7,025
Views  观点
0
CrossRef citations to date
迄今为止的交叉引用次数
0
Altmetric  Altmetric 社会媒体指标
Research Article 研究文章

The effect of AI-based inspiration on human design ideation
基于人工智能灵感对人类设计构思的影响

ORCID Icon &
金古金 & 玛丽·露·梅尔
Pages 81-98 | Received 15 Feb 2022, Accepted 05 Jan 2023, Published online: 22 Jan 2023
页面 81-98 | 收稿日期:2022 年 2 月 15 日,接受日期:2023 年 1 月 5 日,在线发表日期:2023 年 1 月 22 日

ABSTRACT 摘要

Computational co-creative systems in design allow users to collaborate with an AI partner on open-ended creative tasks in the design process. Co-creative systems can enhance design creativity by inspiring the exploration of novel design solutions in the initial idea generation. However, there are a lack of studies about the effect of co-creative systems on the cognitive process during ideation. This study examines the effect of an AI-based co-creative design tool that provides inspirations based on conceptual similarity on design ideation. It was hypothesized that conceptually similar inspirations have a significant influence on design ideation than random inspirations. The Collaborative Ideation Partner (CIP), a co-creative design system that provides inspirational images based on conceptual similarity, was developed to examine the effect of an AI Model for conceptual similarity on ideation during a design task. We conducted an experiment with a control condition in which the images are selected randomly from a curated database for inspiration and a treatment condition in which conceptual similarity is the basis for selecting the next inspiring image. Our findings show that the AI model of conceptual similarity used in the treatment condition has a significant effect on the novelty, variety, and quantity of ideas during human design ideation.
设计中的计算协作系统允许用户与人工智能合作伙伴在设计过程中的开放式创意任务上进行协作。协作系统可以通过激发在初始创意生成阶段探索新颖设计解决方案来增强设计创造力。然而,关于协作系统对构思过程中认知过程的影响的研究还不足。本研究考察了基于概念相似性提供灵感的人工智能协作设计工具对设计构思的影响。假设在设计构思中,概念上相似的灵感对设计构思具有显著影响,而非随机灵感。协作构思伙伴(CIP)是一种协作设计系统,根据概念相似性提供灵感图像,用于检验基于概念相似性的人工智能模型对设计任务中构思的影响。我们进行了一个实验,其中控制条件是从策划数据库中随机选择图像作为灵感,处理条件是基于概念相似性选择下一个激发图像。 我们的研究结果显示,在治疗条件下使用的概念相似性人工智能模型对人类设计构思过程中的新颖性、多样性和想法数量有显著影响。

1. Introduction 1. 引言

Computational co-creative systems provide an opportunity for users to collaborate with an AI partner in creative activities. Co-creative systems have been widely explored in the field of computational creativity (Davis, Hsiao, et al., Citation2015; Davis, Siddiqui, et al., Citation2019; Karimi, Grace, et al., Citation2018; Lin et al., Citation2020; Lucas & Martinho, Citation2017; Oh et al., Citation2018; Yannakakis et al., Citation2014). While co-creative systems can be applied to a variety of domains associated with creativity and encourage designers’ creative thinking, there are few studies that focus on evaluating co-creative systems. Understanding the effect of co-creative systems in the ideation process can aid in the design of co-creative systems and evaluation of the effectiveness of co-creative systems.
计算协作系统为用户提供了与人工智能伙伴在创意活动中合作的机会。协作系统在计算创造力领域得到了广泛探讨(Davis, Hsiao 等,2015 年; Davis, Siddiqui 等,2019 年; Karimi, Grace 等,2018 年; Lin 等,2020 年; Lucas & Martinho,2017 年; Oh 等,2018 年; Yannakakis 等,2014 年)。虽然协作系统可以应用于与创造力相关的各种领域,并鼓励设计师的创造性思维,但关于评估协作系统的研究还很少。了解协作系统在构思过程中的影响有助于设计协作系统并评估协作系统的有效性。

We developed an AI-based co-creative design tool, the Collaborative Ideation Partner (CIP), that provides inspirational images based on their conceptual similarity to the design task. The CIP was developed to support an experiment that evaluates the effect of an AI model for conceptual similarity on design ideation in a co-creative design system. In the study reported in this paper, the evaluation of the impact of AI-based inspirations is based on a cognitive model of ideation.
我们开发了一种基于人工智能的协作设计工具,名为协作创意伙伴(CIP),它根据与设计任务的概念相似性提供启发性图片。CIP 的开发旨在支持评估 AI 模型对协作设计系统中设计构思的概念相似性的影响的实验。在本文报告的研究中,基于构思的认知模型评估了基于 AI 启发的影响。

Most research on co-creative systems focuses on evaluating the usability and the interactive experience (Karimi, Grace, et al., Citation2018) rather than how the co-creative system influences creative cognition. To evaluate the usability and the user experience of co-creative systems, the studies often used qualitative approaches and a few studies have used a quantitative approach to evaluate the user experience of co-creative systems relying on questionnaires (Kantosalo & Riihiaho, Citation2019) such as the System Usability Scale (SUS) (Brooke, Citation1996) and the Creativity Support Index (CSI) (Cherry & Latulipe, Citation2014). This paper describes a quantitative approach to measure ideation as the basis for evaluating the effect of AI inspiration in a co-creative system. This quantitative approach provides generalized measures for evaluating the effect of co-creative systems in design. To measure ideation in a co-creative system, we employ a temporal analysis that focuses on the temporal patterns of novelty, variety, and quantity of ideas during the design process. The representation of the ideation process by temporal changes of ideas allows us to (1) compare an ideation process of a design session to other design sessions, (2) identify specific patterns of novelty, variety, and quantity of ideas in a design session, (3) identify specific contributions of the co-creative system associated with novelty, variety, and/or quantity. The main contributions of this paper are (1) the effect of the AI model for conceptual similarity on design ideation and (2) the method of analysis to describe the ideation process.
大多数关于共创系统的研究侧重于评估可用性和交互体验(Karimi,Grace 等,2018 年),而不是共创系统如何影响创造性认知。为了评估共创系统的可用性和用户体验,研究通常采用定性方法,少数研究采用定量方法来评估依赖问卷的共创系统的用户体验(Kantosalo&Riihiaho,2019 年),如系统可用性量表(SUS)(Brooke,1996 年)和创造力支持指数(CSI)(Cherry&Latulipe,2014 年)。本文描述了一种定量方法来衡量构思,作为评估共创系统中 AI 启发效果的基础。这种定量方法提供了评估设计中共创系统效果的一般化指标。为了衡量共创系统中的构思,我们采用了一种关注设计过程中新颖性、多样性和构思数量的时间分析。 通过思想变化的时间性变化来表示构思过程,使我们能够(1)将设计会话的构思过程与其他设计会话进行比较,(2)在设计会话中识别新颖性、多样性和思想数量的特定模式,(3)识别与新颖性、多样性和/或数量相关的共创系统的具体贡献。本文的主要贡献是(1)AI 模型对设计构思的概念相似性的影响,以及(2)描述构思过程的分析方法。

This study is motivated by a specific research question:
本研究的动机是一个特定的研究问题:

  • How do AI inspirations based on conceptual similarity impact human ideation in a creative design task?
    基于概念相似性的人工智能灵感如何影响人类在创意设计任务中的构思?

In our previous study (J. Kim, M. L. Maher, & S. Siddiqui, Citation2021a, Citation2021b), we hypothesized that conceptual similarity as the basis for inspiration increases the novelty, variety, and quantity of ideas during design ideation than inspiration based on a random selection of relevant images. The hypothesis was validated showing statistically significant differences between the control condition and the treatment condition in the quantities of idea novelty, variety, and quantity. To better understand the increases in the novelty, variety, and quantity of ideas, we focus on temporal patterns on ideation using AI-based conceptual similarity inspiration in this study. Prior research shows a time effect on idea generation: the rate of idea generation decreases over time (Howard-Jones & Murray, Citation2003; Liikkanen et al., Citation2009; Perttula & Liikkanen, Citation2006; Snyder et al., Citation2004; Tsenn et al., Citation2014). Based on this prior research, the following hypothesis was formulated:
在我们之前的研究中(J. Kim, M. L. Maher, & S. Siddiqui, 2021a, 2021b),我们假设以概念相似性作为灵感基础,比起基于随机选择相关图像的灵感,在设计构思过程中能够增加想法的新颖性、多样性和数量。该假设得到验证,显示在想法的新颖性、多样性和数量方面,控制条件和处理条件之间存在统计学上显著的差异。为了更好地理解想法的新颖性、多样性和数量的增加,我们在本研究中专注于使用基于人工智能的概念相似性灵感的构思中的时间模式。先前的研究显示了想法生成的时间效应:随着时间的推移,想法生成的速率会降低(Howard-Jones & Murray, 2003; Liikkanen et al., 2009; Perttula & Liikkanen, 2006; Snyder et al., 2004; Tsenn et al., 2014)。基于这些先前研究,提出了以下假设:

  • Idea novelty, variety, and quantity decrease more slowly with AI-based inspirations based on conceptual similarity than the temporal pattern of ideation with random inspirations in a creative design task.
    基于概念相似性的基于人工智能灵感的创意设计任务中,想法的新颖性、多样性和数量下降速度比随机灵感的时间模式更慢。

2. Background 2. 背景

2.1. Computational co-creative systems
2.1. 计算协作系统

The study of computational co-creative systems is one of the growing fields in computational creativity that involves human users collaborating with an AI agent to design creative artifacts. Co-creativity is a collaboration in which multiple parties collaboratively and synthetically contribute to the creative process in a blended manner (Mamykina et al., Citation2002).
计算协作系统的研究是计算创造力中一个不断发展的领域,涉及人类用户与人工智能代理合作设计创意作品。共创是多方协作并综合性地为创意过程做出贡献的合作方式(Mamykina 等,2002 年)。

Co-creative systems have been applied in different creative domains such as art, music, dance, drawing, and game design. The computational agent in a co-creative system can directly perform actions on a shared artifact, whereas others provide suggestions to inspire users for generating novel ideas. How a co-creative AI agent contributes to the creative process is a factor that distinguishes different co-creative systems.
共创系统已应用于不同的创意领域,如艺术、音乐、舞蹈、绘画和游戏设计。共创系统中的计算代理可以直接在共享的作品上执行动作,而其他人则提供建议,以激发用户产生新颖的想法。共创人工智能代理如何促进创意过程是区分不同共创系统的因素。

