. Recently, aerial wireless solutions, such as unmanned aerial vehicles (UAVs) and helikites are being introduced to maritime communication applications [5], [6]. Presently, most of the technologies for ship-to-ship and ship-to-shore communication use medium frequency (MF), high frequency (HF), very HF (VHF), and ultrahigh-frequency (UHF) bands. Although these bands can ensure relatively long propagation distances, they support only basic applications, such as half-duplex voice calling, text messaging, and the automatic identification system (AIS). Therefore, improving the quality of life on board when sailing for long distances requires more advanced communication systems beyond those offered by satellites or maritime radio. Radio maritime communication is subject to various impairments, including rain causing significant signal scattering and sea waves causing vibrations affecting antenna height and orientation. Water surface reflections also cause a number of rays to reflect and interfere with each other.
数字对象标识符 10.1109/JIOT.2022.3219674 和物流、海上石油勘探、风力发电、渔业和旅游等领域。海上通信同样在物联网(IoT)应用中至关重要,如环境监测和气候变化控制。然而,第四代(4G)和第五代(5G)在海上环境中受限,因为基站无法远离海岸和海洋安装,仅限于陆地场景的使用。因此,卫星在海上通信中是至关重要的支柱。卫星在提供未连接海洋的连接方面至关重要,但需要高昂的专有终端和运营成本,以及有限的可用带宽。最近,空中无线解决方案,如无人机(UAVs)和氦风筝,正在引入到海上通信应用中。目前,大多数船舶间和船岸间通信技术使用中频(MF)、高频(HF)、超高频(VHF)和超高频(UHF)频段。 尽管这些频段可以确保相对较长的传播距离,但它们仅支持基本应用,如半双工语音通话、短信和自动识别系统(AIS)。因此,提高航行长距离时船上生活质量需要更先进的通信系统,而不是卫星或海事无线电提供的系统。海上无线电通信会受到各种干扰,包括雨水引发的信号散射以及海浪引发的振动影响天线高度和方向。水面反射也会导致多条射线反射并相互干扰。
Besides the radio frequency (RF) band, optical wireless communication-based solutions in the infrared band, known as free space optics (FSOs), also provide connectivity for maritime networks. Due to the collimated nature of laser beams, optical-based maritime communication systems are not affected by water surface reflections. However, FSO signals are affected by sea waves and weather conditions. Sea waves lead to pointing errors between FSO terminals, while weather conditions such as fog create scatterings of optical signals. Turbulence caused by the random variations of the refractive index of the atmospheric channel is also a major concern for FSO links causing scintillation and random light beam movements at the detector plane. There are also hybrid solutions proposed for maritime communication that install FSO on top of the RF infrastructure, which aim to provide more robust communication to FSO and RF propagation effects
除了无线电频段外,基于红外波段的光无线通信解决方案,即自由空间光学(FSOs),也为海上网络提供连接。由于激光束的准直特性,基于光学的海上通信系统不受水面反射的影响。然而,FSO 信号受海浪和天气条件的影响。海浪导致 FSO 终端之间的指向误差,而雾等天气条件会导致光信号的散射。由大气通道折射率的随机变化引起的湍流也是 FSO 链路的主要问题,导致闪烁和探测器平面上的随机光束移动。还有为海上通信提出的混合解决方案,将 FSO 安装在射频基础设施之上,旨在为 FSO 和射频传播效果提供更强大的通信
TABLE I 表格 I
SUMmary of RELATED SURVEYS
相关调查总结
Ref. Year Area of focus 关注领域
2014
Presents video transmission scheduling in maritime
展示海上视频传输调度
wideband communication networks.
宽带通信网络。
2019
Surveys advancements in autonomous maritime
调查自主海上航行的进展
systems with an overview of current and future
系统概述目前和未来的情况
communication technologies.
通信技术。
2019
Provides an overview of existing maritime com-
提供现有海洋通信系统的概述
munication systems and introduces LTE-maritime
并介绍了韩国进行的 LTE-海洋网络项目
network, a project being conducted in South Korea,
一个在韩国进行的项目
aiming to provide 100 km marine coverage.
旨在提供 100 公里的海洋覆盖范围。
2019
Presents the pros and cons of existing maritime
展示现有海事通信技术的优缺点
communication technologies and proposes a mar-
并提出了一种海事
itime giant cellular network architecture (Magic-
巨型蜂窝网络架构(Magic-
Net).
2021
Provides an overview of the key elements and main
提供了 IoS 范式的关键要素和主要特征的概述。
characteristics of the IoS paradigm.
讨论了混合卫星-陆地海上网络。
2021
Discusses hybrid satellite-terrestrial maritime net-
works.
2018
Surveys different RF channel models for maritime
调查不同的海事射频信道模型
communications. 用于通信。
while having higher data rates. Various models have been proposed in the literature for RF and optical wave propagation through oceanic environments.
同时具有更高的数据速率。文献中提出了各种模型,用于射频和光波在海洋环境中的传播。
In recent years, there has been a growing interest in developing maritime communication networks (MCNs), and multiple surveys related to this topic have been published [7], [8], [9], [10], [11], [12], [13], [14]. These articles covered various aspects of maritime communication, such as the different network architectures, RF channel models, communication and networking of autonomous marine systems, and the IoT in maritime environments. For instance, a comprehensive survey on video transmission scheduling for wideband maritime communication is presented in [7]. Then, Zolich et al. [8] reviewed the major advancements in autonomous maritime systems and applications and also provided an overview of maritime communication and networking technologies. Furthermore, Jo and Shim [9] discussed the progress on a long-term evolution maritime (LTE-maritime) Korean project aiming to provide high data rates in orders of with coverage. Guan et al. [10] briefly reviewed current maritime communication and networking projects and introduced the key technologies and applications of a novel maritime giant cellular network (Magicnet) architecture based on seaborne floating towers acting as base stations to provide wide coverage. Aslam et al. [11] provided a comprehensive survey on the applications and challenges of maritime IoT technologies, also known as the Internet of Ships (IoS). Maritime communications and IoTs enabled by hybrid satellite-territorial networks were surveyed in [12]. Moreover, there are also a few surveys on maritime communications focusing on RF channel models [13], [14]. A summary of the area of focus of related surveys is given in Table I.
近年来,人们对发展海上通信网络(MCNs)表现出了越来越浓厚的兴趣,并且已经发表了多篇与此主题相关的调查报告[7],[8],[9],[10],[11],[12],[13],[14]。这些文章涵盖了海上通信的各个方面,比如不同的网络架构、无线电频道模型、自主海洋系统的通信和网络以及海上物联网。例如,文献[7]中介绍了用于宽带海上通信的视频传输调度的全面调查。此外,Zolich 等人[8]回顾了自主海洋系统和应用的重大进展,并概述了海上通信和网络技术。此外,Jo 和 Shim[9]讨论了长期演进海上(LTE-maritime)韩国项目关于提供 覆盖下的高数据速率的进展。Guan 等。 [10] 简要审查了当前的海上通信和网络项目,并介绍了基于海上浮动塔作为基站提供广泛覆盖的新型海事巨型蜂窝网络(Magicnet)架构的关键技术和应用。Aslam 等人[11] 对海事物联网技术的应用和挑战进行了全面调查,也被称为船舶互联网(IoS)。在[12]中对通过混合卫星-地面网络实现的海事通信和物联网进行了调查。此外,还有一些关于海事通信侧重于射频信道模型的调查[13],[14] 。相关调查重点领域的摘要如表 I 所示。

B. Contributions B. 贡献

Motivated by the emerging research in maritime communication, this survey presents a holistic vision of marine communication and related technologies. We note that none of the previously presented references performs a complete survey of various aspects of maritime communication. Due to the prominent role of communication in marine life and industry, it is essential to study the different building blocks of maritime communication and the related emerging technologies. This article covers the latest advances in technologies connecting ships, ships, and shore, and those sailing on-board far from shores. We discuss the building blocks of maritime communication, including radio resource management, coverage and capacity, and modulation and coding schemes. We additionally present a handful of emerging applications of maritime IoT. We particularly highlight the emerging progress on the maritime IoT. Although underwater communication is out of the scope of the present survey, we cover the relationship between reliable maritime communication and IoUT. A few open issues related to maritime communication are highlighted. Moreover, future research directions are discussed, including using visible light communication (VLC) and terahertz (THz) band for on-board communication and intermedium communication. Harnessing and data-driven modeling for future maritime channel modeling.
受海上通信新兴研究的启发,本调查呈现了海洋通信及相关技术的整体愿景。我们注意到之前提到的参考资料中没有一篇对海上通信各个方面进行完整调查。由于通信在海洋生活和工业中的重要作用,研究海上通信的不同构建模块和相关新兴技术至关重要。本文涵盖了连接船舶、船舶和岸边以及远离海岸的船舶的最新技术进展。我们讨论了海上通信的构建模块,包括无线资源管理、覆盖范围和容量,以及调制和编码方案。我们还介绍了一些海洋物联网的新兴应用。我们特别强调了海洋物联网的新兴进展。尽管水下通信不在本调查的范围内,但我们涵盖了可靠海上通信与IoUT之间的关系。我们还强调了一些与海上通信相关的未解决问题。 此外,讨论了未来的研究方向,包括利用可见光通信(VLC)和太赫兹(THz)频段进行车载通信和中介通信。利用数据驱动建模进行未来海上信道建模。
This article is organized as follows.
本文的组织如下。
  1. In Section II, we provide an overview of the various forms of maritime communication, namely, RF, optical wireless, and hybrid RF/optical solutions for ship-to-ship, ship-to-shore, satellite-ship, and on-board communication.
    在第二部分中,我们概述了各种形式的海上通信,即射频、光无线和混合射频/光解决方案,用于船舶间、船岸间、卫星船和车载通信。
  2. In Section III, we present the building blocks of maritime communication, covering the different propagation effects and channel models as well as modulation schemes and resource management.
    在第三部分,我们介绍了海上通信的基本构件,涵盖了不同的传播效应和信道模型,以及调制方案和资源管理。
  3. In Section IV-A, we introduce the IoS and maritime IoT paradigms, and follow it by a discussion on IoUT.
    在第四部分-A 中,我们介绍了 IoS 和海上物联网范式,并进行了 IoUT 讨论。
  4. In Section V, we discuss the challenges and open problems of maritime communication and identify future research directions.
    在第五部分,我们讨论了海上通信的挑战和未解决的问题,并确定了未来的研究方向。
We conclude this article with a few remarks on the need for reliable maritime communication in Section VI.
我们在第六部分结束这篇文章,并就可靠的海上通信的需求发表了一些看法。

II. OVERVIEW OF MARITIme COMmUNicATions
二、海上通信概述

Ancient Greek ships used speaking trumpets that intensified and directed the human voice as a means of marine communication in the 5th century BC. For many centuries, homing pigeons and small boats were used to convey physical messages from ship to shore and ship to ship. Semaphore flag signaling became the principal means of maritime communication by the 18th century. Each flag represents a letter or signal. Light torches in the nighttime replaced flags. Until today, semaphore signaling is still recognized as a means of maritime communication. The development of the electromagnetic theory by Maxwell and the telephone invention by Marconi in the 19th century allowed for the wireless transfer of messages in the form of Morse codes. Using Morse codes over radio waves is also known as wireless telegraphy and was ensured by radio operators transferring and receiving messages at rates up to 200 words per minute. In the early 1900s, multiple naval warships were equipped with radiotelephones or "voice radio." The idea is to convert sound waves into radio at the transmitter using amplitude modulation and then
古希腊船只使用扩音喇叭,增强和引导人声作为公元前 5 世纪海洋通信的手段。几个世纪以来,信鸽和小船被用来传递从船到岸和船到船的物理信息。18 世纪,信号旗信号成为海上通信的主要手段。每面旗帜代表一个字母或信号。夜间用火炬取代旗帜。直到今天,信号旗通信仍被认为是海上通信的手段。19 世纪,麦克斯韦发展了电磁理论,马可尼发明了电话,允许以莫尔斯电码形式无线传输信息。在无线电波上使用莫尔斯电码也被称为无线电报,由无线电操作员以每分钟 200 个字的速度传输和接收信息。20 世纪初,多艘海军战舰配备了无线电话或“语音无线电”。其思想是在发射机上将声波转换为无线电,使用幅度调制,然后
Fig. 1. Maritime communication use cases.
图 1. 海上通信使用案例。
convert the received radio signals back to sound waves at the destination using frequencies ranging from 2 to . In 1950, a VHF band was allocated for marine use. In 1962, the Commercial Telecommunications Satellite Act, a U.S. federal statute, was put into effect, allowing the launching of satellites into outer space for telecommunication purposes [15]. This act supported the introduction of satellites in maritime communication. Many international organizations, including the International Association of Lighthouse Authorities, the International Telecommunication Union (ITU), and the International Maritime Organization, recognize the benefits of seamless data exchange for maritime communities. Nowadays, various platforms, including satellites, high-altitude platforms (HAPs), and UAVs, operating in different frequency bands, such as RF and optical, are used to provide maritime coverage, as seen in Fig. 1. In the following, we will present the various forms of maritime communications and highlight the latest progress in each of these technologies.
在目的地使用从 2 到 范围的频率将接收到的无线电信号转换回声波。1950 年,为海上使用分配了一个 VHF 波段。1962 年,美国联邦法令《商业电信卫星法》生效,允许将卫星发射到外太空用于电信目的[15]。该法案支持了卫星在海上通信中的引入。许多国际组织,包括国际灯塔管理机构协会、国际电信联盟(ITU)和国际海事组织,都认识到对海上社区进行无缝数据交换的好处。如今,各种平台,包括卫星、高空平台(HAPs)和无人机(UAVs),在不同频段(如射频和光学)上运行,用于提供海上覆盖,如图 1 所示。接下来,我们将介绍各种形式的海上通信,并重点介绍这些技术中的最新进展。

A. RF Technologies for Maritime Communications
A. 用于海上通信的射频技术

Maritime radio provides commercial and recreational communications uses and allows search and rescue assistance to ships in distress. An ITU-designated band for marine radio in the VHF band is the VHF maritime mobile band from 156 and . Marine VHF transceivers are installed in all large vessels and most seagoing crafts where a particular VHF frequency, known as Channel , is designated as an international distress frequency. VHF terminal can be portable on a vessel or installed, allowing higher transmission power. Various VHF systems allow the following functionalities.
海事无线电提供商业和娱乐通信用途,并为处于困境的船只提供搜索和救援援助。ITU 指定的 VHF 频段中的海事无线电波段是来自 156 和 的 VHF 海事移动波段。海事 VHF 收发机安装在所有大型船只和大多数远洋船只上,其中一个特定的 VHF 频率,称为 Channel ,被指定为国际紧急频率。VHF 终端可以在船只上便携或安装,允许更高的传输功率。各种 VHF 系统允许以下功能。
  1. Voice Only: Which relies on the human voice for calling and communicating.
    仅语音:依靠人声进行呼叫和通信。
  2. Digital Selective Calling (DSC): In addition to the voice calling functionality, the DSC allows the user to communicate with another vessel using a unique identifier known as the maritime mobile service identity (MMSI). The MMSI information is transmitted digitally, and once detected by a receiver, the operator of the receiving vessel will be alerted of the incoming call. DSC allows the automatic transfer of the caller's coordinates when sending a distress call if connected to a global positioning system (GPS).
    数字选择呼叫(DSC):除了语音呼叫功能外,DSC 允许用户使用称为海事移动业务识别码(MMSI)的唯一标识符与另一艘船只进行通信。MMSI 信息以数字形式传输,一旦被接收器检测到,接收船只的操作员将收到来电警报。DSC 允许在发送紧急呼叫时自动传输呼叫者的坐标,如果连接到全球定位系统(GPS)。
  3. Automatic Identification System: AIS allows the digital transfer of MMSI together with other information, including the vessel specification, real-time coordinates, speed, and course, to avoid collisions. AISs also transfer application-specific messages (ASM) to ships in ports and underway for safe navigation and boost maritime security. AIS operates as a mesh network, extending the communication ranges, and enabling access to maritime traffic.
    自动识别系统:AIS 允许 MMSI 的数字传输以及其他信息,包括船舶规格、实时坐标、速度和航向,以避免碰撞。 AIS 还向港口和航行中的船舶传输特定于应用程序的消息(ASM),以确保安全导航并增强海上安全。 AIS 作为网状网络运行,扩展通信范围,并实现对海上交通的访问。
  4. Text Messaging: It is also possible to send and receive text messages between VHF terminals using the Radio Technical Commission for Maritime RTCM 12301.1 standard.
    文本消息:还可以使用海事无线电技术委员会的 RTC 12301.1 标准在 VHF 终端之间发送和接收文本消息。
According to the IMO, fitting an AIS transceiver is required in any cargo ship over 300 gross tonnage and all people transporting vessels. AIS transceivers use two ITU-designated VHF frequencies, known as marine band channel at 161.975 MHz and channel 88B at . Each AIS transmits and receives over two channels to avoid interference. AIS transmission is based on a Gaussian minimum shift keying (GMSK) frequency modulation (FM) at a data rate of . Each time frame lasts and is divided into 2250 time slots, where each slot is and contains 256 bits of data. AIS equipment uses self-organized time-division multiple access
根据IMO规定,任何货船总吨位超过300吨和所有运输船只都需要安装AIS发射接收机。AIS发射接收机使用两个ITU指定的VHF频率,分别是161.975 MHz的海事频段通道 的88B通道。每个AIS通过两个频道进行发送和接收,以避免干扰。AIS传输基于高斯最小频移键控(GMSK)频率调制(FM),数据速率为 。每个时间帧持续 ,分为2250个时间槽,每个槽为 ,包含256位数据。AIS设备使用自组织的时分多址接入。
(SOTDMA) datalink schemes that are responsible for data transmission by using a reference time derived from GPS signaling to synchronize numerous data streams sent from many AIS transponders on a single band channel [16]. VHF data exchange system (VDES) is another VHF-enabled technology, which is seen as the successor of AIS offering the same functions of an AIS with the ability to connect to satellite using the same antenna and providing a higher data rate. Radio maritime communication is also possible on the MF and HF bands. For example, navigation data (NAVDAT) is a safety and security maritime digital broadcasting system that operates in the bands. In the bands, radio waves are reflected at ionospheric layers, enabling longer propagation distances, reaching several hundreds of kilometers. NAVDAT is set to complement and possibly replace the direct printing navigational TEleX (NAVTEX) system operating in the MF band. NAVDAT also provides extended coverage compared to NAVTEX, enabling a maximum offshore range of 200 nautical miles . In the following, we discuss several wireless access technologies in the RF band for maritime communications.
(SOTDMA)数据链路方案负责使用从GPS信号中衍生的参考时间来同步单频频段上许多AIS发送的许多数据流。VHF数据交换系统(VDES)是另一种VHF启用技术,被视为AIS的后继者,具有与AIS相同的功能,并具有连接卫星的能力,使用相同天线并提供更高的数据速率。海上无线电通信也可以在MF和HF频段上进行。例如,导航数据(NAVDAT)是一个安全和安全的海上数字广播系统,其在 频段上运行。在 频段上,无线电波在电离层上反射,使传播距离更长,可达数百公里。NAVDAT旨在补充并可能取代在MF频段上运行的直接打印导航TEleX(NAVTEX)系统。NAVDAT还提供了比NAVTEX更广泛的覆盖范围,最大的离岸范围达到了200海里 。 在以下内容中,我们将讨论几种用于海事通信的 RF 频段的无线接入技术。
  1. Standard Wireless Access Technologies: Efforts have been made to provide high-speed data connectivity using standard wireless access techniques beyond voice calls, text messaging, and safety information exchange.
    标准无线接入技术:已经付出了努力,利用标准无线接入技术提供高速数据连接,超越了语音电话、短信和安全信息交换。
For instance, the TRI-media Telematic Oceanographic Network (TRITON) project was conducted to provide broadband Internet offshore using a wireless mesh network of ships connected to terrestrial networks via an onshore station. TRITON is based on the IEEE 802.16 [Worldwide Interoperability for Microwave Access (WiMAX)] [17]. Within the project Mare-Fi, aiming to provide WiFi broadband maritime communication for fishing ships and small vessels off-cost, a data rate at a distance of was demonstrated [18]. The MariComm, maritime broadband communication system was launched to target beyond transfer rates at a distance from the shore [19] in a multihop configuration. The multihop relay network was tested with four vessels acting as relays and reported a maximum data rate of with a total distance of using longterm evolution (LTE) for the shore-to-ship link and wireless LAN (WLAN) for ship-to-ship communication. BLUECOM+ is another project that was launched with the aim of providing broadband Internet connectivity at large distances. Simulation results revealed that BLUECOM+ could provide communication at from shore [6]. BLUECOM+ leverages the following to provide such connectivity.
例如,TRI-media Telematic Oceanographic Network(TRITON)项目旨在通过一种无线网状网络,将船舶连接到陆地网络,从而提供离岸宽带互联网。TRITON基于IEEE 802.16 [全球微波接入互操作性(WiMAX)]。在Mare-Fi项目中,旨在为渔船和小型船只提供WiFi宽带海上通信,演示了在距离 处的 数据速率。MariComm是一种海上宽带通信系统,旨在以多跳配置,在距离岸边 的地方实现超过 的传输速率。多跳中继网络通过四艘船作为中继进行测试,并报告了在总距离为 时的最大数据速率为 ,其中使用LTE进行岸船链路通信,使用无线局域网(WLAN)进行船船通信。BLUECOM+是另一个旨在提供大距离宽带互联网连接的项目。 模拟结果显示,BLUECOM+ 可以在离岸 提供 通信 [6]。BLUECOM+ 利用以下内容提供这种连接性。
  1. Helikites, a combination of kites carrying radio relays even at extreme conditions (of windspeed of ) without being severely affected by sea conditions. Helikites can be either tethered on land or sea platforms.
    Helikites,一种风筝组合,即使在极端条件下(风速为 ),也能携带无线中继器而不受海况严重影响。Helikites 可以被系在陆地或海上平台上。
  2. Using the unused TV channels in the VHF and UHF bands for long-range Line-of-Sight (LoS) transmission.
    利用 VHF 和 UHF 频段中未使用的电视信道进行远程视距(LoS)传输。
  3. Multihop relaying for radio range extension of standard wireless communication, such as universal mobile telecommunications system (UMTS) and LTE.
    用于标准无线通信的无线电覆盖范围扩展的多跳中继,例如通用移动通信系统(UMTS)和 LTE。
The BLUECOM + trials deployment reported single-hop and two-hop land-sea communications. The air-air links use IEEE at 500 and , while air-sea links are based on UMTS or LTE. The two-hop testing involved two helikites tethered at altitude from two vessels [20].
BLUECOM + 试验部署报告了单跳和双跳陆海通信。空空链路使用 IEEE 在 500 和 ,而空海链路基于 UMTS 或 LTE。双跳测试涉及两个在两艘船上从 高度系留的风筝[20]。
LTE-maritime is another exciting project aiming to provide broadband connectivity at sea. Reports from the test-bed implementation of the LTE-maritime showed communication at a shore-to-ship distance of up to using base stations located at high altitude regions on land [9].
LTE-海事是另一个旨在在海上提供宽带连接的激动人心的项目。来自 LTE-海事测试床实施的报告显示了在陆地高海拔地区的基站上,岸船距离高达 的通信[9]。
  1. Satellites-Based Maritime Communication System: In addition to VDES, maritime communication systems primarily use satellites to provide a wider coverage than standard techniques that utilize microwave frequency bands in the band (see Fig. 2 for different satellite frequency bands). Among various satellite constellations, some popular ones are Inmarsat, Iridium, and Thuraya. Inmarsat relies on a 14 geostationary Earth orbit (GEO) satellite constellation operating in the L-band to provide near-global connectivity with relatively high data rates reaching up to . Tapping on band satellites on a low-Earth orbit (LEO), the Iridium constellation provides voice and messaging global connectivity, including polar regions. With coverage in more than 160 countries, Thuraya provides voice and data coverage. Thuraya operates using two GEO satellites in the L-band. Given that a single GEO satellite can provide a coverage of more than , Thuraya achieves beyond global coverage. The data rates of Thuraya using the ThurayaIP device are limited to .
    基于卫星的海上通信系统:除了VDES外,海上通信系统主要利用卫星提供比传统微波频带更广覆盖范围的通信。不同的卫星频段可见图2。在各种卫星星座中,一些流行的包括Inmarsat、Iridium和Thuraya。Inmarsat依赖于14颗地球同步轨道(GEO)卫星星座,在L波段提供接近全球覆盖,数据速率高达 。Iridium星座利用低地球轨道(LEO)上的L波段卫星,提供语音和消息全球覆盖,包括极地地区。Thuraya在160多个国家提供语音和数据覆盖。Thuraya使用L波段的两颗GEO卫星运行。考虑到单颗GEO卫星可提供覆盖超过 ,Thuraya实现了超越 的全球覆盖。ThurayaIP设备的数据速率受限于
There are also many very small aperture terminal (VSAT)based solutions that can offer nearly global voice and Internet coverage using LEO and GEO satellites [21], [22], [23]. Some VSAT service providers offer products with on-board data rates up to a few tens of Mbps.
还有许多基于非常小孔径终端(VSAT)的解决方案,可以利用低轨和地球同步卫星[21],[22],[23]提供几乎全球范围的语音和互联网覆盖。一些 VSAT 服务提供商提供的产品的数据速率高达几十兆每秒。
A summary of terrestrial and space-based RF maritime communication systems and the various projects aiming to provide maritime broadband coverage is given in Table II.
给出了陆地和空间射频海上通信系统的总结以及旨在提供海上宽带覆盖的各种项目的表 II。
  1. Aerial Networks for Maritime Communication: Aerial networks involve the use of UAVs, flying up to a few hundred meters above the sea surface and HAPs flying at the stratosphere, at least from the ground. Recent use of UAVs improves search and rescue missions by providing quick on-demand network deployment after disasters and also supporting mobility [5]. In maritime networks, UAVs can relay the information sent from a ground station to mobile vessels beyond the LoS limit or when an LoS path is unavailable. Moreover, UAVs can also help retrieve information from IoT devices located in the oceans and relay information to/ from unmanned surface vehicles (USVs). The main restriction of using UAVs is the limited flying time restricted by the carried load and the battery or fuel cell [24]. Using a tethered UAV connected by an electrical cable connected to a power source can help relieve such limitations. Recent studies have shown the feasibility of using tethered UAVs fixed on buoys [25]. Tethered UAVs can hover in a certain place tens of meters above the seawater with limited coverage and mobility. In addition to the power cable, tethered UAVs can be connected with optical fibers to enable high transmission rates. Due to their higher flying altitude compared to UAVs, HAPS flying at about from sea level
    海上通信的空中网络:空中网络涉及使用无人机,飞行高度可达海面上方几百米,以及高空平台飞行在平流层,至少距离地面 。最近使用无人机改善了搜索和救援任务,提供了灾难后快速的按需网络部署,并支持移动性[5]。在海上网络中,无人机可以中继从地面站发送的信息到超出视距限制的移动船只,或者在视距路径不可用时。此外,无人机还可以帮助检索位于海洋中的物联网设备的信息,并将信息中继到/从无人表面船只(USVs)。使用无人机的主要限制是受携带负载和电池或燃料电池限制的有限飞行时间[24]。使用通过电缆连接到电源的系留无人机可以帮助缓解这些限制。最近的研究表明了使用固定在浮标上的系留无人机的可行性[25]。系留无人机可以在海水上方数十米的某个地方悬停,具有有限的覆盖范围和移动性。 除了电源电缆外,系留式无人机还可以通过光纤连接,实现高传输速率。由于高空飞行高度比无人机更高,高空平台系统飞行高度约为海平面
Fig. 2. Electromagnetic spectrum in frequency and wavelength. ELF: extremely low frequency; VLF: very low frequency; LF: low frequency; MF: middle frequency; HF: High frequency; VHF: very high frequency; UHF: ultra high frequency: SHF: super high frequency; EHF: extremely high frequency; IR: infrared; and UV: ultraviolet. Frequency bands in the region between 1 and are denoted by letters by IEEE.
图 2. 频率和波长中的电磁谱。 ELF:极低频; VLF:超低频; LF:低频; MF:中频; HF:高频; VHF:超高频; UHF:超高频; SHF:超高频; EHF:极高频; IR:红外线; UV:紫外线。 IEEE 将 1 和 之间的频段用字母表示。
TABLE II 表 II
SUMmARY OF RF-BASED MARITIME COMMUNICATION SYSTEMS AND PROJECTS
基于射频的海上通信系统和项目总结
System Technology and Band 技术和频段 Coverage Max Data Rates 最大数据速率 Use Cases
DSC VHF, Maritime band VHF,海事波段 Maritime voice calling 海事语音呼叫
AIS VHF, Maritime band VHF,海事波段 Track and monitor vessels movements
跟踪和监视船只运动
NAVDAT
MF,
Broadcasting of security and safety informa-
广播安全和安全信息
tion from shore to ships
从岸到船的传输
VDES VHF 300 kbits
Establishing digital two-way communication
建立数字双向通信
between ships, satellite, and shore
船舶、卫星和岸之间
TRITON IEEE
shore-to-ship:
从岸到船:
ship-to-ship:
船到船:
Providing offshore broadband internet access
提供离岸宽带互联网接入
Mare-Fi IEEE Offshore WiFi connectivity
远程海上 WiFi 连接
MariComm
LTE/WLAN
Providing broadband internet to ships
为船舶提供宽带互联网
BLUECOM+
Air-Air: IEEE ,
空对空:IEEE
500/700 MHz
Air-Surface: LTE,
空地:LTE,
Providing broadband internet access
提供宽带互联网接入
LTE-maritime
LTE,
Uplink:
Downlink:
Ship-to-shore communication
船到岸通信
Inmarsat
GEO satellites, 地球同步卫星
Uplink:
Downlink:
Global, except polar regions
全球,除极地地区
Mobile and data services
移动和数据服务
Iridium LEO satellites, Ku band
LEO 卫星,Ku 频段
Global, except polar regions
全球,极地地区除外
Providing on-ship voice calling and internet
提供船上语音通话和互联网
access
Thuraya GEO satellites, band
GEO 卫星, 频段
161 countries 161 个国家
Providing on-ship voice calling and internet
提供船上语音通话和互联网
access
VSAT
LEO and GEO satellites,
低地球轨道(LEO)和地球静止轨道(GEO)卫星
and bands
和频段
Global, except polar regions
全球,极地地区除外
Providing on-ship voice calling and internet
提供船上语音通话和互联网
access
offer an extended coverage radius that could reach hundreds of kilometers [26]. The autonomy of HAPS can be as long as several months and, with fewer load weight restrictions, can carry large antennas [27]. A recent demonstration by Airbus and NTT DOCOMO, INC. Using their solar-powered Zephyr HAPS aiming to extend connectivity in the air and sea has reported connectivity in a range of up to [28]. The HAPS-enabled connectivity to mobile terminals could allow users to use their mobile devices without needing a dedicated antenna.
提供了可覆盖数百公里的扩展覆盖范围 [26]。 HAPS 的自主性可长达数月,并且在更轻的负载限制下,可以携带大型天线 [27]。空中客车和 NTT DOCOMO, INC 最近进行的一次演示,他们使用太阳能动力的 Zephyr HAPS 旨在扩展空中和海上连接,并报道了范围高达 的连通性 [28]。 HAPS 启用的移动终端连接可以允许用户在不需要专用天线的情况下使用他们的移动设备。

