Surface velocity coefficients for discharge monitoring with a surface float method in shallow streams 浅水溪流中采用水面漂浮法进行排放监测的水面速度系数
Kristine F. Stepenuck ^("a,b, "){ }^{\text {a,b, }}, Matthew Diebel ^("b, ")^{\text {b, }}, Heather Smith ^("a,2 "){ }^{\text {a,2 }}, Ian Anderson ^("a,3 "){ }^{\text {a,3 }}, David Wiseman ^(a){ }^{a} Kristine F. Stepenuck ^("a,b, "){ }^{\text {a,b, }} 、Matthew Diebel ^("b, ")^{\text {b, }} 、Heather Smith ^("a,2 "){ }^{\text {a,2 }} 、Ian Anderson ^("a,3 "){ }^{\text {a,3 }} 、David Wiseman ^(a){ }^{a}^(a){ }^{a} University of Wisconsin-Madison, 445 Henry Mall, Madison, WI, 53706 USA ^(a){ }^{a} 威斯康星大学麦迪逊分校,445 Henry Mall, Madison, WI, 53706 USA^(b){ }^{\mathrm{b}} Wisconsin Department of Natural Resources, 101 S. Webster St, PO Box 7921, Madison, WI, 53707 USA ^(b){ }^{\mathrm{b}} 威斯康星州自然资源部,101 S. Webster St, PO Box 7921, Madison, WI, 53707 USA
1. Introduction 1.导言
Natural resource management concerns have brought stream discharge assessment to the forefront of importance for managers worldwide. As water demand for agricultural, industrial, and private uses has increased with population growth, the influence of water extraction on streams and rivers has become evident worldwide (Burt et al., 2002, Kustu et al., 2010, Shi et al., 2022; Zou et al., 2015). For instance, irrigation (Kustu et al., 2010) and industrial uses (Shi et al., 2022) have decreased streamflows, sometimes by as much as 100%100 \% (Kraft et al., 2012). Increased impervious surfaces in urban areas have reduced infiltration and limited recharge to streams via shallow groundwater pathways, reducing stream baseflows (Wang et al., 2014). Expanded impervious surfaces have also increased storm runoff intensity and modified runoff timing in streams (Wang et al., 2014). Climate change is also influencing stream discharges (Dey and Mishra, 2017). Such changes in streamflow patterns put aquatic life at risk (Gido et al., 2010), alter food webs (Ledger et al., 2013), and influence food and water availability for human populations (Lambooy, 2011). 对自然资源管理的关注使溪流排放评估成为全球管理者关注的焦点。随着人口的增长,农业、工业和私人用水的需求也随之增加,取水对溪流和河流的影响在全球范围内变得显而易见(Burt 等人,2002 年;Kustu 等人,2010 年;Shi 等人,2022 年;Zou 等人,2015 年)。例如,灌溉(Kustu 等人,2010 年)和工业使用(Shi 等人,2022 年)导致河水流量减少,有时减少幅度高达 100%100 \% (Kraft 等人,2012 年)。城市地区不透水表面的增加减少了渗透,限制了通过浅层地下水途径对溪流的补给,从而减少了溪流基流(Wang 等人,2014 年)。扩大的不透水表面还增加了暴雨径流强度,并改变了溪流的径流时间(Wang 等人,2014 年)。气候变化也影响着溪流的排水量(Dey 和 Mishra,2017 年)。溪流模式的这种变化会危及水生生物(Gido 等人,2010 年),改变食物网(Ledger 等人,2013 年),并影响人类的食物和水供应(Lambooy,2011 年)。
Unfortunately, research budgets can support only a limited number of automated stream discharge monitoring stations (Ettinger et al., 2003; Krabbenhoft et al., 2022). In the United States, about 8,500 automated streamflow gages are supported. These tend to be on larger waterways and not in headwaters as they are strategically positioned to supply critical information to inform public safety (e.g., about floods), environmental conditions, and boundary compacts (United States Geological Survey, 2023). To support continuous data collection, realtime data delivery, quality assurance, and data storage, each gage costs about $22,500 per year to operate (WWALS Watershed Coalition, 2021). 遗憾的是,研究预算只能支持数量有限的自动溪流排放监测站(Ettinger 等人,2003 年;Krabbenhoft 等人,2022 年)。在美国,大约有 8,500 个自动溪流监测站。这些水文站往往位于较大的水道上,而不是在上游,因为它们的战略定位是提供关键信息,为公共安全(如洪水)、环境条件和边界契约提供信息(美国地质调查局,2023 年)。为支持持续的数据收集、实时数据传输、质量保证和数据存储,每个水文站每年的运营成本约为 22,500 美元(WWALS 流域联盟,2021 年)。
In response, natural resource managers partner with members of the public to obtain data needed for decision-making (Au et al., 2000; Conrad and Hilchey, 2011). This is particularly common for water monitoring. Numerous volunteer water-monitoring groups use a surface float method to estimate discharge (e.g., Georgia Department of Natural Resources, 2014; Indiana Department of Environmental Management, 2022; Missouri Department of Natural Resources, 2022; United States Environmental Protection Agency, 1997). The details of the surface float method vary somewhat among protocols, but all involve timing a floating object such as a ball, fishing float, or stick over a measured distance to determine surface velocity, converting surface velocity to mean channel velocity with a ratio, and measuring cross-sectional area of the stream channel. The ratio of the surface velocity to the mean channel velocity (commonly referred to as surface velocity coefficient) is the main area of uncertainty in these methods. Mean channel velocity is lower than surface velocity because friction slows flow near the bottom of the channel. However, wide variation exists in recommended surface velocity coefficients and in how to select an appropriate coefficient for a particular measurement site or flow condition (Table 1). In a laboratory flume, surface velocity coefficients were related to substrate roughness and water depth (Hundt and Blasch, 2019). In practical application on natural streams, the measured surface velocity itself may be biased high by the tendency of floating objects to move toward the area of highest velocity and by impedance of float trials in near-bank areas by vegetation and other obstructions. 为此,自然资源管理者与公众合作,获取决策所需的数据(Au 等人,2000 年;Conrad 和 Hilchey,2011 年)。这在水质监测中尤为常见。许多志愿水质监测团体使用水面漂浮法来估算排放量(例如,佐治亚州自然资源部,2014 年;印第安纳州环境管理部,2022 年;密苏里州自然资源部,2022 年;美国环境保护局,1997 年)。表面漂浮法的细节在不同的规程中略有不同,但都涉及对漂浮物(如球、钓鱼浮子或棍子)在测量距离内的计时,以确定表面速度,将表面速度转换为河道平均速度的比率,并测量河道的横截面积。表层速度与平均河道速度的比值(通常称为表层速度系数)是这些方法的主要不确定因素。河道平均流速低于地表流速是因为摩擦力减慢了河道底部附近的流速。然而,在推荐的表层流速系数以及如何为特定测量地点或水流条件选择合适的系数方面存在很大差异(表 1)。在实验室水槽中,表层流速系数与底质粗糙度和水深有关(Hundt 和 Blasch,2019 年)。在自然溪流的实际应用中,由于漂浮物倾向于向流速最高的区域移动,以及植被和其他障碍物对近岸区域漂浮物试验的阻碍,所测得的表面流速本身可能会偏高。
However, for members of the public to contribute effectively to management decisions, the generated data must be of sufficient quality for intended uses. Volunteer training, methodologies, and data management practices (e.g., development and approval of quality assurance projects plans by state and federal agencies) all contribute to data 然而,要让公众有效地为管理决策做出贡献,所生成的数据必须具有足够的质量,以满足预期用途。志愿者培训、方法和数据管理实践(例如,由州和联邦机构制定和批准质量保证项目计划)都有助于提高数据质量。
Table 1 表 1
Published estimates of the ratio of surface velocity to mean channel velocity in streams, expressed as coefficients by which surface velocity must be multiplied to obtain mean velocity; (NR, not reported). Of all references included in the table, only the United States Environmental Protection Agency (1997) reference is specifically written as a volunteer method. 已公布的溪流地表速度与河道平均速度之比估算值,表示为地表速度乘以系数才能得到平均速度;(NR,未报告)。在表中包含的所有参考文献中,只有美国环境保护局(1997 年)的参考文献是专门作为志愿方法编写的。
Streams of New
York and New
Jersey or the
fish cultural
experimental
station of
Cornell
University| Streams of New |
| :--- |
| York and New |
| Jersey or the |
| fish cultural |
| experimental |
| station of |
| Cornell |
| University |
0.9
泥土、细沙、硬岩或基岩
mud, fine
sand, hardpan, or bedrock
mud, fine
sand, hardpan, or bedrock| mud, fine |
| :--- |
| sand, hardpan, or bedrock |
NR
纽约和新泽西的溪流或康奈尔大学鱼类文化实验站
Streams of New
York and New
Jersey or the
fish cultural
experimental
station of
Cornell
University
Streams of New
York and New
Jersey or the
fish cultural
experimental
station of
Cornell
University| Streams of New |
| :--- |
| York and New |
| Jersey or the |
| fish cultural |
| experimental |
| station of |
| Cornell |
| University |
Table 1 in British
Standards
Institution,
1964 (also
reported in
Kulin and
Compton,
1975; United
States Bureau
of
Reclamation, 2001)| Table 1 in British |
| :--- |
| Standards |
| Institution, |
| 1964 (also |
| reported in |
| Kulin and |
| Compton, |
| 1975; United |
| States Bureau |
| of |
| Reclamation, 2001) |
0.66
未说明床的特性
Bed
character
not
described
Bed
character
not
described| Bed |
| :--- |
| character |
| not |
| described |
0.3
NR
0.68
Bed character not described 未说明床的特性
0.6
NR
0.70
Bed character not described 未说明床的特性
0.9
NR
0.80
Bed character not described 未说明床的特性
6.0 and more 6.0 及更多
NR
Fig. 1 in British 图 1 在英国
0.84
rough bed 粗床
NR
NR
标准协会,1964 年(另见 Kulin 和 Compton,1975 年)。
Standards
Institution,
1964 (also
reported in
Kulin and
Compton,
1975)
Standards
Institution,
1964 (also
reported in
Kulin and
Compton,
1975)| Standards |
| :--- |
| Institution, |
| 1964 (also |
| reported in |
| Kulin and |
| Compton, |
| 1975) |
0.88
平床
smooth
bed
smooth
bed| smooth |
| :--- |
| bed |
NR
NR
Hulsing et al., 1966 赫尔辛等人,1966 年
0.86
NR
NR
Streams and canals in the United States with discharges from 0.03m^(3)//s0.03 \mathrm{~m}^{3} / \mathrm{s} to 18,009m^(3)//s18,009 \mathrm{~m}^{3} / \mathrm{s} 美国境内排水量从 0.03m^(3)//s0.03 \mathrm{~m}^{3} / \mathrm{s} 到 18,009m^(3)//s18,009 \mathrm{~m}^{3} / \mathrm{s} 的溪流和运河