One of the co-creative interaction paradigms in design is the turn-taking action between a user and an AI agent in a shared artifact. Drawing Apprentice (Davis, Hsiao, et al., Citation2015) is a web-based co-creative drawing system that analyzes the user’s sketch and responds to the user’s sketch. In the Drawing Apprentice, the user starts drawing a sketch on the canvas, then the AI agent generates and adds a sketch based on the users’ sketch. DuetDraw (Oh et al., Citation2018) is another co-creative drawing system that enables users and the AI agent to draw pictures collaboratively. DuetDraw helps users perform drawing tasks, such as completing the rest of the object that the user was drawing, drawing the same object in a different style, suggesting an object that matches the picture, finding an empty space on the canvas, and automatically colorizing the sketches. Cobbie (Lin et al., Citation2020) is a mobile robot embedded with recurrent neural network (RNN)-based co-creative methods and mobile drawing system to support early-stage ideation. Cobbie provides inspirational sketches under the command of the designer.
设计中的共创互动范式之一是用户与 AI 代理在共享工件中的轮流行动。《绘画学徒》(Davis,Hsiao 等,2015)是一个基于网络的共创绘画系统,分析用户的草图并响应用户的草图。在《绘画学徒》中,用户在画布上开始绘制草图,然后 AI 代理根据用户的草图生成并添加草图。《双人绘画》(Oh 等,2018)是另一个共创绘画系统,使用户和 AI 代理能够协作绘制图片。《双人绘画》帮助用户执行绘图任务,例如完成用户正在绘制的对象的其余部分,以不同风格绘制相同的对象,建议与图片匹配的对象,找到画布上的空白空间,并自动给草图上色。《Cobbie》(Lin 等,2020)是一个嵌入了基于递归神经网络(RNN)的共创方法和移动绘图系统的移动机器人,用于支持早期构思。《Cobbie》在设计师的指令下提供灵感草图。

While the co-creative interaction paradigms above show the examples that an AI agent is directly involved in a creative activity by performing the same type of action with a user, another co-creative interaction paradigm provides suggestions to the user. The Sentient Sketchbook (Yannakakis et al., Citation2014) and 3Buddy (Lucas & Martinho, Citation2017) are co-creative systems for game level design. In both systems, the AI agent provides feedback and additional ideas to develop the game design. These systems use a turn-taking interaction but provide suggestions to the human designer rather than creating game levels directly.
以上的共创互动范式展示了 AI 代理直接参与创意活动的示例,通过与用户执行相同类型的动作。另一个共创互动范式为用户提供建议。《有感知的素描本》(Yannakakis 等,2014)和 3Buddy(Lucas&Martinho,2017)是用于游戏关卡设计的共创系统。在这两个系统中,AI 代理提供反馈和额外的想法来发展游戏设计。这些系统采用轮流互动,但提供建议给人类设计师,而不是直接创建游戏关卡。

Some recent studies investigated the role of AI and the impact of AI on ideation in human-AI collaboration. Liao et al. (Citation2020) presented three potential roles of AI-based inspirations in ideation that are closely related to the interaction paradigm providing suggestions described above: AI as representation creation (providing inspirations by suggesting texts or images), AI as an empathy trigger (supporting the designer’s descriptive thinking), and AI as engagement (helping the designer avoid fossilization and perform typical design actions). Figoli et al. (Citation2022) claimed that the role of AI in human-AI collaboration relies on the capability of AI (i.e., AI as a teammate when AI performance is better than human performance and AI as external stimuli when AI performance is worse than human performance). While the roles of AI emphasize the positive impact of AI in human-AI collaboration, Pandya et al. (Citation2019) and Zhang et al. (Citation2021) showed that human-AI collaboration can produce better outcomes when the AI contributes a better performance than the human. In other words, it is likely to produce poorer outcomes if the AI performs the same or worse than the human. These studies indicate that the roles and effects of AI in human-AI collaboration need further exploration.
一些最近的研究调查了人工智能在人工智能协作中的作用以及对构思的影响。廖等人(2020)提出了人工智能基于灵感在构思中的三种潜在角色,这些角色与上述提供建议的交互范式密切相关:人工智能作为表征创造(通过建议文本或图像提供灵感)、人工智能作为共情触发器(支持设计师的描述性思维)以及人工智能作为参与(帮助设计师避免僵化并执行典型的设计行为)。Figoli 等人(2022)声称人工智能在人工智能协作中的角色取决于人工智能的能力(即当人工智能表现优于人类表现时,人工智能作为队友,当人工智能表现不如人类时,人工智能作为外部刺激)。尽管人工智能的角色强调了人工智能在人工智能协作中的积极影响,但 Pandya 等人(2019)和 Zhang 等人(2021)表明,当人工智能的表现优于人类时,人工智能协作可以产生更好的结果。换句话说,如果人工智能的表现与人类相同或不如人类,可能会产生较差的结果。 这些研究表明,人工智能在人工智能协作中的角色和影响需要进一步探讨。

A co-creative system that is closely related to our co-creative system is the Creative Sketching Partner (CSP) (Davis, Siddiqui, et al., Citation2019; Karimi, Rezwana, et al., Citation2020). The CSP presents sketches of varying visual and conceptual similarity based on the designer’s task and sketch. Users can control the parameters of the algorithm by specifying the amount of visual and conceptual similarity. Karimi, Rezwana, et al. (Citation2020) focuses on identifying relationships between the AI model of visual and conceptual similarity and three types of design creativity: combinatorial, exploratory, and transformational. The findings suggest that inspiration related to conceptual similarity is more associated with transformational creativity and inspiration related to visual similarity is more associated with combinatorial creativity. In contrast, this paper focuses on the cognitive process of ideation rather than the creativity of the outcome. A comparison of the Comparison of Creative Sketching Partner (Davis, Siddiqui, et al., Citation2019; Karimi, Rezwana, et al., Citation2020) and the Collaborative Ideation Partner (this paper) is shown in
一个与我们的共创系统密切相关的共创系统是创意素描伙伴(CSP)(Davis,Siddiqui 等,2019 年;Karimi,Rezwana 等,2020 年)。CSP 根据设计师的任务和素描呈现不同视觉和概念相似性的素描。用户可以通过指定视觉和概念相似性的数量来控制算法的参数。Karimi,Rezwana 等人(2020 年)专注于识别视觉和概念相似性 AI 模型与三种设计创造力(组合、探索和转化)之间的关系。研究结果表明,与概念相似性相关的灵感更与转化创造力相关,而与视觉相似性相关的灵感更与组合创造力相关。相比之下,本文侧重于构思的认知过程而非结果的创造力。创意素描伙伴(Davis,Siddiqui 等,2019 年;Karimi,Rezwana 等,2020 年)与协作构思伙伴(本文)的比较如下所示。
.

Table 1. Comparison of Creative Sketching Partner (Davis, Siddiqui, et al., Citation2019; Karimi, Rezwana, et al., Citation2020) and Collaborative Ideation Partner.
表 1. 创意素描伙伴(Davis, Siddiqui 等,2019; Karimi, Rezwana 等,2020)与协作构思伙伴的比较。

2.2. Design ideation 2.2. 设计构思

Creativity is strongly associated with ideation. Creativity is defined as a process leading to a creative outcome, novel and useful products, and the ability to generate such work (Amabile, Citation1982; Jagtap, Citation2019; Oman et al., Citation2013; Weisberg, Citation1993). Ideation is a creative process where designers generate, develop, and communicate new ideas. Ideation in design can lead to innovative design solutions through generating diverse concepts (Akin, Citation1990; Atman et al., Citation1999; Brophy, Citation2001; Cross, Citation2001; Daly, Yilmaz, et al., Citation2012; Liu et al., Citation2003). The goal of the design is to develop useful and innovative solutions and design ideation that allows designers to explore different areas of the design solution space (Daly, Christian, et al., Citation2011; Newell & Simon, Citation1972). The design process is an evolution of different kinds of representations (Goel & Pirolli, Citation1992). In the design process, designers exteriorize and visualize their design intentions and communicate with external visualizations to interact with their internal mental images (Dorta, Citation2008).
创造力与构思紧密相关。创造力被定义为导致创造性成果、新颖且有用的产品以及产生这类作品的过程(Amabile, 1982; Jagtap, 2019; Oman 等,2013; Weisberg, 1993)。构思是设计师生成、发展和传达新想法的创造过程。设计中的构思可以通过生成多样化的概念导致创新的设计解决方案(Akin, 1990; Atman 等,1999; Brophy, 2001; Cross, 2001; Daly, Yilmaz 等,2012; Liu 等,2003)。设计的目标是开发有用和创新的解决方案,设计构思使设计师能够探索设计解决方案空间的不同领域(Daly, Christian 等,2011; Newell & Simon, 1972)。设计过程是不同类型表征的演变(Goel & Pirolli, 1992)。在设计过程中,设计师外化和可视化他们的设计意图,并通过外部可视化与内部心理形象互动交流(Dorta, 2008)。

Analogy is an ideation method relevant to this study. Analogy in design facilitates creative thinking by suggesting potential solutions (Jia et al., Citation2020). Analogical reasoning is an inference method in design cognition that leads to unexpected discoveries (Gero & Maher, Citation1991). Design-by-Analogy (DbA) is a design tool that provides inspiration for innovative design solutions (Christensen & Schunn, Citation2007; Fu et al., Citation2013; Goel, Citation1997; Jia et al., Citation2020). Inspirations in Design-by-Analogy (DbA) are achieved by transferring a design problem (source) to a solution (target) in another domain (Moreno et al., Citation2014). The association between a source design and a target design can be either semantic (conceptual) characteristics or visual (structural) representations. Semantic and visual stimuli can thus serve as a basis for developing computational systems that support design ideation.
类比是与本研究相关的一种构思方法。设计中的类比通过提出潜在解决方案来促进创造性思维(贾等,2020 年)。类比推理是设计认知中的一种推理方法,可以导致意想不到的发现(杰罗和马赫,1991 年)。类比设计(DbA)是一种设计工具,为创新设计解决方案提供灵感(克里斯滕森和舒恩,2007 年;傅等,2013 年;戈尔,1997 年;贾等,2020 年)。类比设计中的灵感是通过将设计问题(源)转移到另一个领域的解决方案(目标)来实现的(莫雷诺等,2014 年)。源设计与目标设计之间的关联可以是语义(概念)特征或视觉(结构)表示。因此,语义和视觉刺激可以作为开发支持设计构思的计算系统的基础。