B. On-Board Communications
B. 机载通信

Another major aspect of maritime communications is the connectivity among different entities on the ship. Unlike conventional indoor radio wave propagation, radio wave propagation inside ships principally constructed with steel can be different. For instance, radios are used for communication between ship crew members, and a wireless sensor network (WSN) may be used to monitor the movement of perishable and dangerous goods in shipping containers [29]. Therefore, it is essential that the wireless channel for
海上通信的另一个重要方面是船舶上不同实体之间的连接性。与传统的室内无线电波传播不同,主要由钢铁构造的船舶内部的无线电波传播可能会有所不同。例如,无线电用于船员之间的通信,无线传感器网络(WSN)可能用于监测运输集装箱中易腐和危险货物的运动[29]。因此,对于无线信道是至关重要的。

on-board applications is carefully modeled considering various scenarios. Balboni et al. [30] reported a series of seminal investigations on radio channel characterization inside navy ships at a frequency range in the microwave band between and . The authors reported root-mean-square (RMS) delay spreads ranging between 70 and [30] and path loss gradients ranging from to unity. Path loss and the RMS delay spread were found independent of frequency over the considered frequency range. For on-board communications, channel measurements have been reported in different types of ships in various studies [31], [32], [33], [34]. The channel impulse responses inside compartments and within a passageway of a ship were obtained using a vertical network analyzer for 2 and [31]. Channel sounding measurements were conducted in the restaurant hall and corridors of a cruise ship at [32], [33]. LoS and Non-LoS (NLoS) channel measurements and 3-D ray-tracing simulations were performed in the UHF band (from 225 to ) inside a cargo hold of a merchant ship [34], deriving the path LoS models for both scenarios. In [35], the channel characteristics and temporal fluctuations related to the propagation of VHF waves between the engine control room (ECR) and the bridge room have been examined in a vessel. Due to the dense multipath environment formed by the metallic structures inside the channel, broadband propagation may be impossible. Furthermore, De Beelde et al. [36] tested the channel in three separate places within the ship in a broader comprehensive investigation conducted in larger bands , , and ). The path loss exponents for sub were 1.21, 1.14, and 1.36 for , and , respectively. However, the path loss exponent for mmWave wireless communications was more significant, i.e., 1.9 .
在机载应用中,考虑了各种场景进行了仔细的建模。Balboni等人[30]报道了一系列关于在微波频段内海军舰船上的射频信道特性的开创性研究。作者报告的均方根(RMS)时延展宽在70和 之间[30],路径损耗梯度在 至1之间。发现路径损失和RMS时延展宽在所考虑的频率范围内与频率无关。对于舰载通信,通过不同研究[31],[32],[33],[34]报告了在各种类型的舰船内进行的信道测量。使用垂直网络分析仪分别在一艘船的舱室内和通道内获取了2和 的信道脉冲响应[31]。在一艘游轮的餐厅大厅和走廊进行了 的信道深度测量[32],[33]。 在 UHF 频段(从 225 到 )内,在一艘商船的货舱内进行了 LoS 和非 LoS(NLoS)信道测量和 3-D 射线追踪模拟[34],得出了两种情景下的 LoS 模型路径。在[35]中,研究了 VHF 波在控制室和驾驶室之间传播的信道特性和时间波动。由于信道内金属结构形成的密集多径环境,宽带传播可能是不可能的。此外,De Beelde 等人在更广泛的调查中在船内的三个不同位置测试了信道,使用了更大的频段 。对于子 ,子 和子 ,路径损耗指数分别为 1.21,1.14 和 1.36。然而,毫米波无线通信的路径损耗指数更大,即 1.9。

C. FSO and Hybrid RF/FSO for Maritime Communications
C. FSO 和混合 RF/FSO 用于海上通信

A particular advantage of FSO in maritime communication is the difficulty of interception and immunity to jamming contrary to RF signals, opening many military and civil applications opportunities. Various demonstrations were conducted mostly for military applications investigating the potential of FSO deployment in maritime military communication. Initial laser-based maritime communication demonstrations date back to 1970s [37]. A full-duplex heterodyne laser transmission was demonstrated using two lasers over an 18.2-km maritime link in San Diego (California, U.S.) within the optical convert communications using laser transceivers (OCCULT) experimental research initiative [37]. An automatic acquisition mechanism was involved with reciprocal pointing and tracking to ensure stable communication of the coherent two-way communication. In 2006, within the yearly Trident Warrior exercise, FSO systems were installed on two naval vessels [38]. A high-quality 300-Mb/s uncompressed video transmission was reported over a maximum distance of in the Pacific, and the data link was transmitted with no disruptions or delay over [38]. A bidirectional mutiGbps FSO transmission was conducted off the mid-Atlantic coast between a tower on Cedar Island (Virginia, U.S.) and
FSO在海上通信中的一个特殊优势是与RF信号相比,拦截困难和免疫干扰,为许多军事和民用应用提供了机会。各种演示主要用于军事应用,探讨FSO在海上军事通信中的部署潜力。最初基于激光的海上通信演示可以追溯到1970年代。在加利福尼亚州圣迭戈的18.2公里海上链路上,通过使用两个激光器进行全双工混频激光传输的演示,这是光学转换通信使用激光收发器(OCCULT)实验研究计划的一部分。自动获取机制涉及相互指向和跟踪,以确保相干的双向通信的稳定通信。2006年,在每年的三叉戟战士演习中,FSO系统安装在两艘海军舰艇上。在太平洋最大距离上报告了高质量的300Mb/s未压缩视频传输,并且数据链路在没有中断或延迟的情况下传输了。 在美国弗吉尼亚州 Cedar Island 的塔楼之间,在大西洋中部进行了双向多 Gbps FSO 传输。和
Fig. 3. Diagram of an MRR-based FSO. The MRR couples a corner-cube retro-reflector and a modulator.
图 3. 基于 MRR 的 FSO 示意图。MRR 将一个角立方体反射器和一个调制器耦合在一起。
a JHU/APL research vessel with varying distances between 2 and [39]. In 2017, a team from the Johns Hopkins University Applied Physics Laboratory (APL) demonstrated up to FSO communication between two moving ships [40]. During the 14-h up-time of the FSO terminal in a ship-to-shore configuration, data rates between 1 and were reported for ranges exceeding . FSO link ensured voice communications for distances more than and sent messages up to the maximum available distance of .
约翰斯·霍普金斯大学应用物理实验室(JHU/APL)的研究船具有2和 之间的不同距离[39]。 2017年,约翰斯·霍普金斯大学应用物理实验室(APL)的团队在两艘移动船只之间展示了高达 的FSO通信[40]。在船舶到岸基的FSO终端的14小时正常运行时间内,对于超过 的范围,报道了1到 的数据速率。FSO链路确保了超过 的距离进行语音通信,并发送了多达最大可用 距离的信息。
Moreover, modulating retro-reflector (MRR)-based maritime links were demonstrated in [41], [42], and [43]. The diagram of an MRR is shown in Fig. 3 that combines an optical retro-reflector with a modulator to reflect modulated optical signals (initially emitted by a laser interrogator) directly back to an optical receiver, allowing the MRR to function passively as an optical communication device without emitting its own optical power. MRRs are mainly used in maritime for FSO link characterizations. FSO transmissions involving an array of MRRs with data rates ranging from 100 to were conducted in the Chesapeake Bay (in the Mid-Atlantic region, US) over 32.4-km folded round-trip distance [41]. Using an array of 5 quantum-well-based MRR, a series of shore-to-boat FSO communications using a laser over a distance of in the Chesapeake Bay achieving data rates up to [42]. A 32-km round-trip FSO communication using a laser modulated by an analog RF signal was reported through a maritime link using a retro-reflector at the Tilghman Island [43].
此外,在[41]、[42]和[43]中展示了基于调制反射器(MRR)的海上链接。MRR的示意图如图3所示,它将光学反射器与调制器结合在一起,将调制的光学信号(最初由激光询问器发射)直接反射回光学接收器,使MRR能够 passively 作为光通信设备运行,而无需发射自己的光功率。MRR主要用于海上FSO链接特性。在美国中大西洋地区的切萨皮克湾(Chesapeake Bay)进行了一系列涉及一组MRR的FSO传输,数据速率范围从100到 ,覆盖32.4公里的往返距离[41]。使用5个基于量子阱的MRR阵列,在切萨皮克湾进行了一系列岸对船FSO通信,使用 激光,覆盖了 的距离,实现了高达 的数据速率[42]。通过在Tilghman岛使用反射器的海上链接,报告了一次32公里往返FSO通信,使用模拟RF信号调制的 激光[43]。
Beyond high-data-rate transmission and the use of MRRs, other experimental efforts involved deep investigations of the various propagation effects on FSO in maritime environments. For instance, the effects of turbulence and extinction on a 7.2-km FSO maritime path were investigated in [44]. A summary of FSO trials and demonstrations is given in Table III.
除高数据传输速率和 MRR 的使用外,其他实验努力涉及对海上光自由空间光通信的各种传播效应的深入研究。例如,[44]中调查了湍流和消光对 7.2 公里 FSO 海上路径的影响。表 III 总结了 FSO 试验和演示情况。
FSO is not only restricted to horizontal links but can also be involved in vertical links, such as HAPS to vessel links. FSO is also a core technology to provide fiber-like data rates in satellite crosslinks in large LEO constellations aiming to provide wide maritime connectivity, such as Telesat Lightspeed and SpaceX Starlink constellations [46], [47].
FSO 不仅局限于水平链接,还可以参与垂直链接,例如 HAPS 到船只的链接。FSO 还是在旨在提供宽广的海上连接的大型 LEO 星座中提供类似光纤数据速率的核心技术,如 Telesat Lightspeed 和 SpaceX Starlink 星座[46],[47]。
Besides FSO-only links, various terrestrial hybrid RF/FSO schemes are also recently investigated in [48], [49], and [50]. These hybrid links can be well suited for maritime communication between ships and ships to shore. Nevertheless, research
除了仅使用 FSO 链接外,最近还研究了各种陆基混合 RF/FSO 方案,参见[48],[49]和[50]。这些混合链接非常适合船舶间和船到岸的海上通信。然而,研究
TABLE III 第三表
SUMmARY OF FSO FIELd TRIALS ANd DEMONSTRATIONS
FSO 现场试验和演示摘要
Ref. Year Demonstration description
演示描述
Major outcomes 主要成果
[37] 1977
lasers operating at were used to build
用于构建 激光器在 工作的
heterodyne systems for full-duplex ship-to-ship communi-
全双工船舶间通信的混频系统
cation at close .
闭合处的 cation
- Automatic acquisition and reciprocal pointing and track-
- 自动采集和互相指向和跟踪机制涉及。
ing mechanisms were involved.
主要涉及自动采集和互相指向和跟踪机制。
- Reciprocal pointing and tracking ensured stable commu-
- 相互指向和跟踪确保了稳定的通信-
nication.
- High-frequency stability is achieved.
- 实现了高频稳定性。
2010
- A high-speed FSO transmission, in the form of a pre-
- 以预-形式进行高速 FSO 传输
taped video and live video feed between two US navy
两艘美国海军舰船之间的录像和直播视频传输在 10 小时内建立起来。
vessels, was established over 10 hours.
传输范围高达<code0></code0>,速度达到 300 兆位。
- Up to transmission range and 300 Mbits were
reported.
- No artifacts or delays in the videos were reported in clear
- 在晴朗的天气传输中,视频中没有报告任何工件或延迟
weather transmission. - 在雨天,视频中出现了轻微的工件
- During rain, slight video artifacts were obtained at ranges
- 在雨天,视频中出现了轻微的工件
less than .
小于
[39] 2010
- Two bidirectional ship-to-shore FSO field trials
- 两艘双向船到岸 FSO 现场试验
conducted off the mid-Atlantic coast near Wallops Island
在 Wallops Island 附近的大西洋中部海域进行
in July and September 2009
2009 年 7 月和 9 月期间
- The propagation distance was varied from 2 to ,
- 传播距离从 2 变化到
visual horizon. 可视地平线。
- Two adaptive optics (AO) units were used to compensate
- 使用两个自适应光学(AO)单元来补偿光束失真和指向误差。
for beam distortions and pointing errors.
- 实现了高达<code0></code0>的数据传输速率。
- Up to data rate was achieved.
- Daytime atmospheric turbulence is stronger than night-
- 白天大气湍流比夜晚强
time.
2017
- Demonstration of high-speed FSO transmission using
- 利用由 APL 工程师在 2017 年三叉戟项目中开发的高速 FSO 传输进行演示
terminals developed by APL Engineers in the 2017 Trident
- 术语由 APL 工程师在 2017 年三叉戟项目中开发
Warrior exercise. 战士练习。
- Demonstrations involved ship-to-ship and ship-to-shore
- 演示涉及船舶间和船岸间
communications. 通信。
- Up to a 7.5 Gbps transmission rate between two moving
- 两艘移动船只之间的传输速率达到了 7.5 Gbps
vessels was reported. 船与岸测试总共运行了 14 小时:
- For 14 hours total up-time in ship-to-shore testing:
* Error-free transmissions with data rates between 1 and
* 数据速率在 1 到 2 Gbps 之间进行无误差传输,覆盖范围更多。
2 Gbps at more than ranges.
* 在多达 范围内的语音通信。
* Voice communications for ranges up to .
* 范围覆盖高达 的语音通信。
* Operational chat messaging at maximum LoS of .
* 在最大视距下的操作性聊天消息。
- Sea spray and fog were the major challenges.
- 海雾和雾是主要挑战。
2002
- MRR-based round-trip transmission using an
- 基于 MRR 的往返传输使用 an。
array of 22 MRR.
22 个 MRR 的数组。
- The height of the laser interrogator was from
- 激光询问仪的高度是 来自
the water surface, while the height of the MRR from the
水面,而 MRR 的高度是
surface was set to 15 to strengthen the propagation effects
表面被设置为 15,以加强传播效果
of the propagating laser beams.
传播的激光束。
- Data rates between 100 and were demonstrated
- 在 100 和 之间的数据速率得到了证明
with a bit error rate (BER) below .
具有比特错误率(BER)低于
2005
- A series of FSO communication tests using a
- 使用 进行一系列 FSO 通信测试
laser with data rates up to over a distance
距离内的数据速率高达 的激光完成测试
from a ship to a boat in the Chesapeake Bay (Maryland,
从驶向切萨皮克湾(马里兰州,弗吉尼亚州,美国)的船只到小船。
Virginia, US). 弗吉尼亚,美国)。
- Various weather conditions were covered over a one-year
- 在一年内涵盖了各种天气条件。
period
- Scintillation is the major challenge.
- 闪烁是主要挑战。
- At low and medium turbulence regimes, results are
- 在低和中等湍流区域,结果与[45]中提出的建模一致。
consistent with modeling proposed in [45].
与[45]中提出的建模一致。
- Experimental data are not in good agreement with theo-
- 实验数据与高湍流状态下的理论模型不太吻合。
retical models at a high turbulence regime.
- 使用往返多次反射(FSO)通信技术的 MRR,其数据与理论模型不太吻合。
2009
- round-trip MRR-based FSO communication using
a 1550 -nm laser modulated by an analog RF signal through
通过模拟射频信号调制的 1550 纳米激光
a maritime link. 一个海事链接。
- Retro-reflector fixed at Tilghman Island.
- 安装在蒂尔曼岛的反射器。
- The analog modulation link was subject to turbulence,
- 模拟调制链受到湍流的影响,
which could have been compensated if a digitizer had been
如果使用数字化器进行补偿,可能会得到补偿。
used.
[44] 2006
- Investigated the effect of turbulence and attenuation using
- 使用调查研究了湍流和衰减的影响
a laser across a maritime path.
沿着海上路径传播激光。
- Near-surface marine environment that is appropriate for
- 适合船舶间或船舶与岸边通信的近海环境是一个特别的
ship-to-ship or ship-to-shore communications is an espe-
例。
cially stressing propagation environment.
特别强调传播环境。
on hybrid RF/FSO links for maritime networks is still in the early stages and needs further research.
对于海上网络的混合 RF/FSO 链路仍处于早期阶段,需要进一步研究。

D. Challenges and Difficulties of Current Maritime Communication Technologies
D. 当前海上通信技术的挑战和困难

Having seen the different forms of maritime communication, here we summarize the various challenges for each technology. Starting with the RF-based solutions in the VHF band, namely, DSC and AIS, the available bandwidth and the limited range are the main limiting factors. A data rate of around over a few tens of can only ensure half-duplex voice calling or sending and receiving safety and operation messages. The reach of the extended WiFi technology is limited to a few kilometers off the costs (for example, the MareFi project [18]). Cellular network access and broadband solutions based on WiMAX or LTE are restricted to near-shore locations, although in some cases can cover up to from the shore. Aerial solutions, such as the use of UAVs and HAPs are still limited in practice. The limited available bandwidth is also a constraint for satellite communication offered by any of the presented satellite systems presented in Table II. The high latency caused by the long propagation distance is another major challenge for maritime communication involving satellites in the GEO orbit. It should also be noted that satellite services are proprietary, making the cost of terminals and operation fees nonaffordable for small vessels and fishing boats.
看过不同形式的海上通信后,我们总结了每种技术面临的各种挑战。首先是在VHF频段的基于射频的解决方案,即DSC和AIS,可用带宽和有限范围是主要的限制因素。在几十千赫茨的数据速率只能确保半双工语音通话或发送和接收安全和操作消息。扩展WiFi技术的覆盖范围限制在离岸几公里处(例如,MareFi项目[18])。蜂窝网络接入和基于WiMAX或LTE的宽带解决方案局限于近岸位置,尽管在某些情况下可以覆盖到离岸约几十公里处。空中解决方案,比如使用无人机和高空平台系统,在实践中仍然受到限制。任何在表II中提出的卫星系统提供的卫星通信也受到有限可用带宽的限制。由于长传播距离导致的高延迟是涉及地球静止轨道卫星的海上通信的另一个主要挑战。 还应注意,卫星服务是专有的,使得终端设备和运营费用对于小型船只和渔船来说难以承受。
FSO communication is constrained by turbulence and weather conditions that could be severe, affecting the link availability. The Earth curvature LoS limit also defines the maximum distance FSO links can achieve in an ideal medium. Maintaining stability between the terminals is challenging. A summary of the challenges of maritime communication is given in Table IV. We note that we did not discuss the challenges of aerial networks as their use in maritime
FSO 通信受到湍流和恶劣天气条件的限制,可能会严重影响链路的可用性。地球曲率的视距限制也定义了 FSO 链路在理想介质中可以实现的最大距离。维持终端之间的稳定性是具有挑战性的。表 IV 中总结了海上通信的挑战。我们注意到,我们没有讨论空中网络的挑战,因为它们在海上的使用
TABLE IV 表 IV
Summary of CHALlenges and Difficulties of MARItime Communication TechNOLOGIES
海事通信技术的挑战和困难摘要
Technology Challenges
- Limited bandwidth - 带宽有限
- HF, MF, and VHF solutions are restricted to half-duplex voice communication
- HF、MF 和 VHF 解决方案受限于半双工语音通信
- Limited coverage - 有限覆盖范围
Satellite
- High latency and low data rate
- 高延迟和低数据速率
- High cost of terminal and monthly/yearly service fees
- 终端和月/年服务费用高
- Subject to Multipath
- 受多径影响
FSO
- Sensitivity to maritime turbulence and weather condition
- 对海洋湍流和天气状况的敏感性
- Maintaining alignment between the communicating terminals
- 保持通信终端之间的对齐
- Maximum theoretical distance defined by the Earth curvature
- 地球曲率定义的最大理论距离
communication is still limited in practice, and their future potential and challenges will be covered in a later section of the manuscript.
通信在实践中仍然受到限制,它们的未来潜力和挑战将在手稿的后面部分进行讨论。

III. BUilding Blocks of Maritime COMmunications
海洋通信的基本构建模块

In this section, we discuss the fundamental physical layer aspects of maritime communications, including channel modeling, modulation, and coding for RF, FSO, and hybrid systems. We also overview other key performance parameters, such as coverage and capacity and radio resource management.
在本节中,我们讨论海上通信的基本物理层方面,包括 RF、FSO 和混合系统的信道建模、调制和编码。我们还概述了其他关键性能参数,如覆盖范围、容量和无线资源管理。