Turnipseed and
Sauer, 2010| Turnipseed and |
| :--- |
| Sauer, 2010 |
0.84
irregular bed 病床
NR
NR
0.90
平床
smooth
bed
smooth
bed| smooth |
| :--- |
| bed |
NR
NR
Genç et al., 2015 Genç 等人,2015 年
0.55
NR
0.26-0.850.26-0.85
Small rivers in Turkey 土耳其的小河流
Hauet et al., 2018 Hauet 等人,2018 年
0.8 (5th and 95th percentiles: 0.71 and 0.88)0.88) 0.8(第 5 和第 95 百分位数:0.71和 0.88)0.88)
天然沙床、卵石床或巨石床
natural
sand, pebble, or boulder bed
natural
sand, pebble, or boulder bed| natural |
| :--- |
| sand, pebble, or boulder bed |
0.18-0.630.18-0.63
Small rivers in France 法国的小河流
Reference Surface velocity coefficient (s) Bed type Water depth (m) Measurement sites
Embody, 1927 0.8 "rocks,
coarse bed" NR "Streams of New
York and New
Jersey or the
fish cultural
experimental
station of
Cornell
University"
0.9 "mud, fine
sand, hardpan, or bedrock" NR "Streams of New
York and New
Jersey or the
fish cultural
experimental
station of
Cornell
University"
"Table 1 in British
Standards
Institution,
1964 (also
reported in
Kulin and
Compton,
1975; United
States Bureau
of
Reclamation, 2001)" 0.66 "Bed
character
not
described" 0.3 NR
0.68 Bed character not described 0.6 NR
0.70 Bed character not described 0.9 NR
0.80 Bed character not described 6.0 and more NR
Fig. 1 in British 0.84 rough bed NR NR
"Standards
Institution,
1964 (also
reported in
Kulin and
Compton,
1975)" 0.88 "smooth
bed" NR NR
Hulsing et al., 1966 0.86 NR NR Streams and canals in the United States with discharges from 0.03m^(3)//s to 18,009m^(3)//s
Rantz et al., 1982 0.85 NR NR Large rivers in the United States
United States 0.8 rocky bed NR NR
"Environmental
Protection
Agency, 1997" 0.9 "smooth
bed" NR NR
British Standards 0.84 NR NR NR
Institution, 2007 0.90 "smooth
bed" NR NR
"Turnipseed and
Sauer, 2010" 0.84 irregular bed NR NR
0.90 "smooth
bed" NR NR
Genç et al., 2015 0.55 NR 0.26-0.85 Small rivers in Turkey
Hauet et al., 2018 0.8 (5th and 95th percentiles: 0.71 and 0.88) "natural
sand, pebble, or boulder bed" 0.18-0.63 Small rivers in France| Reference | Surface velocity coefficient (s) | Bed type | Water depth (m) | Measurement sites |
| :---: | :---: | :---: | :---: | :---: |
| Embody, 1927 | 0.8 | rocks, <br> coarse bed | NR | Streams of New <br> York and New <br> Jersey or the <br> fish cultural <br> experimental <br> station of <br> Cornell <br> University |
| | 0.9 | mud, fine <br> sand, hardpan, or bedrock | NR | Streams of New <br> York and New <br> Jersey or the <br> fish cultural <br> experimental <br> station of <br> Cornell <br> University |
| Table 1 in British <br> Standards <br> Institution, <br> 1964 (also <br> reported in <br> Kulin and <br> Compton, <br> 1975; United <br> States Bureau <br> of <br> Reclamation, 2001) | 0.66 | Bed <br> character <br> not <br> described | 0.3 | NR |
| | 0.68 | Bed character not described | 0.6 | NR |
| | 0.70 | Bed character not described | 0.9 | NR |
| | 0.80 | Bed character not described | 6.0 and more | NR |
| Fig. 1 in British | 0.84 | rough bed | NR | NR |
| Standards <br> Institution, <br> 1964 (also <br> reported in <br> Kulin and <br> Compton, <br> 1975) | 0.88 | smooth <br> bed | NR | NR |
| Hulsing et al., 1966 | 0.86 | NR | NR | Streams and canals in the United States with discharges from $0.03 \mathrm{~m}^{3} / \mathrm{s}$ to $18,009 \mathrm{~m}^{3} / \mathrm{s}$ |
| Rantz et al., 1982 | 0.85 | NR | NR | Large rivers in the United States |
| United States | 0.8 | rocky bed | NR | NR |
| Environmental <br> Protection <br> Agency, 1997 | 0.9 | smooth <br> bed | NR | NR |
| British Standards | 0.84 | NR | NR | NR |
| Institution, $2007$ | 0.90 | smooth <br> bed | NR | NR |
| Turnipseed and <br> Sauer, 2010 | 0.84 | irregular bed | NR | NR |
| | 0.90 | smooth <br> bed | NR | NR |
| Genç et al., 2015 | 0.55 | NR | $0.26-0.85$ | Small rivers in Turkey |
| Hauet et al., 2018 | 0.8 (5th and 95th percentiles: 0.71 and $0.88)$ | natural <br> sand, pebble, or boulder bed | $0.18-0.63$ | Small rivers in France |
Table 1 (continued) 表 1(续)
Reference 参考资料
Surface velocity coefficient (s) 表面速度系数 (s)
Bed type 床型
Water depth (m) 水深(米)
Measurement sites 测量地点
Hundt and Blasch, 2019 Hundt 和 Blasch,2019 年
0.9 (5th and 95th percentiles: 0.82 to 0.99 ) 0.9(第 5 和第 95 百分位数:0.82 至 0.99)
Laboratory
flume ( d, depth in m)| Laboratory |
| :--- |
| flume ( $d$, depth in m) |
ISO, 2021 国际标准化组织,2021 年
0.92
平床
smooth
bed
smooth
bed| smooth |
| :--- |
| bed |
0.30-0.750.30-0.75
实验室
水槽 ( dd, 深度(以米为单位))
Laboratory
flume ( dd, depth in m)
Laboratory
flume ( d, depth in m)| Laboratory |
| :--- |
| flume ( $d$, depth in m) |
0.84
NR
NR
NR
0.90
smooth bed 平床
NR
NR
Reference Surface velocity coefficient (s) Bed type Water depth (m) Measurement sites
Hundt and Blasch, 2019 0.9 (5th and 95th percentiles: 0.82 to 0.99 ) "concrete
channel" 0.18-0.63 Small rivers in France
"0.00628 d+
0.456" gravel and cobble bed 0.30-0.75 "Laboratory
flume ( d, depth in m)"
ISO, 2021 0.92 "smooth
bed" 0.30-0.75 "Laboratory
flume ( d, depth in m)"
0.84 NR NR NR
0.90 smooth bed NR NR| Reference | Surface velocity coefficient (s) | Bed type | Water depth (m) | Measurement sites |
| :---: | :---: | :---: | :---: | :---: |
| Hundt and Blasch, 2019 | 0.9 (5th and 95th percentiles: 0.82 to 0.99 ) | concrete <br> channel | $0.18-0.63$ | Small rivers in France |
| | $\begin{aligned} & 0.00628 d+ \\ & 0.456 \end{aligned}$ | gravel and cobble bed | $0.30-0.75$ | Laboratory <br> flume ( $d$, depth in m) |
| ISO, 2021 | 0.92 | smooth <br> bed | $0.30-0.75$ | Laboratory <br> flume ( $d$, depth in m) |
| | 0.84 | NR | NR | NR |
| | 0.90 | smooth bed | NR | NR |
quality (Freitag et al., 2016). Comparison studies between volunteer and professional methods can also help ensure data quality. A number of such studies related to water monitoring concluded that trained volunteers contributed valuable data, though results depended on parameter monitored, level of precision required, and method used (Au et al., 2000; Bell, 2007). For instance, volunteers produced similar results to professionals when they measured electrical conductivity and pH (Nicholson et al., 2002) and E. coli bacteria (Stepenuck et al., 2011), and when they observed cyanobacteria blooms (Sarnelle et al., 2010). Conversely, volunteers and professionals’ results differed when volunteers had less experience (Bell, 2007) or when volunteer methods or tools had less precision (Nicholson et al., 2002; Loperfido et al., 2010). 质量(Freitag 等人,2016 年)。志愿者方法与专业方法之间的比较研究也有助于确保数据质量。许多与水监测有关的此类研究得出结论,训练有素的志愿者提供了宝贵的数据,尽管结果取决于监测的参数、所需的精度水平以及使用的方法(Au 等人,2000 年;Bell,2007 年)。例如,志愿者在测量电导率和 pH 值(Nicholson 等人,2002 年)、大肠杆菌(Stepenuck 等人,2011 年)以及观察蓝藻藻华(Sarnelle 等人,2010 年)时得出的结果与专业人员相似。相反,当志愿者经验较少(Bell,2007 年)或志愿者的方法或工具精度较低时,志愿者与专业人员的结果也会有所不同(Nicholson 等人,2002 年;Loperfido 等人,2010 年)。
The surface velocity coefficient plays an important role in the accuracy of discharge measurements in the surface float method. Thus, the inconsistent guidance on its estimation is a significant impediment to the credibility of the surface float method in citizen science. In this study, we aimed to improve the accuracy of the surface float method by providing direct, empirical estimates of the surface velocity coefficient for natural streams. To do this, we compared discharge measurements made with a surface float method used by volunteers in Wisconsin, United States (University of Wisconsin, 2010) to measurements made with a velocityarea method (Turnipseed and Sauer, 2010) with an electromagnetic meter commonly used by Wisconsin Department of Natural Resources staff (Wisconsin Department of Natural Resources, 1998). The results provide recommended surface velocity coefficients that are applicable to a wide variety of wadable streams including those with both rocky and smooth beds. We also provided an estimated accuracy of discharge measurements made with the surface float method. 表层流速系数对表层漂浮法测量排水量的准确性起着重要作用。因此,对其估算的指导不一致严重阻碍了表层漂浮法在公民科学中的可信度。在这项研究中,我们的目标是通过对自然溪流的表层速度系数进行直接的经验估算来提高表层漂浮法的准确性。为此,我们比较了美国威斯康星州志愿者使用水面漂浮法(威斯康星大学,2010 年)和威斯康星州自然资源部工作人员使用电磁测量仪(威斯康星州自然资源部,1998 年)使用速度面积法(Turnipseed 和 Sauer,2010 年)进行的排放测量。结果提供了适用于各种可涉水溪流(包括岩石河床和光滑河床)的推荐表面流速系数。我们还提供了采用水面漂浮法测量排水量的估计精度。
2. Materials and methods 2.材料和方法
2.1. Volunteer program 2.1.志愿者计划