Many computational approaches and tools using analogy have been developed based on semantic distance (conceptual similarity) to support ideation. Zuo et al. (Citation2022) presented a semantic network based on Wikipedia called WikiLink, a design ideation tool for design innovation. To provide explorations of knowledge for design innovation, WikiLink employs a weight that fuses the statistical and semantic relationships, which captures the implicit connection between concepts. Kang et al. (Citation2021) presented a supporting tool, MetaMap, which inspires visual metaphor ideation through multi-dimensional example-based exploration. To facilitate the ideation process, MetaMap provides example-based exploration in semantics, color, and shape dimensions with sample images based on keyword association and color filtering. J. Luo, S. Sarica, and K. L. Wood (Citation2021) proposed a knowledge-based expert system to provide computationally guided exploration and exploitation of design stimuli taken from the total patent database at the concept, document, and field levels simultaneously. Knowledge distance guides the network-based exploration and retrieval of inspirational stimuli for inferences across near and far fields to generate new design ideas by analogy and combination. J. Luo, S. Sarica, and K. L. Wood (Citation2019) presented a data-driven computer-aided rapid ideation process. InnoGPS provides guided retrievals of design information at the concept level in all known domains of technology based on the international patent classification according to their knowledge distance. Chen et al. (Citation2019) presented an integrated approach for enhancing design ideation by applying artificial intelligence and data mining techniques. The approach uses a semantic ideation network and a visual concepts combination model to provide inspiration. Han et al. (Citation2017) (Han, Hua, et al., Citation2020, Citation2018a, Citation2018b) presented several computational tools for supporting ideation based on semantic distance. Analogy Retriever (Han, Hua, et al., Citation2020) and Retriever (Han et al., Citation2018a) are computational tools for creative ideation based on analogical reasoning and ontology. The Analogy Retriever and the Retriever support reasoning for creative ideation through solving proportional analogy problems (A:B:C:X) by retrieving the unknown term X from a knowledge database to help designers construct an ontology. The Combinator (Han et al., Citation2018b) is a computer-based tool for supporting designers to produce creative ideas in idea generation. Combinator generates combinational prompts in text and image forms by combining unrelated ideas. Siddharth and Chakrabarti (Citation2018) developed a web-based, analogical design tool called Idea-Inspire 4.0. Idea-Inspire 4.0 is a searchable knowledge base of several biological systems and supports understanding and application of biological concepts in engineering design problems through analogical design.
许多基于语义距离(概念相似性)的计算方法和工具已经被开发出来,以支持构思。左等人(2022 年)提出了一个基于维基百科的语义网络,名为 WikiLink,这是一个用于设计创新的设计构思工具。为了为设计创新提供知识探索,WikiLink 采用了融合统计和语义关系的权重,捕捉了概念之间的隐含联系。康等人(2021 年)提出了一个支持工具 MetaMap,通过多维度基于示例的探索来激发视觉隐喻构思。为了促进构思过程,MetaMap 在语义、颜色和形状维度提供了基于示例的探索,基于关键词关联和颜色过滤提供了样本图像。罗、萨里卡和伍德(2021 年)提出了一个基于知识的专家系统,同时从概念、文档和领域层面提供了从总专利数据库中获取的设计刺激的计算引导探索和开发。 知识距离指导基于网络的探索和检索,以跨越近距离和远距离领域的启发性刺激进行类比和组合,生成新的设计理念。J. Luo,S. Sarica 和 K. L. Wood(2019)提出了一种数据驱动的计算机辅助快速构思过程。InnoGPS 根据知识距离,提供在所有已知技术领域中基于国际专利分类的概念级别设计信息的引导检索。Chen 等人(2019)提出了一种通过应用人工智能和数据挖掘技术来增强设计构思的综合方法。该方法利用语义构思网络和视觉概念组合模型提供灵感。Han 等人(2017)(Han,Hua 等人,2020,2018a,2018b)提出了几种基于语义距离支持构思的计算工具。类比检索器(Han,Hua 等人,2020)和检索器(Han 等人,2018a)是基于类比推理和本体论的创造性构思的计算工具。 类比检索器和检索器通过解决比例类比问题(A:B:C:X),从知识数据库中检索未知项 X,帮助设计师构建本体论,从而支持创意构思的推理。组合器(Han 等,2018b)是一种基于计算机的工具,用于支持设计师在创意生成中产生创意。组合器通过结合不相关的想法以文本和图像形式生成组合提示。Siddharth 和 Chakrabarti(2018)开发了一个基于网络的类比设计工具,名为 Idea-Inspire 4.0。Idea-Inspire 4.0 是一个可搜索的知识库,包含多个生物系统,并通过类比设计支持在工程设计问题中理解和应用生物概念。

Many studies have investigated the impact of analogical distance on the performance of ideation (Chan, Siangliulue, et al., Citation2017; Srinivasan et al., Citation2018). However, the effect of analogical distance on design outcomes is controversial (Jia et al., Citation2020). Some researchers argue that far-field analogies are more beneficial and others claim that near-field analogies are beneficial for ideation effectiveness (Jia et al., Citation2020). Han et al. Citation2017 (Han, Hua, et al., Citation2020; Han, Shi, et al., Citation2018) studied computational conceptual distances in combinational creativity. Studies indicate that far-related ideas are used more often than closely related ideas to produce creative combinational designs and far-related ideas could lead to more creative outcomes than closely related ideas. Chiu and Shu (Citation2012) showed that far-field analogies increase the novelty and quality of ideation. Kennedy et al. (Citation2018) showed that far-field analogies are beneficial on ideation effectiveness for novelty, relevance, and effectiveness of solutions. Taura and Nagai (Nagai & Taura, Citation2006; Taura et al., Citation2005; Taura & Nagai, Citation2013) studied concept generation based on analogical reasoning. Studies indicate that far-related base concepts could lead to higher originality outcomes in conceptual synthesis than closely related base concepts, and the synthesis of concepts in relationships between two base concepts associated with many other concepts leads to greater creativity. On the other hand, Srinivasan et al. (Citation2018) showed that near-field analogies are used more frequently, and they found that far-field analogies increase novelty but decrease quality. Chan, Siangliulue, et al. (Citation2017) examined competing theoretical recommendations, Associationist theory, and SIAM (Search for Ideas in Associative Memory) theory, for how inspirational delivery systems on collaborative ideation platforms should account for semantic distance of inspirational stimuli. The associationist theory of creativity (Gupta et al., Citation2012; Koestler, Citation1964; Mednick, Citation1962; Rothenberg, Citation1979) suggests that exposing ideators to ideas that are semantically far from their own maximizes novel combinations of ideas. On the other hand, the SIAM (Search for Ideas in Associative Memory) model of creative idea generation (Nijstad & Stroebe, Citation2006) cautions that systems should offer far ideas only when ideators reach an impasse and offer near ideas during productive ideation, which maximizes exploration within categories. The results show that far inspirations can be harmful for creativity if delivered during productive ideation and that collaborative inspiration systems could be improved by accounting for ideators’ cognitive states.
许多研究已经调查了类比距离对构思表现的影响(Chan,Siangliulue 等,2017 年;Srinivasan 等,2018 年)。然而,类比距离对设计结果的影响存在争议(Jia 等,2020 年)。一些研究人员认为远距类比更有益,而另一些人则认为近距类比有助于构思效果(Jia 等,2020 年)。Han 等人在 2017 年(Han,Hua 等,2020 年;Han,Shi 等,2018 年)研究了组合创造力中的计算概念距离。研究表明,远距离的想法比密切相关的想法更常用于产生创造性的组合设计,远距离的想法可能比密切相关的想法产生更具创意的结果。Chiu 和 Shu(2012 年)表明,远距类比增加了构思的新颖性和质量。Kennedy 等人(2018 年)表明,远距类比对构思的新颖性、相关性和解决方案的有效性有益。Taura 和 Nagai(Nagai 和 Taura,2006 年;Taura 等,2005 年;Taura 和 Nagai,2013 年)研究了基于类比推理的概念生成。 研究表明,远距离的基本概念可能会导致概念综合中更高的独创性结果,而不是与基本概念密切相关的情况,而且在两个基本概念之间的关系中综合概念与许多其他概念相关联会导致更大的创造力。另一方面,Srinivasan 等人(2018 年)表明,近场类比更常用,他们发现远场类比增加了新颖性但降低了质量。Chan,Siangliulue 等人(2017 年)检验了竞争性的理论建议,即联想主义理论和 SIAM(在联想记忆中搜索想法)理论,用于协作构思平台上的启发式交付系统应如何考虑启发性刺激的语义距离。创造力的联想主义理论(Gupta 等人,2012 年;Koestler,1964 年;Mednick,1962 年;Rothenberg,1979 年)表明,让构思者接触与他们自己的想法在语义上相距较远的想法,可以最大程度地实现想法的新颖组合。 另一方面,创意思维中的 SIAM(联想记忆中的思想搜索)模型(Nijstad & Stroebe,2006)警告称,系统应该在创意者陷入僵局时提供远距离的想法,并在生产性思维过程中提供近距离的想法,从而最大限度地探索各个类别。结果显示,如果在生产性思维过程中提供远距离的灵感,可能会对创造力产生不利影响,并且协作灵感系统可以通过考虑创意者的认知状态来改进。

In this study, we claim that AI inspiration based on conceptual similarity will significantly affect ideation. The use of conceptual similarity in this study builds on the SIAM theory, claiming semantically close ideas is more effective in ideation. AI-based conceptual similarity is measured in a latent space representation of word embeddings. The images presented to the designer have semantically close characteristics to the target design. To evaluate the effectiveness of AI-based conceptually similar inspirations, we have developed and applied metrics for design ideation.
在这项研究中,我们声称基于概念相似性的人工智能灵感将显著影响构思。本研究中对概念相似性的使用建立在 SIAM 理论基础上,声称在构思中语义上接近的想法更有效。基于人工智能的概念相似性是通过词嵌入的潜在空间表示来衡量的。呈现给设计师的图像具有与目标设计语义上接近的特征。为了评估基于人工智能的概念相似灵感的有效性,我们开发并应用了设计构思的度量标准。

2.3. Cognitive approaches to measuring ideation
2.3. 衡量构思的认知方法

Measuring ideation is a key to validating the claim that the AI inspiration based on conceptual similarity will influence design ideation in human-AI collaboration. There are several metrics for evaluating the performance of idea generation techniques such as fluency and novelty. The measures of ideation effectiveness can be based on the idea generation process or the originality of the final product (Borgianni et al., Citation2013).
衡量构思是验证基于概念相似性的人工智能灵感是否会影响人工智能协作中的设计构思的关键。有几种评估构思技术表现的指标,如流畅度和新颖性。构思有效性的衡量可以基于构思过程或最终产品的独创性(Borgianni 等,2013 年)。

Research on product-based approaches has resulted in several metrics: Sarkar and Chakrabarti (Citation2011) considered novelty and usefulness as measures of creativity. Shah et al. (Citation2003) introduced four metrics for measuring ideation effectiveness, used for evaluating idea generation in design: novelty, variety, quality, and quantity of designs. Nelson et al. (Citation2009) proposed a simple metric that combines novelty and variety to measure the amount and quality of design space exploration. Maher et al. (Citation2013) and Grace et al. (Citation2015) employed novelty, value, and surprise to evaluate design creativity. Taylor et al. (Citation1958) considered quantity and subjective assessments of the quality of the ideas as measures of ideation effectiveness. In this study, we adapt existing quantitative metrics for ideation (i.e., novelty, variety, and quantity) to evaluate the effect of a co-creative design system on design ideation.
基于产品的方法研究已经产生了几个度量标准:Sarkar 和 Chakrabarti(2011)认为新颖性和有用性是创造力的衡量标准。Shah 等人(2003)引入了四个用于衡量构思效果的度量标准,用于评估设计中的构思生成:设计的新颖性、多样性、质量和数量。Nelson 等人(2009)提出了一个简单的度量标准,结合了新颖性和多样性,以衡量设计空间探索的数量和质量。Maher 等人(2013)和 Grace 等人(2015)采用新颖性、价值和惊喜来评估设计创造力。Taylor 等人(1958)认为构思效果的衡量标准是构思的数量和对想法质量的主观评估。在本研究中,我们采用现有的定量构思度量标准(即新颖性、多样性和数量)来评估协同设计系统对设计构思的影响。