A. Channel Models (RF/FSO/Hybrid Systems)
A. 信道模型(RF/FSO/混合系统)

Various reports in the literature have studied maritime channel effects and modeling for RF, FSO, and hybrid technologies. In the following, we present the different channel models studied in the literature.
文献中的各种报告研究了 RF、FSO 和混合技术的海上信道效应和建模。接下来,我们介绍文献中研究的不同信道模型。
  1. RF-Based Channel Models: The characteristics of maritime communication channels are different from conventional terrestrial wireless channels. The difference is mainly due to the following features: sparsity, wave-induced instability, and ducting phenomena.
    基于射频的信道模型:海上通信信道的特性与传统陆地无线信道不同。这种差异主要是由以下特点引起的:稀疏性、波浪诱发的不稳定性和传导现象。
Sparsity: Since RF-based maritime channels do not suffer from scattering, the assumption of Rayleigh fading is no longer valid. Therefore, finite-scattering models introduced for terrestrial RF communication [51], [52] can be used for maritime channel modeling. Sparsity in maritime communication also manifests in user distribution since users are broadly distributed in the sea.
稀疏性:由于基于射频的海上信道不受散射的影响,因此瑞利衰落的假设不再成立。因此,针对陆地射频通信引入的有限散射模型[51],[52]可以用于海上信道建模。海上通信中的稀疏性也表现在用户分布上,因为用户在海上分布广泛。
Wave-Induced Instability: The movement of waves causes periodic changes in the height and orientation of the on-board antennas that lead to a reduction in the received message power. The movement of the waves can be considered as linear motion, or rotation motion [53], [54]. The linear motion exists along one specific axis ( only, only, or only). In contrast, the rotation motion considers the movement along all three axes (see Fig. 4 for possible vessel motions in the sea). Aside from the link mismatch effect due to the sea wave movement, water motion also leads to radio transmission scattering, particularly at the air/water interface. Three metrics are often employed to characterize sea wave movement: 1) crestto-trough wave height (difference between the highest surface part of a wave and the lowest part);2) wave wavelength; and 3) wave period [55], [56].
波诱发的不稳定性:波浪的运动导致机载天线的高度和方向周期性变化,从而导致接收到的信息功率降低。波浪的运动可以被视为线性运动或旋转运动[53],[54]。线性运动沿着一个特定轴存在(仅 ,仅 ,或仅 )。相比之下,旋转运动考虑沿着所有三个轴的运动(请参见图 4,了解海上可能的船舶运动)。除了由海浪运动引起的链路不匹配效应外,水流动还会导致无线电传输散射,特别是在空气/水界面处。通常有三种指标用于表征海浪运动:1)波峰到波谷的波高(波浪最高表面部分与最低部分之间的差异);2)波长;和 3)波周期[55],[56]。
Evaporation Ducting Phenomena: The refractive index of the atmosphere changes with height, and the refractivity variations in the lower layer of the atmosphere depend on wind,
蒸发导管现象:大气的折射率随高度变化,大气下层的折射率变化取决于风向,
Fig. 4. Vessel linear and rotational motions in the sea.
图 4. 海上船舶的线性和旋转运动。
Fig. 5. Ray propagation under different atmospheric refraction conditions. The duct is a horizontal layer that tends to follow the Earth's curvature.
图 5。射线在不同大气折射条件下的传播。导管是一个水平层,倾向于沿着地球的曲率走。
temperature, pressure, and, most importantly, humidity, leading to duct formation [57], [58]. For instance, as shown in Fig. 5, there are four possible refractive conditions:1) the subrefraction; 2) standard refraction; 3) super refraction; and 4) evaporation refraction. In the evaporation refraction condition, the signal is trapped inside the ducting layer and refracted back by the duct to the sea surface [57]. The evaporation ducting phenomena is almost permanent in coastal and maritime locations, and the duct height ranges between 10 and , with a maximum of [57].
温度、压力,最重要的是湿度,导致导管形成[57],[58]。例如,如图 5 所示,有四种可能的折射条件:1)次折射;2)标准折射;3)超折射;和 4)蒸发折射。在蒸发折射条件下,信号被困在导管层内,并被导管折射回海面[57]。蒸发导管现象在沿海和海上位置几乎是永久性的,导管高度范围在 10 和 之间,最大为 [57]。
The sparsity, wave-induced instability, and ducting can occur for different wireless links, i.e., ship-to-ship, air-toship, shore-to-ship, and satellite-to-ship. In the following, we examine these RF-based wireless links.
稀疏性、波诱导不稳定性和导管可能发生在不同的无线链路上,即船对船、空对船、岸对船和卫星对船。接下来,我们将研究这些基于射频的无线链路。
Shore/Ship-to-Ship Links: Shore-to-ship and ship-to-ship links are primarily distance dependent, as shown in Fig. 6.
岸边/船舶间联系:岸边至船舶和船舶间的联系主要取决于距离,如图 6 所示。
(a)
(b)
(c)
Fig. 6. Illustration of signal propagation in (a) shore-to-ship, (b) ship-to-ship, and (c) satellite/air-to-ship communication scenario.
图 6. 展示了(a)岸到船,(b)船到船,以及(c)卫星/空中到船通信场景中信号传播的插图。
In the case of short-range, the wireless channel acts as a tworay model by taking into account the Earth's curvature, and the channel response can be formulated as follows:
在短距离情况下,无线信道作为考虑地球曲率的双向模型,信道响应可以如下公式化:
where is the amplitude of the surface reflection wave, is the phase difference between the direct route and the reflection wave, and is the propagation delay. may be modified by characteristics, such as the reflection coefficient, shadowing factor, divergence factor, and surface roughness factor, whereas can be estimated geometrically using the curved Earth approximation [59]. Mostly, for short distances between the transmitter and receiver, if the antenna is mounted at a good height, the maritime channel has LoS and NLoS reflected wave components, leading to a two-ray channel model assumption [60]. On the other hand, the local scattering around the user in the ship cannot be neglected for the low-height antennas. Then we need to take more paths into consideration, which leads us to the so-called two-waves with diffusion power model introduced in [61, eq. (4)]
其中 是表面反射波的振幅, 是直达路径和反射波之间的相位差, 是传播延迟。 可能会受到特性的影响,比如反射系数、阴影因子、发散因子和表面粗糙度因子,而 可以通过使用曲率地球近似值进行几何估算[59]。通常情况下,对于发射机和接收机之间的短距离,如果天线安装在较好的高度,海上信道具有LoS和NLoS反射波分量,导致双射线信道模型假设[60]。另一方面,船上用户周围的局部散射对于低高度天线来说是不可忽略的。然后我们需要考虑更多路径,这使我们引入了所谓的两波扩散功率模型[61,eq. (4)]。
where is the total voltage induced at the receiver antenna, which is composed of two components: 1) the specular component and 2) the diffusion component , which has a complex Gaussian distribution and represents the sum of several individual weak waves. This model has been found to fit outdoor mmWave channels at [62], [63].
其中 是接收天线感应到的总电压,它由两个组成:1)镜面分量 和 2)扩散分量 ,它具有复高斯分布,并代表了几个独立弱波的总和。已发现该模型可适用于户外毫米波信道[62],[63]。
In the case of medium-range communication, a three-ray model can be used to characterize the channel as follows:
对于中距离通信,可以使用 3 射线模型来描述信道如下:
where , and denote the third multipath component's time-varying amplitude, propagation delay, and phase shift, respectively, [59]. In (3), is created by a random process that determines the chance of the third multipath component.
其中 表示第三多径分量的时变幅度、传播延迟和相位移,[59]。在(3)中, 由一个随机过程产生,该过程决定了第三多径分量的机会。
In the long-range propagation case, a duct-based link could be the only way to establish the communication, as can be seen in 6(a). The duct act as a dielectric waveguide that can guide waves Beyond (B-LoS). B-LoS communication is very common in maritime, and many efforts have been conducted to understand and study its behavior. First, there were studies on wave refractivity, and propagation in the ducting layer [57]. Dinc and Akan [58] then developed a statistical large-scale path-loss model that helps to evaluate the path loss exponent and the propagation range using parabolic equation (PE) simulation, which is the approximation of the Helmholtz wave equation [64]. PE is often solved numerically using one of three methods: 1) split-step Fourier (SSF); 2) finite difference (FD); or 3) finite element method (FEM) [64]. The most appropriate strategy to solve the PE for a given situation is highly dependent on the scenario and set of circumstances. The SSF approach relies on fast Fourier transforms. As a result, PE with SSF is more computationally efficient than other approaches, and the methodology may provide precise and stable answers. The FD method gives the maximum resolution in simulating the boundary conditions by applying the Crank Nicholson FD technique. The FEM enables more accurate modeling of quick shifts in atmospheric conditions and more modeling flexibility for complicated boundary conditions. A comprehensive examination of these strategies can be found in [64]. There are also wave propagation tools that use these numerical models to solve the PE [58].
在长距离传播的情况下,基于导管的链路可能是建立通信的唯一途径,如图6(a)所示。导管充当介质波导,可以引导超视距(B-LoS)波。 B-LoS通信在海上非常常见,许多努力已经进行了以了解和研究其行为。首先,进行了有关波折射率和导管层传播的研究[57]。然后,Dinc和Akan[58]开发了一个统计大尺度路径损耗模型,该模型有助于使用拟合的抛物方程(PE)模拟来评估路径损耗指数和传播范围,这是亥姆霍兹波动方程的近似[64]。 PE通常使用以下三种方法之一进行数值求解:1)分裂步长傅立叶(SSF);2)有限差分(FD);或3)有限元方法(FEM)[64]。对于给定情况,解决PE的最合适策略高度依赖于场景和情况。SSF方法依赖于快速傅立叶变换。因此,PE与SSF更具计算效率,可能提供精确和稳定的答案。 FD方法通过应用Crank Nicholson FD技术模拟边界条件,提供了最大分辨率。 FEM能够更准确地建模大气条件的快速变化,并对复杂的边界条件具有更灵活的建模能力。关于这些策略的全面审查可在[64]中找到。还有一些波传播工具使用这些数值模型来解决PE问题[58]。
Satellite/Air-to-Ship Links: The sea surface mainly causes multipath, creating two possible paths; an LoS path and another one reflected from the duct, sea surface, or both, as in the case of Air-to-Ship links, illustrated in Fig. 6(c). In terms of the channel model, various experiments demonstrated that the Rician model is the most suitable statistical model for the wireless channel in satellite/air-to-ship communication links [5], [65], [66]. Nevertheless, recent works have tried to improve the communication performance between the UAVs and the ship, which requires more complex channel modeling with 2-D or 3-D formulation [67], [68]. For example, in [67], 2-D and 3-D sea surface simulations are used to understand the signal propagation for UAV-to-ship links. For 2-D, the FD time domain (FDTD) was used with a maximum variation. An alternating-direction implicit finite-difference time-domain (ADI-FDTD) was used for the 3-D modeling. Although the 3-D formulation needs high computational power, it is more realistic than a 2-D simulation.
卫星/空对船链路: 海面主要会引起多径传播,形成两条可能的路径;一条是直射路径,另一条是从导管、海面或两者反射的路径,就像在图6(c)所示的空对船链路中一样。在信道模型方面,多种实验证明Rician模型是卫星/空对船通信链路中最适合的统计模型[5],[65],[66]。然而,最近的研究致力于改善UAV和船之间的通信性能,这需要更复杂的具有2D或3D表述的信道建模[67],[68]。例如,在[67]中,使用2D和3D海面模拟来理解UAV对船链路的信号传播。对于2D,采用了FD时间域(FDTD),最大变化 。而3D建模则采用交替方向隐式有限差分时间域(ADI-FDTD)。尽管3D表述需要较高的计算能力,但它比2D模拟更加真实。
Similarly, Liu et al. [68] considered 3-D channel modeling by considering the multimobility of UAVs and the ship's motion at arbitrary speeds and directions. This approach helps to study some of the channel statistical properties in maritime communication between UAVs and ships, considering the mobility, speed, and clusters between the transmitter and the receiver. Due to the relative motion of satellites, UAVs' mobility, and ships' movement, the Doppler shift is a common issue for these links. Consider a typical LEO satellite at an elevation of above the Earth's surface, the Doppler shift may range between -4 and depending on the relationship between relative velocity, angle, and carrier frequency [66]. Hence, various approaches have been proposed to estimate the Doppler shift with a particular focus on space-based AIS signals [69], [70], [71], [72], [73].
同样,刘等人[68]考虑了三维通道建模,考虑了无人机的多种移动性和船只以任意速度和方向的运动。这种方法有助于研究无人机和船只之间的海上通信中的一些通道统计特性,考虑了发射机和接收机之间的移动性、速度和聚类。由于卫星的相对运动、无人机的移动性和船只的运动,多普勒频移是这些链路的一个常见问题。考虑到典型的低地球轨道卫星在地球表面以下 的高度,多普勒频移可能在-4和 之间变化,具体取决于相对速度、角度和载波频率之间的关系[66]。因此,已经提出了各种方法来估计多普勒频移,特别关注了基于空间的AIS信号[69]、[70]、[71]、[72]、[73]。
  1. FSO Channel Modeling: Like terrestrial propagation, optical beams propagating through maritime environments are subject to various weather conditions and turbulence. Weather conditions (including haze, humidity, fog, rain, etc.) cause attenuation, with effects lasting from a few minutes to several hours. Turbulence, however, causes effects with a timescale of a few milliseconds known as scintillation and beam wandering. Scintillation is the rapid random intensity fluctuations quantified by the so-called scintillation index, which is the variance of the irradiance fluctuation normalized by the square of the mean irradiance. Beam wandering is the random movements of the incoming laser beam on the receiver plane.
    FSO 信道建模: 与地面传播类似,光束在海洋环境中传播时会受到各种天气条件和湍流的影响。天气条件(包括雾霾、湿度、雾、雨等)会引起衰减,效果持续时间从几分钟到几个小时不等。然而,湍流会导致一种称为闪烁和光束漂移的时间尺度为几毫秒的效应。闪烁是快速的随机强度波动,由所谓的闪烁指数量化,即辐照度波动的方差除以平均辐照度的平方。光束漂移是入射激光光束在接收平面上的随机移动。
FSO power attenuation as a function of the propagation distance can be described by Beer's law as follows:
FSO 功率衰减作为传播距离的函数 可以用比尔定律描述如下:
with is the initial power, is a wavelength-dependent attenuation coefficient, and is the operation wavelength. is the contribution of two phenomena: 1) absorption and 2) scattering . Gaseous molecules and aerosol particles cause the absorption of the light phenomenon in the atmosphere. Coefficient can be neglected for maritime FSO since FSO wavelengths are in the nonabsorption atmospheric windows. There are three scattering types: 1) Rayleigh; 2) Mie; and 3) nonselective scattering, and can be the contribution of all these three forms. Rayleigh is an all-direction scattering caused by particles smaller than the optical wavelength. The effect of Rayleigh scattering is negligible for wavelengths beyond ; therefore, its impact can be neglected for FSO maritime links incorporating IR laser sources. Mie scattering is mainly caused by particles with sizes comparable to the optical wavelength and originates from the fog. There are various empirical models in the literature for Mie scattering. Kim and Kruse's models are the most accepted ones. The scattering coefficient, in both models can be written in the following form:
使用 作为初始功率, 是波长相关的衰减系数, 是操作波长。 是两种现象的贡献:1)吸收 和2)散射 。气态分子和气溶胶颗粒导致大气中的光吸收现象。对于海上FSO,可以忽略系数 ,因为FSO波长位于非吸收大气窗口中。有三种散射类型:1)瑞利散射;2)米氏散射;和3)非选择性散射, 可以是这三种形式的贡献。瑞利散射是由小于光学波长的颗粒引起的全向散射。对于超过 的波长,瑞利散射的影响可以忽略不计;因此,对于包含IR激光源的FSO海上链路,可以忽略其影响。米氏散射主要由与光学波长相当大小的颗粒引起,源自雾。文献中有各种米氏散射的经验模型。Kim和Kruse的模型是最被接受的。在两个模型中, 散射系数 可以用以下形式表示:
where is the visibility, is a reference wavelength (commonly fixed at ), and is the size distribution of the scattering particles. For the Kruse, parameter is given as follows:
其中 是能见度, 是参考波长(通常固定在 ), 是散射粒子的尺寸分布。对于 Kruse 模型, 参数 给出如下:
At the low visibility Kim model provides higher accuracy
在能见度较低时, Kim 模型提供更高的精度
Nonselective scattering is caused by particles larger than the optical wavelengths, including rain and snow. Empirical models for rain and snow determined for terrestrial FSO links are applicable in maritime environments. For the rain model, the scattering coefficient can be expressed as with being the precipitation intensity in and are model parameters [74]. For the snow, the scattering coefficient can be expressed as with being the snowfall rate and are snow parameters that take different values in wet and dry snow [74].
非选择性散射是由大于光学波长的颗粒引起的,包括雨和雪。针对陆地自由空间光通信链路确定的雨和雪的经验模型在海上环境中也适用。对于雨模型,散射系数可以表示为 ,其中 中的降水强度, 是模型参数[74]。对于雪,散射系数可以表示为 ,其中 的降雪速率, 是雪的参数,在湿雪和干雪中取不同的值[74]。
There are various numerical and stochastic models to model the effect of turbulence in terrestrial FSO channels [75]. Numerical models derived from the Kolmogorov turbulence theory can be used to model the random variations of the refractive index of the atmosphere that cause turbulence [45]. A key parameter in the different numerical models is the refractive index structure parameter, , which is a measure of the strength of fluctuations and could take values ranging from for strong turbulence and for weak turbulence.
有各种数值和随机模型来模拟地球 FSO 信道中湍流效应[75]。由 Kolmogorov 湍流理论推导得出的数值模型可以用来模拟引起湍流的大气折射率的随机变化[45]。不同数值模型中的一个关键参数是折射率结构参数, ,它是波动强度的测量,可以取值范围从 表示强湍流到 表示弱湍流。
Stochastic models for terrestrial atmospheric turbulence involve the lognormal distribution for weak turbulence, negative exponential distribution for strong turbulence, the Gamma-Gamma distribution for weak to medium turbulence, and the generalized Malagà model covering a wide range of turbulence strengths, [76]. The rich literature on terrestrial FSO channel modeling [45], [76] cannot be used to describe the propagation in a maritime channel mainly because turbulence shows different behaviors between terrestrial and marine environments [77], [78].
用于地球大气湍流的随机模型包括弱湍流的对数正态分布,强湍流的负指数分布,从弱到中等湍流的伽玛-伽玛分布,以及涵盖广泛湍流强度范围的广义 Malagà 模型[76]。关于地面 FSO 信道建模的丰富文献[45],[76]不能用于描述海上信道的传播,主要是因为湍流在地球和海洋环境之间表现出不同的行为[77],[78]。
An early study by Friehe et al. revealed that fluctuations over the water are different from the inland case, mainly due to the significant humidity variations [79]. However, there have been equally several experimental and theoretical efforts on marine FSO channel modeling. Grayshan et al. [77] introduced a novel marine turbulence spectrum and derived a theoretical expression for the irradiance fluctuation under a weak turbulence regime.
Friehe 等人的一项早期研究发现,水域中的湍流波动与内陆情况不同,主要是由于显著的湿度变化[79]。然而,关于海洋 FSO 信道建模,已经有过几次实验和理论努力。Grayshan 等人[77]引入了一种新颖的海洋湍流谱,并推导出了在弱湍流条件下的辐照度波动的理论表达式。
An experimental study conducted at the Piraeus Port (Greece) proposed a novel empirical model for attenuation dependent on three parameters: 1) the relative humidity; 2) the atmospheric temperature; and 3) the wind speed [80]. The experimental validation was based on a FSO link operating at the wavelength with transceivers fixed from sea level. The experiment reported in [39] revealed that daytime atmospheric turbulence is stronger than nighttime turbulence.
在希腊比雷埃夫斯港进行的一项实验研究提出了一个新的经验模型,该模型依赖于三个参数:1)相对湿度;2)大气温度;和 3)风速[80]。实验验证基于一个在海拔 处固定的 波长 FSO 链路。[39]中报道的实验发现,白天大气湍流比夜间湍流更强。

and Cvijetic [81] investigated the BER performance of a coherent FSO employing a quadrature phased shift keying (QPSK) modulation subject to maritime atmospheric turbulence and considered compensating the effect of turbulence distortions using an AO unit. The authors showed that using AO to compensate for beam distortions could significantly improve the BER system performance by several orders of magnitude [81].
和 Cvijetic [81]研究了一种相干 FSO 的 BER 性能,采用正交相移键控(QPSK)调制,受海洋大气湍流影响,并考虑使用 AO 单元来补偿湍流失真的影响。作者表明,使用 AO 来补偿光束失真可以显著提高系统的 BER 性能数个数量级[81]。
Further studies investigated the propagation of light beams with complex light structures through oceanic environment [82]. Note that spatially structured light beams are used to increase the transmission capacity by multiplexing multiple orthogonal light modes in the same beams ([83]. Zhu et al. [82] studied the propagation dynamics of partially coherent modified Bessel-Gaussian (that carry OAM) beams in an anisotropic non-Kolmogorov maritime atmosphere and derived an analytical formula on the evolution of the powers of the received beams.
进一步的研究调查了复杂光结构光束在海洋环境中的传播[82]。请注意,空间结构化光束用于通过在同一光束中多路复用多个正交光模式来增加传输容量([83]。Zhu 等人[82]研究了部分相干修正贝塞尔-高斯(携带 OAM)光束在非各向同性非 Kolmogorov 海洋大气中的传播动态,并推导了接收光束功率演变的解析公式。
  1. Hybrid Models: Experimental investigations revealed that RF and FSO are affected differently by weather conditions [49], [84]. For example, FSO links are highly sensitive to fog and snow but resilient to rain. In contrast, RF links are resilient to fog and snow but severely degraded by rain. Nadeem et al. [49] studied the impact of dense maritime fog [with measurements collected in La Turbie (Nice, France)] on an FSO link operating at installed as the primary link with an RF backup link operating at a frequency of . The authors reported a significant deterioration of the FSO link by attenuation. However, a availability of the hybrid system was reached thanks to the low RF signals attenuation at . Gregory and Badri-Hoehe conducted a 6-month measurement campaign on a 14-km long RF/FSO hybrid link with the FSO system operating at a 1550 -nm wavelength and the RF system operating at [50]. The main motivation of the work was to correlate the hybrid link results with the weather conditions that were measured simultaneously. The RF link exhibited more than availability over the measurement period and was mainly degraded by rain. The FSO link was affected primarily by fog leading to severe attenuation, especially in the daytime. The authors equally provided the max and average values of the Fried parameter. We note that the Frier parameter is a measure of coherence length, collected over the measurement period to study the effect of scintillation, and is also helpful in applying turbulence mitigation strategies such as using multiple-input-multiple-output (MIMO) FSO. In an MIMO FSO configuration, transceivers separated by can ensure diversity, and each path can experience different turbulence effects.
    混合模型:实验研究表明,射频(RF)和自由空间光通信(FSO)受天气条件的影响不同。例如,FSO链路对雾和雪非常敏感,但对雨水具有弹性。相比之下,RF链路对雾和雪具有弹性,但受雨水严重影响。Nadeem等人研究了浓雾对在 (法国尼斯La Turbie)运行的FSO链路的影响,该链路作为主链路安装,备用RF链路在 频率下运行。作者报告了FSO链路受到 衰减的显著恶化。然而,由于 处RF信号衰减较低,混合系统实现了 的可用性。Gregory和Badri-Hoehe对一条长14公里的RF/FSO混合链路进行了为期6个月的测量活动,FSO系统在1550纳米波长下运行,RF系统在 下运行。该工作的主要动机是将混合链路结果与同时测量的天气条件相关联。 RF 链路在测量期间表现出超过 的可用性,主要受到雨水的影响。FSO 链路主要受雾影响,导致严重衰减,尤其是在白天。作者还提供了弗里德参数的最大值和平均值。我们注意到,弗里德参数是相干长度的度量,收集了测量期间的数据,以研究闪烁的影响,并且在应用湍流抑制策略时也很有帮助,例如使用多输入多输出(MIMO)FSO。在 MIMO FSO 配置中,相隔 的收发器可以确保多样性,每条路径可以经历不同的湍流效应。

B. Modulation and Coding Schemes
B. 调制和编码方案

Besides channel modeling, maritime network modulation and coding schemes are other essential physical-layer issues. We will first start by presenting the modulation and coding techniques used in maritime communication for RF and then for FSO-based systems.
除了信道建模,海上网络的调制和编码方案是其他重要的物理层问题。我们将首先介绍在 RF 和基于 FSO 系统的海上通信中使用的调制和编码技术。
  1. RF-Based Schemes: Multiple modulation and coding techniques have been proposed for theoretical and experimental reports in [85], [86], and [87]. For instance, Lázaro et al. [85] proposed an adaptive coding and modulation (ACM) for the VHF band-based VDES (See Section II-A). The ACM consists of dynamically changing the modulation format and the coding rate according to the experienced signal-tonoise ratio (SNR). When a ship is far from shore, the received signal may be weak and slightly higher than the background thermal noise, leading to a low SNR [85]. In such a case, the communication should involve a robust modulation, such as the QPSK and a channel code rate of . When the ship is close to shore, leading to higher SNR, 16-quadrature amplitude modulation (QAM) with a rate 3/4 channel code may be used [85]. Gamache and Fogel [86] used an oceanographic data link (ODL) system, which is a two-way connection: 1) a forward link (from the hub to the terminal) and 2) a return link (terminal to hub). This bidirectional feature enables dynamic experimentation and remote sensor system monitoring and control. The ODL architecture offers several methods for multiaccess, including direct sequence spreading to avoid interference from neighboring satellites, TDMA, FDMA, and CDMA. The ODL system's access protocols may be customized to a particular network and can handle thousands of users per for oceanographic applications. In an earlier paper [87], the authors utilized a stored channel method, simulating three different links, i.e., satellite-to-ship, buoy-tosatellite, and base station-to-land mobile. The satellite-to-ship link uses a binary phase shift keying modulation scheme, whereas the base station-to-land mobile link utilizes a variety of modulation schemes, such as PSK, differential phase shift keying (DPSK)/FM, PSK/FM, and digital FM.
    基于射频的方案:已经提出了多种调制和编码技术,用于[85]、[86]和[87]中的理论和实验报告。例如,Lázaro等人[85]提出了基于VHF频段的VDES的自适应编码和调制(ACM)(见第二部分)。ACM包括根据所经历的信噪比动态改变调制格式和编码速率。当船只远离岸边时,接收到的信号可能很弱,略高于背景热噪声,导致信噪比低[85]。在这种情况下,通信应当使用鲁棒调制,如 QPSK和码率为 的信道编码。当船只靠近岸边,信噪比增大,可使用速率为3/4的16-QAM[85]。Gamache和Fogel[86]使用了一种海洋数据链路(ODL)系统,这是一个双向连接:1)正向链路(从集线器到终端)和2)返回链路(终端到集线器)。这种双向特性可以实现动态实验和远程传感器系统的监控和控制。 ODL架构提供了几种多接入方法,包括直接序列扩频以避免来自邻近卫星的干扰,TDMA、FDMA和CDMA。ODL系统的接入协议可以定制到特定网络,并且可以处理海洋应用中的成千上万的用户。在早期的一篇论文中[87],作者使用了一种存储通道方法,模拟了三种不同的连接,即卫星到船舶,浮标到卫星和基站到陆地移动。卫星到船舶的连接采用二进制相移键控调制方案,而基站到陆地移动的连接则利用各种调制方案,如PSK、差分相移键控(DPSK)/FM、PSK/FM和数字FM。
  2. Optical Related Schemes: There are two types of FSO systems: 1) intensity modulation/direct detection (IM/DD) and 2) coherent systems. IM/DD systems are relatively simple and consist of modulating the intensity of a laser and directly detecting light signals at the reception by a photodetector. IM/DD can only support unipolar modulation, including on-off shift keying (OOK), pulse amplitude modulation (PAM), and pulse position modulation (PPM). Coherent systems provide phase tracking by a so-called local oscillator (LO), enabling encoding information using complex multilevel modulation formats, such as QPSK and M-array QAM. The incoming information-carrying signal is mixed with the LO at the receiver. Compared to IM/DD, coherent systems generally allow for better background and shot noise resilience and ensure the transfer of higher data rates, but at the expense of cost and complexity.
    光学相关方案:有两种类型的FSO系统:1)强度调制/直接检测(IM/DD)和2)相干系统。IM/DD系统相对简单,包括调制激光的强度,并通过光电探测器直接检测接收端的光信号。IM/DD只能支持单极调制,包括开关键控(OOK)、脉冲幅度调制(PAM)和脉冲位置调制(PPM)。相干系统通过所谓的本地振荡器(LO)提供相位跟踪,从而能够使用复杂的多级调制格式,如QPSK和M阵列QAM来编码信息。传入的携带信息的信号与接收端的LO混合。与IM/DD相比,相干系统通常具有更好的背景和射击噪声韧性,并确保传输更高的数据速率,但代价是成本和复杂性。
There are two types of coherent detection depending on the frequency of the LO: 1) homodyne and 2) heterodyne. In homodyne detection, the LO frequency matches the laser frequency. Mixing the LO and the information signal in heterodyne detection yields a signal in the microwave region. The demonstration reported in 1977 is an example of a coherent heterodyne maritime optical communication with FM modulation [37]. In 2005, a 5.62-Gb/s homodyne FSO transmission was conducted between two Canary Islands (two ground stations on La Palma and Tenerife Islands) separated by mostly above the sea and incorporating a BPSK modulation [88]. The use of BPSK modulation exhibited robustness
有两种相干检测类型,取决于 LO 的频率:1)同相检测和 2)异相检测。在同相检测中,LO 频率与激光频率匹配。在异相检测中混合 LO 和信息信号会产生微波区域的信号。1977 年报道的演示是相干异相检测海上光通信的一个例子,采用 FM 调制[37]。2005 年,在两个加那利群岛之间(拉帕尔马岛和特内里费岛上的两个地面站)进行了一次 5.62-Gb/s 同相 FSO 传输,两地之间主要在海上,采用 BPSK 调制[88]。BPSK 调制的使用表现出鲁棒性。

to atmospheric conditions [88]. Li and Cvijetic [81] evaluated the effect of maritime turbulence on a QPSK coherent system. They found that the maritime FSO system has a higher BER when compared to a terrestrial one experiencing the same turbulence strength.
对大气条件[88]的影响。Li 和 Cvijetic [81]评估了 QPSK 相干系统在海上湍流上的影响。他们发现,与经历相同湍流强度的陆地系统相比,海上 FSO 系统的误比特率更高。
Qiao et al. [89] proposed using DPSK modulation with repetition coding consisting of sending the same message several times to benefit from time diversity. When compared to other modulation formats (PPM, PAM, OOK, and QPSK) through BER simulation analyses, the authors found that DPSk can provide a good compromise between long-distance and system capacity. DPSK can equally solve the phase ambiguity condition in BPSK modulation [89]. It was also found that by increasing the repeat time, repeating coding can significantly suppress BER without the need for aperture averaging used commonly at the receiver to undo the effect of atmospheric turbulence [89]. Another way of modulation in FSO links is through the use of MRRs as reported in [41], [42], and [43] and discussed in Section II-C.
乔等人[89]提出使用DPSK调制与重复编码,即多次发送相同消息以利用时域多样性。通过比较与其他调制格式(PPM、PAM、OOK和QPSK)的BER模拟分析,作者们发现DPSK可以在远距离和系统容量之间取得良好的折衷。DPSK同样可以解决BPSK调制中的相位歧义条件[89]。研究还发现,通过增加重复次数,重复编码可以显著抑制BER,无需接收器常用的孔径平均来消除大气湍流的影响[89]。在FSO链接中另一种调制方式是通过MRRs的使用,如[41]、[42]和[43]所报告,并在第II-C节中进行讨论。
In the case of an MRR-based FSO, the modulation of the beam emitted by the laser is conducted at the MRR through a modulator. The modulated light beam is reflected back to a receiver through a retro-reflector [42] (See Fig. 3). We stress that the MRR is a passive component and does not emit light. The use of MRR is not restricted to maritime FSO experiments. Still, it has been widely used in terrestrial and Earth-satellite lasercom links for link characterization and ranging purposes ([42], and references therein). The modulation at the MRR can be ensured using different technologies, such as liquid crystals [90] and quantum well [42].
在基于 MRR 的 FSO 的情况下,通过调制器在 MRR 上对激光发射的光束进行调制。调制后的光束通过一个反射器[42]反射回接收器(见图 3)。我们强调 MRR 是一个被动元件,不会发射光。MRR 的使用不仅限于海上 FSO 实验,而且在陆地和地球卫星激光通信链路中被广泛用于链路特性和测距目的([42],以及其中的参考文献)。在 MRR 上的调制可以使用不同的技术来实现,比如液晶[90]和量子阱[42]。