Participants in Wisconsin’s Water Action Volunteers stream monitoring program have assessed streamflow with a common methodology since 2003 (University of Wisconsin, 2010). The method was based on Missouri Department of Natural Resources (2000), United States Environmental Protection Agency (1997), and other volunteer monitoring programs’ methods. By June 2011, volunteers had collected 3,476 discharge observations up to 3.5m^(3)//s(125cfs)3.5 \mathrm{~m}^{3} / \mathrm{s}(125 \mathrm{cfs}) at 502 sites across Wisconsin (Board of Regents of the University of Wisconsin System, 2023). 自 2003 年以来,威斯康星州水行动志愿者溪流监测计划的参与者一直在使用一种通用方法评估溪流(威斯康星大学,2010 年)。该方法以密苏里自然资源部(2000 年)、美国环境保护局(1997 年)和其他志愿者监测计划的方法为基础。截至 2011 年 6 月,志愿者们已在威斯康星州的 502 个地点收集了 3476 次排水观测数据(威斯康星大学系统管理委员会,2023 年)。
2.2. Study sites 2.2.研究地点
We selected study sites randomly from the 173 locations where volunteers had monitored streamflow between March 2010 and June 2011 as these were most likely to have active volunteers. The study 我们从 2010 年 3 月至 2011 年 6 月期间有志愿者监测溪流的 173 个地点中随机选择了研究地点,因为这些地点最有可能有活跃的志愿者。研究
originally included 35 sites (Stepenuck, 2013); however, seven sites were dropped from the analysis because of inconsistencies in the types of floating objects used by volunteers in the surface float method. This resulted in 28 study sites widely distributed across Wisconsin (Fig. 1). We selected sites to represent three discharge classes: less than 0.03 cubic meters per second ( m^(3)//s;1\mathrm{m}^{3} / \mathrm{s} ; 1 cubic foot per second, cfs), between 0.03 and 0.3m^(3)//s0.3 \mathrm{~m}^{3} / \mathrm{s} ( 1 and 10 cfs ), and greater than 0.3m^(3)//s(10cfs0.3 \mathrm{~m}^{3} / \mathrm{s}(10 \mathrm{cfs} ). Discharge classes were defined by previous volunteer streamflow measurements. These discharge classes were selected because unpublished data from the Missouri Stream Team suggested that accuracy of the volunteer method was highest when streamflow was between 0.03 and 0.3m^(3)//s0.3 \mathrm{~m}^{3} / \mathrm{s} ( 1 to 10 cfs ), but less accurate when outside of that range (personal communciation with Tim Rielly and Chris Riggert, April 2011). For purposes of this paper, the discharge classes provided us with an appropriate range of discharge measurements, but the classes were not important for analyses. Due to variability in streamflow, individual sites sometimes represented multiple size classes. Once a site was selected to represent one size category, it was not selected to represent another size category. After we randomly selected sites, we contacted volunteers to request their participation in the study. When volunteers opted not to participate, we selected different sites in the appropriate size class. When volunteers opted to participate, we included up to three sites they monitored in the study. This process resulted in five sites ( 18 %\% ) in the smallest size class ( < 0.03m^(3)//s<0.03 \mathrm{~m}^{3} / \mathrm{s} ), 12 sites ( 43%43 \% ) in the mid-size class ( 0.03-0.3m^(3)//s0.03-0.3 \mathrm{~m}^{3} / \mathrm{s} ), and 11 sites ( 39%39 \% ) in the largest size class ( > 0.3>0.3m^(3)//s\mathrm{m}^{3} / \mathrm{s} ). This representation was similar to the percent of sites monitored in the Water Action Volunteers program within the three size classes. For the 3,476 discharge results collected by volunteers between 2003 and June 2011, 7%7 \% of sites were in the smallest size class, 38%38 \% of sites were in the middle size class, and 55%55 \% of sites were in the largest size class. 最初包括 35 个站点(Stepenuck,2013 年);但由于志愿者在水面漂浮法中使用的漂浮物类型不一致,有 7 个站点被从分析中剔除。因此,28 个研究地点广泛分布在威斯康星州各地(图 1)。我们选择了代表三个排水量等级的地点:小于 0.03 立方米/秒( m^(3)//s;1\mathrm{m}^{3} / \mathrm{s} ; 1 立方英尺/秒,cfs)、介于 0.03 和 0.3m^(3)//s0.3 \mathrm{~m}^{3} / \mathrm{s} 之间(1 到 10 cfs)以及大于 0.3m^(3)//s(10cfs0.3 \mathrm{~m}^{3} / \mathrm{s}(10 \mathrm{cfs} 的地点。)排水量等级是根据以前志愿者测量的溪流流量确定的。之所以选择这些排水量等级,是因为密苏里州溪流小组未发表的数据表明,当溪流流量在 0.03 到 0.3m^(3)//s0.3 \mathrm{~m}^{3} / \mathrm{s} 之间(1 到 10 立方英尺/秒)时,志愿者方法的准确性最高,但当超出该范围时,准确性则较低(2011 年 4 月与 Tim Rielly 和 Chris Riggert 的个人交流)。就本文而言,排量等级为我们提供了适当的排量测量范围,但等级对分析并不重要。由于溪流的多变性,单个站点有时会代表多个大小级别。一旦某个站点被选中代表一个规模等级,就不会再被选中代表另一个规模等级。随机选取地点后,我们会联系志愿者,要求他们参与研究。如果志愿者选择不参与,我们就会在相应的规模类别中选择不同的站点。当志愿者选择参与时,我们会将他们监测到的最多三个地点纳入研究。 这一过程的结果是,5 个地点(18 个 %\% 属于最小规模等级( < 0.03m^(3)//s<0.03 \mathrm{~m}^{3} / \mathrm{s} ),12 个地点( 43%43 \% 属于中等规模等级( 0.03-0.3m^(3)//s0.03-0.3 \mathrm{~m}^{3} / \mathrm{s} ),11 个地点( 39%39 \% 属于最大规模等级( > 0.3>0.3m^(3)//s\mathrm{m}^{3} / \mathrm{s} )。这一比例与水行动志愿者计划监测到的三个大小级别的地点比例相似。在 2003 年至 2011 年 6 月期间由志愿者收集的 3,476 项排放结果中, 7%7 \% 个站点属于最小粒度级别, 38%38 \% 个站点属于中等粒度级别, 55%55 \% 个站点属于最大粒度级别。
Repeated visits were made to each site to assess streamflow at varying discharges. Most sites were visited on four occasions. A few sites were visited less often due to difficulty coordinating with volunteers, volunteer attrition from the program, and drought or flood conditions which made monitoring impossible. In all, 76 site visits were made. This research was approved as exempt by the University of Wisconsin- 对每个地点进行了多次考察,以评估不同排水量下的溪流。大多数地点都考察了四次。由于与志愿者协调困难、志愿者退出计划、干旱或洪水导致无法进行监测等原因,少数站点的访问次数较少。总共访问了 76 个地点。本研究获得了威斯康星大学的豁免批准。
Fig. 1. Location of the 28 sites in Wisconsin, United States, where volunteer and professional streamflow monitoring methods were compared. 图 1.美国威斯康星州 28 个地点的位置,其中对志愿者和专业人员的溪流监测方法进行了比较。
Madison Social and Behavioral Sciences IRB (protocol number SE-2011-0519). 麦迪逊社会与行为科学 IRB(协议编号 SE-2011-0519)。
2.3. Volunteer method 2.3.志愿者方法
To learn the Water Action Volunteers streamflow monitoring method (University of Wisconsin, 2010), volunteers attended a hands-on training offered by statewide program staff or a trained local coordinator. At the training, in addition to learning and practicing the streamflow monitoring method, volunteers received written methods and a short training video. Each volunteer was then assigned (by a local program coordinator) or chose a 91.44 m ( 300 ft ) stream monitoring location in a stream in which they could safely wade. Subsequently, each time volunteers visited their stream monitoring location, they followed the prescribed method to measure streamflow (University of Wisconsin, 2010). On their first visit to their stream monitoring location, volunteers identified a straight section of stream at which to monitor streamflow. Volunteers were trained to ensure that section of stream was 6.10 m ( 20 ft ) long and had uniform width and, whenever possible, a depth of at least 0.15 m ( 0.5 ft ; Fig. 2). Once such a stream section was identified, volunteers measured streamflow at this station on each site visit. After marking the up- and down-stream ends of the 6.10m(20ft)6.10 \mathrm{~m}(20 \mathrm{ft}) station and its midpoint, volunteers extended a measuring tape from water’s edge to water’s edge at the midpoint of the section to measure stream width. Next, to determine the average water depth across that transect, the volunteers collected up to 20 depth measurements at 0.30m(1ft)0.30 \mathrm{~m}(1 \mathrm{ft}) intervals. If stream width was greater than 6.10m(20ft)6.10 \mathrm{~m}(20 \mathrm{ft}), volunteers collected the 20 depth measurements at equal intervals across the transect (e.g., if a stream was 12.19 m ( 40 ft ) wide, volunteers collected depth measurements every 0.61m(2ft)0.61 \mathrm{~m}(2 \mathrm{ft}). To measure depth, volunteers used a pole marked in tenths of feet. They held the pole on the stream bed without allowing it to sink in (i.e., if the stream had a soft bed). If velocity of the water was fast enough to create a pillow of water on the marked pole (as the water pushed against it), volunteers were trained to be consistent in how they measured the water depth (i.e., they either estimated the mid-point of the water height as it pushed onto the pole or measured the high or low point of the water as it pushed against the pole). Volunteers made the initial depth measurement at 0.30m(1ft0.30 \mathrm{~m}(1 \mathrm{ft} ) from the bank or at the set interval for streams wider than 6.10m(20ft)6.10 \mathrm{~m}(20 \mathrm{ft}). A zero depth was pre-marked on volunteer data sheets to account for an assumed shallow water area missed by beginning depth measurements away from the water’s edge (Lagler, 1952). To measure velocity, volunteers timed how long it took a float to travel the length of the marked 6.10m(20ft)6.10 \mathrm{~m}(20 \mathrm{ft)} section. A tennis ball with a small cut in it served as the float. Volunteers added a little water into the tennis ball to allow it to float approximately neutrally buoyant. If the float was caught on an object in the stream or stopped in an eddy (area of upstream flow or slack water), the float trial was repeated. Volunteers timed three float trials for streams less than 3.05m(10ft)3.05 \mathrm{~m}(10 \mathrm{ft}) wide and four float trials for wider streams. The volunteers dropped the float into the water upstream of the upstream marked flag to allow it to reach surface speed by the time it entered the marked streamflow monitoring section. Volunteers began timing the float trial as the tennis ball passed the marked upstream end of the streamflow monitoring section. They stopped timing when the float reached the marked downstream end of the streamflow monitoring section. As the volunteers generally worked in teams, one person would position themselves at the upstream end of the marked section and another at the downstream end of the section. The volunteer at the downstream end caught the ball and delivered it back to the upstream end of the streamflow monitoring station. For each of the three or four float trials, the volunteers positioned the ball in different locations across the width of the stream to account for varied velocities expected due to friction along the stream edges. The volunteers avoided standing in the stream in a manner that would create an eddy or otherwise affect the float path of the tennis ball. 