Cognitive-based approaches evaluate ideation processes based on cognitive processes inherent to creative thought. The Function-Behavior-Structure (FBS) ontology (J. S. Gero, Citation1990; Gero & Kannengiesser, Citation2004) is a design ontology that describes designed things, or artifacts, irrespective of the specific discipline of designing. The function (F) of a designed object is defined as its teleology; the behavior (B) of that object is either derived (Bs) or expected (Be) from the structure, where structure (S) represents the components of an object and their compositional relationships. These ontological classes are augmented by requirements (R) that come from outside the designer and description (D) that is the document of any aspect of designing. In this ontological view, the goal of designing is to transform a set of requirements and functions into a set of design descriptions. The transformation of one design issue into another is defined as a design process (J. S. Gero, Citation2010). We define an idea as a cognitive issue that the designer considers during the design process and adopt the Function-Behavior-Structure (FBS) ontology (J. S. Gero, Citation1990; Gero & Kannengiesser, Citation2004) as a basis for segmenting and coding each idea in the verbal protocol produced, while the participant is engaged in a design task.
基于认知的方法评估构思过程,基于创造性思维固有的认知过程。功能-行为-结构(FBS)本体论(J. S. Gero,1990;Gero & Kannengiesser,2004)是描述设计物品或工件的设计本体论,不考虑具体的设计学科。设计物品的功能(F)被定义为其目的论;该物品的行为(B)要么源自结构(Bs),要么期望自结构(Be),其中结构(S)代表物品的组成部分及其组成关系。这些本体类别由来自设计师外部的要求(R)和描述(D)增强,描述是设计的任何方面的文档。在这种本体论观点中,设计的目标是将一组要求和功能转化为一组设计描述。将一个设计问题转化为另一个设计问题被定义为设计过程(J. S. Gero,2010)。我们将一个想法定义为设计师在设计过程中考虑的认知问题,并采用功能-行为-结构(FBS)本体论(J. S.)。 Gero, 1990; Gero & Kannengiesser, 2004) 作为在参与设计任务时对口头协议中的每个想法进行分割和编码的基础。

3. Collaborative Ideation Partner (CIP)
3. 协作创意伙伴(CIP)

3.1. System overview 3.1. 系统概述

The goal of CIP is to facilitate design ideation through AI-based inspiration by presenting conceptually similar design images to the user. From our exploratory study (J. Kim, M. L. Maher, & S. Siddiqui, Citation2021a, Citation2021b), we learned that the quality of the design images in the dataset is important in AI-based creativity. We also learned that inspirations based on conceptual similarity to the target design lead to more novel ideation than inspirations based on visual similarity to sketches drawn by a designer. Based on these observations, we update the CIP system to show only conceptually similar inspirations, high fidelity images of creative designs, and measure conceptual similarity based on multiple features of the description of the design task.
CIP 的目标是通过基于人工智能的灵感促进设计构思,向用户展示概念上类似的设计图像。根据我们的探索性研究(J. Kim, M. L. Maher, & S. Siddiqui, 2021a, 2021b),我们了解到数据集中设计图像的质量对基于人工智能的创造力至关重要。我们还发现,基于与目标设计的概念相似性的灵感比基于设计师绘制的草图的视觉相似性的灵感更有可能产生新颖的构思。基于这些观察,我们更新了 CIP 系统,仅展示概念上相似的灵感、创意设计的高保真图像,并根据设计任务描述的多个特征来衡量概念相似性。

The two main spaces of the user interface of the CIP are shown in
CIP 用户界面的两个主要空间如下所示:
: the design space (pink area) and the inspiring image space (purple area). The design space consists of a description of the design task, undo button, clear button, and the user’s canvas. The design task statement includes the name of the object to be designed as well as a context to further specify the objects’ use and environment. The user can sketch on the user’s canvas and edit the sketch using the undo and clear button. The inspiring image space includes an inspiring object name, ‘inspire me’ button, and the AI inspiration canvas. When the user clicks the ‘inspire me’ button, the AI model places an inspiring image in the AI inspiration canvas. Ideation using CIP is a cyclical process in which the user sketches, asks for inspiration, and the AI model presents an inspiring image. The title bar (gray area) of the user interface includes a hamburger menu, the name of the system, and an introductory statement about the CIP system. The hamburger menu allows the selection from one of the two design tasks, sink or bed, which allows the experiment facilitator to select one of the design tasks. The sink task results in a random selection of an inspiring image and the bed task results in a selection of an inspiring image based on conceptual similarity.
设计空间(粉色区域)和启发图像空间(紫色区域)。设计空间包括设计任务描述、撤销按钮、清除按钮和用户画布。设计任务说明包括待设计物体的名称以及进一步指定物体用途和环境的背景。用户可以在用户画布上草绘并使用撤销和清除按钮编辑草绘。启发图像空间包括启发物体名称、“启发我”按钮和 AI 启发画布。当用户点击“启发我”按钮时,AI 模型会在 AI 启发画布中放置一幅启发图像。使用 CIP 进行构思是一个循环过程,用户草绘,请求灵感,AI 模型呈现一幅启发图像。用户界面的标题栏(灰色区域)包括汉堡菜单、系统名称和关于 CIP 系统的介绍性说明。汉堡菜单允许从两个设计任务中选择一个,即水槽或床,这使实验引导者可以选择其中一个设计任务。 水槽任务会导致随机选择一幅鼓舞人心的图像,而床上任务会根据概念相似性选择一幅鼓舞人心的图像。

Figure 1. User interface of the Collaborative Ideation Partner (CIP).
图 1. 协作创意伙伴(CIP)的用户界面。

Figure 1. User interface of the Collaborative Ideation Partner (CIP).

shows a session with the CIP system in which the participant requests six inspiring designs and how their design sketch is modified in response to the inspiration. From the first inspiring image, the participant mimicked the table and legs from the inspiring image. The participant added a drawer as a new function, in response to the interior door in the second inspiring image. In this case, the compartments of the interior door were transferred to the drawer of the sink. From the third inspiring image, the participant came up with a piping system. The participant justified this change: ‘I thought about maybe like reusable water at first, but again I use anything you want to have clean water for your sink and brush your teeth and wash your hands or not. So I just added the piping system to the sink maybe the water could be used elsewhere but it is a piping system in a drain.’ The participant did not change anything based on the fourth or fifth image. From the sixth image which is a bubble tent, the participant noticed the reflections on the bubble tent and added a mirror. In summary, the interaction between the participant and the AI inspiration during ideation shows the participant mimicking a function or a shape from the inspiring images (first, second, and third inspiring image) and introducing new functions by reinterpreting the concept of inspiring objects (sixth inspiring image).
展示了与 CIP 系统的一个会话,参与者请求六个启发性设计,并展示了他们的设计草图如何根据启发进行修改。从第一个启发图像开始,参与者模仿了启发图像中的桌子和桌腿。参与者增加了一个抽屉作为新功能,以响应第二个启发图像中的内部门。在这种情况下,内部门的隔间被转移到了水槽的抽屉中。从第三个启发图像开始,参与者想出了一个管道系统。参与者对这一变化进行了解释:“一开始我考虑可能是可重复使用的水,但再次,我使用任何你想要的东西来获得清洁水,用于水槽刷牙和洗手或其他用途。所以我只是在水槽上添加了管道系统,也许水可以在其他地方使用,但它是一个排水系统。”参与者没有根据第四或第五个图像做出任何改变。从第六个图像,即一个气泡帐篷,参与者注意到了气泡帐篷上的反射,并添加了一个镜子。 总的来说,在构思过程中,参与者与人工智能灵感之间的互动表明参与者在模仿启发图像(第一、第二和第三个启发图像)中的功能或形状,并通过重新解释启发物体的概念(第六个启发图像)来引入新功能。

Figure 2. Example of ideation process using the Collaborative Ideation Partner (CIP).
图 2. 使用协作创意伙伴(CIP)进行构思过程的示例。

Figure 2. Example of ideation process using the Collaborative Ideation Partner (CIP).

3.2. Dataset of inspiring images
3.2. 激励图片数据集

For the source of inspiring designs, we collected a dataset of high-fidelity images of creative designs. To create the new dataset, we identified 20 object categories from 345 category sketches in QuickDraw! dataset (Jongejan et al., Citation2016) based on their conceptual similarity to the object in the design task (sink and bed). We then searched for images of five creative designs online for each object category using keywords ‘creative,’ ‘novel,’ ‘unusual,’ and ‘design’ (e.g., creative sink and unusual bed). The dataset thus contains 20 categories of objects with a total of 100 labeled images. Each image has three fields: id, object name, and design features. Id is the unique identifier that is assigned to each image. The object name is the name of the object that is represented in the image (e.g., electric massage bed, robotic advisor, and smart sofa). Design features are keywords that represent the design features and unique functionalities of the design (e.g., multi-functional, entertainment, massage, combinational, digital, and tv). These features were assigned by the research team.
为了激发设计灵感的来源,我们收集了一组高保真度的创意设计图像数据集。为了创建新的数据集,我们从 QuickDraw!数据集(Jongejan 等,2016)的 345 个类别草图中,基于它们与设计任务中物体的概念相似性,确定了 20 个物体类别(如水槽和床)。然后,我们使用关键词“创意”、“新颖”、“不寻常”和“设计”(例如,创意水槽和不寻常床)在线搜索每个物体类别的五个创意设计图像。因此,该数据集包含 20 个物体类别,共 100 张带标签的图像。每张图像有三个字段:id、物体名称和设计特征。Id 是分配给每个图像的唯一标识符。物体名称是图像中所代表的物体的名称(例如,电动按摩床、机器人顾问和智能沙发)。设计特征是代表设计特征和独特功能的关键词(例如,多功能、娱乐、按摩、组合、数字和电视)。这些特征由研究团队分配。

3.3. AI model for conceptual similarity
3.3. 概念相似性的人工智能模型

The AI model for conceptual similarity uses a deep-learning word embedding model to compute the degree of similarity (Karimi, Maher, et al., Citation2019) between a set of words in the design task statement and a set of words for each image in the image dataset. We generate a pairwise similarity score for each word in set 1 (words in the description of the design task) and each word in set 2 (words in the design feature list for each image). A Wikipedia pre-trained word2vec model is used to generate a vector representation for each of the words in both sets. We calculate the cosine similarity score for each pair of words for each image in the dataset. The similarity score for each image is calculated as the average of the pairwise cosine similarity scores. The larger number indicates that the two sets are more likely to appear in the same context, whereas a smaller number indicates that the two are less associated with each other. For example, a design task includes four words (i.e., bed, senior, living, and facility) and an image includes four words of design features (e.g., comfort, massage, combinational, and chair). For measuring the conceptual similarity between the design task and the image, we calculate the cosine similarity score for 16 pairs of words (4 words × 4 words) then calculate the average of these 16 scores. We construct the conceptual similarity ranking for each image based on its similarity score. When the participant requests inspiration, the system uses the ranking in order from the most conceptually similar to the least conceptually similar to select the next image.
概念相似性的人工智能模型使用深度学习词嵌入模型来计算设计任务陈述中一组词与图像数据集中每个图像的一组词之间的相似度(Karimi, Maher 等,2019)。我们为集合 1 中的每个词(设计任务描述中的词)和集合 2 中的每个词(每个图像的设计特征列表中的词)生成一对一相似度分数。我们使用维基百科预训练的 word2vec 模型为两个集合中的每个词生成向量表示。我们计算数据集中每个图像的每对词的余弦相似度分数。每个图像的相似度分数被计算为一对一余弦相似度分数的平均值。较大的数字表示两个集合更可能出现在相同的上下文中,而较小的数字表示两者之间的关联较小。例如,一个设计任务包括四个词(即床、高级、生活和设施),一个图像包括四个设计特征词(例如舒适、按摩、组合和椅子)。 用于衡量设计任务与图像之间概念相似性的方法,我们计算了 16 对词语(4 个词×4 个词)的余弦相似度分数,然后计算这 16 个分数的平均值。我们根据相似度分数构建每个图像的概念相似性排名。当参与者请求灵感时,系统将按照从最相似概念到最不相似概念的顺序使用排名来选择下一个图像。