C. Coverage and Capacity
C. 覆盖范围和容量

Coverage and capacity are two other performance metrics that many studies tried to increase for MCNs. VDES and NAVDAT provide the highest maritime coverage. However, MF, HF, and VHF bands are limited in terms of the achievable data rates restricted to a few tens of Kbps. Going to higher frequencies can improve the capacity of the RF maritime links, as shown by reports from the deployment of the Korean LTEmaritime project that demonstrated a coverage of from shore with a data rate in the order of a few Mbps [91]. Using the evaporation duct to extend the reach of microwave signals beyond the LoS can extend maritime communication coverage, as shown by a seminal study in [92] reporting a 10-Mbps data rate over a link between the Australian mainland and the great barrier reef (GBR) (off the east coast of Queensland, Australia) at a frequency of . Three long-range microwave duct-based links with distances of 109, 63 , and have been recently demonstrated in the South China Sea [93].
覆盖范围和容量是许多研究试图提高的MCNs的两个性能指标。VDES和NAVDAT提供了最高的海上覆盖范围。然而,MF、HF和VHF频段在可实现的数据速率方面受限于几十Kbps。如韩国LTEmaritime项目的部署报告所示,使用更高频率可以提高射频海上链路的容量,该项目展示了从岸边到达的覆盖范围,并且数据速率达到几Mbps的水平。利用蒸发层延伸微波信号的传播距离可以扩展海上通信覆盖范围,一项开创性研究报告显示,在澳大利亚大陆和大堡礁(澳大利亚昆士兰东海岸外)之间的一条链路上,以10Mbps的数据速率传输,频率为 。最近在南中国海展示了三条109、63和 的远程微波导链路。
MIMO can be an effective solution to boost the capacity of maritime RF. An MIMO antenna design has already been tested for maritime communications in the 5.1 and bands, as recently reported in [94]. Multihop relying can also extend maritime coverage, as demonstrated by the test conducted within the MariComm project [19].
MIMO可以是提升海上射频容量的有效解决方案。已经在5.1和 频段测试了一种MIMO天线设计,最近在[94]中有报道。多跳依赖也可以扩展海上覆盖范围,正如MariComm项目中进行的测试所证明的那样[19]。

Space-based maritime communication can have considerably broader coverage compared to VHF, and other RF-based solutions [95]. However, satellite-based MCNs can have blind zones and covered areas subject to severe interference [96]. To cope with these challenges, an environment-aware system was proposed in [96] to optimize satellite-ground integrated maritime communication capacity. In the case of FSO, there are several approaches to increasing the coverage and capacity of the optical band. The FSO LoS is restricted by the Earth's curvature but may reach more than distances with terminals installed on typical ships. For instance, as reported in Table III, voice communications can range up to , while operational chat messaging can reach up to a maximum LoS of [40]. Also, in terms of capacity, a maximum of data rate was reported in [39], and was achieved between two moving vessels [40]. Extending the coverage of FSO beyond the LoS requires relays, and the amplify and forward scheme can be the most straightforward approach to accomplishing it. The current data rates provided by maritime FSO at tens of kilometers distance are enough to perform maritime communication operations and improve the connectivity to those sailing on board. But for applications requiring more capacity, using multiple wavelengths can significantly increase the transmission rates.
基于空间的海上通信与VHF和其他基于射频的解决方案相比,覆盖范围可以更广[95]。然而,卫星基础的MCN可能存在盲区和受严重干扰的覆盖区域[96]。为了应对这些挑战,[96]中提出了一种环境感知系统,以优化卫星-地面集成海上通信能力。在FSO的情况下,有几种方法可以增加光带的覆盖范围和容量。FSO的LoS受到地球曲率的限制,但通过在典型船舶上安装终端,可以达到超过 的距离。例如,正如表III中所报告的,语音通信范围可以达到 ,而操作聊天消息可以达到最大LoS [40]。此外,在容量方面,[39]报告了最高 的数据速率,并且[40]在两艘移动船只之间实现了 的速率。将FSO的覆盖范围扩展到LoS之外需要中继,而放大转发方案可成为实现这一目标最直接的途径。 目前,海上光通信在数十公里的距离提供的数据速率足以执行海上通信操作,并提高那些在船上航行的人的连接性。但对于需要更多容量的应用程序,使用多个波长可以显着提高传输速率。

D. Radio Resource Management
D. 无线资源管理

Like in terrestrial wireless communication systems, RRM is essential for MCNs to manage the radio resources and other transmission characteristics at the system level. Mroueh et al. [97] proposed a maritime mobile ad hoc network (MANET) with LTE nodes where the nodes represent ships forming a naval fleet headed by a shipmaster. This naval fleet is treated as a cluster in MANET, where the ship crew is referred to as a cluster node , and the shipmaster is referred to as a cluster head [98]. Then, the allocated bandwidth is optimized at the to service all while reducing the chance of the running out of radio resources [97]. In summary, this study aims to calculate the necessary bandwidth to be provided at the to accommodate all active ' traffic. They considered two transmission schemes: 1) the single-input-single-output (SISO) configuration and 2) the MIMO setup with properly spaced antennas. They also demonstrated that compared to the SISO scenario, the MIMO spatial multiplexing modes with a full diversity transmission mode for long-distance marine communication enhance the average network spectral efficiency and resource outage probability. Because of the complexity and high computation of the calculation in [97], the authors also investigated the same problem, but this time by taking the ITU marine path-loss [99] with time as a reference model [100]. Duan et al. [101] proposed to use MIMO antennas with a coastal two-hop relaying system to manage and communicate with users and boats in the offshore region. Although the boats in the offshore area are few, they may be grouped into many clusters consisting of multiple vessels close together. Their numerical results show that the algorithm is power efficient, which may fit with the challenges faced in
与陆地无线通信系统一样,RRM对MCNs来说是管理系统级别的无线资源和其他传输特征至关重要。Mroueh等人[97]提出了一个具有LTE节点的海上移动自组织网络(MANET),其中节点代表船只构成的由船长领导的舰队。在MANET中,这个舰队被视为一个集群,船员被称为集群节点 ,而船长被称为集群头 [98]。然后,在 上优化了分配的带宽,以满足所有 的服务需求,同时减少 耗尽无线资源的可能性[97]。总之,该研究旨在计算在 提供的必要带宽,以容纳所有活跃 的交通。他们考虑了两种传输方案:1)单输入单输出(SISO)配置和2)间距适当的天线的 MIMO设置。 他们还证明,与 SISO 场景相比,具有全分集传输模式的 MIMO 空间复用模式在远距离海洋通信中提高了平均网络频谱效率和资源中断概率。由于[97]中计算的复杂性和高计算量,作者们还调查了相同的问题,但这次是以 ITU 海洋路径损耗[99]和 时间作为参考模型[100]。段等人[101]提出使用具有沿海两跳中继系统的 MIMO 天线来管理和与近海地区的用户和船只进行通信。尽管近海地区的船只很少,但它们可能被分成许多由多艘船紧密组成的群集。他们的数值结果表明该算法具有高效节能的特点,这可能符合海上通信面临的挑战。

maritime communication. Additionally, it is worth noting that some recent research works use USV in their calculations to increase power efficiency and coverage [102], [103].
此外,值得注意的是,一些最近的研究作品在计算中使用 USV 来提高功率效率和覆盖范围[102],[103]。

E. Energy Efficiency E. 能源效率

Aside from boosting the maximum throughput and reach that could be attained, there has been some focus on energy saving to provide sustainable solutions for maritime networks. For instance, a software-defined networking (SDN) solution may reduce network latency and energy consumption while ensuring network flexibility and stability. In this context, the delay-tolerant networking (DTN) as a scheduling mechanism can be utilized in maritime communication with SDN as controller. Both offer a cost-effective solution, as discussed in [104]. Yang et al. [104] modeled DTN and SDN as a tradeoff optimization problem and showed that modifying various factors could achieve a delay-energy tradeoff. An energy-aware solution for marine data acquisition via IEEE 802.11-based wireless buoys network, known as Wi-Buoy, is proposed in [105]. The authors proposed an optimization framework to reduce energy consumption at a backhaul buoy source used to transfer seismic data collected from sensors on the seabed to a seismic survey vessel [105]. Motivated by the fact that most vessels follow designated shipping lanes, Wei et al. [106] proposed using the shipping lane information to minimize the average power consumption.
除了提高最大吞吐量和可达到的范围之外,人们还关注节能问题,为海上网络提供可持续解决方案。例如,软件定义网络(SDN)解决方案可以降低网络延迟和能耗,同时确保网络的灵活性和稳定性。在这种情况下,作为调度机制的延迟容忍网络(DTN)可以与 SDN 作为控制器一起在海上通信中使用。正如在[104]中讨论的那样,两者都提供了一种经济有效的解决方案。杨等人[104]将 DTN 和 SDN 建模为一种权衡优化问题,并表明修改各种因素可以实现延迟-能量权衡。在[105]中提出了一种基于 IEEE 802.11 无线浮标网络的海洋数据采集的能源感知解决方案,称为 Wi-Buoy。作者提出了一个优化框架,以减少能源消耗,用于将从海底传感器收集的地震数据传输到一艘地震勘测船的回程浮标源[105]。由于大多数船只遵循指定的航道,魏等人。 [106] 提出利用航运航道信息来最小化平均功耗。
Recently, Hassan et al. [107] addressed the energy efficiency aspect of a maritime network from the perspective of UAVs used as a part of a space-air-sea nonterrestrial network (NTN) connecting user equipment (UE) to LEO satellite using UAVbased aerial base stations.
最近,Hassan 等人 [107] 从将 UAV 用作空中海陆非地面网络 (NTN) 的一部分,连接用户设备 (UE) 到 LEO 卫星的角度,讨论了海上网络的能源效率方面,使用基于 UAV 的空中基站。
Schemes of self-powered maritime networks have also been proposed in [108] and [109]. Hosseini-Fahraji et al. [109] presented a self-powered marine communication system composed of many buoys. Each has a communication unit and energy-harvesting unit that harvests energy from the floating buoy movements due to ocean waves. The communication unit consists of a wireless router operating on the TV white space band. Deployment and simulation results showed that the proposed design could produce more energy than needed for the system operation [109].
自供电海上网络方案也在 [108] 和 [109] 中提出。Hosseini-Fahraji 等人 [109] 提出了一个由许多浮标组成的自供电海洋通信系统。每个浮标都有一个通信单元和一个能量收集单元,通过海浪引起的浮标运动来收集能量。通信单元由在电视白色空间频段上运行的无线路由器组成。部署和模拟结果表明,所提出的设计可以产生比系统运行所需更多的能量 [109]。

F. Lessons Learned F. 教训吸取

In each technology used for maritime communications, the signals are subject to channel conditions that differ from the terrestrial links. Many efforts have been made to model the RF, FSO, and space-based maritime communication channels. Various statistical channel models have been proposed for RF communication which mainly depends on the ship-to-ship or shore-to-ship distance. FSO channel modes depend on oceanic turbulence and weather conditions. Although many studies are available in the literature on maritime channel modeling compared to terrestrial networks, further efforts on modeling based on statistical analysis and channel sounding are needed. The coverage and capacity of different maritime communication technology are improving. Still, given the vast oceans and the growth of the marine industry, the current technologies are limited in coverage and capacity. Involving satellites can extend the coverage and, in some cases, the capacity; however, the cost is still an issue and may not decrease due to the high cost of launching satellites into orbits. Energy efficiency in maritime networks has been addressed in different aspects spanning from using SDN and optimizing the uptime of devices to building self-sustained networks that harvest energy from available sources.
在用于海上通信的每种技术中,信号受到与陆地链路不同的信道条件的影响。已经做出了许多努力来对射频(RF)、自由空间光学(FSO)和基于空间的海上通信信道进行建模。已经针对 RF 通信提出了各种统计信道模型,其主要取决于船对船或岸对船距离。FSO 信道模式取决于海洋湍流和天气条件。尽管文献中有许多关于海上信道建模的研究与陆地网络相比,但还需要进一步努力进行基于统计分析和信道测量的建模。不同海上通信技术的覆盖范围和容量正在改善。然而,鉴于广阔的海洋和海洋工业的增长,当前技术在覆盖范围和容量方面存在局限。涉及卫星可以扩大覆盖范围,并在某些情况下可以增加容量;然而,成本仍然是一个问题,并且由于将卫星送入轨道的高成本,成本可能不会下降。 海上网络中的能源效率已经在不同方面得到解决,从使用 SDN 和优化设备的正常运行时间到构建能够从可用来源获取能源的自维持网络。

IV. USE CASES OF MARITIME COMMUNICATION NETWORKS
海上通信网络的使用案例

This section presents some emerging use cases of maritime networks, such as the IoS, maritime IoT, and IoUT.
本节介绍了一些新兴的海上网络使用案例,如 IoS、海上物联网和 IoUT。

A. Internet of Ships Paradigm
A. 船舶物联网范式

By anticipating IoT networks' economic and social advantages, the autonomous control of marine services can also bring new services. In the case of a maritime network, the nodes participating in developing the IoT setup are the devices of the network, such as ships and buoys, leading to the IoS paradigm [110]. The IoS enables node computation coordination through some high-level virtualization of the core network where machine learning (ML) and artificial intelligence (AI) approaches are used to perform computational jobs linked to forecasting analysis.
通过预期物联网网络的经济和社会优势,海洋服务的自主控制也可以带来新的服务。在海上网络的情况下,参与开发物联网设置的节点是网络的设备,比如船只和浮标,引导至 IoS 范式 [110]。IoS 通过一些网络核心的高级虚拟化实现节点计算协调,其中使用机器学习(ML)和人工智能(AI)方法来执行与预测分析相关的计算任务。
According to [111], the concept of IoS in shipbuilding might significantly influence ship construction and operation, with a wide range of future uses. A more comprehensive study related to IoS is performed in [11], which examines three significant IoS subject areas: 1) intelligent vessels; 2) smart ports; and 3) transportation. Aslam et al. [11] also included a discussion of the design, cores, and qualities that enable IoS unique to set it apart from other conventional IoT-based solutions. The IoS paradigm employs the AIS to establish marine operational capabilities and analyze maritime mobility. Nevertheless, effectively collecting salient data from the AIS data set/database is usually a time consuming and challenging task for maritime authorities and analysts. Hence, He et al. [112] proposed a new method to extract essential data from the AIS data set by using a rule-based reasoning technique. Moreover, they also performed experiments at Yangtze River (China) to prove their findings, indicating that the suggested approach can extract data with great precision.
根据[111],船舶建造中的 IoS 概念可能会对船舶建造和运营产生重大影响,并具有广泛的未来用途。[11]中进行了与 IoS 相关的更全面的研究,该研究涵盖了三个重要的 IoS 主题领域:1)智能船舶;2)智能港口;和 3)交通运输。Aslam 等人[11]还讨论了设计、核心和特性,这些使 IoS 独特并使其与其他传统的基于物联网的解决方案区分开来。IoS 范式利用 AIS 建立海洋运营能力并分析海上移动性。然而,从 AIS 数据集/数据库有效收集显著数据通常对海事当局和分析人员来说是一项耗时且具有挑战性的任务。因此,He 等人[112]提出了一种利用基于规则的推理技术从 AIS 数据集中提取关键数据的新方法。此外,他们还在长江(中国)进行了实验以证明他们的发现,表明建议的方法可以以极高的精度提取数据。

B. Maritime IoT B. 海事物联网

Over the last few years, numerous research groups have conducted maritime IoT projects. A WSN for marine environment monitoring based on the ZigBee technology was designed and deployed in Mar Menor coastal lagoon (Spain) [116], [122]. The network comprises four sensor nodes, each consisting of a solar-powered buoy equipped with air temperature and pressure sensors. The collected information is transmitted to a far base station [122].
在过去几年中,许多研究小组进行了海洋物联网项目。基于 ZigBee 技术的用于海洋环境监测的无线传感网络被设计并部署在马尔梅诺海岸泻湖(西班牙)[116],[122]。该网络包括四个传感器节点,每个节点由一个太阳能供电的浮标组成,配备有空气温度和压力传感器。收集到的信息被传输到一个遥远的基站[122]。
Within the BLUECOM+ project (previously presented in Section II-A1), Ferreira et al. [118] reported a series of oceanic life monitoring trials using autonomous robotic systems and sensors fixed on a drifter buoy. The data gathered during
在 BLUECOM+ 项目中(在第 II-A1 节中介绍过),Ferreira 等人[118]报告了使用自主机器人系统和固定在漂流浮标上的传感器进行海洋生命监测试验的一系列试验。在这些试验中收集到的数据
TABLE V 表 V
IOT-BASEd PRoJects for MARITIme Environments MONitoring
用于海洋环境监测的基于物联网的项目
Ref. Year Location Communication Technology
通信技术
Specifications
2007 Notre Dame (US) 圣母大学(美国) Unlicensed UHF (433 MHz)
未经许可的 UHF(433 MHz)
A sensing network, known as LakeNet, composed of 8 sensor
一个名为 LakeNet 的感知网络,由 8 个传感器组成
pods, was deployed in a lake to monitor the water parameters.
被部署在湖中以监测水参数的传感器组件被称为 pods。
2009 River Lee, Cork (Ireland)
爱尔兰科克的利河
ZigBee
A multi-sensor system was deployed for real-time water qual-
部署了多传感器系统,用于实时水质监测
ity monitoring (by providing readings of water temperature,
通过提供水温读数进行监测(
pH, oxygen level, and turbidity).
pH 值、氧气水平和浊度)。
2010
Designed in China but not
设计于中国但不是
deployed
ZigBee/GPRS
A multi-sensor architecture to measure water parameters was
用于测量水参数的多传感器架构
proposed.
2011 Mar Menor Golf (Spain)
马尔梅诺高尔夫(西班牙)
ZigBee/GPRS
A WSN composed of four buoys deployed to record data
由四个浮标组成的无线传感器网络,部署用于记录数据
on water temperature, pressure, and salinity, among other
关于水温、压力和盐度等其他数据
parameters.
2014 Adriatic Sea (Italy) 亚得里亚海(意大利) GPRS
Deployment of an acoustic sensor network for water quality
部署用于水质监测的声学传感器网络,通过测量叶绿素浓度进行监测
monitoring by measuring chlorophyll concentration together
同时监测叶绿素浓度
with other water physical parameters (temperature, turbidity,
使用其他水文参数(温度、浊度,
and salinity). 和盐度)。
2017 Atlantic Ocean (Portugal)
大西洋(葡萄牙)
IEEE 802.11a/b/g/n and IEEE 802.11a/b/g/n 和
GPRS/UMTS/LTE
Sea trials on connecting autonomous surface vehicles and au-
连接自主水面车辆和自动进行海上试验
tonomous underwater vehicles using a helikite-based BLUE-
使用基于气球风筝的蓝色自主水下车辆。
COM+ network. COM+ 网络。
2018 North Sea (UK) 北海(英国) VHF
An IoT network architecture consisting of collecting data
一种由安装在船舶上的海洋传感器组成的物联网架构被提出。
from marine sensory installed on ships is proposed. The
收集到的数据被转发到岸基站点。
gathered data is forwarded to onshore base stations.
2018 (Not Deployed) (未部署) Acoustic
A framework for oceanic spatio-temporal monitoring using
用于海洋时空监测的框架
acoustic sensor networks collecting underwater physical pa-
采集水下物理参数的声学传感器网络
rameters (temperature, salinity, oxygen level, etc.) is pro-
参数(温度,盐度,溶氧量等)是
posed.
2018 Fort William (UK) 英国威廉堡 Acoustic/TDA-MAC 声学/TDA-MAC
Low-cost underwater acoustic sensor network deployment in-
低成本水下声学传感器网络部署
corporating a TDA-MAC protocol for data collection. Several
集成 TDA-MAC 协议进行数据收集。对 TDA-MAC 协议进行了几项修改
modifications were conducted to the TDA-MAC protocol to
以适应数据采集的需求。
make it more robust in real-world deployments.
加强在实际部署中的稳健性。
the tests that were conducted in the Portuguese coast-Atlantic Ocean was transmitted using the Helikite-based network for several kilometers.
在葡萄牙海岸-大西洋进行的测试是使用基于 Helikite 的网络进行传输了数公里。
Collecting information from IoT maritime sensor nodes can also be done through UAVs [123]. However, this method can be constrained by the UAVs' battery lifetime, mainly when the collection head node gathering the data from the sensor nodes is mobile. Hu et al. [123] proposed a routing maintenance approach for mobile sensor networks in maritime environments based on a ring broadcast mechanism consisting of finding the optimal path from sensor nodes to the collection head nodes and from the collection node to the nearest UAV. In addition to oceanic data collection and observation, installing IoT inside shipping containers can enable monitoring shipments sensitive to temperature or humidity, for example. Salah et al. [124] designed and implemented a smart container prototype for shipping sensitive items with remote monitoring and location tracking capabilities.
通过 UAVs [123] 可以收集来自物联网海事传感器节点的信息。然而,当收集头节点从传感器节点移动时,这种方法可能会受到 UAV 电池寿命的限制。胡等人 [123] 提出了一种基于环形广播机制的海事环境中移动传感器网络的路由维护方法,该方法由寻找由传感器节点到收集头节点的最佳路径和由收集节点到最近的 UAV 的路径组成。除了海洋数据的收集和观测,安装物联网在货运集装箱内还可以实现对温度或湿度等物品是否受损的监控。Salah 等人 [124] 设计并实施了一个具有远程监控和定位跟踪功能的运输敏感物品的智能集装箱原型。
Nonetheless, IoT-based solutions have a broad range of applications in marine environments, as seen in Fig. 7. For instance, consider a smart port, which enables authorities to provide their customers with more reliable information and innovative services [125]. Also, maritime IoT applications can serve in other situations, such as weather prediction, pollution control, and oil platform monitoring [126], [127]. A summary of recent IoT projects and system deployments for monitoring maritime environments is given in Table .
尽管如此,基于物联网的解决方案在海洋环境中有广泛的应用,如图 7 所示。例如,考虑一个智能港口,使当局能够向他们的客户提供更可靠的信息和创新的服务[125]。此外,海洋物联网应用还可以在其他情况下发挥作用,如天气预测、污染控制和油田监测[126],[127]。最近用于监测海洋环境的物联网项目和系统部署摘要见表

C. Internet of Underwater Things
C. 水下物联网

Connecting objects underwater is essential for oil exploration, monitoring aquatic environments, and disaster
连接水下物体对于油田勘探、监测水生环境和灾害管理至关重要
Fig. 7. IoT categories and uses in maritime communications.
第 7 图。物联网在海上通信中的类别和用途。
prevention, among several other industrial and scientific applications. Ships, buoys, and autonomous surface vehicles (ASVs) can act as data collection stations, known as sinks, and gather data from underwater sensor networks (UWSNs) to transfer it to a control center via radio waves, as seen in Fig. 8. UWSNs are traditionally based on acoustic communication to connect the different objects underwater [128], [129]. Other IoUT technologies involve using optical wireless communication [130], [131], magnetic induction communication [132], [133], [134]. There are also hybrid technologies incorporating more than one type of communication for IoUT
预防,以及其他几个工业和科学应用。船舶、浮标和自主表面车辆(ASVs)可以充当数据收集站,称为接收器,并从水下传感器网络(UWSNs)收集数据,通过无线电波将数据传输到控制中心,如图 8 所示。 UWSNs 传统上基于声学通信连接水下不同对象[128],[129]。其他 IoUT 技术涉及使用光无线通信[130],[131],磁感应通信[132],[133],[134]。还有混合技术,结合了多种通信类型用于 IoUT。
TABLE VI 表 VI
Pros ANd Cons of IoUT COMMUNICATION TECHNOLOgIES
通信技术的优点和缺点
Technology Pros Cons
Acoustic
- Long reach of several hundred kilometers
- 数百公里的长距离传播
- Has relaxed PAT requirements
- 具有宽松的专利权要求
- Limited bandwidth - 带宽有限
- Subject to long delays due to the low sound velocity in the
- 由于低声速而可能出现长时间延迟
water
- Subject to multipath effect from reflection and refraction
- 受到反射和折射的多径效应影响
- Noisy and can affect marine life and sea mammals
- 嘈杂并可能影响海洋生物和海洋哺乳动物
- High terminal power consumption
- 高终端功耗
- Limited reach of a few tens of meters
- 有限的传输范围仅为几十米
- Subject to underwater turbulence
- 受水下湍流影响
- Strong alignment requirement
- 强对准要求
Optical Wireless 光无线
- Extended bandwidth with low absorption in the Blue-
- 在可见光谱的蓝绿区域具有低吸收的扩展带宽
Green region of the visible light spectrum
- 隐形且不对海洋生物产生影响
- Stealth and without impact on marine life
- Small footprint and energy-efficient terminals
- 小尺寸和节能终端
- Limited propagation distance
- 有限的传播距离
- Low data rate
- 低数据传输速率
Magnetic Induction 磁感应
- Immune to underwater turbulence
- 对水下湍流免疫
- Practical for air-to-water links
- 适用于空对水链接
Fig. 8. IoUT network architecture.
图8. IoUT网络架构。
communication [135], [136]. Each of the IoUT communication technologies has its pros and cons. For instance, acoustic communication can transmit signals over long distances but is constrained by the limited bandwidth and the lack of stealth. The lack of reliability of acoustic IoUT is also a major challenge [137]. The use of the optical band for IoUT networks benefits from the broad bandwidth, particularly around the blue-green region of the visible light spectrum. However, underwater optical communication can be strongly affected by turbulence from random variations in the water refractive index caused by temperature and salinity fluctuations. The transmission stability of magnetic induction communication is better than optical and acoustic communications, particularly in the air-water interface, as it is not affected by the index of refraction change. A comparison between the various ship-to-underwater IoT communication technologies' pros and cons is given in Table VI. We note that RF communication is not included in the comparison (of Table VI) due to the high attenuation of RF waves in seawater [138] making the use of RF not possible in IoUT applications [139]. We also note that it is possible to have wired IoUTs connected with cables or optical fibers [140].
通信 [135], [136]。IoUT通信技术各有优缺点。例如,声学通信能够在长距离传输信号,但受带宽有限和缺乏隐蔽性的限制。声学IoUT信号的可靠性也是一个主要挑战 [137]。IoUT网络利用光学频段有着广阔的带宽,特别是在可见光谱的蓝绿色区域。然而,水下光通信可能会受到水温和盐度波动引起的水折射率随机变化的湍流影响。磁感应通信的传输稳定性优于光学和声学通信,特别是在空气-水界面,因为它不受折射率变化的影响。表VI中给出了各种船舶到水下IoT通信技术的优缺点比较。我们注意到,由于海水中射频波的高衰减 [138],射频通信并未包含在比较中(表VI),因此在IoUT应用中无法使用 [139]。 我们还注意到,可以使用电缆或光纤连接有线 IoUTs [140]。

Regardless of the communication technology, information collection from IoUT devices is challenging, and a large portion of the collected information is not useful due to the sparse feature of the ocean [141]. Optimizing the trajectories of AUVs used to collect data generated by IoUT to upload it to surface information collection stations is becoming a trendy topic [142].
不管通信技术如何,从 IoUT 设备收集信息都是具有挑战性的,由于海洋稀疏特征,其中大部分收集到的信息都无用 [141]。优化用于收集 IoUT 生成数据并上传到表面信息收集站的 AUVs 轨迹正在成为一个热门话题 [142]。
Providing continuous powering to nonwired IoUTs (as well as floating maritime IoT) or changing their batteries can be challenging. For such a reason, many devices were designed to harvest energy from sources at the seas, solar (light) using photovoltaic cells [143] or wave using triboelectric generators [144], [145]. It is also possible to power IoUTs and maritime IoT by harvesting energy from wind or underwater currents.
为非有线 IoUTs(以及浮动海洋物联网)提供持续的供电或更换它们的电池可能会具有挑战性。因此,许多设备被设计为利用海洋能源,如太阳能(光)使用光伏电池 [143] 或波浪使用静电发电机 [144],[145]。也可以通过利用风力或水下电流来为 IoUTs 和海洋物联网提供能源。