为了学习 "水行动志愿者 "的水流监测方法(威斯康星大学,2010 年),志愿者参加了由全州计划工作人员或经过培训的当地协调员提供的实践培训。在培训中,志愿者除了学习和练习流体监测方法外,还收到了书面方法和培训视频短片。然后,(由当地项目协调员)为每名志愿者分配或选择一个他们可以安全涉水的 91.44 米(300 英尺)长的溪流监测点。随后,志愿者每次前往溪流监测点时,都会按照规定的方法测量溪流流量(威斯康星大学,2010 年)。在第一次前往溪流监测点时,志愿者们会确定一段笔直的溪流,在那里监测溪流。志愿者接受了培训,以确保该段溪流长 6.10 米(20 英尺),宽度一致,水深至少 0.15 米(0.5 英尺;图 2)。一旦确定了这样的溪流断面,志愿者就会在每次实地考察时测量该站的溪流流量。在标记了 6.10m(20ft)6.10 \mathrm{~m}(20 \mathrm{ft}) 站的上下游两端及其中点后,志愿者将卷尺从水边伸到该段中点的水边,以测量溪流宽度。接下来,为了确定该断面的平均水深,志愿者们以 0.30m(1ft)0.30 \mathrm{~m}(1 \mathrm{ft}) 的间隔收集了多达 20 个水深测量值。如果溪流宽度大于 6.10m(20ft)6.10 \mathrm{~m}(20 \mathrm{ft}) ,则志愿者在横断面上以相同的间隔收集 20 个深度测量值(例如,如果溪流宽度为 12.19 米(40 英尺),则志愿者每隔 0.61m(2ft)0.61 \mathrm{~m}(2 \mathrm{ft}) 收集深度测量值)。为了测量深度,志愿者使用了一根以十分之一英尺为单位的杆子。 他们将杆子固定在河床上,不让其下沉(即如果河床较软)。如果水流速度快到足以在标杆上形成水枕(因为水流推动了标杆),则志愿者要接受培训,以确保测量水深的方法一致(即在水流推动标杆时估计水流高度的中点,或在水流推动标杆时测量水流的高点或低点)。志愿者在距离河岸 0.30m(1ft0.30 \mathrm{~m}(1 \mathrm{ft} )处进行初始深度测量,或者在宽度大于 6.10m(20ft)6.10 \mathrm{~m}(20 \mathrm{ft}) 的河段的设定间隔处进行初始深度测量。志愿者的数据表上预先标注了零深度,以考虑到在远离水边的地方开始深度测量而漏掉的假定浅水区(Lagler,1952 年)。为了测量速度,志愿者们会计算浮标在标记的 6.10m(20ft)6.10 \mathrm{~m}(20 \mathrm{ft)} 区域内移动所需的时间。漂浮物是一个切口很小的网球。志愿者在网球中加入少量水,使其在近似中性浮力的状态下漂浮。如果浮球被溪流中的物体卡住或停在漩涡(上游水流或水流缓慢的区域)中,则重复进行漂浮试验。志愿者在宽度小于 3.05m(10ft)3.05 \mathrm{~m}(10 \mathrm{ft}) 的溪流中进行了三次漂浮试验,在宽度较大的溪流中进行了四次漂浮试验。志愿者将浮标放入上游标记旗帜的上游水中,使其在进入标记的溪流监测段时达到水面速度。当网球通过有标记的上游溪流监测断面时,志愿者开始为浮标试验计时。当浮标到达溪流监测断面下游有标记的一端时,志愿者停止计时。 由于志愿者通常以小组为单位开展工作,因此一个人将自己定位在标记区段的上游端,另一个人则定位在该区段的下游端。下游端的志愿者接住球并将其送回上游端的溪流监测站。在三到四次漂浮试验中,志愿者将球放置在溪流宽度的不同位置,以考虑到由于溪流边缘摩擦而产生的不同速度。志愿者避免站在溪流中,以免造成漩涡或影响网球的漂浮路径。
To calculate streamflow, volunteers first calculated the average 为了计算溪流流量,志愿者们首先计算了平均
a) Longitudinal view of streamflow monitoring station a) 河流监测站纵向图
Volunteers marked the upstream and downstream ends of the 6.10m(20ft)6.10 \mathrm{~m}(20 \mathrm{ft}) long streamflow monitoring station on both sides of stream. 志愿者们在溪流两侧 6.10m(20ft)6.10 \mathrm{~m}(20 \mathrm{ft}) 长的溪流监测站的上下游两端做了标记。
Upstream end of monitoring station 监测站上游端
Downstream end of monitoring station 监测站下游端
Midpoint of streamflow monitoring station. Volunteers used a measuring tape to measure stream width from water’s edge to water’s edge at the midpoint of the marked 6.1 m long station (i.e., at 3.05 m or 10 ft downstream from the marked upstream end of the streamflow monitoring station). 溪流监测站的中点。志愿者用卷尺测量标有 6.1 米长监测站中点的水边到水边的溪流宽度(即在标有溪流监测站上游端的下游 3.05 米或 10 英尺处)。
b) Longitudinal view of float trials b) 浮筒试验的纵向视图
Volunteers started float trial timing as the float passed the imaginary line between the two upstream flags. 当浮筒通过两面上游旗帜之间的假想线时,志愿者开始为浮筒试验计时。
Volunteers stopped float trial timing when the float passed the imaginary line between the two downstream flags. 当浮标通过两面下游旗帜之间的假想线时,志愿者停止浮标试验计时。
Volunteers placed the tennis ball float in the stream upstream of the upstream flags to allow it to get up to speed before timing began. In each float trial, volunteers started the tennis ball float at a different point across the width of the stream. 志愿者将网球浮标放置在上游旗帜的溪流中,让其在计时开始前达到一定速度。在每次漂浮试验中,志愿者都会在溪流宽度的不同位置启动网球漂浮器。
where QQ is discharge ( m^(3)//s\mathrm{m}^{3} / \mathrm{s} or cfs ), ww is the stream width ( m or ft ), dd is the average depth ( m or ft ), vv Is the mean surface velocity ( m//s\mathrm{m} / \mathrm{s} or ft//s\mathrm{ft} / \mathrm{s} ), and aa is the surface velocity coefficient ( 0.8 or 0.9 ). 其中, QQ 是排水量( m^(3)//s\mathrm{m}^{3} / \mathrm{s} 或 cfs), ww 是流宽(米或英尺), dd 是平均深度(米或英尺), vv 是平均表面速度( m//s\mathrm{m} / \mathrm{s} 或 ft//s\mathrm{ft} / \mathrm{s} ), aa 是表面速度系数(0.8 或 0.9)。
2.4. Professional method 2.4.专业方法
We (the study researchers) assessed discharge immediately before or after the volunteers within 15.24m(50ft15.24 \mathrm{~m}(50 \mathrm{ft} ) of where the volunteers had monitored. All measurements were made during periods of relatively steady discharge based on duration since the last rainfall. We used a Marsh-McBirney Flo-mate Model 2000 m (Marsh-McBirney, Frederick, MD) to determine discharge using standard velocity-area methods described by the United States Geological Survey (Turnipseed and Sauer, 2010) and the Wisconsin Department of Natural Resources (Wisconsin Department of Natural Resources, 1998). The Marsh-McBirney meter was calibrated to zero at the start of each field day (Marsh-McBirney Inc., 1990). At each site, we identified a stream cross section with a reasonably straight channel, a stable streambed free of large rocks, weeds and obstructions that would create eddies, slack water, or turbulence. Whenever possible, we selected areas with depths of approximately 0.15m(0.5ft)0.15 \mathrm{~m}(0.5 \mathrm{ft}) or greater. We measured stream width from water’s edge to water’s edge using a steel engineer’s measuring tape. The tape was fixed in place across the width of the stream using surveyors’ stakes. We measured depth to the nearest 0.003m(0.01ft)0.003 \mathrm{~m}(0.01 \mathrm{ft}) across the stream width at 20 to 30 partials using a top-setting wading rod. No more than 5%5 \% to 10%10 \% of the discharge was contained in any one partial section. Because all sites had depths of 0.76m(2.5ft)0.76 \mathrm{~m}(2.5 \mathrm{ft}) or less, we made a single velocity reading at each partial at 0.6 depth, as measured from the surface (i.e., 60%60 \% depth from surface to stream bottom). The probe was pointed directly into the flow and velocity was recorded after a 15 s averaging period. 我们(研究人员)在志愿者监测地点的 15.24m(50ft15.24 \mathrm{~m}(50 \mathrm{ft} ) 范围内,紧接在志愿者之前或之后对排水量进行了评估。所有测量都是在自上次降雨以来排水量相对稳定的时期进行的。我们使用 Marsh-McBirney Flo-mate 2000 型流量计(Marsh-McBirney,马里兰州弗雷德里克市),采用美国地质调查局(Turnipseed 和 Sauer,2010 年)和威斯康星州自然资源部(威斯康星州自然资源部,1998 年)规定的标准流速-面积法来确定排水量。Marsh-McBirney 测量仪在每个实地考察日开始时校准为零(Marsh-McBirney 公司,1990 年)。在每个地点,我们都要确定一个河道较直、河床稳定、没有大石头、杂草以及会产生漩涡、松弛水流或湍流的障碍物的河流横截面。只要有可能,我们就会选择水深约 0.15m(0.5ft)0.15 \mathrm{~m}(0.5 \mathrm{ft}) 或更深的区域。我们使用钢制工程师卷尺测量从水边到水边的溪流宽度。使用测量桩将钢卷尺横跨溪流宽度固定到位。我们使用顶置式涉水竿测量溪流宽度上最接近 0.003m(0.01ft)0.003 \mathrm{~m}(0.01 \mathrm{ft}) 的深度,深度为 20 至 30 分之一。任何一个局部断面的排水量都不会超过 5%5 \% 至 10%10 \% 。由于所有地点的水深都在 0.76m(2.5ft)0.76 \mathrm{~m}(2.5 \mathrm{ft}) 或以下,因此我们在每个部分的 0.6 水深处(即从水面到溪底的 60%60 \% 水深)读取了一次流速读数。探头直接对准水流,经过 15 秒的平均时间后记录流速。
We calculated discharge by first determining the discharge in each of the partials and then summing them using the equation: 我们在计算放电量时,首先确定每个部分的放电量,然后用公式求和:
where QQ is discharge (m^(3)//s)\left(\mathrm{m}^{3} / \mathrm{s}\right), 其中 QQ 为放电 (m^(3)//s)\left(\mathrm{m}^{3} / \mathrm{s}\right) 、 a_(i)a_{\mathrm{i}} is the cross-sectional area (m^(2))\left(\mathrm{m}^{2}\right) for the ii th segment of the nn segments into which the. a_(i)a_{\mathrm{i}} 为 nn 段中 ii 第三段的横截面积 (m^(2))\left(\mathrm{m}^{2}\right) 。
cross section is divided, and. 横截面的划分,以及 v_(i)v_{i} Is the mean velocity in the segment ( m//s\mathrm{m} / \mathrm{s} ) (Turnipseed and Sauer, v_(i)v_{i} 是段内的平均速度( m//s\mathrm{m} / \mathrm{s} )(Turnipseed 和 Sauer、
2010)
2.5. Statistical analysis 2.5.统计分析