4. Experiment: measuring the effect of AI-based inspiration
4. 实验:测量基于人工智能灵感的影响

4.1. Study design 4.1 研究设计

The experiment is a within-subject design that compares participants’ ideation, while engaged in a design task with different ideation stimuli: a control condition with random inspirations (condition A), a treatment condition with conceptually similar inspirations (condition B).
实验采用被试内设计,比较参与者在进行设计任务时的构思,使用不同构思刺激:一个控制条件是随机灵感(条件 A),一个处理条件是概念上相似的灵感(条件 B)。

  • Condition A (control condition): randomly selected inspiration (sink)
    条件 A(对照条件):随机选择的灵感(汇)

  • Condition B (treatment condition): conceptually similar inspiration (bed)
    条件 B(治疗条件):概念上类似的灵感(床)

During the study, for each participant and for each condition, we collected video protocol data during the design session and a retrospective protocol after the design session. The protocol including the informed consent document has been reviewed and approved by our IRB. We obtained informed consent from all participants. We recruited 55 university students (N = 55) for the participants: each participant engaged in both conditions.
在研究过程中,针对每位参与者和每种条件,我们在设计会话期间收集了视频协议数据,并在设计会话结束后进行了回顾性协议。协议包括知情同意文件已经经过我们的 IRB 审查和批准。我们从所有参与者那里获得了知情同意。我们招募了 55 名大学生(N = 55)作为参与者:每位参与者都参与了两种条件。

The task is an open-ended design task in which participants are asked to design an object in a given context through sketching. To reduce the learning effect, different objects for the design task were used for each condition: a sink for an accessible bathroom in the control condition and a bed for a senior living facility in the treatment condition. The design tasks for each condition were selected to have similar complexity and familiarity. The participants used a laptop and interacted with the CIP interface using a mouse to draw a sketch while performing the design task.
该任务是一个开放式设计任务,参与者被要求通过草图在特定背景下设计一个物体。为了减少学习效应,设计任务的不同条件使用了不同的物体:对照条件下使用了一个无障碍浴室的水槽,治疗条件下使用了一张老年居所的床。每个条件的设计任务被选为具有相似的复杂性和熟悉度。参与者使用笔记本电脑,并通过鼠标与 CIP 界面进行交互,在执行设计任务时绘制草图。

The procedure consists of a training session, two design task sessions, and two retrospective protocol sessions. In the training session, the participants are given an introduction to the features of the CIP interface and how to request inspiration from the AI model. After the training session, the participants perform the two design tasks. The study used a counterbalanced order for the two design tasks. The participants have no time limits to complete the design task and were instructed to perform the design task until they were satisfied with their design. The participants are free to click the ‘inspire me’ button as many times as they would like to get inspiration from the system. However, the participants were told to request at least three inspirational sketches during a single design task. The facilitator is present during the design task but does not interfere in the design process. Once a participant finishes the two design task sessions, the participant is asked to explain what they were thinking and how the inspiring images influenced their design while watching a recording of their design session.
该程序包括一次培训会议、两次设计任务会议和两次回顾性协议会议。在培训会议中,参与者将介绍 CIP 界面的特点以及如何向 AI 模型请求灵感。培训会议后,参与者执行两项设计任务。研究对这两项设计任务采用了平衡顺序。参与者在完成设计任务时没有时间限制,并被要求一直进行设计任务,直到他们对设计感到满意。参与者可以自由点击“启发我”按钮,以获取系统的灵感。然而,参与者被告知在单个设计任务期间至少要请求三次灵感草图。在设计任务期间,促进者在场但不干预设计过程。一旦参与者完成两次设计任务会议,就会要求参与者解释他们的思考过程以及启发性图像如何影响他们的设计,同时观看他们设计过程的录像。

4.2. Data collected 4.2. 数据收集

Two types of data were collected for analyzing the experiment’s results: a set of sketches that participants produced during the design tasks and verbalizing the ideation process during the retrospective protocol. We recorded the entire design task sessions and retrospective sessions for each participant. The sketch data shows the progress of the design ideation and the final design visually for each design task session. From the recordings of retrospective sessions, we collected verbal protocol data of the thoughts of the participants.
为分析实验结果,收集了两类数据:参与者在设计任务过程中制作的草图集以及在回顾性协议期间表达构思过程的语言。我们记录了每位参与者的整个设计任务会话和回顾性会话。草图数据展示了每个设计任务会话的设计构思进展以及最终设计的视觉呈现。从回顾性会话的录音中,我们收集了参与者的思考的语言协议数据。

4.3. Data segmentation and coding
4.3. 数据分割和编码

We transcribed the verbal data as a basis for analysis. The transcripts were segmented based on the presentation of inspiring images: An inspiring image segment starts when the participant requests an inspiring image and ends when the participant requests the next inspiring image. In this study, we define an idea as a cognitive issue using the FBS ontology (J. S. Gero, Citation1990; Gero & Kannengiesser, Citation2004). We further segmented the inspiring segments until each segment has a single code in the FBS ontology (J. S. Gero, Citation1990; Gero & Kannengiesser, Citation2004). An inspiring segment thus includes multiple-idea segments. After segmenting the verbal data, we conducted stemming, the process of reducing inflected words to their word stem. This stemming process allows us to identify unique ideas and repeat ideas in a design session.
我们将口头数据转录为分析的基础。转录根据激发性图片的呈现进行分割:一个激发性图片片段从参与者请求激发性图片开始,直到参与者请求下一个激发性图片结束。在这项研究中,我们使用 FBS 本体论定义思想为认知问题(J. S. Gero, 1990; Gero & Kannengiesser, 2004)。我们进一步将激发性片段分割,直到每个片段在 FBS 本体论中具有单一代码(J. S. Gero, 1990; Gero & Kannengiesser, 2004)。因此,一个激发性片段包括多个思想片段。在分割口头数据后,我们进行了词干处理,即将屈折词减少到其词干。这个词干处理过程使我们能够在设计会话中识别独特的思想和重复的思想。

presents an example of data segmentation and coding for an inspiring image. The example includes an inspiring image segment (i.e., second column) for the ‘functional sleeping bag’ image (i.e., first column) and the inspiring image segment is segmented into 12 idea segments (i.e., third column). Each idea segment is then summarized as a single word that describes the idea (fourth column).
展示了一个关于激发性图像的数据分割和编码示例。该示例包括一个激发性图像段(即第二列)用于“功能睡袋”图像(即第一列),并且激发性图像段被分成 12 个想法段(即第三列)。然后,将每个想法段总结为描述该想法的单个词(第四列)。

Table 2. Example of data segmentation and coding.
表 2. 数据分割和编码示例。

Two researchers coded 110 sessions of retrospective protocol (i.e., 55 sessions of condition A and 55 sessions of condition B) individually based on FBS ontology, then came to consensus for the different coding results. The coding instruction given to the coders included how to segment inspiring sketch segments and idea segments. The two coders segmented and coded a design session together to make an initial agreement for segmentation and coding before coding individually, then coded all design sessions individually. Once each coder completed coding all data individually, the two coders discussed each of the different coding results and came to consensus.
两位研究人员根据 FBS 本体论对 110 个回顾性协议会话进行编码(即 55 个 A 条件会话和 55 个 B 条件会话),然后就不同的编码结果达成共识。给予编码人员的编码说明包括如何分割启发式草图片段和想法片段。两位编码人员一起分割和编码一个设计会话,以在单独编码之前就分割和编码达成初步协议,然后单独对所有设计会话进行编码。一旦每位编码人员单独完成所有数据的编码,两位编码人员讨论每个不同的编码结果并达成共识。

5. Analysis of coded data
5. 编码数据分析

To measure ideation in the design sessions, we developed three metrics based on (Shah et al., Citation2003): novelty, variety, and quantity of design ideas. These metrics allow us to evaluate the effect of AI inspiration on exploring (variety and quantity) and expanding (novelty) the design space (Shah et al., Citation2003). Novelty is a measure of how unusual or unexpected an idea is as compared to other ideas (Shah et al., Citation2003). In our experiment, a novel idea is defined as a unique idea across all design sessions in one design task. For measuring novelty, we count how many novel ideas are there in the entire collection of ideas in a design session. We removed the same ideas across all design sessions in a condition that then counted the number of ideas. Variety is a measure of the explored solution space during the idea generation process (Shah et al., Citation2003). The generation of similar ideas indicates low variety and, hence, less probability of finding better ideas in other areas of the solution space. For measuring variety, we code each idea whether it is a new idea or a repeated idea in a design session and only the number of new ideas is counted in a design session. A repeated idea is counted only one time as a new idea to identify the variety of ideas. For example, if an idea of ‘side table’ appeared four times in a design session, we coded the idea as a new idea for the first appearance and coded the rest of three repeat ideas as a repeated idea. Quantity is the total number of ideas generated. According to Shah et al. (Citation2003), generating more ideas increases the possibility of better ideas. For measuring quantity, the number of ideas both new ideas and repeated ideas are counted in a design session.
为了衡量设计会话中的构思,我们基于(Shah 等人,2003 年)开发了三个指标:新颖性、多样性和设计理念的数量。这些指标使我们能够评估人工智能灵感对探索(多样性和数量)和拓展(新颖性)设计空间的影响(Shah 等人,2003 年)。新颖性是衡量一个想法与其他想法相比有多不同或意外的度量(Shah 等人,2003 年)。在我们的实验中,新颖想法被定义为在一个设计任务的所有设计会话中独特的想法。为了衡量新颖性,我们统计了设计会话中所有想法集合中有多少新颖想法。我们删除了在一个条件下所有设计会话中相同的想法,然后统计了想法的数量。多样性是在理念生成过程中探索解决方案空间的度量(Shah 等人,2003 年)。生成类似的想法表明多样性较低,因此在解决方案空间的其他领域找到更好的想法的可能性较小。为了衡量多样性,我们对每个想法进行编码,无论它是一个新想法还是一个重复的想法在一个设计会话中,只有新想法的数量在一个设计会话中被计算。 重复的想法只计算一次,作为一种新想法来识别各种想法。例如,如果在设计会议中出现了一个“边桌”的想法四次,我们将第一次出现的想法编码为新想法,将剩下的三个重复想法编码为重复想法。数量是生成的所有想法的总数。根据 Shah 等人(2003)的说法,生成更多的想法会增加更好想法的可能性。为了衡量数量,在设计会议中计算新想法和重复想法的数量。

shows the aggregate results of novelty, variety, and quality of ideas with the total number of novel ideas, new ideas, and idea participants generated in all design sessions (i.e., 55 sessions of condition A and 55 sessions of condition B). The participants produced more novel ideas, new ideas, and ideas in the treatment condition than in the control condition. These results indicate that AI inspiration based on conceptual similarity is more effective in design ideation than random inspiration.
展示了在所有设计会话中产生的新颖性、多样性和想法质量的总体结果,包括新颖想法、新想法和想法参与者的总数(即条件 A 的 55 个会话和条件 B 的 55 个会话)。与对照条件相比,治疗条件中的参与者产生了更多的新颖想法、新想法和想法。这些结果表明,基于概念相似性的人工智能灵感在设计构思中比随机灵感更有效。