D. Lessons Learned D. 总结的教训

The applications of IoS and maritime IoT are growing. Having connected devices to facilitate navigation and data collection is becoming crucial for the naval industry and scientific research. Collecting information from floating IoT devices requires further UAVs and ASVs' implications. The IoUT technology is also receiving significant attention as it can offer many opportunities to discover the underwater world and perform crucial sensing operations. Although many IoUT devices do not generate new data at an HF, connecting IoUT is needed and can be accomplished through acoustic, magnetic induction, and OWC communication. Each of these technologies has advantages and limitations. A common challenge for maritime IoT and IoUTs is providing continuous powering or changing batteries; therefore, these devices need to be designed to harvest energy from the available energy sources in the sea.
IoS 和海洋物联网的应用正在增长。拥有连接设备以促进导航和数据收集对海军工业和科学研究变得至关重要。从漂浮的物联网设备收集信息需要进一步利用无人机和自主水面船的影响。IoUT 技术也受到了重视,因为它可以为发现水下世界和执行关键的传感操作提供许多机会。尽管许多 IoUT 设备在 HF 不会生成新数据,但连接 IoUT 是必要的,并且可以通过声学、磁感应和 OWC 通信来实现。这些技术各有优势和局限性。海洋物联网和 IoUT 面临的一个共同挑战是提供持续的电源或更换电池;因此,这些设备需要设计成能够从海洋中的可用能源中获取能量。

V. Challenges and Future Research Directions
V. 挑战和未来研究方向

Data acquired in the maritime sector could be inadequate, imprecise, or untrustworthy at specific periods or places due to the continuous mobility of ships and limited connectivity coverage in the sea. Naval vessels, for instance, are sometimes not linked to offer real-time data, and data may be dropped or interrupted due to a bad connection. These issues often obstruct the marine industry's ability to make timely and informed decisions. The shipping sector, for instance, needs
在海洋领域获取的数据可能在特定时期或地点不足、不精确或不可靠,这是由于船只的持续移动和海域中有限的连接覆盖所致。例如,海军舰艇有时无法实时连接以提供数据,由于连接不佳,数据可能会丢失或中断。这些问题经常阻碍海洋行业做出及时和明智的决策。例如,航运部门需要

to adopt new communication and data collecting technologies to cope with these critical challenges [11]. Currently, most communications between ships and ships-to-shores when far from land are carried out through satellite communication [146]. However, satellite connections are costly and cause significant communication delays due to long propagation distances. Nevertheless, owing to the growing nature of marine applications, maritime network infrastructure is necessary to enable worldwide connectivity for ships, primarily across open seas and in the most distant parts of the world. Due to the importance of maritime networks, technological advancements have been carried out recently, which we presented in the previous sections; however, there are still many open research areas. Compared to terrestrial networks, maritime communication limited to a few Mbps in the best scenarios is still lagging behind in fulfilling the requirements. In the following, we examine some open problems associated with maritime communication, and we present numerous research directions to connect vessels and improve on-board connectivity. Enabling additional features with communication is discussed.
采用新的通信和数据收集技术来应对这些关键挑战[11]。目前,大多数船舶与陆地以及船舶之间的通信是通过卫星通信进行的[146]。然而,卫星连接成本高,由于传播距离长,会导致显著的通信延迟。然而,由于海洋应用的增长,海上网络基础设施成为必要,以使船舶能够实现全球连接,主要是跨越开阔的海域和世界上最偏远的地区。鉴于海上网络的重要性,最近进行了技术进步,我们在前面的部分已经介绍了这些进展; 然而,仍然存在许多未解决的研究领域。与陆地网络相比,海事通信在最理想情况下仍然仅能满足少量Mbps的要求。接下来,我们将探讨与海事通信相关的一些未解决问题,并提出了许多连接船舶和改善船舶内部连接的研究方向。 讨论了通过通信启用附加功能。

A. Safety and Security
A. 安全与安全

Maritime transportation is a safety-critical activity, but there is no standardized strategy in terms of cyber security in place [147]. It is also challenging to set cybersecurity standards in a short time in the maritime industry due to the lack of technical expertise in maritime IT departments and because a single shipping line could involve multiple entities in different locations. Cybersecurity attacks on shipping lines might result in severe outcomes, including maritime accidents and paralyzing supply chains. With the emergence of autonomous vessels, the impact of cyber attacks could lead to the worst consequences [148]. For all these reasons, safetycritical network standards must be incorporated to improve the security of maritime networks [149].
海上运输是一项安全关键的活动,但目前尚无关于网络安全的标准化策略[147]。由于海事 IT 部门缺乏技术专长,且单一航运公司可能涉及多个不同地点的实体,因此在海事行业内很难在短时间内制定网络安全标准。对航运公司的网络安全攻击可能导致严重后果,包括海事事故和瘫痪供应链。随着自主船舶的出现,网络攻击的影响可能导致最严重的后果[148]。基于所有这些原因,必须纳入安全关键网络标准以提高海事网络的安全性[149]。

B. Bringing Broadband Cellular Connectivity to Deep Sea
B. 将宽带蜂窝连接带入深海

Regular mobile phones cannot be connected to terrestrial cellular broadband networks when far offshore (the maximum reach is between 20 and from shore in many countries). Although many projects are aimed to provide offshore broadband Internet, they are limited to a few countries on the Atlantic [6], [18], and many of such projects did not make it to commercialization. User mobile devices operating on terrestrial networks cannot directly connect to satellites. To connect to an NTN, proprietary UE or VSAT is needed. Connecting UEs, such as 5G ones, to an NTN can be possible, but after coping with a wide range of challenges [150], such as the requirement of low latency. Connecting to a GEO satellite with a fixed coverage leads to at least latency due to the significant round-trip propagation distance . For this reason, relying on emerging LEO satellite constellations (such as Telesat Lightspeed and SpaceX Starlink) orbiting a few hundred kilometers from Earth can satisfy the low latency requirement.
当远离海岸时,普通手机无法连接到陆地蜂窝宽带网络(在许多国家,最大覆盖范围在 20 到离岸 之间)。尽管许多项目旨在提供离岸宽带互联网,但仅限于大西洋上的少数国家[6],[18],许多此类项目并未商业化。在陆地网络上运行的用户移动设备无法直接连接到卫星。要连接到 NTN,需要专有 UE 或 VSAT。将 UE(如 5G 设备)连接到 NTN 是可能的,但需要应对各种挑战[150],例如低延迟的要求。连接到具有固定覆盖范围的 GEO 卫星会导致至少 延迟,这是由于显著的往返传播距离 。因此,依赖新兴的 LEO 卫星星座(如 Telesat Lightspeed 和 SpaceX Starlink)绕地球几百公里轨道运行,可以满足低延迟的要求。

In contrast to GEO satellites, LEO satellites have substantial coverage variations in time and space ([150], and references therein). Each ground terminal needs to be handed to another satellite every few minutes. Also, because LEO satellites travel at higher speeds than vessels, a significant Doppler Effect is created [151]. With the current user, mobile terminal technology will still require having a satellite modem to access the Internet. By involving HAPS acting as relays, it might be possible for UE terminals to connect to LEO satellite-provided broadband networks.
与地球静止轨道卫星相比,低地球轨道卫星在时间和空间上有显著的覆盖变化。每个地面终端需要每隔几分钟切换到另一颗卫星。此外,由于低地球轨道卫星的速度比船只快,会产生显著的多普勒效应。目前的用户移动终端技术仍需要使用卫星调制解调器才能接入互联网。通过利用高空平台飞行器作为中继,可能使用户终端能够连接到低地球轨道卫星提供的宽带网络。
The widespread use of UAVs for wireless communication can also contribute to bridging the divide between those sailing on-board and users on land. A potential idea would be to use agile UAVs flying in proximity of vessels to enable ondemand maritime coverage in fixed sea lanes as an addition to satellite and on-shore base stations [152]. In such a hybrid architecture, a UAV can connect to terrestrial base stations in coastal areas and relies on satellites for backhauling when far offshore. One challenge of this approach is that UAVs require continuous powering. Given the sparsity of vessels in shipping lanes, the scheduling of the UAVs can be optimized to be deployed on user demand [152]. For large vessels and cruise ships, potential alternatives would be the use of tethered UAVs and helikites.
无人机普遍用于无线通信,也有助于弥合船上和陆地用户之间的技术鸿沟。一个潜在想法是利用在船只附近飞行的灵活无人机,作为固定航道上需求驱动的海上覆盖的补充,此外还可以加入卫星和岸基站 [152]。在这样的混合架构中,无人机可以连接到沿海地区的陆地基站,并在远离海岸时依赖卫星进行返程传输。这种方式的一个挑战是无人机需要持续供电。考虑到航道中船只的稀疏性,可以优化无人机的调度,以根据用户需求进行部署 [152]。对于大型船只和游轮,潜在的替代方案包括使用有索无人机和空中风筝。

C. On-Board VLC Communication
C. 船上可见光通信

VLC is maturing rapidly and can potentially be part of the future sixth-generation (6G) technology and beyond. VLC is an unlicensed technology that can co-exist with the lighting infrastructure. The coverage of light-emitting diodes (LEDs) used as VLC sources is restricted to the illuminated users making this technology secure from eavesdroppers in neighboring rooms. VLC is also immune to electromagnetic interference with RF terminals. VLC or data transfer through illumination can find potential use for on-board maritime communication. Given the progress in underwater optical wireless communication (UWOC) that operates with wavelengths in the visible spectrum [153], using VLC in maritime communication can allow vessel communication with divers and remotely operated underwater vehicles (particularly when lasers are used as light sources). The main issue in this scenario will be fulfilling the pointing, acquisition, and tracking (PAT) requirements, particularly the potential for random movements in the air-water interface. Recently developed solutions based on scintillating fibers to relieve the PAT requirements for UWOC can be implemented to fulfill airwater (vessel-underwater) convergence [154]. Receivers with an enlarged field of view can be equally useful in similar situations where alignment is an issue [155]. In addition to scintillating fibers, extending the FoV of photonic receivers can be accomplished using fused optical fiber tapers [155] and luminescent solar concentrators ([156], and references therein). VLC on-board can enable simultaneous lightwave information and power transfer (SLIPT) [157]. The illuminated user (i.e., under the LED coverage) can be charged by the information-carrying light signals, extending the working time of battery-based on-board IoTs. The SLIPT capability can
VLC迅速成熟,并有可能成为未来第六代(6G)技术及其后续技术的一部分。VLC是一种无许可的技术,可以与照明基础设施共存。作为VLC来源的发光二极管(LED)仅照亮用户,使得这项技术能够安全免受邻近房间窃听者的影响。VLC也能够免受RF终端的电磁干扰。VLC或通过照明进行数据传输有望在船舶上进行通信。鉴于水下可见光无线通信(UWOC)的进展,尤其是在可见光谱中操作波长 [153],使用VLC进行海上通信可以让船舶与潜水员和远程操作的水下载具进行通信(尤其是在激光作为光源时)。在这种情况下的主要问题将在于满足指向、获取和跟踪(PAT)要求,特别是对空水界面的随机运动的潜在可能性。 最近基于闪烁光纤开发的解决方案可用于满足 UWOC 的 PAT 要求,以实现空水(船体-水下)融合[154]。具有扩大视场的接收器在对齐是一个问题的类似情况下同样有用[155]。除了闪烁光纤,通过使用熔合光纤锥[155]和发光太阳能聚光器([156],及其中的参考文献)可以扩展光子接收器的视场。车载 VLC 可以实现光波信息和功率传输的同时进行(SLIPT)[157]。被照亮的用户(即在 LED 覆盖范围内)可以通过携带信息的光信号充电,延长基于电池的车载 IoT 的工作时间。SLIPT 功能也可以

also enable the charging of IoT devices used to collect climate variables [158].
用于充电用于收集气候变量的 IoT 设备[158]。

D. Room for Communication?
D. 通信的空间?

The use of the THz band (from 0.1 to ) is envisioned as one of the enabling technology of the upcoming 6G era [159]. THz signals are strongly absorbed by water vapor in the atmosphere making the use of signals in this band unsuitable for relatively long-range ship-to-ship and shore-to-ship applications. However, THz can benefit on-board applications requiring high data rates compared to what could be provided by microwave and technologies operating at lower frequency ranges. More importantly, can open the room for sensing on top of the communication as can be used for metal and gas sensing applications [160], [161]. Potential THz maritime sensing use cases may involve sensing chemical leaks of biological materials on-board or around the vessel or an offshore oil platform. In addition to sensing, using the band can enable high-accuracy localization capabilities using small footprint antennas [162]. This opens the opportunity to piggyback seamlessly the localization feature into the on-board communication network. The use of the emerging holographic intelligent reflecting surfaces (IRS) can facilitate the integration of these applications on top of the communication [163]. IRS can also help improve THz's NLoS penetration, dominated by a strong LoS component [164].
预计在即将到来的 6G 时代,THz 频段(从 0.1 到 )的使用将成为一种启用技术之一[159]。THz 信号被大气中的水蒸气强烈吸收,使得在这个频段使用信号不适合于相对长距离的船对船和岸对船应用。然而,与微波和操作在较低 频段的技术相比,THz 可以使需要高数据速率的船上应用受益。更重要的是, 可以为通信之上的传感打开空间,因为 可以用于金属和气体传感应用[160],[161]。潜在的 THz 海上传感用例可能涉及在船上或船周围或近海油平台上感知生物材料的化学泄漏。除了传感之外,使用 频段可以利用小尺寸天线实现高精度定位能力[162]。这为将定位功能无缝地集成到船上 通信网络中打开了机会。 利用新兴的全息智能反射表面(IRS)可以便利这些应用在通信之上的整合[163]。 IRS 还可以帮助改善由强 LoS 组件主导的 THz 的 NLoS 穿透性[164]。

E. Harnessing the Power of Machine Learning for Maritime Communication
E. 利用机器学习的力量进行海上通信

There has been tremendous progress in using ML and related algorithms in RF and optical wireless communication. For instance, deep learning algorithms can be helpful when the channel is partially (or completely) unknown or difficult to model analytically either in RF [165] or FSO [166]. Deep learning algorithms have also been widely used to optimize coding and modulation in an end-to-end manner [167]. Harnessing the power of ML can be beneficial for maritime communication using RF and optical waves. ML algorithms can be practical for channel modeling and estimation under marine conditions. For instance, using a feedforward neural network, an ML supervised learning approach, can improve maritime wireless channel prediction under the atmospheric ducting phenomena as demonstrated [168]. In [169], ML algorithms were used to predict the optical power of a maritime FSO link accurately. ML can be utilized to optimize coding and modulation in maritime communication and speed up complex operations. One other use case of ML in maritime networks is enabling switching between RF and FSO links in hybrid radio/optical systems. Some ML algorithms, such as generative adversarial networks (GANs), can also help augment the data obtained from channel measurements needed for data-driven modeling. We note that GANs are ML-based frameworks that learn to generate new data with the same statistics as their training sets [170], [171]. The benefits of these algorithms may cover simulation scenarios beyond what can be obtained with theoretical modeling and experimental measurements, particularly if we want to utilize signals in the optical band and potentially in the band. Leveraging data-driven learning can further enable joint sensing and communication as advocated in terrestrial networks [172]. Reinforcement learning (RL), an ML paradigm widely applied for decision-making problems, can also improve the performance of UAV-based maritime communications. RL can help solve many issues of UAV networks, such as autonomous path planning and optimizing power consumption in a marine environment, as previously discussed in [173] for inland applications. Federated learning (FL) is another ML paradigm that can be useful for maritime IoT. For instance, each node or maritime IoT device can develop its own model in a decentralized manner to build a central model without sharing learning data with other nodes, which is helpful in the case of security risks and the absence of reliable links. Plenty of other opportunities can be offered through ML in maritime IoT [174], which require further efforts.
在射频和光无线通信领域,利用机器学习和相关算法取得了巨大进展。例如,当信道部分(或完全)未知或难以在射频[165]或自由空间光通信[166]中进行解析建模时,深度学习算法可以发挥作用。深度学习算法也被广泛用于端到端优化编码和调制[167]。利用机器学习的力量对海上通信使用射频和光波是有益的。机器学习算法在海洋环境下的信道建模和估计中是实用的。例如,使用前馈神经网络,一种机器学习监督学习方法,可以改善在大气导管现象下的海上无线信道预测,如所示[168]。在[169]中,机器学习算法被用来准确预测海上自由空间光链路的光功率。机器学习可以用于优化海上通信中的编码和调制,并加快复杂操作的速度。机器学习在海上网络中的另一个用例是在混合无线/光系统中实现射频和自由空间光链路之间的切换。 一些机器学习算法,比如生成对抗网络(GANs),也可以帮助增加从通道测量中获得的数据,以用于数据驱动建模。我们注意到GANs是基于机器学习的框架,它们学习生成具有与其训练集相同统计特性的新数据。这些算法的好处可能覆盖模拟场景,超出了理论建模和实验测量所能获得的范围,特别是如果我们想要利用光学波段和潜在地 波段中的信号。利用数据驱动学习可以进一步实现在地面网络中提倡的联合感知和通信。强化学习(RL)是一种广泛应用于决策问题的机器学习范式,也可以提高基于无人机的海上通信性能。RL可以帮助解决无人机网络的许多问题,例如在海洋环境中的自主路径规划和优化功耗,正如之前在内陆应用中讨论的那样。联邦学习(FL)是另一种对海上物联网有用的机器学习范式。 例如,每个节点或海事物联网设备可以以分散的方式开发自己的模型,以构建一个中央模型,而无需与其他节点共享学习数据,这在安全风险和可靠链接缺失的情况下是有帮助的。在海事物联网中,还可以通过机器学习提供许多其他机会[174],这需要进一步的努力。

F. Intermedium Communications
F. 中介通信

In maritime communication, links across two different media (from water to air or vice versa) are equally important to cover in this survey. Few recent studies investigate intermedium communications using relays or direct links in maritime networks. In the case of relays, the relay gives access to the other medium in decode and forward (DF) fashion while changing the communication technology. A demonstration from the literature reports using a photoacoustic device, which receives the information from the air by laser beam, and forwards the signal as acoustic wireless to the underwater receiver [175]. In [176], a design of a water surface station acting as a relay between air and underwater media was proposed. transceivers were mounted on the top of a buoy to receive signals and transmit them to the underwater medium using electrically insulated magnetic coupled antennas mounted on the bottom of the buoy [176]. DF relaying can be beneficial for space-underwater communication. For instance, satellite signals in the microwave band cannot penetrate the water. Therefore they should be decoded at a floating station or a vessel and then forwarded to the submerged destination using another technology rather than microwave signals.
在海上通信中,跨越两种不同媒介(从水到空气或反之亦然)的链接同样重要,需要在这项调查中进行覆盖。最近的研究中很少探讨在海上网络中使用中继或直接链接进行媒介间通信。在中继的情况下,中继以解码和转发(DF)的方式访问另一种媒介,同时改变通信技术。文献中报道了一种使用光声设备的演示,该设备通过激光束从空气接收信息,并将信号作为声学无线信号转发给水下接收器。在另一篇文献中,提出了一种水面站设计,作为空气和水下媒介之间的中继。收发器安装在浮标顶部,接收空中信号并通过电绝缘磁耦合天线将其传输到浮标底部安装的水下媒介中。DF中继对于空间-水下通信可能是有益的。例如,微波频段的卫星信号无法穿透水域。 因此,它们应该在一个浮动站点或船只上进行解码,然后使用另一种技术将其转发到潜水目的地,而不是使用微波信号。
Intermedium communication can be equally established using direct links. In the case of direct optical links, the diffused light in low turbid seawater can be detected by a photo-detector from underwater as demonstrated in [177]. The same method also can be conducted to establish underwater-toair communication [178]. Another way of establishing direct links is using vibration detection, where acoustic waves from the underwater environment vibrate the seawater up to the surface, which is detected via radar or laser Doppler vibrometer as demonstrated in [179].
中间通信可以通过直接链接同样建立。在直接光学链接的情况下,低浑浊海水中的散射光可以被水下的光电探测器检测到,如[177]所示。同样的方法也可以用来建立水下到空中的通信[178]。另一种建立直接链接的方法是使用振动检测,其中来自水下环境的声波使海水振动到表面,通过雷达或激光多普勒振动计检测到,如[179]所示。
Intermedium communications involve different fading effects (through the atmosphere and underwater) and crossing the air/water interface, which can severely affect the information propagating in direct links. This requires further investigation as the field of intermedium communication with direct links is still largely unexplored for the various possible
中间通信涉及不同的衰落效应(通过大气和水下)和穿越空气/水界面,这可能严重影响直接链接中传播的信息。这需要进一步研究,因为中间通信领域与直接链接仍然是一个尚未充分探索的领域,存在各种可能。

technologies, namely, optical wireless, acoustic, and magnetic induction.
技术,即光无线,声学和磁感应。

VI. CONCLUSION VI.结论

This article provides a state-of-the-art survey on maritime communications. We first provided an overview of maritime communication technologies based on radio bands and the optical spectrum. Different channel models for radio and optical wireless maritime links are studied. We also categorized the channel models depending on radio link communication scenarios and the weather conditions in free-space optics. We further covered different aspects of maritime networks, including modulation and coding schemes, radio resource management, coverage and capacity, and energy efficiency. Moreover, we presented major use cases of IoT-related maritime networks. Compared to terrestrial communication, MCNs still lack high-speed links. Marine communication has been, most of the time, limited to the exchange of navigational information and critical data. Maritime communication for civil use can be subject to security bridges. Bringing broadband connectivity to deep seas is another open challenge requiring further efforts. We finally discussed exciting research problems, including incorporating visible light and spectra in on-board applications. We stressed on leveraging the power of ML algorithms for maritime communication. Establishing reliable intermedium communication is another area of focus. Boosting the role of ML in maritime communication and intermedium communications. We believe this article provides valuable insights for maritime communications researchers in academia and industry and contributes to UN sustainable development goal 14 ("To conserve and sustainably use the oceans, seas, and marine resources for sustainable development").
本文提供了关于海上通信的最新调查。我们首先根据无线电波段和光谱概述了海上通信技术。研究了无线电和光学无线海上链路的不同信道模型。我们还根据无线电链路通信场景和自由空间光学中的天气条件对信道模型进行了分类。我们进一步涵盖了海上网络的不同方面,包括调制和编码方案、无线资源管理、覆盖范围和容量以及能源效率。此外,我们介绍了与物联网相关的海上网络的主要用例。与陆地通信相比,海上通信网络仍然缺乏高速链路。海上通信大多数时候仅限于导航信息和关键数据的交换。民用海上通信可能存在安全隐患。将宽带连接带入深海是另一个需要进一步努力的挑战。最后,我们讨论了一些激动人心的研究问题,包括在船载应用中整合可见光和 光谱。 我们强调利用机器学习算法的力量进行海事通信。建立可靠的中介通信是另一个关注的领域。增强机器学习在海事通信和中介通信中的作用。我们相信本文为学术界和工业界的海事通信研究人员提供了有价值的见解,并为联合国可持续发展目标 14(“保护和可持续利用海洋、海域和海洋资源,促进可持续发展”)做出了贡献。

LIST OF ACRONYMS 缩写词列表

5G 5th generation. 第五代。
6G 6th generation. 第六代。
AIS Automatic identification system.
自动识别系统。
AO Adaptive optics. 自适应光学。
ASM Application specific messages.
应用程序特定消息。
BER Bit error rate. 比特误码率。
B-LoS Beyond Line-of-Sight. 超出视线范围。
BS Base station. 基站。
CH Cluster head. 群头。
CN Cluster node. 群节点。
DPSK Differential phase shift keying.
差分相移键控。
DSC Digital selective calling.
数字选择呼叫。
DTN Delay-tolerant networking.
延迟容忍网络。
FDTD Finite difference time domain.
有限差分时域。
FEM Finite element method. 有限元方法。
FM Frequency modulation. 频率调制。
FSO Free space optics. 自由空间光学。
GEO Geostationary Earth orbit.
地球静止轨道。
GAN Generative adversarial network.
生成对抗网络。
GMSK Gaussian minimum shift keying.
高斯最小移位键控。
GNSS Global navigation satellite system.
全球导航卫星系统。
GPRS General packet radio service.
通用分组无线业务。
GPS Global positioning system.
GPS 全球定位系统。
HAPS High-altitude platform station.
HAPS 高空平台站。
HF High frequency. HF 高频。
IM/DD Intensity modulation/direct detection.
IM/DD 强度调制/直接检测。
IMO International maritime organization.
IMO 国际海事组织。
IoS Internet of Ships.
IoS 船舶物联网。
IoT Internet of Things.
物联网。
IoUT Internet of Underwater Things.
水下物联网。
IRS Intelligent reflecting surface.
智能反射表面。
ITU International telecommunication union.
国际电信联盟 ITU。
LED Light emitting diode.
LED 发光二极管。
LEO Low Earth orbit.
LEO 低地球轨道。
LO Local oscillator. 本地振荡器。
LTE Long-term evolution.
长期演进。
LoS Line-of-Sight. 视线通畅。
MagicNet Maritime giant cellular network.
MagicNet 海事巨头蜂窝网络。
MCN Maritime communication network.
MCN 海事通信网络。
MF Medium frequency. MF 中频。
MIMO Multiple-input-multiple-output.
MIMO 多输入多输出。
MMR Modulating retro-reflector.
MMR 调制回波器。
MMSI Maritime mobile service identity.
MMSI 海事移动服务标识。
mmWave millimeter wave. 毫米波。
NAVDAT Navigation data. 导航数据。
NAVTEX Navigational TEleX.
导航电报。
NLoS Non-Line-of-Sight. NLoS 非直射。
OAM Orbital angular momentum.
OAM 轨道角动量。
OOK On-off keying. OOK 开关键控制。
PAM Pulse amplitude modulation.
PAM 脉冲幅度调制。
PAT Pointing, acquisition, and tracking.
PAT 指示、获取和跟踪。
PE Parabolic equation. PE 抛物方程。
PPM Pulse position modulation.
PPM 脉冲位置调制。
QAM Quadrature amplitude modulation.
QAM 正交振幅调制。
QoS Quality of Service.
QoS 服务质量。
QPSK Quadrature phase shift keying.
QPSK 正交相移键控。
RF Radio frequency. RF 射频。
RRH Remote radio head.
RRH 远程射频收发器。
RRM Radio resource management.
RRM 无线资源管理。
SDN Software-defined networking.
SDN 软件定义网络。
SISO Single-input-single-output.
SISO 单输入单输出。
SLIPT Simultaneous lightwave information and power transfer.
SLIPT 同步光波信息和能量传输。
SOTDMA Self-organized time-division multiple access.
SOTDMA 自组织时分多址接入。
SNR Signal-to-noise ratio.
SNR 信噪比。
TDA-MAC Transmit delay allocation MAC.
TDA-MAC 传输延迟分配 MAC。
TRITON TRI-media telematic oceanographic network.
TRITON TRI-媒体远程海洋网络。
UAV Unmanned aerial vehicle.
UAV 无人机。
UE User equipment. UE 用户设备。
UHF Ultra high frequency.
UHF 超高频。
UMTS Universal mobile telecommunications systems.
UMTS 通用移动通信系统。
USV Unmanned surface vehicle.
无人驾驶水面车辆。
UWOC Underwater wireless optical communication.
水下无线光通信。
VLC Visible light communication.
可见光通信。
VHF Very high frequency.
超高频。
VSAT Very small aperture terminal.
VSAT 非常小孔径终端。
WiMAX Worldwide interoperability for microwave access.
WiMAX 全球微波通信互操作性。
WLAN Wireless local area network.
WLAN 无线局域网。
WSN Wireless sensor network.
WSN 无线传感器网络。