We used mixed effects regression to compare volunteer to professional stream discharge measurements using the lme4 package in RR (Bates et al., 2013; R Core Team, 2013). Substrate type was included in the model as a fixed effect and repeated measures at a stream site were treated as a random effect on the intercept. Discharge was logtransformed prior to analysis to approximate a normal distribution. Measurements obtained with the professional method were considered to be the “true” discharge at each site. The model equation is: 我们使用 RR 中的 lme4 软件包(Bates 等人,2013 年;R 核心小组,2013 年),使用混合效应回归法比较志愿者与专业人员的溪流排放测量结果。基质类型作为固定效应包含在模型中,溪流地点的重复测量作为截距的随机效应处理。分析前对排水量进行对数变换,以接近正态分布。用专业方法获得的测量值被视为每个地点的 "真实 "排水量。模型方程为 logPro=beta_(0)+beta_(1)^(**)log Vol+beta_(2)^(**)\operatorname{logPro}=\beta_{0}+\beta_{1}{ }^{*} \log \operatorname{Vol}+\beta_{2}{ }^{*} substrate +(1∣+(1 \mid site )) logPro=beta_(0)+beta_(1)^(**)log Vol+beta_(2)^(**)\operatorname{logPro}=\beta_{0}+\beta_{1}{ }^{*} \log \operatorname{Vol}+\beta_{2}{ }^{*} 基质 +(1∣+(1 \mid 场地 ))
where log\log Pro is the natural log of discharge measured with the professional method, 其中, log\log Pro 是用专业方法测量的排放量的自然对数、
logVol is the natural log of discharge measured with the volunteer method, logVol 是用志愿者方法测量的排放量的自然对数、
substrate is a categorical substrate term (rocky or smooth), 基质是一个分类基质术语(岩石或光滑)、 beta_(0),beta_(1)\beta_{0}, \beta_{1}, and beta_(2)\beta_{2} are regression coefficients, and. beta_(0),beta_(1)\beta_{0}, \beta_{1} 和 beta_(2)\beta_{2} 是回归系数,并且。
(1|site) denotes the random effect of stream site on the intercept. (1|site) 表示流经地点对截距的随机影响。
We also tested two other versions of the model with additional variables as fixed effects. The first version included mean water depth based on the findings of Hundt and Blasch (2019). The second version included the number of measurements made by volunteers at the site prior to the study as a surrogate measure of volunteer experience. However, both of these models had less statistical support based on Akaike information criterion (AIC) than Equation (3). 我们还测试了其他两个版本的模型,将其他变量作为固定效应。第一个版本根据 Hundt 和 Blasch(2019 年)的研究结果加入了平均水深。第二个版本包含了志愿者在研究之前在现场进行测量的次数,作为志愿者经验的替代指标。然而,根据阿凯克信息准则(AIC),这两个模型的统计支持度都低于方程 (3)。
3. Results 3.成果
In 76 site visits, we measured discharge an average of 2.7 times at each of 28 volunteer stream monitoring sites in 14 Wisconsin counties between August 2011 and November 2012 (Fig. 1). The median stream characteristics, with each site visit included as a single point, at the time of measurement were 4.78m(15.7ft)4.78 \mathrm{~m}(15.7 \mathrm{ft}) wide, 0.21m(0.69ft)0.21 \mathrm{~m}(0.69 \mathrm{ft}) average depth, 0.15m//s(0.49ft//s)0.15 \mathrm{~m} / \mathrm{s}(0.49 \mathrm{ft} / \mathrm{s}) average velocity, and 0.16m^(3)//s(5.65cfs)0.16 \mathrm{~m}^{3} / \mathrm{s}(5.65 \mathrm{cfs}) discharge (Fig. 3). While volunteers had the option to select between a surface velocity coefficient of 0.8 or 0.9 on each site visit, volunteers only chose an alternate coefficient one time each at six of the 28 sites. 2011 年 8 月至 2012 年 11 月期间,我们对威斯康星州 14 个县的 28 个志愿溪流监测点进行了 76 次实地考察,平均每个监测点测量了 2.7 次排水量(图 1)。测量时的溪流特征中位数为 4.78m(15.7ft)4.78 \mathrm{~m}(15.7 \mathrm{ft}) 宽、 0.21m(0.69ft)0.21 \mathrm{~m}(0.69 \mathrm{ft}) 平均深度、 0.15m//s(0.49ft//s)0.15 \mathrm{~m} / \mathrm{s}(0.49 \mathrm{ft} / \mathrm{s}) 平均流速和 0.16m^(3)//s(5.65cfs)0.16 \mathrm{~m}^{3} / \mathrm{s}(5.65 \mathrm{cfs}) 排放量(图 3)。虽然志愿者在每次考察时都可以选择 0.8 或 0.9 的地表速度系数,但在 28 个考察点中,志愿者只在 6 个考察点中选择了一次备用系数。
The mixed effects model indicated a strong linear relationship (slope =1.00=1.00 ) between discharge measurements made with the volunteer and professional methods (Table 2, Fig. 4). The model intercept and substrate estimates can be translated into surface velocity coefficients for 混合效应模型表明,用志愿者方法和专业方法测量的排水量之间存在很强的线性关系(斜率 =1.00=1.00 )(表 2,图 4)。模型截距和底质估算值可转化为地表速度系数,以用于
Fig. 3. Boxplots of characteristics of the 28 study sites as determined by the researchers. 图 3.研究人员确定的 28 个研究地点的特征方框图。
Table 2 表 2
Fixed and random effects in model relating discharge measurements made with the volunteer and professional methods. 用志愿者方法和专业方法进行排放测量的相关模型中的固定效应和随机效应。
rocky bed streams (exp(-0.50)=0.61)(\exp (-0.50)=0.61) and smooth bed streams (exp (-0.50+0.12)=0.69)(-0.50+0.12)=0.69). The standard deviation of the random effects ( 0.02 ) was small, indicating little consistent variation in surface velocity coefficients among streams, though the small number of measurements per stream (1-4) may have limited the power to detect variation. 岩床溪流 (exp(-0.50)=0.61)(\exp (-0.50)=0.61) 和光滑河床溪流(指数 (-0.50+0.12)=0.69)(-0.50+0.12)=0.69) 。随机效应的标准偏差(0.02)很小,表明溪流之间的表面速度系数几乎没有一致的变化,尽管每条溪流的测量次数较少(1-4 次),可能限制了检测变化的能力。
We assessed the accuracy of the volunteer method using the newly estimated surface velocity coefficients by the distribution of residuals from the model. The mean absolute percent error was 22%22 \%, and 50%50 \% and 90%90 \% of volunteer measurements were within 15%15 \% and 56%56 \% of the professional measurement. For comparison, the mean absolute error of measurements that used the original surface velocity coefficients was 37 %\%. Using the new coefficients, mean absolute errors were 27%27 \% for measurements less than 0.03m^(3)//s,25%0.03 \mathrm{~m}^{3} / \mathrm{s}, 25 \% for measurements between 0.03 and 0.3m^(3)//s0.3 \mathrm{~m}^{3} / \mathrm{s}, and 18%18 \% for measurements greater than 0.3m^(3)//s0.3 \mathrm{~m}^{3} / \mathrm{s}. 我们使用新估算的表面速度系数,通过模型的残差分布来评估志愿者方法的准确性。平均绝对百分误差为 22%22 \% ,志愿者测量的 50%50 \% 和 90%90 \% 与专业测量的 15%15 \% 和 56%56 \% 相差不大。相比之下,使用原始表面速度系数测量的平均绝对误差为 37 %\% 。使用新系数测量的平均绝对误差为 27%27 \%0.03m^(3)//s,25%0.03 \mathrm{~m}^{3} / \mathrm{s}, 25 \% ,测量值在 0.03 和 0.3m^(3)//s0.3 \mathrm{~m}^{3} / \mathrm{s} 之间,测量值大于 0.3m^(3)//s0.3 \mathrm{~m}^{3} / \mathrm{s} ,平均绝对误差为 18%18 \% 。
We compared the original surface velocity coefficients (University of Wisconsin, 2010) to the coefficients derived from the model. For rocky bed streams the ratio between 0.8 and 0.61 translates to a 30%30 \% overestimation of discharge when using the original surface velocity coefficients. The ratio between the smooth-bed original surface velocity coefficient ( 0.9 ) and the coefficient derived from the model ( 0.69 ) was nearly identical, indicating that a similar degree of bias has been present in all measurements using this protocol. 我们将原始地表速度系数(威斯康星大学,2010 年)与模型得出的系数进行了比较。对于岩床溪流,使用原始地表速度系数时,0.8 与 0.61 之间的比率意味着 30%30 \% 高估了排水量。光滑河床的原始地表速度系数(0.9)与根据模型得出的系数(0.69)之间的比值几乎相同,这表明使用该方案进行的所有测量都存在类似程度的偏差。
4. Discussion 4.讨论
This study compared results of stream discharge measurements made by staff using a standard velocity-area method with an electromagnetic meter to those obtained by trained volunteers using a surface float method. The following discussion focuses on comparison of the empirically derived coefficients to United States national and international standards and common volunteer monitoring protocols, potential utility of revised surface velocity coefficients to improve surface float method discharge estimation, additional opportunities to improve the method, study limitations and future research, and recommendations for use of the empirically derived surface velocity coefficients. 这项研究比较了工作人员使用电磁流量计的标准速度面积法和训练有素的志愿者使用水面漂浮法进行的溪流排放测量结果。以下讨论的重点包括:将根据经验得出的系数与美国国家和国际标准以及常见的志愿者监测协议进行比较;修订后的地表速度系数对改进地表漂浮法排水量估算的潜在作用;改进该方法的其他机会;研究的局限性和未来研究;以及对使用根据经验得出的地表速度系数的建议。
4.1. Tracing the history of recommended surface velocity coefficients 4.1.追溯推荐表面速度系数的历史
The surface velocity coefficients for rocky ( 0.61 ) and smooth (0.69) bottom streams estimated by this study agree with early coefficient recommendations (British Standards Institution, 1964) for shallow streams ( < 1m<1 \mathrm{~m} ). However, the coefficients are about 25%25 \% lower than those currently recommended for use with surface float methods in United States’ national (Turnipseed and Sauer, 2010) and international (ISO, 2021) standards. The higher coefficients (that range from about 0.8 to 0.9 ) are also commonly used by United States-based volunteer stream monitoring groups (e.g., Georgia Department of Natural Resources, 2014; Indiana Department of Environmental Management, 2022; Missouri Department of Natural Resources, 2022; University of Wisconsin, 2010; United States Environmental Protection Agency, 1997). In part, such common use of the higher surface velocity coefficients is due to derivation of coefficients from the same original sources. For instance, United States’ national (Turnipseed and Sauer, 2010) and international (ISO, 2021) standards provide common guidance to use coefficients of 0.84 to 0.9 when a coefficient cannot be measured at the site. Further, volunteer monitoring methods were developed based on one another. By example, United States Environmental Protection Agency (1997) mentioned Missouri Stream Teams as a resource that informed their national volunteer stream monitoring methods manual, and the volunteer protocol used in the present study 本研究估算的岩质河底(0.61)和光滑河底(0.69)的表层流速系数与早期针对浅水溪流( < 1m<1 \mathrm{~m} )的系数建议(英国标准协会,1964 年)一致。不过,这些系数比目前美国国家标准(Turnipseed 和 Sauer,2010 年)和国际标准(ISO,2021 年)中建议使用的表层漂浮法的系数 25%25 \% 要低。较高的系数(约为 0.8 至 0.9)也被美国的溪流监测志愿者团体普遍采用(例如,佐治亚州自然资源部,2014 年;印第安纳州环境管理部,2022 年;密苏里州自然资源部,2022 年;威斯康星大学,2010 年;美国环境保护局,1997 年)。之所以普遍使用较高的地表速度系数,部分原因是这些系数来源于相同的原始资料。例如,美国国家标准(Turnipseed 和 Sauer,2010 年)和国际标准(ISO,2021 年)提供了在现场无法测量系数时使用 0.84 至 0.9 系数的通用指导。此外,志愿监测方法也是在相互借鉴的基础上发展起来的。例如,美国环境保护署(1997 年)将密苏里州溪流团队作为其国家志愿者溪流监测方法手册的参考资料,本研究中使用的志愿者协议也是如此。