Table 3. Total number of novel ideas, new ideas, and idea participants generated.
表 3. 产生的新颖想法、新想法和想法参与者的总数。

We employ a temporal analysis of ideation to test our hypothesis. The temporal analysis enables a characterization of the flow of ideas during a design session. We divide a design session as a series of segments bounded by the input of inspiration from the AI agent. For the temporal analysis, the number of novel ideas, the variety of ideas, and the quantity of ideas are calculated for each segment to produce a sequence of temporally ordered ideas in a design session. The nuances of the ideation process are then illustrated by temporal changes in novelty, variety, and quantity of ideas over time. The representation of the ideation process by temporal changes of ideas allows us to (1) compare an ideation process of a design session to other design sessions, (2) identify specific patterns of novelty, variety, and quantity of ideas in a condition, (3) identify specific contributions of the co-creative system associated with novelty, variety, and/or quantity.
我们采用了对构思的时间分析来测试我们的假设。时间分析使得能够对设计会话中的思想流动进行表征。我们将设计会话划分为一系列由 AI 代理输入的灵感界定的片段。对于时间分析,针对每个片段计算新颖思想的数量、思想的多样性和数量,以产生设计会话中按时间顺序排列的思想序列。构思过程的微妙之处随着时间的推移通过新颖性、多样性和数量的时间变化得以说明。通过思想的时间变化来表示构思过程,使我们能够(1)将设计会话的构思过程与其他设计会话进行比较,(2)在某种条件下识别新颖性、多样性和数量的特定模式,(3)识别与新颖性、多样性和/或数量相关的共创系统的具体贡献。

The participants had 704 inspiring images in the control condition and 583 inspiring images in the treatment condition. The largest number of inspiring image segments among the 55 design sessions in the control condition is 50 segments (i.e., ‘before inspiring image segment’ and 49 inspiring image segments). The largest number of inspiring image segments in the treatment condition is 30 segments (i.e., ‘before inspiring image segment’ and 29 inspiring image segments). For the temporal analysis, we calculated the number of novel ideas, the variety of ideas, and the quantity of ideas for each segment of 50 segments in the control condition and for each segment of 30 segments in the treatment condition. However, we compare the results of the first 30 segments between the control condition and the treatment condition in this analysis since (1) the results after 30 segments in the control condition showed only a few ideas and (2) comparing the same number of segments shows a clear comparison of the temporal patterns of the control condition and the treatment condition.
参与者在对照条件下有 704 张启发性图片,在治疗条件下有 583 张启发性图片。在对照条件下的 55 个设计会话中,启发性图片片段的最大数量为 50 个(即“之前的启发性图片片段”和 49 个启发性图片片段)。在治疗条件下,启发性图片片段的最大数量为 30 个(即“之前的启发性图片片段”和 29 个启发性图片片段)。对于时间分析,我们计算了对照条件下 50 个片段和治疗条件下 30 个片段中每个片段的新颖想法数量、想法种类和想法数量。然而,在这项分析中,我们比较了对照条件和治疗条件之间前 30 个片段的结果,因为(1)对照条件中 30 个片段后的结果只显示了少量想法,(2)比较相同数量的片段可以清晰地比较对照条件和治疗条件的时间模式。

5.1. Temporal analysis 5.1. 时间分析

We hypothesize that the quantity in novelty, variety, and quantity of ideas over time decreases more slowly in an ideation with AI-based inspirations than the temporal pattern of ideation with random inspirations. Prior research shows a time effect on idea generation when the rate of idea generation decreases over time (Howard-Jones & Murray, Citation2003; Liikkanen et al., Citation2009; Perttula & Liikkanen, Citation2006; Snyder et al., Citation2004; Tsenn et al., Citation2014). We posit that the effect of AI-based inspirations based on conceptual similarity affects the time effect on design ideation.
我们假设,在基于人工智能灵感的构思中,随着时间的推移,新颖性、多样性和想法的数量减少得比基于随机灵感的构思的时间模式更缓慢。先前的研究表明,在想法生成过程中存在时间效应,即想法生成的速率随时间减少(Howard-Jones & Murray, 2003; Liikkanen 等,2009; Perttula & Liikkanen, 2006; Snyder 等,2004; Tsenn 等,2014)。我们认为,基于概念相似性的人工智能灵感对设计构思的时间效应产生影响。

shows the number of novel ideas for the first 30 segments in the control condition and the treatment condition. The results of temporal patterns show that the quantity of novel ideas decreases over time in both the control condition and the treatment condition as we expected. However, there are two distinct patterns between the results of the control condition and the treatment condition. The changes of idea number between the ‘before’ segment and the first segment show a contradictory result between the control condition and the treatment condition. In the control condition, the number of ideas decreased in the first segment. However, in the treatment condition, the number of ideas increased in the first segment. In the ‘before’ segment, participants produced many ideas without any inspiring images since they generate ideas to meet the basic requirements of the target design as a basic concept of their design. This result indicates that the conceptually similar inspiration leads to more novel ideas. The second pattern we found is the distribution of the ideas. Although the results of both the control condition and the treatment condition show a decreasing pattern, the distribution until the 20th segment shows a significant difference between the control condition and the treatment condition.
显示了对照条件和治疗条件中前 30 个片段的新颖想法数量。时间模式的结果显示,新颖想法的数量随时间在对照条件和治疗条件中都如我们所预期的那样逐渐减少。然而,在对照条件和治疗条件的结果之间存在两种明显的模式。在‘之前’片段和第一个片段之间的想法数量变化在对照条件和治疗条件之间呈现出矛盾的结果。在对照条件中,第一个片段中的想法数量减少。然而,在治疗条件中,第一个片段中的想法数量增加。在‘之前’片段中,参与者产生了许多没有任何启发图像的想法,因为他们生成想法以满足目标设计的基本要求作为设计的基本概念。这一结果表明,在概念上相似的灵感会带来更多新颖的想法。我们发现的第二种模式是想法的分布。 尽管对照组和治疗组的结果都显示出下降的趋势,但在第 20 个片段之前的分布显示出对照组和治疗组之间的显著差异。

Figure 3. The number of novel ideas in each inspiring image segment.
图 3. 每个启发性图像部分中新颖想法的数量。

Figure 3. The number of novel ideas in each inspiring image segment.

To visualize the differences between the temporal patterns in the two conditions, we generated trend lines with a scatter plot and a comparison shows a difference between the control condition and the treatment condition (
为了可视化两种条件下时间模式之间的差异,我们利用散点图生成了趋势线,并比较显示了对照组和治疗组之间的差异
). A paired t-test was conducted to determine the significance of the difference between the control condition and the treatment condition in temporal changes of novelty. The quantity of novel ideas over time decreased more slowly in the treatment condition (M = 18.17, SD = 21.52) than in the control condition (M = 14.60, SD = 19.68), t(54) = 1.69, two tail M = 2.46E–11.
进行了成对样本 t 检验,以确定控制条件和处理条件在新颖性时间变化方面的差异的显著性。随着时间推移,处理条件中新颖想法的数量下降速度比控制条件慢(M = 18.17,SD = 21.52),t(54) = 1.69,双尾 M = 2.46E–11。

Figure 4. The trendlines of novelty.
图 4. 新颖性的趋势线。

Figure 4. The trendlines of novelty.

shows the number of new ideas for the first 30 segments in the two conditions. The results of temporal patterns are similar to the results of novelty in terms of decreasing patterns with the time effect and the increasing pattern of the treatment condition in the first segment. However, the increasing pattern of the treatment condition in the first segment is relatively less than the results of novelty and the result of the treatment condition after the first segment shows a similar pattern to the control condition largely decreasing in the second segment.
显示了两种条件下前 30 个片段中新想法的数量。在时间模式方面的结果与新颖性方面的结果相似,都表现出随着时间效应的减少模式和治疗条件在第一个片段中的增加模式。然而,治疗条件在第一个片段中的增加模式相对较少于新颖性的结果,第一个片段后治疗条件的结果显示出与控制条件类似的模式,在第二个片段中大幅减少。

Figure 5. The number of new ideas in each inspiring image segment.
图 5. 每个启发性图像部分中新想法的数量。

Figure 5. The number of new ideas in each inspiring image segment.

shows the results as trend lines with a scatter plot for the temporal patterns of variety. Visually, we see a difference from the first segment to the 20th segment, but not after the 20th segment. A paired t-test was conducted and shows a significant difference between the control condition and the treatment condition in temporal changes of variety. The quantity in variety of ideas over time decreased more slowly in the treatment condition (M = 123.78, SD = 185.79) than in the control condition (M = 92.79, SD = 144.15), t(54) = 1.69, two tail M = 0.00039.
展示了种类时间模式的趋势线和散点图结果。从第一个部分到第 20 个部分,我们在视觉上看到了差异,但在第 20 个部分之后就没有了。进行了成对 t 检验,结果显示在种类时间变化方面,控制条件和处理条件之间存在显著差异。随着时间推移,处理条件下的想法种类数量下降速度比控制条件下的更慢(M = 123.78,SD = 185.79),控制条件下为(M = 92.79,SD = 144.15),t(54) = 1.69,双尾 M = 0.00039。

Figure 6. The trendlines of variety.
图 6. 品种的趋势线。

Figure 6. The trendlines of variety.

shows the number of ideas for the first 30 segments in the two conditions. The results of temporal patterns are similar to the results of novelty and variety. In the treatment condition, the number of ideas was largely increased in the first segment like the result of novelty. The results after the first segment show a similar pattern to the results of variety with differences between the control condition and the treatment condition.
显示了两种条件下前 30 个片段的想法数量。时间模式的结果与新颖性和多样性的结果类似。在处理条件下,第一个片段的想法数量大幅增加,类似于新颖性的结果。第一个片段之后的结果显示出与多样性结果类似的模式,在控制条件和处理条件之间存在差异。

Figure 7. The number of ideas in each inspiring image segment.
图 7. 每个启发性图像部分中的想法数量。

Figure 7. The number of ideas in each inspiring image segment.

shows the results as trend lines with a scatter plot for the temporal patterns of quantity. The results show a similar pattern to the results of the variety, showing a difference from the first segment to the 20th segment. The result of a paired t-test that compares the trend lines showed a significant difference between the two conditions. The quantity in quantity of ideas over time decreased more slowly in the treatment condition (M = 226.19.78, SD = 307.37) than in the control condition (M = 175.24, SD = 248.33), t(54) = 1.69, two tail M = 0.000067.
显示结果为数量的时间模式趋势线和散点图。结果显示与品种结果类似的模式,显示从第一段到第 20 段的差异。比较趋势线的配对 t 检验结果显示两种条件之间存在显著差异。随时间推移,治疗条件下的思想数量减少速度比对照条件慢(M = 226.19.78,SD = 307.37),t(54) = 1.69,双尾 M = 0.000067。

Figure 8. The trendlines of quantity.
图 8. 数量的趋势线。

Figure 8. The trendlines of quantity.