REFERENCES 参考文献

[1] K. David and H. Berndt, " vision and requirements: Is there any need for beyond 5G?” IEEE Veh. Technol. Mag., vol. 13, no. 3, pp. 72-80, Sep. 2018
[1] K. David 和 H. Berndt,“ 视觉和需求:是否需要超越 5G?” IEEE Veh. Technol. Mag.,卷 13,第 3 期,页码 72-80,2018 年 9 月
[2] S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, "What should 6G be?" Nat. Electron., vol. 3, no. 1, pp. 20-29, 2020.
[2] S. Dang,O. Amin,B. Shihada 和 M.-S. Alouini,“6G 应该是什么?” Nat. Electron.,卷 3,第 1 期,页码 20-29,2020 年。
[3] Y. Xu, "Quality of service provisions for maritime communications based on cellular networks," IEEE Access, vol. 5, pp. 23881-23890, 2017.
[3] Y. Xu,“基于蜂窝网络的海上通信服务质量保障”,IEEE Access,卷 5,页码 23881-23890,2017 年。
[4] S. Jiang, "A possible development of marine Internet: A large scale cooperative heterogeneous wireless network," in Internet of Things, Smart Spaces, and Next Generation Networks and Systems, S. Balandin, S. Andreev, and Y. Koucheryavy, Eds. Cham, Switzerland: Springer Int., 2015, pp. 481-495.
[4] 江帅, "海洋互联网可能的发展: 大规模合作异构无线网络," in 物联网, 智能空间和下一代网络与系统, S. Balandin, S. Andreev, 和 Y. Koucheryavy 编. 瑞士洛桑: Springer Int., 2015, pp. 481-495.
[5] X. Li, W. Feng, Y. Chen, C.-X. Wang, and N. Ge, "Maritime coverage enhancement using UAVs coordinated with hybrid satellite-terrestrial networks," IEEE Trans. Commun., vol. 68, no. 4, pp. 2355-2369, Apr. 2020.
[5] 李晓, 冯伟, 陈阳, 王承兴, 和 葛宁, "利用与混合卫星-地面网络协调的无人机增强海上覆盖," IEEE 通信学报, vol. 68, no. 4, pp. 2355-2369, 2020 年 4 月.
[6] R. Campos, T. Oliveira, N. Cruz, A. Matos, and J. M. Almeida, "BLUECOM+: Cost-effective broadband communications at remote ocean areas," in Proc. OCEANS Shanghai, 2016, pp. 1-6.
[6] 卡姆普斯, T. Oliveira, N. Cruz, A. Matos, 和 J. M. 阿尔梅达, "BLUECOM+: 远洋地区成本效益高的宽带通信," in OCEANS Shanghai 会议录, 2016, pp. 1-6.
[7] T. Yang and X. S. Shen, Maritime Wideband Communication Networks. Cham, Switzerland: Springer, 2014.
[7] T.杨和 X. S.沈,《海事宽带通信网络》,2014 年,瑞士,施普林格出版社。
[8] A. Zolich et al., "Survey on communication and networks for autonomous marine systems," J. Intell. Robot. Syst., vol. 95, no. 3, pp. 789-813, 2019.
[8] A. Zolich 等,《自主海洋系统通信和网络调查》,《智能机器人系统杂志》,2019 年,第 95 卷,第 3 期,第 789-813 页。
[9] S.-W. Jo and W.-S. Shim, "LTE-maritime: High-speed maritime wireless communication based on LTE technology," IEEE Access, vol. 7, pp. 53172-53181, 2019.
[9] S.-W. Jo 和 W.-S. Shim,《LTE-海事:基于 LTE 技术的高速海事无线通信》,《IEEE Access》,2019 年,第 7 卷,第 53172-53181 页。
[10] S. Guan, J. Wang, C. Jiang, R. Duan, Y. Ren, and T. Q. Quek, "MagicNet: The maritime giant cellular network," IEEE Commun. Mag., vol. 59, no. 3, pp. 117-123, Mar. 2021.
[10] S. Guan, J. Wang, C. Jiang, R. Duan, Y. Ren, and T. Q. Quek, "MagicNet: 海洋巨人蜂窝网络," IEEE 通讯杂志, vol. 59, no. 3, pp. 117-123, Mar. 2021.
[11] S. Aslam, M. P. Michaelides, and H. Herodotou, "Internet of Ships: A survey on architectures, emerging applications, and challenges," IEEE Internet Things J., vol. 7, no. 10, pp. 9714-9727, Oct. 2020.
[11] S. Aslam, M. P. Michaelides, and H. Herodotou, "船舶互联网: 架构、新兴应用和挑战综述," IEEE 物联网杂志, vol. 7, no. 10, pp. 9714-9727, Oct. 2020.
[12] T. Wei, W. Feng, Y. Chen, C.-X. Wang, N. Ge, and J. Lu, "Hybrid satellite-terrestrial communication networks for the maritime Internet of Things: Key technologies, opportunities, and challenges," IEEE Internet Things J., vol. 8, no. 11, pp. 8910-8934, Jun. 2021.
[12] T. Wei, W. Feng, Y. Chen, C.-X. Wang, N. Ge, and J. Lu, "海洋物联网的混合卫星-地面通信网络: 关键技术、机遇和挑战," IEEE 物联网杂志, vol. 8, no. 11, pp. 8910-8934, Jun. 2021.
[13] P. S. Balkees, K. Sasidhar, and S. Rao, "A survey based analysis of propagation models over the sea," in Proc. Int. Conf. Adv. Comput. Coтmиn. Inf. (ICACCI), 2015, pp. 69-75.
[13] P. S. Balkees, K. Sasidhar 和 S. Rao, "基于调查的海上传播模型分析," 在 Proc. Int. Conf. Adv. Comput. Coтmиn. Inf. (ICACCI) 中, 2015, pp. 69-75.
[14] J. Wang et al., "Wireless channel models for maritime communications," IEEE Access, vol. 6, pp. 68070-68088, 2018.
[14] J. Wang 等人, "海上通信的无线信道模型," IEEE Access, vol. 6, pp. 68070-68088, 2018.
[15] "The communications satellite act of 1962," Harvard Law Rev., vol. 76, no. 2, pp. 388-400, 1962. [Online]. Available: https://www.jstor.org/ stable/1338613#metadata_info_tab_contents
[15] "1962 年的通信卫星法," Harvard Law Rev., vol. 76, no. 2, pp. 388-400, 1962. [在线]. 可访问: https://www.jstor.org/ stable/1338613#metadata_info_tab_contents
[16] F. Cabrera, N. Molina, M. Tichavska, and V. Arana, "Automatic identification system modular receiver for academic purposes," Radio Sci., vol. 51, no. 7, pp. 1038-1047, 2016.
[16] F. Cabrera, N. Molina, M. Tichavska, and V. Arana, "用于学术目的的自动识别系统模块化接收机," 无线电科学, vol. 51, no. 7, pp. 1038-1047, 2016.
[17] M.-t. Zhou et al., "TRITON: High-speed maritime wireless mesh network," IEEE Wireless Commun., vol. 20, no. 5, pp. 134-142, Oct. 2013.
[17] M.-t. Zhou 等人, "TRITON: 高速海上无线网状网络," IEEE 无线通信, vol. 20, no. 5, pp. 134-142, 2013 年 10 月.
[18] M. J. Lopes, F. Teixeira, J. B. Mamede, and R. Campos, "Wi-Fi broadband maritime communications using band," in Proc. Underwater Commun. Netw. (UComms), 2014, pp. 1-5.
[18] M. J. Lopes, F. Teixeira, J. B. Mamede, and R. Campos, "使用 频段的 Wi-Fi 宽带海事通信," in Proc. 水下通信网 (UComms) 论文集, 2014, pp. 1-5.
[19] H.-J. Kim, J.-K. Choi, D.-S. Yoo, B.-T. Jang, and K.-T. Chong, "Implementation of MariComm bridge for LTE-WLAN maritime heterogeneous relay network," in Proc. 17th Int. Conf. Adv. Commun. Technol. (ICACT), 2015, pp. 230-234.
[19] 金会镇,崔晶珂,柳东树,张丙泰,钟光泰,“LTE-WLAN 海上异构中继网络 MariComm 桥的实现”,第 17 届国际通信技术大会(ICACT)论文集,2015 年,第 230-234 页。
[20] F. B. Teixeira et al., "Enabling broadband Internet access offshore using tethered balloons: The BLUECOM+ experience," in Proc. OCEANS Aberdeen, 2017, pp. 1-7.
[20] F. B. Teixeira 等,“利用系留气球实现近海宽带互联网接入:BLUECOM+经验”,2017 年 OCEANS Aberdeen 会议论文集,第 1-7 页。
[21] "Maritime Satellite Communication NX Product Series." Accessed: Jul. 31, 2022. [Online]. Available: https://www.intelliantech.com/en/ products/nx-maritime-vsat
[21] “海上卫星通信 NX 产品系列”。访问日期:2022 年 7 月 31 日。[在线]. 可访问:https://www.intelliantech.com/en/ products/nx-maritime-vsat
[22] “Satellite Services." Accessed: Jul. 31, 2022. [Online]. Available: https: //marlink.com/solutions/satellite-services
[22] “卫星服务。”访问日期:2022 年 7 月 31 日。[在线]. 可访问:https://marlink.com/solutions/satellite-services
[23] "Mobile Communications." Accessed: Jul. 31, 2022. [Online]. Available: https://www.kvh.com/maritime-solutions/commercialmaritime/mobile-communications
[23] "移动通信。" 访问日期:2022 年 7 月 31 日。[在线]. 可访问:https://www.kvh.com/maritime-solutions/commercialmaritime/mobile-communications
[24] Z. Pan, L. An, and C. Wen, "Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles," Appl. Energy, vol. 240, pp. 473-485, Apr. 2019.
[24] 潘志刚,安立,温超,“无人机燃料电池推进系统的最新进展,” 应用能源,卷 240,页 473-485,2019 年 4 月。

[25] A. Kourani and N. Daher, "Marine locomotion: A tethered UAV-buoy system with surge velocity control,” Robot. Auton. Syst., vol. 145 , Nov. 2021, Art. no. 103858
[25] A. Kourani 和 N. Daher,“海洋运动:具有冲向速度控制的系留式 UAV-浮标系统”,机器人与自主系统,第 145 卷,2021 年 11 月,文章编号 103858
[26] G. K. Kurt et al., "A vision and framework for the high altitude platform station (HAPS) networks of the future," IEEE Commun. Surveys Tuts. vol. 23, no. 2, pp. 729-779, 2nd Quart., 2021.
[26] G. K. Kurt 等,“未来高空平台站(HAPS)网络的愿景和框架”,IEEE 通信调查教程,第 23 卷,第 2 期,2021 年第二季度,页码 729-779
[27] B. E. Y. Belmekki and M.-S. Alouini, "Unleashing the potential of networked tethered flying platforms: Prospects, challenges, and applications," IEEE Open J. Veh. Technol., vol. 3, pp. 278-320, 2022.
[27] B. E. Y. Belmekki 和 M.-S. Alouini,“释放网络系留飞行平台的潜力:前景、挑战和应用”,IEEE 开放期刊车辆技术,第 3 卷,页码 278-320,2022 年
[28] "Zephyr high altitude platform station (HAPS) achieves connectivity in trial conducted by airbus and NTT DOCOMO." Accessed: Nov. 23, 2021. [Online]. Available: https://www.airbus.com/en/newsroom/pressreleases/2021-11-zephyr-high-altitude-platform-station-haps-achievesconnectivity-in
[28] "Zephyr 高空平台站(HAPS)由空中客车和 NTT DOCOMO 进行的试验实现了连接性。" 访问日期:2021 年 11 月 23 日。[在线]. 可访问:https://www.airbus.com/en/newsroom/pressreleases/2021-11-zephyr-high-altitude-platform-station-haps-achievesconnectivity-in
[29] Z. Yingjun, X. Shengwei, X. Peng, and W. Xinquan, "Shipping containers of dangerous goods condition monitoring system based on wireless sensor network," in Proc. IEEE 6th Int. Conf. Netw. Comput. (INC), 2010, pp. 1-3.
[29] Z. Yingjun, X. Shengwei, X. Peng, 和 W. Xinquan, "基于无线传感器网络的危险品集装箱监测系统," 在 IEEE 第 6 届国际网络计算大会(INC)论文集中,2010 年,第 1-3 页。
[30] E. Balboni, J. Ford, R. Tingley, K. Toomey, and J. Vytal, "An empirical study of radio propagation aboard naval vessels," in Proc. IEEE-APS Conf. Antennas Propag. Wireless Commun., 2000, pp. 157-160.
[30] E. Balboni, J. Ford, R. Tingley, K. Toomey, 和 J. Vytal, "海军舰船上的无线电传播的实证研究," 在 IEEE-APS 天线传播和无线通信会议论文集中,2000 年,第 157-160 页。
[31] P. Nobles and L. Scott, "Wideband propagation measurements onboard HMS bristol," in Proc. IEEE Mil. Commun. Conf. (MILCOM), vol. 2, 2003, pp. 1412-1415.
[31] P. Nobles 和 L. Scott, "HMS 布里斯托尔号上的宽带传播测量," 发表于 IEEE 军事通信会议 (MILCOM) 论文集, vol. 2, 2003, pp. 1412-1415.
[32] A. Mariscotti, M. Sassi, A. Qualizza, and M. Lenardon, "On the propagation of wireless signals on board ships," in Proc. IEEE Instrum. Meas. Technol. Conf. Process., 2010, pp. 1418-1423.
[32] A. Mariscotti, M. Sassi, A. Qualizza 和 M. Lenardon, "船舶上无线信号传播的研究," 发表于 IEEE 仪器测量技术会议论文集, 2010, pp. 1418-1423.
[33] A. Mariscotti, "Experimental determination of the propagation of wireless signals on board a cruise ship," Measurement, vol. 44, no. 4, pp. 743-749, 2011.
[33] A. Mariscotti, "邮轮上无线信号传播的实验测定," 《测量学》, vol. 44, no. 4, pp. 743-749, 2011.
[34] X. H. Mao and Y. H. Lee, "UHF propagation along a cargo hold on board a merchant ship," IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 22-30, Jan. 2013.
[34] X. H. 毛和 Y. H. 李,“商船货舱内 UHF 传播研究”,IEEE 无线通信杂志,第 12 卷,第 1 期,2013 年 1 月,页码 22-30。
[35] X. H. Mao, Y. H. Lee, and B. C. Ng, "Study of propagation over two ends of a vessel in VHF band," in Proc. Asia-Pac. Microw. Conf., 2010, pp. 1946-1949.
[35] X. H. 毛,Y. H. 李和 B. C. 吴,“VHF 频段船舶两端传播研究”,在 2010 年亚太微波会议论文集中,页码 1946-1949。
[36] B. De Beelde, E. Tanghe, M. Yusuf, D. Plets, and W. Joseph, "Radio channel modeling in a ship hull: Path loss at and 2.4, 5.25, and ," IEEE Antennas Wireless Propag. Lett., vol. 20, no. 4 , pp. 597-601, Apr. 2021
[36] B. De Beelde,E. Tanghe,M. Yusuf,D. Plets 和 W. Joseph,“船体内的无线电信道建模:在 和 2.4、5.25 以及 处的路径损耗”,IEEE 天线和无线传播信函,第 20 卷,第 4 期,2021 年 4 月,页码 597-601。
[37] R. J. Giannaris and G. C. Mooradian, "Shipboard electro-optic system integration," in Proc. Syst. Integr. Opt. Design Another Look, vol. 103, 1977, pp. 120-125.
[37] R. J. Giannaris 和 G. C. Mooradian,“船上电光系统集成”,在 Proc. Syst. Integr. Opt. Design Another Look,第 103 卷,1977 年,第 120-125 页。
[38] W. S. Rabinovich et al., "Free space optical communications research at the U.S. naval research laboratory," in Proc. SPIE, vol. 7587, 2010, pp. 9-23.
[38] W. S. Rabinovich 等,“美国海军研究实验室的自由空间光通信研究”,在 Proc. SPIE,第 7587 卷,2010 年,第 9-23 页。
[39] J. C. Juarez, J. E. Sluz, C. Nelson, F. M. Davidson, D. W. Young, and R. M. Sova, "Lasercomm demonstration in a maritime environment for tactical applications," in Proc. Lasers Sources Related Photon. Devices, 2010, Art. no. LSMA2.
[39] J. C. Juarez,J. E. Sluz,C. Nelson,F. M. Davidson,D. W. Young 和 R. M. Sova,“用于战术应用的海上激光通信演示”,在 Proc. Lasers Sources Related Photon. Devices,2010 年,文章编号 LSMA2。
[40] "APL Demonstrates high-bandwidth communications capability at sea." Accessed: Oct. 25, 2021. [Online]. Available: https://www.jhuapl. edu/PressRelease/170824b
[40] "美国约翰霍普金斯大学应用物理实验室在海上展示了高带宽通信能力。" 访问日期:2021 年 10 月 25 日。[在线]. 可访问:https://www.jhuapl.edu/PressRelease/170824b
[41] C. I. Moore et al., "Free-space high-speed laser communication link across the chesapeake bay," in Proc. SPIE, vol. 4821, 2002, pp. 474-485.
[41] C. I. Moore 等人,“切萨皮克湾上的自由空间高速激光通信链路”,见于 SPIE 会议录,卷 4821,2002 年,第 474-485 页。
[42] W. S. Rabinovich et al., "Free-space optical communications link at using multiple-quantum-well modulating retroreflectors in a marine environment," Opt. Eng., vol. 44, no. 5, pp. 1-12, 2005.
[42] W. S. Rabinovich 等人,“在海洋环境中使用多量子阱调制反射器的自由空间光通信链路”,光学工程,卷 44,第 5 期,2005 年,第 1-12 页。
[43] H. R. Burris Jr., et al., "Long range analog RF free space optical communication link in a maritime environment," in Proc. SPIE, vol. 7324, 2009, pp. 128-139.
[43] H. R. Burris Jr.等,“海上环境中的长距离模拟射频自由空间光通信链”,SPIE 论文集,第 7324 卷,2009 年,页码 128-139。
[44] V. Gadwal and S. Hammel, "Free-space optical communication links in a marine environment," in Proc. SPIE, vol. 6304, 2006, pp. 161-171.
[44] V. Gadwal 和 S. Hammel,“海洋环境中的自由空间光通信链接”,SPIE 论文集,第 6304 卷,2006 年,页码 161-171。
[45] L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. Bellingham, WA, USA: SPIE Press, 2005.
[45] L. C. Andrews 和 R. L. Phillips,随机介质中的激光束传播,第 2 版,美国,Bellingham: SPIE 出版社,2005 年。
[46] M. Handley, "Delay is not an option: Low latency routing in space," in Proc. 17th ACM Workshop Hot Topics Netw. (HotNet), 2018, pp. 85-91.
[46] M. Handley,“延迟不是选择:空间低延迟路由”,在第 17 届 ACM 研讨会热门网络主题(HotNet)中,2018 年,第 85-91 页。
[47] I. del Portillo, B. G. Cameron, and E. F. Crawley, "A technical comparison of three low earth orbit satellite constellation systems to provide global broadband," Acta Astronautica, vol. 159, pp. 123-135, Jun. 2019
[47] I. del Portillo,B. G. Cameron 和 E. F. Crawley,“三个低地球轨道卫星星座系统的技术比较,以提供全球宽带”,《宇航学报》,第 159 卷,2019 年 6 月,第 123-135 页。
[48] A. Trichili et al., "Retrofitting FSO systems in existing RF infrastructure: A non-zero-sum game technology," IEEE Open J. Commun. Soc., vol. 2, pp. 2597-2615, 2021.
[48] A. Trichili 等,“在现有射频基础设施中改装 FSO 系统:一种非零和游戏技术”,《IEEE 开放通信学会杂志》,第 2 卷,2021 年,第 2597-2615 页。
[49] F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. S. Muhammad, and G. Kandus, "Weather effects on hybrid FSO/RF communication link," IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1687-1697, Dec. 2009.
[49] F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. S. Muhammad, 和 G. Kandus, "天气对混合 FSO/RF 通信链路的影响," IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1687-1697, 2009 年 12 月.
[50] M. Gregory and S. Badri-Hoeher, "Characterization of maritime RF/FSO channel," in Proc. IEEE Int. Conf. Space Opt. Syst. Appl. (ICSOS), 2011, pp. 21-27.
[50] M. Gregory 和 S. Badri-Hoeher, "海上 RF/FSO 信道特性," in Proc. IEEE Int. Conf. Space Opt. Syst. Appl. (ICSOS), 2011 年, pp. 21-27.
[51] W. U. Bajwa, A. Sayeed, and R. Nowak, "Sparse multipath channels: Modeling and estimation," in Proc. IEEE 13th Digit. Signal Process. Workshop 5th IEEE Signal Process. Edu. Workshop, 2009, pp. 320325.
[51] W. U. Bajwa, A. Sayeed, 和 R. Nowak, "稀疏多径信道: 建模和估计," in Proc. IEEE 13th Digit. Signal Process. Workshop 5th IEEE Signal Process. Edu. Workshop, 2009 年, pp. 320325.
[52] A. A. Saleh and R. Valenzuela, "A statistical model for indoor multipath propagation," IEEE J. Sel. Areas Commun., vol. SAC-5, no. 2, pp. 128-137, Feb. 1987.
[52] A. A. Saleh 和 R. Valenzuela,“室内多径传播的统计模型”,IEEE J. Sel.通信领域,卷 SAC-5,第 2 号, 128-137 页,1987 年 2 月。
[53] Y. Zhao, M. Zhang, H. Chen, and X.-F. Yuan, "Radar scattering from the composite ship-ocean scene: Doppler spectrum analysis based on the motion of six degrees of freedom," IEEE Trans. Antennas Propag., vol. 62, no. 8, pp. 4341-4347, Aug. 2014.
[53] Y. Zhao,M. Zhang,H. Chen 和 X.-F. Yuan,“复合船舶-海洋场景的雷达散射:基于六自由度运动的多普勒谱分析”,IEEE Trans.天线传播,卷 62,第 8 号,4341-4347 页,2014 年 8 月。
[54] D. Reddy, V. Parthasarathy, and S. N. Rao, "Analysis of the effect of waves on the stability of TDMA based marine long range Wi-Fi backhaul links," in Proc. IEEE Int. Conf. Comput. Intell. Comput. Res. (ICCIC), 2016, pp. 1-8.
[54] D. Reddy,V. Parthasarathy 和 S. N. Rao,“分析波浪对基于 TDMA 的海洋远程 Wi-Fi 回传链路稳定性的影响”,在 IEEE Int. Conf. Comput. Intell. Comput. Res. (ICCIC)中,2016 年,第 1-8 页。
[55] W. Hubert, Y.-M. L. Roux, M. Ney, and A. Flamand, "Impact of ship motions on maritime radio links," Int. J. Antennas Propag., vol. 2012, Dec. 2012, Art. no. 507094.
[55] W. Hubert, Y.-M. L. Roux, M. Ney, and A. Flamand,“船舶运动对海上无线电链路的影响”,国际天线和传播学杂志,2012 年 12 月,2012 年,编号 507094。
[56] F. Huang, Y. Bai, and W. Du, "Maritime radio propagation with the effects of ship motions," J. Commun., vol. 10, no. 5, pp. 345-351, 2015.
[56] F. Huang, Y. 白, 和 W. Du,“带有船舶运动效应的海上无线电传播”,通信杂志,2015 年,第 10 卷,第 5 期,第 345-351 页。
[57] E. Dinc and O. B. Akan, "Beyond-line-of-sight communications with ducting layer," IEEE Commun. Mag., vol. 52, no. 10, pp. 37-43, Oct. 2014.
[57] E. Dinc 和 O. B. Akan,“具有导向层的超视距通信”,IEEE 通信杂志,2014 年 10 月,第 52 卷,第 10 期,第 37-43 页。
[58] E. Dinc and O. B. Akan, "Channel model for the surface ducts: Large-scale path-loss, delay spread, and AOA," IEEE Trans. Antennas Propag., vol. 63, no. 6, pp. 2728-2738, Jun. 2015.
[58] E. Dinc 和 O. B. Akan, "表面导频信道模型: 大尺度路径损耗, 传播延迟和 AOA," 《IEEE 无线电与天线传播学报》,卷 63, 期 6, 页 2728-2738, 2015 年 6 月。
[59] D. W. Matolak and R. Sun, "Air-ground channel characterization for unmanned aircraft systems--Part I: Methods, measurements, and models for over-water settings," IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 26-44, Jan. 2017.
[59] D. W. Matolak 和 R. Sun, "无人机系统的空地信道特性--第一部分:海上情景下的方法, 测量和模型," 《IEEE 交通技术杂志》,卷 66, 期 1, 页 26-44, 2017 年 1 月。
[60] R. G. Garroppo, S. Giordano, D. Iacono, A. Cignoni, and M. Falzarano, "WiMAX testbed for interconnection of mobile navy units in operational scenarios," in Proc. IEEE Mil. Commun. Conf. (MILCOM), 2008, pp. 1-7.
[60] R. G. Garroppo, S. Giordano, D. Iacono, A. Cignoni, 和 M. Falzarano, "WiMAX 测试平台用于移动海军单位在操作情景下的互连," 《IEEE 军用通信大会论文集 (MILCOM)》,2008 年, 页 1-7。
G. D. Durgin, T. S. Rappaport, and D. A. De Wolf, "New analytical models and probability density functions for fading in wireless communications," IEEE Trans. Commun., vol. 50, no. 6, pp. 1005-1015, Jun. 2002.
G. D. Durgin, T. S. Rappaport, 和 D. A. De Wolf, "无线通信中衰落的新分析模型和概率密度函数," IEEE 通信学报, vol. 50, no. 6, pp. 1005-1015, 2002 年 6 月.
[62] J. M. Romero-Jerez, F. J. Lopez-Martinez, J. F. Paris, and A. Goldsmith, "The fluctuating two-ray fading model for mmWave communications," in Proc. IEEE Globecom Workshops (GC Wkshps), 2016, pp. 1-6.
[62] J. M. Romero-Jerez, F. J. Lopez-Martinez, J. F. Paris, 和 A. Goldsmith, "毫米波通信的波动双射线衰落模型," in Proc. IEEE Globecom Workshops (GC Wkshps), 2016, pp. 1-6.
[63] J. M. Romero-Jerez, F. J. Lopez-Martinez, J. F. Paris, and A. J. Goldsmith, "The fluctuating two-ray fading model: Statistical characterization and performance analysis," IEEE Trans. Wireless Сотmиn., vol. 16, no. 7, pp. 4420-4432, Jul. 2017.
[63] J. M. Romero-Jerez, F. J. Lopez-Martinez, J. F. Paris, 和 A. J. Goldsmith, "波动双射线衰落模型: 统计特性和性能分析," IEEE 无线通信学报, vol. 16, no. 7, pp. 4420-4432, 2017 年 7 月.
[64] I. Sirkova, "Brief review on PE method application to propagation channel modeling in sea environment," Open Eng., vol. 2, no. 1, pp. 19-38, 2012.
[64] I. Sirkova,“关于 PE 方法在海洋环境中传播通道建模中的应用简要回顾”,Open Eng.,卷 2,第 1 期,2012 年。
[65] J. Hagenauer, F. Dolainsky, E. Lutz, W. Papke, and R. Schweikert, "The maritime satellite communication channel-channel model, performance of modulation and coding," IEEE J. Sel. Areas Commun., vol. SAC-5, no. 4, pp. 701-713, May 1987.
[65] J. Hagenauer,F. Dolainsky,E. Lutz,W. Papke 和 R. Schweikert,“海上卫星通信通道-通道模型,调制和编码性能”,IEEE J. Sel. Areas Commun.,卷 SAC-5,第 4 期,1987 年 5 月。
[66] J. Wang et al., "Doppler shift estimation for space-based AIS signals over satellite-to-ship links," IEEE Access, vol. 7, pp. 76250-76262, 2019.
[66] J. Wang 等,“卫星到船舶链路上空基 AIS 信号的多普勒频移估计”,IEEE Access,卷 7,2019 年,页码 76250-76262。
[67] Z. Shi, P. Xia, Z. Gao, L. Huang, and C. Chen, "Modeling of wireless channel between UAV and vessel using the FDTD method," in Proc. 10th Int. Conf. Wireless Commun. Netw. Mobile Comput. (WiCOM), 2014, pp. 100-104.
[67] Z. 史, P. 夏, Z. 高, L. 黄, and C. 陈, "利用 FDTD 方法对 UAV 与船舶之间的无线信道进行建模," in Proc. 10th Int. Conf. Wireless Commun. Netw. Mobile Comput. (WiCOM), 2014, pp. 100-104.
[68] Y. Liu, C.-X. Wang, H. Chang, Y. He, and J. Bian, "A novel non-stationary 6G UAV channel model for maritime communications," IEEE J. Sel. Areas Commun., vol. 39, no. 10, pp. 2992-3005, Oct. 2021.
[68] Y. 刘, C.-X. 王, H. 常, Y. 何, 和 J. 边, "一种新型的非平稳 6G UAV 海上通信信道模型," IEEE J. Sel. Areas Commun., vol. 39, no. 10, pp. 2992-3005, Oct. 2021.
[69] M. S. Choi et al., "Ship to shore maritime communication for e-navigation using IEEE 802.16 e," in Proc. IEEE Int. Conf. ICT Converg. (ICTC), 2013, pp. 759-762.
[69] M. S. 崔 等, "利用 IEEE 802.16 e 进行船舶到岸边海上通信的 e-导航," in Proc. IEEE Int. Conf. ICT Converg. (ICTC), 2013, pp. 759-762.