Fig. 4. Relationship between discharge measurements made with the volunteer and professional methods in Wisconsin, United States, streams with rocky and smooth substrates. Solid lines are mixed effects model estimates of the surface velocity coefficients. 图 4.在美国威斯康星州基质为岩石和光滑基质的溪流中,用志愿者方法和专业方法测量的排水量之间的关系。实线为地表速度系数的混合效应模型估计值。
was based on the United States Environmental Protection Agency (United States Environmental Protection Agency, 1997) and Missouri Stream Team (Missouri Department of Natural Resources, 2000) methods (University of Wisconsin, 2010). 根据美国环境保护局(United States Environmental Protection Agency,1997 年)和密苏里州溪流小组(Missouri Department of Natural Resources,2000 年)的方法(威斯康星大学,2010 年)。
Further inspection of source data in which stream depths were reported (British Standards Institution, 1964) suggests that nuances of those recommendations were lost in guidance documents over the past two decades. This may have been due to confusion in interpretation of that guidance. Namely, there was reference to both “factors” (p. 22 Fig. 1, British Standards Institution, 1964) and “coefficients” (p. 23 Table 1, British Standards Institution, 1964) by which it was recommended to multiply surface velocities to determine mean velocities. Factors - that ranged from about 0.84 for rough beds to 0.88 for smooth beds - were recommended for use in “small channels having an approximately rectangular cross-section” (British Standards Institution, 1964, p. 23). This was described as an open channel in which width was “several times greater than the depth” (British Standards Institution, 1964, p. 22), whereas the coefficients were recommended for use in natural channels with saucer-shaped bed profiles. No information was provided about water depths associated with the factors, however, average depth in the stream reach was reported for each coefficient. These included very shallow ( 0.3 m ) to deep depths ( 6 m and deeper). Recommended coefficients only reached 0.8 when average depths were 6 m and greater. Coefficients for shallower depths ranged from 0.66(0.30.66(0.3m)\mathrm{m}) to 0.79 ( 4.5 m depth). Both the table and figure from that 1964 guidance document were reported in later guidance (e.g., Kulin and Compton, 1975; United States Bureau of Reclamation, 2001). However, reference to the table of coefficients and associated depths was not included in guidance documents in later years. Instead, only brief mention of an average coefficient of 0.85 (Rantz et al., 1982) or the range of coefficients from 0.84 to 0.90 (Turnipseed and Sauer, 2010; ISO, 2021) were provided. We believe these were derived empirically (Hulsing et al., 1966), but the data that informed the coefficients were collected in small streams ( {: 0.03m^(3)//s)\left.0.03 \mathrm{~m}^{3} / \mathrm{s}\right) to very large rivers (18,009m^(3)//s)\left(18,009 \mathrm{~m}^{3} / \mathrm{s}\right) and may have been influenced by observations made in larger waterways. Thus, the nuanced use of the smaller coefficients for shallower average water depths in natural channels was lost over time. 对报告溪流深度的原始数据(英国标准协会,1964 年)的进一步检查表明,过去二十年来,这些建议的细微差别已在指导文件中消失。这可能是由于对该指南的解释混乱所致。也就是说,指导文件中提到了 "系数"(第 22 页图 1,英国标准学会,1964 年)和 "系 数"(第 23 页表 1,英国标准学会,1964 年),建议用它们乘以表面流速来确定平均流速。系数范围从粗糙河床的 0.84 到光滑河床的 0.88,建议用于 "横截面近似矩形的小水道"(英国标准协会,1964 年,第 23 页)。这被描述为宽度 "比深度大几倍 "的明渠(英国标准协会,1964 年,第 22 页),而这些系数被推荐用于具有碟形河床剖面的天然河道。没有提供与系数相关的水深信息,但报告了每个系数在河段中的平均水深。其中包括很浅(0.3 米)到很深(6 米及以上)的水深。只有当平均水深达到或超过 6 米时,推荐系数才会达到 0.8。较浅深度的系数从 0.66(0.30.66(0.3m)\mathrm{m}) 到 0.79(4.5 米深度)不等。1964 年指导文件中的表格和图表在后来的指导文件中都有报道(如 Kulin 和 Compton,1975 年;美国垦务局,2001 年)。不过,后来的指导文件中并未提及系数表和相关深度。取而代之的是,仅简要提及平均系数为 0.85(Rantz et al.我们认为这些系数是根据经验得出的(Hulsing 等人,1966 年),但这些系数的数据是在小溪( {: 0.03m^(3)//s)\left.0.03 \mathrm{~m}^{3} / \mathrm{s}\right) )到大河( {: 0.03m^(3)//s)\left.0.03 \mathrm{~m}^{3} / \mathrm{s}\right) )收集的。我们认为这些系数都是根据经验得出的(Hulsing 等人,1966 年),但这些系数的数据都是在小溪( {: 0.03m^(3)//s)\left.0.03 \mathrm{~m}^{3} / \mathrm{s}\right) 到大河 (18,009m^(3)//s)\left(18,009 \mathrm{~m}^{3} / \mathrm{s}\right) )中收集的,可能受到了在较大水道中观测结果的影响。因此,自然河道中平均水深较浅时使用较小系数的细微差别随着时间的推移而消失了。
4.2. Comparing surface velocity coefficients with recent studies and 4.2.将表面速度系数与最近的研究和
standard methods 标准方法
While limited, some recent research has also identified smaller surface velocity coefficients in shallow natural waterways that were more similar to those identified in this study. Namely, a coefficient of 0.55 was determined through empirical measurement in streams with depths of 0.26-0.85m0.26-0.85 \mathrm{~m} in central Turkey (Genç et al., 2015). In a laboratory flume, a similar coefficient, of about 0.5 , was determined for gravel and cobble beds less than 1 m in depth (Hundt and Blasch, 2019). Though in the same study, a smooth bed flume had an average coefficient of 0.92 , which is more in line with current national and international standards for smooth bottom streams (Hundt and Blasch, 2019). These findings and those in the present study are not that unusual, as it is noted in the international standards that coefficients can be outside of the 0.84-0.90 range as influenced by the shape of the velocity profile (ISO, 2021). These coefficients are also identified as a primary source of error in discharge measurement (ISO, 2021). 最近的一些研究虽然有限,但也在浅自然水道中确定了较小的表面速度系数,这些系数与本研究中确定的系数较为相似。例如,在土耳其中部水深 0.26-0.85m0.26-0.85 \mathrm{~m} 的溪流中,通过经验测量确定的系数为 0.55(Genç 等人,2015 年)。在实验室水槽中,对深度小于 1 米的砾石和卵石河床也确定了类似的系数,约为 0.5(Hundt 和 Blasch,2019 年)。但在同一项研究中,平滑河床水槽的平均系数为 0.92,这更符合当前国家和国际上对平滑河床的标准(Hundt 和 Blasch,2019 年)。这些发现和本研究中的发现并不罕见,因为国际标准指出,受流速剖面形状的影响,系数可能超出 0.84-0.90 的范围(ISO,2021 年)。这些系数也被认为是排放测量误差的主要来源(国际标准化组织,2021 年)。
Nonetheless, future research is recommended to compare the volunteer method we assessed to electromagnetic meter discharge results in other geographic locations. This is warranted due to the inconsistency in surface velocity coefficients observed in shallow streams in other studies. In addition, our data collection was limited to streams within the state of Wisconsin in upper Midwestern United States. As such, results may be applicable only in streams of that region that have similar gradients, bed types, and other properties that can affect streamflow. 不过,建议今后开展研究,将我们评估的志愿方法与其他地理位置的电磁流量计排水结果进行比较。由于在其他研究中观察到的浅水溪流表面速度系数不一致,因此有必要进行比较。此外,我们的数据收集仅限于美国中西部上游威斯康星州的溪流。因此,研究结果可能只适用于该地区具有类似坡度、河床类型和其他可能影响溪流的特性的溪流。
As United States’ national (Turnipseed and Sauer, 2010) and 作为美国的国家(Turnipseed 和 Sauer,2010 年)和
international (ISO, 2021) standards suggest using floats only when technicians are otherwise unable to collect discharge data, such as during floods, it is plausible floats may be used in large rivers with depths greater than 6 m , and thus higher coefficients recommended would be valid. Regardless, as floats may be used by technicians in deep or shallow waterways, recommendations for United States’ national and international standards are to qualify the recommended coefficients by depth and to reconsider incorporating recommended coefficients for discharge assessments made in shallower waterways (British Standards Institution, 1964). 国际标准化组织(ISO,2021 年)建议,只有在技术人员无法收集排放数据的情况下(如洪水期 间)才使用浮标,但在水深超过 6 米的大河中可能会使用浮标,因此建议的更高系数是有效的。无论如何,由于技术人员可在深水或浅水水道中使用浮标,美国国家和国际标准建议按水深对推荐系数进行限定,并重新考虑将推荐系数纳入在较浅水道中进行的排放评估(英国标准协会,1964 年)。
4.3. Recommendations for derived surface velocity coefficients 4.3.关于推导表面速度系数的建议