6. Conclusion 6. 结论

In this paper, we examined how AI inspiration based on conceptual similarity influences distinct properties of idea generation in the design process. In response to the research question, the participants produced more novel ideas (novelty), new ideas (variety), and ideas (quantity) in the treatment condition than in the control condition and the increased novelty, variety, and quantity influenced the temporal pattern of the ideation process. Based on prior research on semantic distance (Chan, Dow, et al., Citation2014; Chan, Siangliulue, et al., Citation2017; Chiu & Shu, Citation2012; Fu et al., Citation2013; Srinivasan et al., Citation2018) and time effect (Howard-Jones & Murray, Citation2003; Liikkanen et al., Citation2009; Perttula & Liikkanen, Citation2006; Snyder et al., Citation2004; Tsenn et al., Citation2014) on design ideation, we show that the quantity in novelty, variety, and quantity of ideas over time decreases more slowly in ideation with AI-based inspirations based on conceptual similarity than the temporal pattern of ideation with random inspirations in a creative design task. The hypothesis was validated showing statistically significant differences between the control condition and the treatment condition in the measures of novelty, variety, and quantity. The participants tended to request more inspiring images in the control condition but the ideas decreased more quickly than in the treatment condition. Specifically, the control and treatment conditions showed a significant difference in the first 20 segments of the ideation process. The interpretation of our results suggests that AI-based conceptually similar inspirations (semantically close inspirations) can increase the number of new and novel ideas when engaged in a design task. While the effect of conceptual similarity on human design ideation is still debatable and the role of AI-based inspiration in human-AI collaboration needs further exploration, this study provides useful insights with new evidence to support conflicting conclusions regarding the effects of AI-based inspiration in design ideation.
在本文中,我们研究了基于概念相似性的人工智能灵感如何影响设计过程中创意生成的不同特性。作为对研究问题的回应,与对照条件相比,在处理条件下,参与者产生了更多新颖的想法(新颖性)、新想法(多样性)和想法(数量),增加的新颖性、多样性和数量影响了构思过程的时间模式。基于先前关于语义距离(Chan,Dow 等,2014 年;Chan,Siangliulue 等,2017 年;Chiu&Shu,2012 年;Fu 等,2013 年;Srinivasan 等,2018 年)和时间效应(Howard-Jones&Murray,2003 年;Liikkanen 等,2009 年;Perttula&Liikkanen,2006 年;Snyder 等,2004 年;Tsenn 等,2014 年)对设计构思的研究,我们表明,在基于概念相似性的人工智能灵感的构思中,随着时间推移,新颖性、多样性和数量的想法数量减少得比随机灵感的构思时间模式更慢。 假设得到验证,显示在新颖性、多样性和数量方面,控制条件和处理条件之间存在显著差异。参与者倾向于在控制条件下请求更多具有启发性的图像,但这些想法比在处理条件下更快地减少。具体来说,在构思过程的前 20 个部分中,控制条件和处理条件显示出显著差异。我们的结果解释表明,基于人工智能的概念上相似的灵感(语义上接近的灵感)可以在从事设计任务时增加新颖和独特想法的数量。尽管概念相似性对人类设计构思的影响仍有争议,人工智能灵感在人工智能与人类协作中的作用需要进一步探讨,但本研究提供了有用的见解,以新证据支持关于人工智能灵感在设计构思中效果的相互矛盾结论。

Evaluating the effect of co-creative systems is still an open research question, and there is no standard metric to measure computational co-creativity (Karimi, Grace, et al., Citation2018; Kim & Maher, Citation2021). To evaluate the effect of co-creative systems in the ideation process, we employed an analysis that focuses on the temporal changes of novelty, variety, and quantity of ideas during the design process. While many ideation measures focus on product-based approaches, we focus on a cognitive approach to better understand how a co-creative agent influences ideation in a human-AI collaboration. In order to measure ideation in a human-AI collaboration, we developed an approach for measuring ideation that adapts existing quantitative metrics for ideation: novelty, variety, and quantity of ideas expressed in the ideation. We applied these measures to evaluate the effect of an AI model for conceptual similarity on design ideation in a co-creative design system. This method for measuring ideation can be used more generally in studying the effect of co-creative systems on the user’s ideation process.
评估共创系统的效果仍然是一个开放的研究问题,目前还没有标准的度量计算共创性的指标(Karimi, Grace 等,2018 年;Kim & Maher,2021 年)。为了评估共创系统在构思过程中的效果,我们采用了一种分析方法,重点关注设计过程中新颖性、多样性和想法数量的时间变化。虽然许多构思度量方法侧重于基于产品的方法,但我们专注于认知方法,以更好地理解共创代理如何影响人工智能协作中的构思。为了衡量人工智能协作中的构思,我们开发了一种衡量构思的方法,该方法改编了现有的构思定量指标:构思中表达的新颖性、多样性和想法数量。我们应用这些指标来评估 AI 模型对共创设计系统中设计构思的概念相似性的影响。这种衡量构思的方法可以更普遍地用于研究共创系统对用户构思过程的影响。

Disclosure statement 披露声明

No potential conflict of interest was reported by the author(s).
作者未报告任何潜在利益冲突。

Additional information 额外信息

Funding 资金

This research was supported by the Graduate Assistant Support Plan (GASP) at the University of North Carolina at Charlotte.