[70] S. Ma, C. Liu, and J. Wang, "An accurate frequency offset estimator in the intermediate frequency for the satellite-based AIS signals," in Proc. IEEE Int. Conf. Online Anal. Comput. Sci. (ICOACS), 2016, pp. 100-104.
[70] S. 马, C. 刘, 和 J. 王, "卫星 AIS 信号中频准确的频偏估计器," 在 IEEE 国际在线分析计算科学会议论文集(ICOACS)中, 2016, pp. 100-104.
[71] X. Meng, S.-X. Ma, C. Liu, and J.-F. Teng, "Frequency offset estimation in the intermediate frequency for satellite-based AIS signals," Optoelectron. Lett., vol. 14, no. 4, pp. 301-305, 2018.
[71] X. 孟, S.-X. 马, C. 刘, 和 J.-F. 腾, "卫星 AIS 信号中频的频偏估计," 光电子信函, vol. 14, no. 4, pp. 301-305, 2018.
[72] X. Meng, C. Liu, J. Teng, and S. Ma, "Frequency offset estimation of satellite-based AIS signals based on interpolated FFT," Wireless Pers. Coтmиn., vol. 99, no. 1, pp. 35-45, 2018.
[72] X. 孟, C. 刘, J. 腾, 和 S. 马, "基于插值 FFT 的卫星 AIS 信号频偏估计," 无线个人通信, vol. 99, no. 1, pp. 35-45, 2018.
[73] J. Wang, Y. Cui, G. Han, H. Sun, and M. Guizani, "Improved doppler shift estimation algorithm for down-link signals of space-based AIS," IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 11028-11032, Oct. 2021
[73] J. Wang, Y. Cui, G. Han, H. Sun, and M. Guizani, "空间 AIS 下行信号的改进多普勒频移估计算法," IEEE 交通技术杂志, vol. 70, no. 10, pp. 11028-11032, 2021 年 10 月
[74] A. Ghasemi, A. Abedi, and F. Ghasemi, Propagation Engineering in Wireless Communications. New York, NY, USA: Springer, 2012.
[74] A. Ghasemi, A. Abedi, and F. Ghasemi, 《无线通信中的传播工程》. 美国纽约, Springer, 2012 年
[75] A. Trichili, M. A. Cox, B. S. Ooi, and M.-S. Alouini, "Roadmap to free space optics," J. Opt. Soc. Amer. B Opt. Phys., vol. 37, no. 11, pp. A184-A201, Nov. 2020
[75] A. Trichili, M. A. Cox, B. S. Ooi, and M.-S. Alouini, "自由空间光学路线图," J. Opt. Soc. Amer. B 光学物理, vol. 37, no. 11, pp. A184-A201, 2020 年 11 月
[76] M. A. Khalighi and M. Uysal, "Survey on free space optical communication: A communication theory perspective," IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 2231-2258, 4th Quart., 2014.
[76] M. A. Khalighi 和 M. Uysal, "自由空间光通信概述: 通信理论视角," IEEE 通信调查教程, vol. 16, no. 4, pp. 2231-2258, 2014 年第 4 季度.
[77] K. J. Grayshan, F. S. Vetelino, and C. Y. Young, "A marine atmospheric spectrum for laser propagation," Waves Random Complex Media, vol. 18, no. 1, pp. 173-184, 2008.
[77] K. J. Grayshan, F. S. Vetelino 和 C. Y. Young, "用于激光传播的海洋大气光谱," Waves Random Complex Media, vol. 18, no. 1, pp. 173-184, 2008 年.
[78] I. Toselli, B. Agrawal, and S. Restaino, "Light propagation through anisotropic turbulence," J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 28, no. 3, pp. 483-488, Mar. 2011.
[78] I. Toselli, B. Agrawal 和 S. Restaino, "各向异性湍流中的光传播," J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 28, no. 3, pp. 483-488, 2011 年 3 月.
[79] C. A. Friehe, J. C. L. Rue, F. H. Champagne, C. H. Gibson, and G. F. Dreyer, "Effects of temperature and humidity fluctuations on the optical refractive index in the marine boundary layer," J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 65, no. 12, pp. 1502-1511, Dec. 1975.
[79] C. A. Friehe, J. C. L. Rue, F. H. Champagne, C. H. Gibson, 和 G. F. Dreyer, "温度和湿度波动对海洋边界层光学折射率的影响," J. Opt. Soc. Amer. A, 光学图像科学, vol. 65, no. 12, pp. 1502-1511, 1975 年 12 月.
[80] G. A. Papavgeris, A. N. Stassinakis, H. E. Nistazakis, E. V. Chatzikontis, A. D. Tsigopoulos, and V. Christofilakis, "Experimental attenuation coefficient estimation for FSO links over maritime area during summer time," in Proc. 10th Int. Conf. Modern Circuits Syst. Technol. (MOCAST), 2021, pp. 1-4.
[80] G. A. Papavgeris, A. N. Stassinakis, H. E. Nistazakis, E. V. Chatzikontis, A. D. Tsigopoulos, 和 V. Christofilakis, "夏季海上区域 FSO 链路实验衰减系数估计," in Proc. 第 10 届现代电路系统技术国际会议 (MOCAST), 2021, pp. 1-4.
[81] M. Li and M. Cvijetic, "Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction," Appl. Opt., vol. 54, no. 6, pp. 1453-1462, Feb. 2015.
[81] M. Li 和 M. Cvijetic, "利用自适应光学进行海上大气中相干自由空间光通信以进行光束波前校正," Appl. Opt., vol. 54, no. 6, pp. 1453-1462, 2015 年 2 月.
[82] Y. Zhu, M. Chen, Y. Zhang, and Y. Li, "Propagation of the OAM mode carried by partially coherent modified Bessel-Gaussian beams in an anisotropic non-Kolmogorov Marine atmosphere," J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 33, no. 12, pp. 2277-2283, Dec. 2016.
[82] 朱勇,陈敏,张勇和李勇,“OAM 模式在各向异性非 Kolmogorov 海洋大气中由部分相干修正贝塞尔-高斯光束传播”,J. Opt. Soc. Amer. A,Opt. Image Sci.,第 33 卷,第 12 期,第 2277-2283 页,2016 年 12 月。
[83] A. Trichili, K.-H. Park, M. Zghal, B. S. Ooi, and M.-S. Alouini, "Communicating using spatial mode multiplexing: Potentials, challenges, and perspectives," IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3175-3203, 4th Quart., 2019.
[83] A. Trichili,K.-H. Park,M. Zghal,B. S. Ooi 和 M.-S. Alouini,“利用空间模式复用进行通信:潜力,挑战和展望”,IEEE Commun. Surveys Tuts.,第 21 卷,第 4 期,第 3175-3203 页,2019 年第 4 季度。
[84] I. I. Kim and E. J. Korevaar, "Availability of free-space optics (FSO) and hybrid FSO/RF systems," in Proc. SPIE, vol. 4530, 2001, pp. 84-95.
[84] 金一一和 E. J. Korevaar,“自由空间光学(FSO)和混合 FSO/RF 系统的可用性”,在 Proc. SPIE 中,第 4530 卷,2001 年,第 84-95 页。
[85] F. Lázaro, R. Raulefs, W. Wang, F. Clazzer, and S. Plass, "VHF data exchange system (VDES): An enabling technology for maritime communications," CEAS Space J., vol. 11, no. 1, pp. 55-63, 2019.
[85] F. Lázaro, R. Raulefs, W. Wang, F. Clazzer, and S. Plass, "VHF 数据交换系统(VDES):海上通信的一项启用技术", CEAS Space J., vol. 11, no. 1, pp. 55-63, 2019.
[86] K. Gamache and P. Fogel, "Oceanographic datalink," in Proc. Oceans MTS/IEEE, vol. 3, 1999, pp. 1395-1403.
[86] K. Gamache and P. Fogel, "海洋数据链路", in Proc. Oceans MTS/IEEE, vol. 3, 1999, pp. 1395-1403.
[87] J. Hagenauer and W. Papke, "Data transmission for maritime and land mobiles using stored channel simulation," in Proc. IEEE 32nd Veh. Technol. Conf., vol. 32, 1982, pp. 379-383.
[87] J. Hagenauer and W. Papke, "使用存储通道仿真进行海上和陆地移动数据传输", in Proc. IEEE 32nd Veh. Technol. Conf., vol. 32, 1982, pp. 379-383.
[88] R. Lange, B. Smutny, B. Wandernoth, R. Czichy, and D. Giggenbach, "142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation," in Proc. SPIE, vol. 6105, 2006, pp. 68-76.
[88] R. Lange, B. Smutny, B. Wandernoth, R. Czichy, 和 D. Giggenbach, "基于同相位 BPSK 调制的 142 公里、5.625 Gbps 自由空间光链路," 在 Proc. SPIE, vol. 6105, 2006, pp. 68-76.
[89] Y.-Z. Qiao et al., "Performance of differential phase shift keying maritime laser communication over log-normal distribution turbulence channel," Optoelectron. Lett., vol. 17, no. 2, pp. 90-95, 2021.
[89] Y.-Z. Qiao 等人, "差分相移键控海上激光通信在对数正态分布湍流信道中的性能," Optoelectron. Lett., vol. 17, no. 2, pp. 90-95, 2021.
[90] C. M. Swenson, C. A. Steed, I. A. D. L. Rue, and R. Q. Fugate, "Low-power FLC-based retromodulator communications system," in Proc. SPIE, vol. 2990, 1997, pp. 296-310.
[90] C. M. Swenson, C. A. Steed, I. A. D. L. Rue, 和 R. Q. Fugate, "低功率 FLC 基础的反模调制通信系统," 在 Proc. SPIE, vol. 2990, 1997, pp. 296-310.
[91] S.-W. Jo, J.-H. Jang, S. Yu, and W. Shim, "A validation of field test results for LTE-maritime," IFAC PapersOnLine, vol. 51, no. 29, pp. 153-158, 2018.
[91] S.-W. Jo, J.-H. Jang, S. Yu, 和 W. Shim, "LTE-海事的现场测试结果验证," IFAC PapersOnLine, vol. 51, no. 29, pp. 153-158, 2018.
[92] G. S. Woods, A. Ruxton, C. Huddlestone-Holmes, and G. Gigan, "High-capacity, long-range, over ocean microwave link using the evaporation duct," IEEE J. Ocean. Eng., vol. 34, no. 3, pp. 323-330, Jul. 2009.
[92] G. S. Woods, A. Ruxton, C. Huddlestone-Holmes, 和 G. Gigan, "使用蒸发层的高容量、长距离、海上微波链路," IEEE J. Ocean. Eng., vol. 34, no. 3, pp. 323-330, 2009 年 7 月.
[93] J. Ma, J. Wang, and C. Yang, "Long-range microwave links guided by evaporation ducts," IEEE Commun. Mag., vol. 60, no. 5, pp. 68-72, May 2022.
[93] J. Ma, J. Wang, 和 C. Yang, "蒸发层引导的长距离微波链路," IEEE Commun. Mag., vol. 60, no. 5, pp. 68-72, 2022 年 5 月.
[94] J. Zhang, K. Yang, J. Meng, W. Li, E. Eide, and G. A. E. Vandenbosch, "Dual-band dual-polarized massive MIMO array for maritime applications," IEEE Sensors Lett., vol. 6, no. 1, pp. 1-4, Jan. 2022.
[94] J. Zhang, K. Yang, J. Meng, W. Li, E. Eide, and G. A. E. Vandenbosch, "海上应用的双频双极化大规模 MIMO 阵列," IEEE 传感器快报, vol. 6, no. 1, pp. 1-4, Jan. 2022.
[95] F. Bekkadal, "Emerging maritime communications technologies," in Proc. IEEE 9th Int. Conf. Intell. Transp. Syst. Telecommun. (ITST), 2009, pp. 358-363.
[95] F. Bekkadal, "新兴海上通信技术," in Proc. IEEE 第 9 届智能交通系统与通信国际会议 (ITST), 2009, pp. 358-363.
[96] T. Wei, W. Feng, N. Ge, and J. Lu, "Environment-aware coverage optimization for space-ground integrated maritime communications," IEEE Access, vol. 8, pp. 89205-89214, 2020.
[96] T. Wei, W. Feng, N. Ge, and J. Lu, "面向空地一体化海上通信的环境感知覆盖优化," IEEE 通讯, vol. 8, pp. 89205-89214, 2020.
[97] L. Mroueh, A. Kessab, P. Martins, S. Hethuin, and E. Vivier, "Radio resource dimensioning in a centralized ad-hoc maritime MIMO LTE network," in Proc. 36th IEEE Sarnoff Symp., 2015, pp. 128-133.
[97] L. Mroueh, A. Kessab, P. Martins, S. Hethuin, and E. Vivier, "无线资源在集中式自组织海上 MIMO LTE 网络中的维度确定," in Proc. 36th IEEE Sarnoff Symp., 2015, pp. 128-133.
[98] J. Y. Yu and P. H. J. Chong, "A survey of clustering schemes for mobile ad hoc networks," IEEE Commun. Surveys Tuts., vol. 7, no. 1, pp. 32-48, 1st Quart., 2005.
[98] J. Y. Yu and P. H. J. Chong, "移动自组织网络聚类方案综述," IEEE 通信调查和教程, vol. 7, no. 1, pp. 32-48, 2005 年第一季度.
[99] "Method for point-to-area predictions for terrestrial services in the frequency range to ," ITU, Geneva, Switzerland, ITU Recommendation ITU-R P. 1546-5, 2013.
[99] "在频率范围 进行地面服务点到区域的预测方法," ITU, 日内瓦, 瑞士, ITU 推荐 ITU-R P. 1546-5, 2013.
[100] A. Kessab, L. Mroueh, P. Martins, and S. Hethuin, "Impact of the ITU-R maritime propagation on the dimensioning of a centralized LTE MANET," in Proc. IEEE Wireless Commun. Netw. Conf., 2016, pp. 1-5.
[100] A. Kessab, L. Mroueh, P. Martins 和 S. Hethuin, "ITU-R 海事传播对集中 LTE MANET 尺寸的影响," in Proc. IEEE 无线通信和网络会议, 2016, pp. 1-5.
[101] R. Duan, J. Wang, H. Zhang, Y. Ren, and L. Hanzo, "Joint multicast beamforming and relay design for maritime communication systems," IEEE Trans. Green Commun. Netw., vol. 4, no. 1, pp. 139-151, Mar. 2020.
[101] R. Duan, J. Wang, H. Zhang, Y. Ren 和 L. Hanzo, "海上通信系统的联合组播波束成形和中继设计," IEEE Trans. Green Commun. Netw., vol. 4, no. 1, pp. 139-151, Mar. 2020.
[102] C. Zeng, J.-B. Wang, C. Ding, H. Zhang, M. Lin, and J. Cheng, "Joint optimization of trajectory and communication resource allocation for unmanned surface vehicle enabled maritime wireless networks," IEEE Trans. Commun., vol. 69, no. 12, pp. 8100-8115, Dec. 2021.
[102] C. Zeng, J.-B. Wang, C. Ding, H. Zhang, M. Lin 和 J. Cheng, "无人表面船启用的海上无线网络的轨迹和通信资源分配的联合优化," IEEE Trans. Commun., vol. 69, no. 12, pp. 8100-8115, Dec. 2021.
[103] C. Zeng, C. Chang, J.-B. Wang, C. Ding, H. Zhang, and J. Cheng, "Joint optimization of trajectory and power allocation for USV-assisted maritime wireless network," in Proc. 13th Int. Conf. Wireless Commun. Signal Process. (WCSP), 2021, pp. 1-5.
[103] 曾超, 常超, 王建斌, 丁超, 张辉, 程军, "USV 辅助海上无线网络轨迹和功率分配的联合优化," 第 13 届国际无线通信信号处理会议 (WCSP) 论文集, 2021, 页码 1-5.
[104] T. Yang, L. Kong, N. Zhao, and R. Sun, "Efficient energy and delay tradeoff for vessel communications in SDN based maritime wireless networks," IEEE Trans. Intell. Transp. Syst., vol. 22, no. 6, pp. 3800-3812, Jun. 2021.
[104] 杨涛, 孔磊, 赵宁, 孙睿, "基于 SDN 的海上无线网络船舶通信的高效能量和时延权衡," IEEE 智能交通系统交易, 第 22 卷, 第 6 期, 页码 3800-3812, 2021 年 6 月.
[105] V. A. Reddy and G. L. Stüber, "Wi-buoy: An energy-efficient wireless buoy network for real-time high-rate marine data acquisition," IEEE Access, vol. 9, pp. 130586-130600, 2021.
[105] 红迪维尔, 史德伯, "Wi-buoy: 用于实时高速海洋数据采集的节能无线浮标网络," IEEE Access, 第 9 卷, 页码 130586-130600, 2021.
[106] T. Wei, W. Feng, J. Wang, N. Ge, and J. Lu, "Exploiting the shipping lane information for energy-efficient maritime communications," IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 7204-7208, Jul. 2019.
[106] T. Wei, W. Feng, J. Wang, N. Ge, 和 J. Lu, "利用航道信息实现能效高的海上通信," IEEE 交通技术杂志, vol. 68, no. 7, pp. 7204-7208, 2019 年 7 月.
[107] S. S. Hassan, D. H. Kim, Y. K. Tun, N. H. Tran, and C. S. H. W. Saad, "Seamless and energy efficient maritime coverage in coordinated 6G space-air-sea non-terrestrial networks," 2022, arXiv:2201.08605.
[107] S. S. 哈桑, D. H. 金, Y. K. 屯, N. H. Tran, 和 C. S. H. W. 萨德, "协调的 6G 空中-海上-空间非地面网络中无缝且节能的海上覆盖," 2022 年, arXiv:2201.08605.
[108] A. Hosseini-Fahraji, K. Zeng, Y. Yang, and M. Manteghi, "A selfsustaining maritime mesh network," in Proc. United States Nat. Committee URSI Nat. Radio Sci. Meeting (USNC-URSI NRSM), 2019, pp. .
[108] A. Hosseini-Fahraji, K. 曾, Y. 杨, 和 M. Manteghi, "自持续的海上网状网络," 在美国国家委员会 URSI 国家无线电科学会议 (USNC-URSI NRSM) 论文集中, 2019 年, pp. .
[109] A. Hosseini-Fahraji et al., "Energy harvesting long-range marine communication," in Proc. IEEE INFOCOM Conf. Comput. Commun., 2020, pp. 2036-2045.
[109] A. Hosseini-Fahraji 等人,“能量收集远程海洋通信”,在 Proc. IEEE INFOCOM Conf. Comput. Commun.,2020 年,第 2036-2045 页。
[110] M. Martelli, P. Cassarà, A. Virdis, and N. Tonellotto, "The Internet of Ships," in Proc. ERCIM News, 2020, p. 123.
[110] M. Martelli,P. Cassarà,A. Virdis 和 N. Tonellotto,“船舶互联网”,在 Proc. ERCIM News,2020 年,第 123 页。
[111] G. Liu, R. Perez, J. A. Muñoz, and F. Regueira, "Internet of Ships: The future ahead," World J. Eng. Technol., vol. 4, no. 3, p. 220, 2016.
[111] G. Liu,R. Perez,J. A. Muñoz 和 F. Regueira,“船舶互联网:未来展望”,World J. Eng. Technol.,第 4 卷,第 3 期,第 220 页,2016 年。
[112] W. He, Z. Li, R. Malekian, X. Liu, and Z. Duan, "An Internet of Things approach for extracting featured data using AIS database: An application based on the viewpoint of connected ships," Symmetry, vol. 9, no. 9, p. 186, 2017.
[112] W. He,Z. Li,R. Malekian,刘兴和段振宇,“一种物联网方法,用于从 AIS 数据库提取特征数据:基于连接船舶视角的应用”,Symmetry,第 9 卷,第 9 期,页码 186,2017 年。
[113] L. A. Seders, C. A. Shea, M. D. Lemmon, P. A. Maurice, and J. W. Talley, "LakeNet: An integrated sensor network for environmental sensing in lakes," Environ. Eng. Sci., vol. 24, no. 2, pp. 183-191, 2007.
[113] L.A. Seders,C.A. Shea,M.D. Lemmon,P.A. Maurice 和 J.W. Talley,“LakeNet:一个用于湖泊环境感知的集成传感器网络”,Environ. Eng. Sci.,第 24 卷,第 2 期,页码 183-191,2007 年。
[114] F. Regan et al., "A demonstration of wireless sensing for long term monitoring of water quality," in Proc. IEEE 34th Conf. Local Comput. Netw., 2009, pp. 819-825.
[114] F. Regan 等,“演示了无线传感,用于长期监测水质”,在 Proc. IEEE 34th Conf. Local Comput. Netw.,2009 年,页码 819-825。
[115] N. Jin, R. Ma, Y. Lv, X. Lou, and Q. Wei, "A novel design of water environment monitoring system based on WSN," in Proc. IEEE Int. Conf. Comput. Design Appl., vol. 2, 2010, pp. V2-593.
[115] N. Jin, R. Ma, Y. Lv, X. Lou, 和 Q. Wei, "基于 WSN 的水环境监测系统的新设计," 在 IEEE 国际计算设计与应用会议论文集中, vol. 2, 2010, pp. V2-593.
[116] C. A. Pérez, M. Jimenez, F. Soto, R. Torres, J. López, and A. Iborra, "A system for monitoring marine environments based on wireless sensor networks," in Proc. OCEANS IEEE-Spain, 2011, pp. 1-6.
[116] C. A. Pérez, M. Jimenez, F. Soto, R. Torres, J. López, 和 A. Iborra, "基于无线传感器网络的海洋环境监测系统," 在 OCEANS IEEE-Spain 会议论文集中, 2011, pp. 1-6.