In addition to the general agreement of our findings with early recommendations and recent studies conducted in similar conditions, we believe our surface velocity coefficient estimates are particularly wellsuited to use in volunteer protocols because they were derived from measurements made by volunteers. We therefore recommend that the surface velocity coefficients derived empirically in this study be incorporated into discharge measurements made with this or similar surface float methods derived from the same sources and used by volunteer monitoring/citizen science programs in shallow streams ( < 1m<1 \mathrm{~m} ). For simplicity, a coefficient of 0.6 might be used for rocky bottom streams and 0.7 might be used for smooth bottom streams. Incorporation of these revised surface velocity coefficients will improve accuracy of discharge measurements made using this surface float method significantly. If implemented, this recommendation has potential to improve thousands of discharge measurements made in low order streams each year by United States-based volunteers (e.g., Board of Regents of the University of Wisconsin System, 2023; Indiana Department of Environmental Management, 2023). 我们的研究结果与早期的建议和最近在类似条件下进行的研究结果基本一致,除此之外,我们还认为我们的表层速度系数估计值特别适合用于志愿者协议,因为它们是由志愿者测量得出的。因此,我们建议将本研究中根据经验得出的表层流速系数纳入采用本方法或相同来源的类似表层漂浮方法进行的排放测量中,并在浅水溪流的志愿者监测/公民科学计划中使用( < 1m<1 \mathrm{~m} )。为简单起见,岩底溪流可采用 0.6 的系数,平滑底溪流可采用 0.7 的系数。采用这些修订后的表层流速系数将大大提高使用表层漂浮法测量排水量的准确性。如果该建议得以实施,则有可能改善美国志愿者每年对低阶溪流进行的数千次排放测量(例如,威斯康星大学系统监理会,2023 年;印第安纳州环境管理部,2023 年)。
4.4. Accuracy of the volunteer method 4.4.志愿者方法的准确性
After accounting for the surface velocity coefficients estimated by the mixed effects model, the mean percent error of the volunteer measurements was 22%22 \%. This accuracy is similar to accuracies reported by two other studies using similar methods ( 18%18 \% accuracy in King et al., 2022, 23%23 \% accuracy in Davids et al., 2019). The distribution of residuals indicates that half of the measurements were very accurate (median error =15%)=15 \%) and that the least accurate measurements were very inaccurate ( 90 th percentile error =56%=56 \% ). 在考虑了混合效应模型估算的表面速度系数后,志愿者测量的平均百分误差为 22%22 \% 。这一精度与使用类似方法的其他两项研究报告的精度相似( 18%18 \% 精度见 King 等人,2022 年; 23%23 \% 精度见 Davids 等人,2019 年)。残差分布表明,一半的测量结果非常准确(误差中位数 =15%)=15 \%) ),而最不准确的测量结果非常不准确(误差第 90 百分位数 =56%=56 \% )。
The comparable accuracy of the surface float measurements in this study with those reported by King et al. (2022) is somewhat surprising, given that King et al. (2022) used 100 float trials per measurement (10 repeats at 10 verticals [points on the transect line]) and the method used by volunteers in this study only required 3-4 float trials. Nevertheless, King et al. (2022) found a reduction in measurement bias by increasing the number of verticals up to 10 and an increase in precision by repeating float trials three times at each vertical, so volunteer monitoring programs should consider increasing the required number of float trials, as well as other protocol modifications discussed below, to improve measurement accuracy. 考虑到 King 等人(2022 年)每次测量使用 100 次浮标试验(在 10 个垂直点[横断面线上的点]重复 10 次),而本研究中志愿者使用的方法只需要 3-4 次浮标试验,因此本研究中水面浮标测量的准确性与 King 等人(2022 年)报告的准确性相当令人惊讶。尽管如此,King 等人(2022 年)发现,通过将垂直测量次数增加到 10 次,测量偏差有所减少,而在每个垂直点重复浮漂试验三次,测量精度有所提高,因此志愿者监测项目应考虑增加所需的浮漂试验次数,以及下文讨论的其他方案修改,以提高测量精度。
4.5. Additional opportunities to improve the volunteer method 4.5.改进志愿者方法的其他机会
The main factor that causes the velocity measured by a surface float to be higher than the mean channel velocity is friction slowing flow near the channel bottom (Herschy, 1995). However, other factors may also contribute to differences between discharge measurements made by volunteers and professionals, including positioning of the float in the stream and the length of stream segment used to time float trials. These factors are inherent to the protocol, and cannot be eliminated, but their contribution to error in discharge measurement may be mitigated by emphasizing their importance during volunteer training and standardizing methods across protocols. 导致水面浮标测量的流速高于平均河道流速的主要因素是河道底部附近的摩擦力减缓了流速(Herschy,1995 年)。然而,其他因素也可能导致志愿者和专业人员在测量排水量时出现差异,包括浮子在溪流中的位置以及用于浮子试验计时的溪流长度。这些因素都是规程中固有的,无法消除,但可以通过在志愿者培训中强调这些因素的重要性以及在不同规程中采用标准化方法来减少它们对排水量测量误差的影响。
The international standard for the surface float method (ISO, 2021) recommends that the cross section be divided into segments of equal width and the float timed multiple times within each segment. While this may be feasible in large rivers, it is less likely to be accomplished in small streams. For instance, in small streams floats may need to be placed in faster-moving water towards the middle of the stream where they are less likely to get caught on rocks, vegetation, or other obstructions. Additionally, floats may naturally favor travel in the thalweg due to narrow stream width and limited clear flow paths. Either of these examples would result in overall higher measured velocities than an electromagnetic meter positioned at measured increments across the entire stream width. In fact, movement of a float out of an identified segment across a stream’s width has been noted as a primary source of error in discharge measurement with a float (ISO, 2021). Mitigation of bias in float positioning could be accomplished by emphasizing careful selection of a measurement reach with uniform depth and without obstructions. In addition, protocols could state that float trials in slower sections be redone if initial attempts do not remain in the section where the trial started (e.g., near the bank). 水面漂浮法的国际标准(ISO,2021 年)建议将横截面划分为宽度相等的区段,并在每个区段内进行多次漂浮计时。虽然这在大河中可能可行,但在小溪流中却不太可能实现。例如,在小溪流中,浮子可能需要放置在溪流中间流速较快的水域,这样浮子就不容易被岩石、植被或其他障碍物卡住。此外,由于溪流宽度较窄,清晰的水流路径有限,浮子可能会自然而然地偏向于在干流中游走。无论是上述哪种情况,都会导致总体测量速度高于在整个溪流宽度上以测量增量定位的电磁流量计。事实上,浮子在溪流宽度范围内的移动偏离所确定的区段,已被视为使用浮子测量排水量的主要误差来源(国际标准化组织,2021 年)。要减少浮标定位的偏差,可强调仔细选择深度一致且无障碍物的测量区域。此外,规程还可规定,如果最初的尝试未能保持在试验开始的河段(如河岸附近),则应在较慢的河段重新进行浮标试验。
Another difference between large rivers and small streams that may have introduced velocity measurement errors in the volunteer surface float method relates to the length of stream segment used to time float trials. Various lengths and times have been recommended. Early research suggested three float trials over a length of 30 m (Lagler, 1952). More recently, float trials of at least 20 s were recommended (ISO, 2021) to allow for accurate timing between the start and end points (Turnipseed and Sauer, 2010). In addition, a longer float trial length was suggested to minimize effects of normal pulsations of velocity in the stream (Mitchem, 1999). While reasonable in large rivers, in the smaller wadable streams often assessed by volunteers, a straight length of stream even 6 m could be challenging to locate. However, to further improve the accuracy of volunteer surface float method velocity estimates, volunteers could be encouraged to locate as long of a stream segment as possible that is straight and uniform in width over which to time the float trials at their stream monitoring location. Like United States’ national (Turnipseed and Sauer, 2010) and international (ISO, 2021) standards, float travel time of 20 s could be used as a guide. Future research could assess the result of such modifications to the volunteer surface float method as compared to the standard velocity-area method. 大河与小溪之间的另一个差异可能会导致志愿者水面漂浮法中的速度测量误差,这与用于为漂浮试验计时的河段长度有关。人们推荐了不同的长度和时间。早期的研究建议在 30 米的长度上进行三次漂浮试验(Lagler,1952 年)。最近的研究建议漂浮试验至少持续 20 秒(国际标准化组织,2021 年),以便在起点和终点之间准确计时(Turnipseed 和 Sauer,2010 年)。此外,还建议延长漂浮试验的时间,以尽量减少溪流中正常流速脉动的影响(Mitchem,1999 年)。虽然在大河中这样做是合理的,但在志愿者经常评估的较小的可涉水溪流中,即使是 6 米长的笔直溪流也很难找到。不过,为了进一步提高志愿者水面漂浮法流速估算的准确性,可以鼓励志愿者尽可能寻找一条宽度一致的笔直河段,以便在其河段监测点进行漂浮试验计时。与美国国家标准(Turnipseed 和 Sauer,2010 年)和国际标准(ISO,2021 年)一样,可以使用 20 秒的漂浮时间作为指导。未来的研究可评估志愿者水面漂浮法与标准速度-面积法相比的修改结果。
In addition, both volunteer and professional streamflow monitoring methods are subject to a variety of other types of measurement errors. For instance, error could be introduced when depth was assessed in a stream section with many rocks or with a soft bed that easily shifted, negating the assumed uniform bottom in the velocity-area method (Sauer and Meyer, 1992). Another possible source of measurement error was that, to measure depth, most volunteers used a hand-marked pole. Conversely, the wading rod we used was machined and thus offered better measurement precision. It also had a wide base, which reduced its potential to sink into the stream bed. The marked poles most volunteers used did not have such a footing. While likely minimal, errors introduced for these reasons may have contributed to overestimation of streamflow as measured by volunteers. In professional studies, measurement errors of stream width are considered negligible (Sauer and Meyer, 1992), but non-standard measuring equipment alongside a brief training may have introduced more errors in the volunteer assessments. 此外,志愿者和专业人员的溪流监测方法都会出现各种其他类型的测量误差。例如,在岩石较多或河床松软且容易移动的河段进行深度评估时,就会产生误差,从而否定速度区域法中假定的均匀河底(Sauer 和 Meyer,1992 年)。测量误差的另一个可能来源是,大多数志愿者使用手标杆测量水深。相反,我们使用的涉水竿是经过加工的,因此测量精度更高。此外,涉水竿的底座较宽,这也降低了其沉入河床的可能性。而大多数志愿者使用的有标记的杆子没有这样的底座。虽然这些原因造成的误差可能微乎其微,但也可能导致志愿者测量的溪流流量被高估。在专业研究中,溪流宽度的测量误差可以忽略不计(Sauer 和 Meyer,1992 年),但非标准测量设备和简短的培训可能会给志愿者的评估带来更多误差。