References

  • Akin, Ö. (1990). Necessary conditions for design expertise and creativity. Design Studies, 11(2), 107–113. https://doi.org/10.1016/0142-694X(90)90025-8
  • Amabile, T. M. (1982). Social psychology of creativity: A consensual assessment technique. Journal of Personality and Social Psychology, 43(5), 997. https://doi.org/10.1037/0022-3514.43.5.997
  • Atman, C. J., Chimka, J. R., Bursic, K. M., & Nachtmann, H. L. (1999). A comparison of freshman and senior engineering design processes. Design Studies, 20(2), 131–152. https://doi.org/10.1016/S0142-694X(98)00031-3
  • Borgianni, Y., Cascini, G., & Rotini, F. (2013). Assessing creativity of design projects: Criteria for the service engineering field. International Journal of Design Creativity and Innovation, 1(3), 131–159. https://doi.org/10.1080/21650349.2013.806029
  • Brooke, J. (1996). Sus: A “quick and dirty’usability. Usability Evaluation in Industry, 189(194), 4–7.
  • Brophy, D. R. (2001). Comparing the attributes, activities, and performance of divergent, convergent, and combination thinkers. Creativity Research Journal, 13(3–4), 439–455. https://doi.org/10.1207/S15326934CRJ1334_20
  • Chan, J., Dow, S., & Schunn, C. (2014). Conceptual distance matters when building on others’ ideas in crowd-collaborative innovation platforms. Proceedings of the Companion Publication of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, Baltimore, Maryland, United States, 141–144.
  • Chan, J., Siangliulue, P., Qori McDonald, D., Liu, R., Moradinezhad, R., Aman, S., Solovey, E. T., Gajos, K. Z., & Dow, S. P. (2017). Semantically far inspirations considered harmful? Accounting for cognitive states in collaborative ideation. Proceedings of the 2017 ACM SIGCHI Conference on Creativity and Cognition, New York, NY, United States, 93–105.
  • Chen, L., Wang, P., Dong, H., Shi, F., Han, J., Guo, Y., Childs, P. R., Xiao, J., & Wu, C. (2019). An artificial intelligence based data-driven approach for design ideation. Journal of Visual Communication and Image Representation, 61, 10–22. https://doi.org/10.1016/j.jvcir.2019.02.009
  • Cherry, E., & Latulipe, C. (2014). Quantifying the creativity support of digital tools through the creativity support index. ACM Transactions on Computer-Human Interaction (TOCHI), 21(4), 1–25. https://doi.org/10.1145/2617588
  • Chiu, I., & Shu, L. H. (2012). Investigating effects of oppositely related semantic stimuli on design concept creativity. Journal of Engineering Design, 23(4), 271–296. https://doi.org/10.1080/09544828.2011.603298
  • Christensen, B. T., & Schunn, C. D. (2007). The relationship of analogical distance to analogical function and preinventive structure: The case of engineering design. Memory & Cognition, 35(1), 29–38. https://doi.org/10.3758/BF03195939
  • Cross, N. (2001). Design cognition: Results from protocol and other empirical studies of design activity. In Charles M. Eastman, W. Michael McCracken & Wendy C. Newstetter(Eds.), Design knowing and learning: Cognition in design education (pp. 79–103). Elsevier.
  • Daly, S. R., Christian, J. L., Yilmaz, S., Seifert, C. M., & Gonzalez, R. (2011). Teaching design ideation.
  • Daly, S. R., Yilmaz, S., Christian, J. L., Seifert, C. M., & Gonzalez, R. (2012). Design heuristics in engineering concept generation. Journal of Engineering Education, 101(4), 601–629. https://doi.org/10.1002/j.2168-9830.2012.tb01121.x
  • Davis, N., Hsiao, C.P., Singh, K. Y., Li, L., Moningi, S., & Magerko, B. (2015). Drawing apprentice: An enactive co-creative agent for artistic collaboration. Proceedings of the 2015 ACM SIGCHI Conference on Creativity and Cognition, Glasgow, United Kingdom, 185–186.
  • Davis, N., Siddiqui, S., Karimi, P., Maher, M. L., & Grace, K. (2019). Creative sketching partner: A co-creative sketching tool to inspire design creativity. Proceedings of the 10th International Conference on Computational Creativity, Charlotte, NC, United States, 358–359.
  • Dorta, T. (2008). Design flow and ideation. International Journal of Architectural Computing, 6(3), 299–316. https://doi.org/10.1260/1478-0771.6.3.299
  • Figoli, F. A., Mattioli, F., & Rampino, L. (2022). Artificial intelligence in the design process: The impact on creativity and team collaboration. FrancoAngeli.
  • Fu, K., Chan, J., Cagan, J., Kotovsky, K., Schunn, C., & Wood, K. (2013). The meaning of “near” and “far”: The impact of structuring design databases and the effect of distance of analogy on design output. Journal of Mechanical Design, 135(2). https://doi.org/10.1115/1.4023158
  • Gero, J. S. (1990). Design prototypes: A knowledge representation schema for design. AI Magazine, 11(4), 26–36.
  • Gero, J. S., et al. (2010). Generalizing design cognition research. In K. Dorst, Ed.. DTRS8: Interpreting Design Thinking, DAB documents, Sydney (pp. 187–198).
  • Gero, J. S., & Kannengiesser, U. (2004). The situated function–behaviour–structure framework. Design Studies, 25(4), 373–391. https://doi.org/10.1016/j.destud.2003.10.010
  • Gero, J. S., & Maher, M. L. (1991). Mutation and analogy to support creativity in computer-aided design.
  • Goel, A. K. (1997). Design, analogy, and creativity. IEEE Expert, 12(3), 62–70. https://doi.org/10.1109/64.590078
  • Goel, V., & Pirolli, P. (1992). The structure of design problem spaces. Cognitive science, 16(3), 395–429. https://doi.org/10.1207/s15516709cog1603_3
  • Grace, K., Maher, M. L., Fisher, D., & Brady, K. (2015). Data-intensive evaluation of design creativity using novelty, value, and surprise. International Journal of Design Creativity and Innovation, 3(3–4), 125–147. https://doi.org/10.1080/21650349.2014.943295
  • Gupta, N., Jang, Y., Mednick, S. C., & Huber, D. E. (2012). The road not taken: Creative solutions require avoidance of high-frequency responses. Psychological Science, 23(3), 288–294. https://doi.org/10.1177/0956797611429710
  • Han, J., Hua, M., Park, D., Wang, P., & Childs, P. R. N. (2020). Computational conceptual distances in combinational creativity. Proceedings of the Design Society: DESIGN Conference, Cavtat, Croatia, 1, 177–186.
  • Han, J., Shi, F., Chen, L., & Childs, P. (2017). The Analogy Retriever–an idea generation tool. DS 87-4 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 4: Design Methods and Tools, Vancouver, Canada, 21–25.08. , 21–25.08.
  • Han, J., Shi, F., Chen, L., & Childs, P. R. (2018a). A computational tool for creative idea generation based on analogical reasoning and ontology. AI EDAM, 32(4), 462–477.
  • Han, J., Shi, F., Chen, L., & Childs, P. R. (2018b). The Combinator–a computer-based tool for creative idea generation based on a simulation approach. Design Science, 4, e11. https://doi.org/10.1017/dsj.2018.7
  • Han, J., Shi, F., Park, D., Chen, L., & Childs, P. (2018). The conceptual distances between ideas in combinational creativity. DS 92: Proceedings of the DESIGN 2018 15th International Design Conference, Dubrovnik, Croatia, 1857–1866.
  • Howard-Jones, P. A., & Murray, S. (2003). Ideational productivity, focus of attention, and context. Creativity Research Journal, 15(2–3), 153–166.
  • Jagtap, S. (2019). Design creativity: Refined method for novelty assessment. International Journal of Design Creativity and Innovation, 7(1–2), 99–115. https://doi.org/10.1080/21650349.2018.1463176
  • Jia, L., Becattini, N., Cascini, G., & Tan, R. (2020). Testing ideation performance on a large set of designers: Effects of analogical distance. International Journal of Design Creativity and Innovation, 8(1), 31–45. https://doi.org/10.1080/21650349.2019.1618736
  • Jongejan, J., Rowley, H., Kawashima, T., Kim, J., & Fox-Gieg, N. (2016). The quick, draw!-ai experiment. Mount View, CA, Accessed Feb, 17(2018), 4.
  • Kang, Y., Sun, Z., Wang, S., Huang, Z., Wu, Z., & Ma, X. (2021). MetaMap: Supporting visual metaphor ideation through multi-dimensional example-based exploration. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 1–15.
  • Kantosalo, A., & Riihiaho, S. (2019). Quantifying co-creative writing experiences. Digital Creativity, 30(1), 23–38. https://doi.org/10.1080/14626268.2019.1575243
  • Karimi, P., Grace, K., Maher, M. L., & Davis, N. (2018). Evaluating creativity in computational co-creative systems. Proceedings of the 9th International Conference on Computational Creativity, Salamanca, Spain. 104–111.
  • Karimi, P., Maher, M. L., Davis, N., & Grace, K. (2019). Deep learning in a computational model for conceptual shifts in a co-creative design system. Proceedings of the 10th International Conference on Computational Creativity, Charlotte, NC, Unite States, 17–24.
  • Karimi, P., Rezwana, J., Siddiqui, S., Maher, M. L., & Dehbozorgi, N. (2020). Creative sketching partner: An analysis of human-AI co-creativity. Proceedings of the 25th International Conference on Intelligent User Interfaces, Cagliari, Italy, 221–230.
  • Kennedy, E. B., Miller, D. J., & Niewiarowski, P. H. (2018). Industrial and biological analogies used creatively by business professionals. Creativity Research Journal, 30(1), 54–66. https://doi.org/10.1080/10400419.2017.1411631
  • Kim, J., & Maher, M. L. (2021). Evaluating the effect of co-creative systems on design ideation. Proceedings of the 9th International Conference on Computational Creativity, Online, 440–443.
  • Kim, J., Maher, M. L., & Siddiqui, S. (2021a). Collaborative ideation partner: Design ideation in human-ai co-creativity. Proceedings of the International Conference on Computer-Human Interaction Research and Applications (CHIRA), Online, 123–130.
  • Kim, J., Maher, M. L., & Siddiqui, S. (2021b). Studying the impact of AI-based inspiration on human ideation in a co-creative design system. Joint Proceedings of the ACM IUI 2021 Workshops co-located with 26th ACM Conference on Intelligent User Interfaces (ACM IUI 2021), College Station, United States, April 13-17, 2021. 2903 of CEUR Workshop Proceedings.
  • Koestler, A. (1964). The act of creation.
  • Liao, J., Hansen, P., & Chai, C. (2020). A framework of artificial intelligence augmented design support. Human–Computer Interaction, 35(5–6), 511–544. https://doi.org/10.1080/07370024.2020.1733576
  • Liikkanen, L. A., Björklund, T. A., Hämäläinen, M. M., & Koskinen, M. P. (2009). Time constraints in design idea generation. DS 58-9: Proceedings of ICED 09, the 17th International Conference on Engineering Design, Vol.9, Human Behavior in Design Palo Alto, CA, USA, 24.-27.08. 2009, 81–90.
  • Lin, Y., Guo, J., Chen, Y., Yao, C., & Ying, F. (2020). It is your turn: Collaborative ideation with a co-creative robot through sketch. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, New York, NY, United States, 1–14.
  • Liu, Y. -C., Chakrabarti, A., & Bligh, T. (2003). Towards an ‘ideal’approach for concept generation. Design Studies, 24(4), 341–355. https://doi.org/10.1016/S0142-694X(03)00003-6
  • Lucas, P., & Martinho, C. (2017). Stay awhile and listen to 3buddy, a co-creative level design support tool. Proceedings of the 8th International Conference on Computational Creativity, Atlanta, Georgia, United States, 205–212.
  • Luo, J., Sarica, S., & Wood, K. L. (2019). Computer-aided design ideation using innogps. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Anaheim, California, United States, 59186, V02AT03A011.
  • Luo, J., Sarica, S., & Wood, K. L. (2021). Guiding data-driven design ideation by knowledge distance. Knowledge-Based Systems, 218, 106873. https://doi.org/10.1016/j.knosys.2021.106873
  • Maher, M. L., Brady, K., & Fisher, D. H. (2013). Computational models of surprise in evaluating creative design. Proceedings of the Fourth International Conference on Computational Creativity, Sydney, Australia, 147.
  • Mamykina, L., Candy, L., & Edmonds, E. (2002). Collaborative creativity. Communications of the ACM, 45(10), 96–99. https://doi.org/10.1145/570907.570940
  • Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69(3), 220. https://doi.org/10.1037/h0048850
  • Moreno, D. P., Hernandez, A. A., Yang, M. C., Otto, K. N., Hölttä-Otto, K., Linsey, J. S., Wood, K. L., & Linden, A. (2014). Fundamental studies in Design-by-Analogy: A focus on domain-knowledge experts and applications to transactional design problems. Design Studies, 35(3), 232–272. https://doi.org/10.1016/j.destud.2013.11.002
  • Nagai, Y., & Taura, T. (2006). Role of action concepts in creative design process. 2006 International Design Research Symposium, Seoul, Korea.
  • Nelson, B. A., Wilson, J. O., Rosen, D., & Yen, J. (2009). Refined metrics for measuring ideation effectiveness. Design Studies, 30(6), 737–743. https://doi.org/10.1016/j.destud.2009.07.002
  • Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104). Prentice-Hall.
  • Nijstad, B. A., & Stroebe, W. (2006). How the group affects the mind: A cognitive model of idea generation in groups. Personality and Social Psychology Review, 10(3), 186–213. https://doi.org/10.1207/s15327957pspr1003_1
  • Oh, C., Song, J., Choi, J., Kim, S., Lee, S., & Suh, B. (2018). I lead, you help but only with enough details: Understanding user experience of co-creation with artificial intelligence. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montréal, Canada, 1–13.
  • Oman, S. K., Tumer, I. Y., Wood, K., & Seepersad, C. (2013). A comparison of creativity and innovation metrics and sample validation through in-class design projects. Research in Engineering Design, 24(1), 65–92. https://doi.org/10.1007/s00163-012-0138-9
  • Pandya, R., Huang, S. H., Hadfield-Menell, D., & Dragan, A. D. (2019). Human-AI learning performance in multi-armed bandits. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, United States, 369–375.
  • Perttula, M. K., & Liikkanen, L. A. (2006). Structural tendencies and exposure effects in design idea generation. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Philadelphia, Pennsylvania, United States, 42584, 199–210.
  • Rothenberg, A. (1979). The emerging goddess: The creative process in art, science, and other fields. University of Chicago Press.
  • Sarkar, P., & Chakrabarti, A. (2011). Assessing design creativity. Design Studies, 32(4), 348–383. https://doi.org/10.1016/j.destud.2011.01.002
  • Shah, J. J., Smith, S. M., & Vargas-Hernandez, N. (2003). Metrics for measuring ideation effectiveness. Design Studies, 24(2), 111–134. https://doi.org/10.1016/S0142-694X(02)00034-0
  • Siddharth, L., & Chakrabarti, A. (2018). Evaluating the impact of Idea-Inspire 4.0 on analogical transfer of concepts. Ai Edam, 32(4), 431–448. https://doi.org/10.1017/S0890060418000136
  • Snyder, A., Mitchell, J., Ellwood, S., Yates, A., & Pallier, G. (2004). Nonconscious idea generation. Psychological Reports, 94(3_suppl), 1325–1330. https://doi.org/10.2466/pr0.94.3c.1325-1330
  • Srinivasan, V., Song, B., Luo, J., Subburaj, K., Elara, M. R., Blessing, L., & Wood, K. (2018). Does analogical distance affect performance of ideation? Journal of Mechanical Design, 140(7). https://doi.org/10.1115/1.4040165
  • Taura, T., & Nagai, Y. (2013). A systematized theory of creative concept generation in design: First-order and high-order concept generation. Research in Engineering Design, 24(2), 185–199. https://doi.org/10.1007/s00163-013-0152-6
  • Taura, T., Nagai, Y., & Tanaka, S. (2005). Design space blending–a key for creative design. DS 35: Proceedings ICED 05, the 15th International Conference on Engineering Design , Melbourne, Australia, 15.-18.08.
  • Taylor, D. W., Berry, P. C., & Block, C. H. (1958). Does group participation when using brainstorming facilitate or inhibit creative thinking? Administrative science quarterly, 3(1), 23–47. https://doi.org/10.2307/2390603
  • Tsenn, J., Atilola, O., McAdams, D. A., & Linsey, J. S. (2014). The effects of time and incubation on design concept generation. Design Studies, 35(5), 500–526. https://doi.org/10.1016/j.destud.2014.02.003
  • Weisberg, R. (1993). Creativity: Beyond the myth of genius. WH Freeman.
  • Yannakakis, G. N., Liapis, A., & Alexopoulos, C. (2014). Mixed-initiative co-creativity.
  • Zhang, G., Raina, A., Cagan, J., & McComb, C. (2021). A cautionary tale about the impact of AI on human design teams. Design Studies, 72, 100990. https://doi.org/10.1016/j.destud.2021.100990
  • Zuo, H., Jing, Q., Song, T., Liu, H., Sun, L., Childs, P., & Chen, L. (2022). WikiLink: An encyclopedia-based semantic network for design innovation. ArXiv Preprint ArXiv:2208.14349.