[117] F. Adamo, F. Attivissimo, C. G. C. Carducci, and A. M. L. Lanzolla, "A smart sensor network for sea water quality monitoring," IEEE Sensors J., vol. 15, no. 5, pp. 2514-2522, May 2015.
[117] F. Adamo, F. Attivissimo, C. G. C. Carducci, 和 A. M. L. Lanzolla, "用于海水质量监测的智能传感器网络," IEEE 传感器杂志, vol. 15, no. 5, pp. 2514-2522, 2015 年 5 月.
[118] H. Ferreira et al., "Autonomous systems in remote areas of the ocean using BLUECOM + communication network," in Proc. IEEE OCEANS Anchorage, 2017, pp. 1-6.
[118] H. Ferreira 等人,“使用 BLUECOM + 通信网络在海洋偏远地区的自主系统”,见 IEEE OCEANS Anchorage 2017 论文集,第 1-6 页。
[119] R. Al-Zaidi, J. C. Woods, M. Al-Khalidi, and H. Hu, "Building novel VHF-based wireless sensor networks for the Internet of Marine Things," IEEE Sensors J., vol. 18, no. 5, pp. 2131-2144, Mar. 2018.
[119] R. Al-Zaidi, J. C. Woods, M. Al-Khalidi 和 H. Hu,“为海洋物联网构建新型基于 VHF 的无线传感器网络”,IEEE 传感器杂志,第 18 卷,第 5 期,2018 年 3 月,第 2131-2144 页。
[120] R. Mourya, W. Saafin, M. Dragone, and Y. Petillot, "Ocean monitoring framework based on compressive sensing using acoustic sensor networks," in Proc. OCEANS MTS/IEEE Charleston, 2018, pp. 1-10.
[120] R. Mourya, W. Saafin, M. Dragone 和 Y. Petillot,“基于声学传感器网络的压缩感知的海洋监测框架”,见 OCEANS MTS/IEEE Charleston 2018 论文集,第 1-10 页。
[121] N. Morozs et al., "Robust TDA-MAC for practical underwater sensor network deployment: Lessons from USMART sea trials," in Proc. 13th ACM Int. Conf. Underwater Netw. Syst., 2018, pp. 1-8.
[121] N. Morozs 等,"实用水下传感器网络部署的稳健 TDA-MAC: USMART 海上试验的教训," 刊登于第 13 届 ACM 国际水下网络系统会议论文集,2018 年,第 1-8 页。
[122] C. A. Pérez, F. S. Valles, R. T. Sánchez, M. J. Buendía, F. López-Castejón, and J. G. Cervera, "Design and deployment of a wireless sensor network for the Mar Menor coastal observation system,' IEEE J. Ocean. Eng., vol. 42, no. 4, pp. 966-976, Oct. 2017.
[122] C. A. Pérez, F. S. Valles, R. T. Sánchez, M. J. Buendía, F. López-Castejón 和 J. G. Cervera,"马尔梅诺沿海观测系统的无线传感器网络设计与部署," IEEE 海洋工程杂志,第 42 卷,第 4 期,2017 年 10 月,第 966-976 页。
[123] Y. Hu, Y. Zheng, and H. Liu, "A route maintenance method for marine mobile sensor network based on ring broadcast mechanism," in Proc. IEEE 18th Int. Conf. Commun. Technol. (ICCT), 2018, pp. 533-537.
[123] Y. Hu, Y. Zheng 和 H. Liu,"基于环形广播机制的海洋移动传感器网络路由维护方法," 刊登于第 18 届 IEEE 国际通信技术会议 (ICCT) 论文集,2018 年,第 533-537 页。
[124] K. Salah et al., "IoT-enabled shipping container with environmental monitoring and location tracking," in Proc. IEEE 17th Annи. Consum. Commun. Netw. Conf. (CCNC), 2020, pp. 1-6.
[124] K. Salah 等,"具有环境监测和位置跟踪功能的物联网智能船运集装箱",在 IEEE 第 17 届消费者通信网络会议(CCNC)中,2020 年,第 1-6 页。
[125] Y. Yang, M. Zhong, H. Yao, F. Yu, X. Fu, and O. Postolache, "Internet of Things for smart ports: Technologies and challenges," IEEE Instrum. Meas. Mag., vol. 21, no. 1, pp. 34-43, Feb. 2018.
[125] Y. Yang,M. Zhong,H. Yao,F. Yu,X. Fu 和 O. Postolache,"智能港口的物联网:技术和挑战",IEEE 仪器测量杂志,第 21 卷,第 1 期,2018 年 2 月,第 34-43 页。
[126] T. Adiono, A. M. Toha, S. Pamungkas, N. Sutisna, and E. Sumiarsih, "Internet of Things for marine aquaculture," in Proc. Int. Symp. Electron. Smart Devices (ISESD), 2021, pp. 1-5.
[126] T. Adiono,A. M. Toha,S. Pamungkas,N. Sutisna 和 E. Sumiarsih,"海洋水产养殖的物联网",在 2021 年国际电子智能设备研讨会(ISESD)中,第 1-5 页。
[127] K. R. Sai, P. J. Nayak, K. A. Kumar, and A. D. Dutta, "Oil spill management system based on Internet of Things," in Proc. IEEE-HYDCON, 2020, pp. 1-5
[127] K. R. Sai, P. J. Nayak, K. A. Kumar, 和 A. D. Dutta, "基于物联网的油污管理系统," 在 IEEE-HYDCON 会议论文集中, 2020, 页码 1-5
[128] I. F. Akyildiz, D. Pompili, and T. Melodia, "Challenges for efficient communication in underwater acoustic sensor networks," SIGBED Rev., vol. 1, no. 2, pp. 3-8, 2004
[128] I. F. Akyildiz, D. Pompili, 和 T. Melodia, "水下声学传感器网络高效通信的挑战," SIGBED Rev., 卷 1, 第 2 期, 页码 3-8, 2004
[129] S. Sendra, J. Lloret, J. M. Jimenez, and L. Parra, "Underwater acoustic modems," IEEE Sensors J., vol. 16, no. 11, pp. 4063-4071, Jun. 2016.
[129] S. Sendra, J. Lloret, J. M. Jimenez, 和 L. Parra, "水下声学调制解调器," IEEE 传感器杂志, 卷 16, 第 11 期, 页码 4063-4071, 2016 年 6 月.
[130] M. V. Jamali, J. A. Salehi, and F. Akhoundi, "Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme," IEEE Trans. Commun., vol. 65, no. 3, pp. 1176-1192, Mar. 2017.
[130] M. V. Jamali, J. A. Salehi, 和 F. Akhoundi, "具有空间多样性的水下无线光通信系统的性能研究:MIMO 方案," IEEE 通信学报, vol. 65, no. 3, pp. 1176-1192, 2017 年 3 月.
[131] Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, "A survey of underwater optical wireless communications," IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 204-238, 1st Quart., 2016.
[131] Z. Zeng, S. Fu, H. Zhang, Y. Dong, 和 J. Cheng, "水下光无线通信综述," IEEE 通信调查教程, vol. 19, no. 1, pp. 204-238, 2016 年第一季度.
[132] M. C. Domingo, "Magnetic induction for underwater wireless communication networks," IEEE Trans. Antennas Propag.., vol. 60, no. 6, pp. 2929-2939, Jun. 2012.
[132] M. C. Domingo, "水下无线通信网络的磁感应," IEEE 天线和传播学报, vol. 60, no. 6, pp. 2929-2939, 2012 年 6 月.
[133] I. F. Akyildiz, P. Wang, and Z. Sun, "Realizing underwater communication through magnetic induction," IEEE Commun. Mag., vol. 53, no. 11, pp. 42-48, Nov. 2015
[133] I. F. Akyildiz, P. Wang, 和 Z. Sun, "通过磁感应实现水下通信," IEEE 通讯杂志, vol. 53, no. 11, pp. 42-48, 2015 年 11 月
[134] R. A. Khalil and N. Saeed, "Optimal relay placement in magnetic induction-based Internet of Underwater Things," IEEE Sensors J., vol. 21, no. 1, pp. 821-828, Jan. 2021.
[134] R. A. Khalil 和 N. Saeed, "基于磁感应的水下物联网中的最佳中继放置," IEEE 传感器杂志, vol. 21, no. 1, pp. 821-828, 2021 年 1 月
[135] A. Celik, N. Saeed, B. Shihada, T. Y. Al-Naffouri, and M.-S. Alouini, "Opportunistic routing for opto-acoustic Internet of Underwater Things," IEEE Internet Things J., vol. 9, no. 3, pp. 2165-2179, Feb. 2022.
[135] A. Celik, N. Saeed, B. Shihada, T. Y. Al-Naffouri, 和 M.-S. Alouini, "光声水下物联网的机会式路由," IEEE 物联网杂志, vol. 9, no. 3, pp. 2165-2179, 2022 年 2 月
[136] N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, "Energy harvesting hybrid acoustic-optical underwater wireless sensor networks localization," Sensors, vol. 18, no. 1, p. 51, 2017.
[136] N. Saeed, A. Celik, T. Y. Al-Naffouri, 和 M.-S. Alouini, "能量收集混合声光水下无线传感器网络定位," 传感器, 卷 18, 无. 1, 页 51, 2017.
[137] C.-C. Kao, Y.-S. Lin, G.-D. Wu, and C.-J. Huang, "A comprehensive study on the Internet of Underwater Things: Applications, challenges, and channel models," Sensors, vol. 17, no. 7, p. 1477, 2017.
[137] C.-C. Kao, Y.-S. Lin, G.-D. Wu, 和 C.-J. Huang, "关于水下物联网的全面研究: 应用, 挑战和信道模型," 传感器, 卷 17, 无. 7, 页 1477, 2017.
[138] P. Lacovara, "High-bandwidth underwater communications," Marine Technol. Soc. J., vol. 42, no. 1, pp. 93-102, 2008.
[138] P. Lacovara, "高带宽水下通信," 海洋技术学会杂志, 卷 42, 无. 1, 页 93-102, 2008.
[139] T. Qiu, Z. Zhao, T. Zhang, C. Chen, and C. P. Chen, "Underwater Internet of Things in smart ocean: System architecture and open issues," IEEE Trans. Ind. Informat., vol. 16, no. 7, pp. 4297-4307, Jul. 2020.
[139] 邱涛,赵哲,张涛,陈超,陈昌平,“智能海洋中的水下物联网:系统架构和开放问题”,IEEE 工业信息学会刊,第 16 卷,第 7 期,页码 4297-4307,2020 年 7 月。
[140] M. Jahanbakht, W. Xiang, L. Hanzo, and M. R. Azghadi, "Internet of Underwater Things and big marine data analytics-A comprehensive survey," IEEE Commun. Surveys Tuts., vol. 23, no. 2, pp. 904-956, 2nd Quart., 2021.
[140] 玛丽亚·贾汉巴赫特,韦克斯,卢卡斯·汉佐,穆罕默德·阿兹加迪,“水下物联网和大型海洋数据分析-综合调查”,IEEE 通信调查教程,第 23 卷,第 2 期,页码 904-956,2021 年第二季度。
[141] X. Hou et al., "Machine-learning-aided mission-critical Internet of Underwater Things," IEEE Netw., vol. 35, no. 4, pp. 160-166, Jul./Aug. 2021.
[141] 侯旭等,“机器学习辅助的关键任务水下物联网”,IEEE 网络,第 35 卷,第 4 期,页码 160-166,2021 年 7 月/8 月。
[142] Z. Fang, J. Wang, C. Jiang, Q. Zhang, and Y. Ren, "AoI-inspired collaborative information collection for AUV-assisted Internet of Underwater Things," IEEE Internet Things J., vol. 8, no. 19, pp. 14559-14571, Oct. 2021.
[142] Z. Fang, J. Wang, C. Jiang, Q. Zhang, and Y. Ren, "AoI 启发的 AUV 辅助水下物联网协作信息收集," IEEE 物联网杂志, vol. 8, no. 19, pp. 14559-14571, 2021 年 10 月.
[143] J. I. de O. Filho, A. Trichili, B. S. Ooi, M.-S. Alouini, and K. N. Salama, "Toward self-powered Internet of Underwater Things devices," IEEE Commun. Mag., vol. 58, no. 1, pp. 68-73, Jan. 2020.
[143] J. I. de O. Filho, A. Trichili, B. S. Ooi, M.-S. Alouini, and K. N. Salama, "面向自供电水下物联网设备的发展," IEEE 通信杂志, vol. 58, no. 1, pp. 68-73, 2020 年 1 月.
[144] Y. Bai et al., "High-performance triboelectric nanogenerators for selfpowered, in-situ and real-time water quality mapping," Nano Energy, vol. 66, Dec. 2019, Art. no. 104117.
[144] Y. Bai 等人, "用于自供电、原位和实时水质映射的高性能摩擦电纳米发电机," 纳米能源, vol. 66, 2019 年 12 月, Art. no. 104117.
[145] A. Chandrasekhar, V. Vivekananthan, and S.-J. Kim, "A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking," Nano Energy, vol. 69, Mar. 2020, Art. no. 104439.
[145] A. Chandrasekhar, V. Vivekananthan, and S.-J. Kim, "用于水波能量收集和自供电位置跟踪的全包覆椭圆形混合发电机," 《纳米能源》, 2020 年 3 月, 卷 69, 文章编号 104439.
[146] G. Hu, X. Ma, and Q.-Y. Fan, "The applications of COMPASS navigation satellite system to marine fishing industry," Fishery Modernization, vol. 37, no. 1, pp. 60-62, 2010.
[146] G. 胡, X. 马, and Q.-Y. 范, "COMPASS 导航卫星系统在海洋渔业中的应用," 《渔业现代化》, 2010 年, 卷 37, 第 1 期, 页码 60-62.
[147] L. Jensen, "Challenges in maritime cyber-resilience," Technol. Innov. Manag. Rev., vol. 5, no. 4, p. 35, 2015.
[147] L. Jensen, "海上网络韧性面临的挑战," 《技术创新管理评论》, 2015 年, 卷 5, 第 4 期, 第 35 页.
[148] B. Silverajan and P. Vistiaho, "Enabling cybersecurity incident reporting and coordinated handling for maritime sector," in Proc. 14th Asia Joint Conf. Inf. Security (AsiaJCIS), 2019, pp. 88-95.
[148] B. Silverajan 和 P. Vistiaho, "为海事部门启用网络安全事件报告和协调处理," 在第 14 届亚洲联合信息安全会议 (AsiaJCIS) 论文集中, 2019, 页码 88-95.
[149] H. Wang, O. L. Osen, G. Li, W. Li, H.-N. Dai, and W. Zeng, "Big data and Industrial Internet of Things for the maritime industry in Northwestern Norway," in Proc. TENCON IEEE Region 10 Conf., 2015 , pp. .
[149] H. Wang, O. L. Osen, G. Li, W. Li, H.-N. Dai 和 W. Zeng, "大数据和工业物联网在挪威西北部海事行业的应用," 在第十届 TENCON IEEE Region 10 会议论文集中, 2015, 页码 .
[150] X. Lin et al., "5G new radio evolution meets satellite communications: Opportunities, challenges, and solutions," 2019, arXiv:1903.11219.
[150] X. Lin 等人, "5G 新无线电演进与卫星通信相遇: 机遇, 挑战和解决方案," 2019, arXiv:1903.11219.
[151] I. Ali, N. Al-Dhahir, and J. Hershey, "Doppler characterization for LEO satellites," IEEE Trans. Commun., vol. 46, no. 3, pp. 309-313, Mar. 1998.
[151] I. Ali, N. Al-Dhahir, and J. Hershey, "LEO 卫星的多普勒特性研究," IEEE 通信学报, vol. 46, no. 3, pp. 309-313, 1998 年 3 月.
[152] X. Li, W. Feng, J. Wang, Y. Chen, N. Ge, and C.-X. Wang, "Enabling 5G on the ocean: A hybrid satellite-UAV-terrestrial network solution," IEEE Wireless Commun., vol. 27, no. 6, pp. 116-121, Dec. 2020.
[152] X. Li, W. Feng, J. Wang, Y. Chen, N. Ge, and C.-X. Wang, "海洋 5G 实现:一种混合卫星-UAV-地面网络解决方案," IEEE 无线通信, vol. 27, no. 6, pp. 116-121, 2020 年 12 月.
[153] N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, "Underwater optical wireless communications, networking, and localization: A survey," Ad Hoc Netw., vol. 94, Nov. 2019, Art. no. 101935.
[153] N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, "水下光无线通信、网络和定位:一项调查," Ad Hoc 网络, vol. 94, 2019 年 11 月, Art. no. 101935.
[154] M. Sait et al., "Dual-wavelength luminescent fibers receiver for wide field-of-view, gb/s underwater optical wireless communication," Opt. Exp., vol. 29, no. 23, pp. 38014-38026, Nov. 2021.
[154] M. Sait 等人,“用于宽视场、Gb/s 水下光无线通信的双波长发光光纤接收器”,Opt. Exp.,第 29 卷,第 23 期,页码 38014-38026,2021 年 11 月。
[155] O. Alkhazragi, A. Trichili, I. Ashry, T. K. Ng, M.-S. Alouini, and B. S. Ooi, "Wide-field-of-view optical detectors using fused fiber-optic tapers," Opt. Lett., vol. 46, no. 8, pp. 1916-1919, Apr. 2021.
[155] O. Alkhazragi,A. Trichili,I. Ashry,T. K. Ng,M.-S. Alouini 和 B. S. Ooi,“使用熔合光纤锥制成的宽视场光探测器”,Opt. Lett.,第 46 卷,第 8 期,页码 1916-1919,2021 年 4 月。
[156] B. S. Ooi, O. Alkhazragi, and A. Trichili, "Wide-field-of-view optical detectors based on fused fiber-optic tapers for high-speed optical wireless communication," in Proc. SPIE, vol. 12152, 2022, pp. 1-6.
[156] B. S. Ooi,O. Alkhazragi 和 A. Trichili,“基于熔合光纤锥的宽视场光探测器用于高速光无线通信”,在 Proc. SPIE 中,第 12152 卷,2022 年,页码 1-6。
[157] P. D. Diamantoulakis, G. K. Karagiannidis, and Z. Ding, "Simultaneous lightwave information and power transfer (SLIPT)," IEEE Trans. Green Commun. Netw., vol. 2, no. 3, pp. 764-773, Sep. 2018.
[157] P. D. Diamantoulakis, G. K. Karagiannidis, 和 Z. Ding, "同时光波信息和功率传输(SLIPT)," IEEE Trans. Green Commun. Netw., vol. 2, no. 3, pp. 764-773, 2018 年 9 月.
[158] J. I. de O. Filho, A. Trichili, B. S. Ooi, M.-S. Alouini, and K. N. Salama, "Self-powered weather station for remote areas and difficult-access locations," Opt. Exp., vol. 30, no. 2, pp. 2668-2679, Jan. 2022.
[158] J. I. de O. Filho, A. Trichili, B. S. Ooi, M.-S. Alouini, 和 K. N. Salama, "自供电气象站用于偏远地区和难以进入的地点," Opt. Exp., vol. 30, no. 2, pp. 2668-2679, 2022 年 1 月.
[159] W. Saad, M. Bennis, and M. Chen, "A vision of 6G wireless systems: Applications, trends, technologies, and open research problems," IEEE Netw., vol. 34, no. 3, pp. 134-142, May/Jun. 2020.
[159] W. Saad, M. Bennis, 和 M. Chen, "6G 无线系统的愿景: 应用、趋势、技术和开放性研究问题," IEEE Netw., vol. 34, no. 3, pp. 134-142, 2020 年 5 月/6 月.
[160] K. K.O. et al., "Opening Terahertz for everyday applications," IEEE Commun. Mag., vol. 57, no. 8, pp. 70-76, Aug. 2019.
[160] K. K.O. 等,"打开太赫兹在日常应用中的应用",IEEE 通讯杂志,第 57 卷,第 8 期,页码 70-76,2019 年 8 月。
[161] H. Sarieddeen, N. Saeed, T. Y. Al-Naffouri, and M.-S. Alouini, "Next generation Terahertz communications: A rendezvous of sensing, imaging, and localization," IEEE Commun. Mag., vol. 58, no. 5, pp. 69-75, May 2020.
[161] H. Sarieddeen, N. Saeed, T. Y. Al-Naffouri,和 M.-S. Alouini,"下一代太赫兹通信: 感知、成像和定位的相会",IEEE 通讯杂志,第 58 卷,第 5 期,页码 69-75,2020 年 5 月。
[162] M. El-Absi, A. A. Abbas, A. Abuelhaija, F. Zheng, K. Solbach, and T. Kaiser, "High-accuracy indoor localization based on chipless RFID systems at THz band," IEEE Access, vol. 6, pp. 54355-54368, 2018.
[162] M. El-Absi, A. A. Abbas, A. Abuelhaija, F. Zheng,K. Solbach,和 T. Kaiser,"基于 THz 波段的无芯片 RFID 系统的高精度室内定位",IEEE Access,第 6 卷,页码 54355-54368,2018 年。
[163] C. Huang et al., "Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends," IEEE Wireless Commun., vol. 27, no. 5, pp. 118-125, Oct. 2020.
[163] 黄 C.等人,“全息 MIMO 表面用于 6G 无线网络:机遇、挑战和趋势”,IEEE 无线通信,第 27 卷,第 5 期,页码 118-125,2020 年 10 月。
[164] C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, P. Popovski, and M. Debbah, "Seven defining features of Terahertz (THz) wireless systems: A fellowship of communication and sensing," IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 967-993, 2nd Quart., 2022.
[164] Chaccour C., Soorki M. N., Saad W., Bennis M., Popovski P., 和 Debbah M.,“太赫兹(THz)无线系统的七个定义特征:通信和感知的联合体”,IEEE 通信调查教程,第 24 卷,第 2 期,页码 967-993,2022 年第二季度。

[165] H. Ye, G. Y. Li, and B.-H. Juang, "Power of deep learning for channel estimation and signal detection in OFDM systems," IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114-117, Feb. 2018.
[165] 叶 H., 李 G. Y., 和 Juang B.-H.,“深度学习在 OFDM 系统中的信道估计和信号检测的能力”,IEEE 无线通信信函,第 7 卷,第 1 期,页码 114-117,2018 年 2 月。
[166] L. Darwesh and N. S. Kopeika, "Deep learning for improving performance of OOK modulation over FSO turbulent channels," IEEE Access, vol. 8, pp. 155275-155284, 2020.
[166] L. Darwesh 和 N. S. Kopeika,"深度学习用于改善 FSO 紊流通道上 OOK 调制性能",IEEE Access,第 8 卷,第 155275-155284 页,2020 年。
[167] A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. Ten Brink, "OFDM-Autoencoder for end-to-end learning of communications systems," in Proc. IEEE 19th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), 2018, pp. 1-5.
[167] A. Felix,S. Cammerer,S. Dörner,J. Hoydis 和 S. Ten Brink,"用于端到端学习通信系统的 OFDM-Autoencoder",在 IEEE 第 19 届国际信号处理高级无线通信研讨会 (SPAWC) 论文集中,2018 年,第 1-5 页。
[168] H. Zhang, T. Zhou, T. Xu, Y. Wang, and H. Hu, "FNN-based prediction of wireless channel with atmospheric duct," in Proc. IEEE Int. Conf. Сотmиn. (ICC), 2021, pp. 1-6.
[168] H. Zhang,T. Zhou,T. Xu,Y. Wang 和 H. Hu,"基于 FNN 的大气导管无线信道预测",在 IEEE 国际通信大会 (ICC) 论文集中,2021 年,第 1-6 页。
[169] A. Lionis, K. Peppas, H. E. Nistazakis, A. Tsigopoulos, K. Cohn, and A. Zagouras, "Using machine learning algorithms for accurate received optical power prediction of an FSO link over a maritime environment," Photonics, vol. 8, no. 6, p. 212, 2021.
[169] A. Lionis, K. Peppas, H. E. Nistazakis, A. Tsigopoulos, K. Cohn, and A. Zagouras,"使用机器学习算法准确预测海上自由空间光通信链路接收光功率," 光子学, vol. 8, no. 6, p. 212, 2021.
[170] Y. Yang, Y. Li, W. Zhang, F. Qin, P. Zhu, and C.-X. Wang, "Generativeadversarial-network-based wireless channel modeling: Challenges and opportunities," IEEE Commun. Mag., vol. 57, no. 3, pp. 22-27, Mar. 2019
[170] Y. Yang, Y. Li, W. Zhang, F. Qin, P. Zhu, and C.-X. Wang, "基于生成对抗网络的无线信道建模: 挑战与机遇," IEEE 通信杂志, vol. 57, no. 3, pp. 22-27, 2019 年 3 月
[171] D. Briantcev, M. A. Cox, A. Trichili, A. V. Drozdov, B. S. Ooi, and M.-S. Alouini, "Efficient channel modeling of structured light in turbulence using generative adversarial networks," Opt. Exp., vol. 30, no. 5 , pp. 7238-7252, Feb. 2022.
[171] D. Briantcev, M. A. Cox, A. Trichili, A. V. Drozdov, B. S. Ooi, and M.-S. Alouini, "利用生成对抗网络高效地对湍流中的结构光进行信道建模," 光学表达, vol. 30, no. 5, pp. 7238-7252, 2022 年 2 月
[172] U. Demirhan and A. Alkhateeb, "Integrated sensing and communication for 6G: Ten key machine learning roles," 2022, arXiv:2208.02157.
[172] 乌迪米尔汗和 A. Alkhateeb,“6G 的集成感知和通信:十大机器学习角色”,2022 年,arXiv:2208.02157。
[173] M.-A. Lahmeri, M. A. Kishk, and M.-S. Alouini, "Artificial intelligence for UAV-enabled wireless networks: A survey," IEEE Open J. Commun. Soc., vol. 2, pp. 1015-1040, 2021.
[173] M.-A. Lahmeri,M. A. Kishk 和 M.-S. Alouini,“用于无人机无线网络的人工智能:一项调查”,IEEE Open J. Commun. Soc.,第 2 卷,第 1015-1040 页,2021 年。
[174] T. Yang, J. Chen, and N. Zhang, "AI-empowered maritime Internet of Things: A parallel-network-driven approach," IEEE Netw., vol. 34, no. 5, pp. 54-59, Sep./Oct. 2020.
[174] T. Yang,J. Chen 和 N. Zhang,“AI 赋能的海事物联网:并行网络驱动方法”,IEEE Netw.,第 34 卷,第 5 期,第 54-59 页,2020 年 9 月/10 月。
[175] Z. Ji, Y. Fu, J. Li, Z. Zhao, and W. Mai, "Photoacoustic communication from the air to underwater based on low-cost passive relays," IEEE Сотmиn. Mag., vol. 59, no. 1, pp. 140-143, Jan. 2021.
[175] Z. 季, Y. 付, J. 李, Z. 赵, 和 W. 麦, "基于低成本被动中继的空中到水下的光声通信," IEEE 通信杂志, vol. 59, no. 1, pp. 140-143, 2021 年 1 月.
[176] M. Rhodes, D. Wolfe, and B. Hyland, "Underwater communications system comprising relay transceiver," U.S. Patent 7877 059, May 2011.
[176] M. 罗兹, D. 沃尔夫, 和 B. 海兰德, "包括中继收发器的水下通信系统," 美国专利 7877 059, 2011 年 5 月.
[177] X. Sun, M. Kong, C. Shen, C. H. Kang, T. K. Ng, and B. S. Ooi, "On the realization of across wavy water-air-interface diffuse-line-of-sight communication based on an ultraviolet emitter," Opt. Exp., vol. 27, no. 14, pp. 19635-19649, 2019.
[177] X. 孙, M. 孔, C. 沈, C. H. 康, T. K. 吴, 和 B. S. 欧伊, "基于紫外发射器实现跨波浪水-空界面扩散直视通信," 光学表达, vol. 27, no. 14, pp. 19635-19649, 2019 年.
[178] L.-K. Chen, Y. Shao, and Y. Di, "Underwater and water-air optical wireless communication," J. Lightw. Technol., vol. 40, no. 5, pp. 1440-1452, Mar. 1, 2022
[178] 陈联科,邵阳,迪悦,“水下和水空气光无线通信”,光技术杂志,第 40 卷,第 5 期,页码 1440-1452,2022 年 3 月 1 日
[179] F. Tonolini and F. Adib, "Networking across boundaries: Enabling wireless communication through the water-air interface," in Proc. Conf. ACM Special Interest Group Data Commun., 2018, pp. 117-131.
[179] F. Tonolini 和 F. Adib,“穿越界面的网络通信:通过水-空气界面实现无线通信”,在 ACM 数据通信特别兴趣小组会议论文集中,2018 年,页码 117-131
Fahad S. Alqurashi (Student Member, IEEE) received the M.Sc. degree in electrical engineering from the King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, where he is currently pursuing the Ph.D. degree.
Fahad S. Alqurashi(IEEE 学生会员)在沙特阿拉伯图瓦勒的阿卜杜拉科技大学获得电气工程硕士学位,目前正攻读博士学位。
His areas of interest include maritime communication and free space optics.
他的兴趣领域包括海上通信和自由空间光学。
Abderrahmen Trichili (Senior Member, IEEE) received the Diplôme d'Ingénieur and Ph.D. degrees in information and communication technology from the l'Ecole Supérieur des Communications de Tunis (SUP'COM, Tunisia), Ariana, Tunisia, in 2013 and 2017, respectively.
Abderrahmen Trichili(IEEE 高级会员)于 2013 年和 2017 年分别从突尼斯阿里亚纳(Tunisia)的突尼斯通信高等学院(SUP'COM)获得信息与通信技术工程师学位和博士学位。
is currently a Research Scientist with the CEMSE, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. His current areas of interest include optical wireless communication, free space optics, space-division multiplexing, and simultaneous lightwave information and power transfer.
目前是沙特阿拉伯 Thuwal 的阿卜杜拉国王科技大学(King Abdullah University of Science and Technology)CEMSE 的研究科学家。他目前感兴趣的领域包括光无线通信、自由空间光学、空间分集复用和同时光波信息和能量传输。
Nasir Saeed (Senior Member, IEEE) received the B.Sc. degree in telecommunication from the University of Engineering and Technology Peshawar, Peshawar, Pakistan, in 2009, the M.Sc. degree in satellite navigation from the Polito di Torino, Turin, Italy, in 2012, and the Ph.D. degree in electronics and communication engineering from Hanyang University, Seoul, South Korea, in 2015.
Nasir Saeed(IEEE 高级会员)于 2009 年从巴基斯坦白沙瓦的白沙瓦工程技术大学获得电信学士学位,2012 年从都灵理工大学获得卫星导航硕士学位,2015 年从韩国首尔的汉阳大学获得电子与通信工程博士学位。
He was an Assistant Professor with the Department of Electrical Engineering, IQRA National University, Peshawar, from 2015 to 2017 . From July 2017 to December 2020, he was a Postdoctoral Research Fellow with the Communication Theory Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. He is currently an Associate Professor with the Department of Electrical and Communication Engineering, United Arab Emirates University, Al Ain, UAE. His current research interests include nonconventional communication networks, vertical networks, multidimensional signal processing, and localization.
他曾于 2015 年至 2017 年在白沙瓦的 IQRA 国立大学电气工程系担任助理教授。从 2017 年 7 月至 2020 年 12 月,他在沙特阿拉伯杜阿勒的阿卜杜拉国王科技大学通信理论实验室担任博士后研究员。目前是阿联酋艾因的阿拉伯联合酋长国大学电气与通信工程系副教授。他目前的研究兴趣包括非传统通信网络、垂直网络、多维信号处理和定位。
Dr. Saeed is an Associate Editor of IEEE WiRELess CommuniCATIons LETTERS.
Saeed 博士是 IEEE 无线通信快报的副编辑。
Boon S. Ooi (Senior Member, IEEE) received the Ph.D. degree from the University of Glasgow, Glasgow, U.K., in 1996.
邱文胜(IEEE 高级会员)于 1996 年从英国格拉斯哥大学获得博士学位。
is currently a Professor of Electrical Engineering with the King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. He focuses on the areas of GaN-based nanostructures and lasers for applications, such as solid-state lighting, visible light communications, and underwater wireless optical communications.
目前是沙特阿拉伯图瓦勒的阿卜杜拉国王科技大学电气工程教授。他专注于基于氮化镓的纳米结构和激光器在固态照明、可见光通信和水下无线光通信等应用领域的研究。
Prof. Ooi is a Fellow of the U.S. National Academy of Inventors.
邱教授是美国国家发明家学会的会士。
Mohamed-Slim Alouini (Fellow, IEEE) received the Ph.D. degree in electrical engineering from California Institute of Technology, Pasadena, CA, USA, in 1998.
Mohamed-Slim Alouini(IEEE 院士)于 1998 年从美国加州理工学院获得电气工程博士学位。
He joined the King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, as a Professor of Electrical Engineering in 2009. His current research interests include modeling, design, and performance analysis of wireless communication systems.
2009 年,他加入了沙特阿拉伯 Thuwal 的阿卜杜拉国王科技大学,担任电气工程教授。他目前的研究兴趣包括无线通信系统的建模、设计和性能分析。