An additional consideration that may have led to errors in electromagnetic meter readings is that at low velocities ( < 0.3m//s;1ft//s<0.3 \mathrm{~m} / \mathrm{s} ; 1 \mathrm{ft} / \mathrm{s} ) these meters tend to be less accurate (Fulford, 2001). They have been observed to under-register velocities by as much as 15%15 \% (Cushing, 1976; Soupir et al., 2009). This is thought to occur when this type of meter is operated near a boundary layer (e.g., an air-water or sed-iment-water interface) as conductance is so different between the layers (Cushing, 1976). Assessing discharge in small streams may have made the electromagnetic meter particularly susceptible to such errors. Future research could include conducting a similar comparison study using other types of professional discharge monitoring equipment. 可能导致电磁流量计读数误差的另一个因素是,在低速情况下( < 0.3m//s;1ft//s<0.3 \mathrm{~m} / \mathrm{s} ; 1 \mathrm{ft} / \mathrm{s} ),这些流量计的精确度往往较低(Fulford,2001 年)。据观察,它们对速度的记录偏低达 15%15 \% (Cushing,1976 年;Soupir 等人,2009 年)。这种情况被认为是在靠近边界层(如空气-水或沉积物-沉积物-水界面)的地方使用这种流量计时发生的,因为边界层之间的电导率相差悬殊(Cushing,1976 年)。评估小溪流的排泄量可能会使电磁流量计特别容易受到此类误差的影响。未来的研究可包括使用其他类型的专业排放监测设备进行类似的比较研究。
4.6. Implications for science and practice 4.6.对科学和实践的影响
Despite these potential challenges, we believe our research has potential to benefit science and practice globally. With climate change, streamflow regimes in headwater streams are of critical importance to understand (Pumo et al., 2016). Headwater streams make up the majority of waterways on earth and 60%60 \% are at risk of drying completely at least one day per year (Messager et al., 2021). This has implications for 80%80 \% of the world’s population and for biodiversity alike (Vörösmarty et al., 2010). As gauging stations are most commonly located on large rivers (e.g., Van Dijk et al., 2016; United States Geological Survey, 2023), discharges in headwaters are often modeled or unknown (e.g., Merz et al., 2008; Russell et al., 2015). The volunteer method and revised surface velocity coefficients (if vetted in other regions) we derived from our data could be used by a broad suite of individuals worldwide to assess discharge in remote locations or other ungauged headwater streams. Similar data collected through participatory methods have been credited with filling gaps in knowledge about lower order streams across both space and time (Hadj-Hammou et al., 2017). The method we assessed is relatively simple and with only a marked pole, measuring tape, tennis ball and timer required, it is inexpensive as compared to, for instance, a United States Geological Survey (WWALS Watershed Coalition, 2021) or similar type of gauging station. The resulting discharge data could be used to ground truth model predictions, inform community planning, and enhance local understanding of streams’ responses to storm events, drought periods, snow melt, and water extraction activities. 尽管存在这些潜在的挑战,但我们相信我们的研究有可能造福全球的科学和实践。随着气候变化,了解源头溪流的流态至关重要(Pumo 等人,2016 年)。源头溪流占地球水道的绝大部分, 60%60 \% 每年至少有一天面临完全干涸的风险(Messager 等人,2021 年)。这对 80%80 \% 世界人口和生物多样性都有影响(Vörösmarty 等人,2010 年)。由于测量站通常位于大江大河上(如 Van Dijk 等人,2016 年;美国地质调查局,2023 年),因此上游的排水量往往是模拟的或未知的(如 Merz 等人,2008 年;Russell 等人,2015 年)。从我们的数据中得出的志愿者方法和修订后的地表速度系数(如果在其他地区得到审核)可供全球广泛的个人使用,以评估偏远地区或其他未经测量的源头溪流的排水量。通过参与式方法收集的类似数据填补了低阶溪流知识在空间和时间上的空白(Hadj-Hammou 等人,2017 年)。我们评估的方法相对简单,只需要一根有标记的杆、卷尺、网球和计时器,与美国地质调查局(WWALS 流域联盟,2021 年)或类似类型的测量站相比,成本低廉。由此获得的排水数据可用于对模型预测进行基础验证,为社区规划提供信息,并提高当地对溪流对暴雨事件、干旱期、融雪和取水活动的反应的认识。
5. Conclusions 5.结论
Measuring discharge with an electromagnetic meter is a preferred method. However, our results provide newly modeled surface velocity coefficients that can improve the accuracy of discharge calculated from the surface float method for small, shallow streams. We demonstrated that the surface float method conducted by trained volunteers can provide discharge measurements in wadable streams that are within approximately 22%22 \% of corresponding measurements made by professionals with an electromagnetic meter. We also provided direct, empirical estimates of the surface velocity coefficient for smooth and rocky bottom streams when a surface float method was used. These are substantially lower than coefficients used by most published protocols. Measurement of stream discharge by volunteers can extend agency resources and improve understanding of flow conditions in ungauged streams, particularly headwaters. The accuracy estimates we provided can help natural resource managers understand the performance of the surface float method, but ultimately, the decision of when and where use any given method also depends on several factors related to cost (personnel, training, equipment) and on the degree of accuracy needed. Further improvements in technical protocols and volunteer training will help make volunteer-collected data more accurate, more credible, and more likely to be used in natural resources management decisions. 使用电磁流量计测量排水量是一种首选方法。但是,我们的研究结果提供了新的地表速度系数模型,可以提高地表漂浮法计算出的浅水小溪流排水量的准确性。我们证明,由训练有素的志愿者采用水面漂浮法测量出的可涉水溪流的排水量与专业人员用电磁流量计测量出的排水量大致 22%22 \% 。我们还提供了使用水面漂浮法时,光滑溪流和岩底溪流的水面速度系数的直接经验估算值。这些系数大大低于大多数已发布协议中使用的系数。志愿者对溪流排水量的测量可以扩展机构资源,提高对未测量溪流(尤其是源头溪流)水流状况的了解。我们提供的精度估计值可以帮助自然资源管理者了解水面漂浮法的性能,但最终决定何时何地使用任何特定方法还取决于与成本(人员、培训、设备)和所需精度程度相关的几个因素。进一步改进技术协议和志愿者培训将有助于使志愿者收集的数据更加准确、可信,并更有可能用于自然资源管理决策。
Kristine F. Stepenuck: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Visualization, Writing - original draft, Writing - review & editing. Matthew Diebel: Formal analysis, Writing - review & editing. Heather Smith: Investigation, Writing review & editing, Data curation. Ian Anderson: Data curation, Investigation, Writing - review & editing. David Wiseman: Data curation, Investigation, Writing - review & editing. 克里斯汀-F-斯捷潘纳克概念化、数据整理、形式分析、资金获取、调查、方法学、项目管理、资源、监督、可视化、写作--原稿、写作--审阅和编辑。马修-迪贝尔正式分析、写作--审阅和编辑。希瑟-史密斯(Heather Smith):调查、写作审核与编辑、数据整理。伊恩-安德森数据整理、调查、写作 - 审核与编辑。大卫-怀斯曼数据整理、调查、写作 - 审核与编辑。
Declaration of competing interest 利益冲突声明
The authors declare the following financial interests/personal 作者声明以下经济利益/个人利益
relationships which may be considered as potential competing interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. 可能被视为潜在利益冲突的关系:作者声明,本研究的开展不存在任何可能被视为潜在利益冲突的商业或财务关系。
Data availability 数据可用性
The raw data supporting the conclusion of this article will be available following an embargo period through the Forest Ecosystem Monitoring Cooperative (https://www.uvm.edu/femc/). 支持本文结论的原始数据将在禁售期后通过森林生态系统监测合作组织(https://www.uvm.edu/femc/)提供。
Acknowledgements 致谢
We wish to recognize the significant contributions of the volunteer stream monitors who assisted with this research. It would not have been possible without their time and commitment. We express gratitude to Christophe Stoelinga, Ron Dolen, Christina Anderson, Chris Riggert, Tim Rielly, Tim Asplund, Katy Bradford, April Sevy, and Noelle Hasan for field assistance, data management, and/or communications about the study. In addition, Stepenuck’s PhD dissertation advisors and committee members Ken Genskow, Pete Nowak, Jake Vander Zanden, Emily Stanley, and Don Moynihan provided valuable review comments. The work was carried out as part of the author Stepenuck’s PhD dissertation at the University of Wisconsin-Madison (Stepenuck, 2013). 我们要感谢协助本研究的志愿溪流监测员做出的重大贡献。没有他们付出的时间和努力,就不可能完成这项研究。我们对克里斯托弗-斯托林加、罗恩-多伦、克里斯蒂娜-安德森、克里斯-里格特、蒂姆-里尔利、蒂姆-阿斯普兰德、凯蒂-布拉德福德、艾普莉尔-塞维以及诺伊尔-哈桑在现场协助、数据管理和/或与研究相关的交流等方面表示感谢。此外,斯捷潘纳克的博士论文导师和委员会成员肯-根斯科夫(Ken Genskow)、皮特-诺瓦克(Pete Nowak)、杰克-范德赞登(Jake Vander Zanden)、艾米丽-斯坦利(Emily Stanley)和唐-莫伊尼汉(Don Moynihan)也提供了宝贵的评审意见。这项工作是作者斯蒂芬纳克在威斯康星大学麦迪逊分校完成的博士论文的一部分(斯蒂芬纳克,2013 年)。
Funding 资金筹措
This research was supported in part by the Wisconsin Department of Natural Resources through Section 106 Special Projects funding and through the University of Wisconsin-Extension (currently the University of Wisconsin-Madison Extension). 这项研究部分得到了威斯康星州自然资源部通过第 106 节特别项目资金以及威斯康星大学推广部(现为威斯康星大学麦迪逊分校)的支持。
References 参考资料
Au, J., Bagchi, P., Chen, B., Martinez, R., Dudley, S.A., Sorger, G.J., 2000. Methodology for public monitoring of total coliforms, Escherichia coli and toxicity in waterways by Canadian high school students. J. Environ. Manage. 58 (3), 213-230. https://doi. org/10.1006/jema.2000.0323. Au, J., Bagchi, P., Chen, B., Martinez, R., Dudley, S.A., Sorger, G.J., 2000.加拿大中学生对水道中总大肠菌群、大肠埃希氏菌和毒性的公共监测方法。J. Environ.J. Environ.58 (3), 213-230.https://doi. org/10.1006/jema.2000.0323.
Bates, D., Maechler, M., Bolker, B. 2013. lme4: Linear mixed-effects models using S4 classes (Version R package version 0.999999-2.). Retrieved from http://CRAN.R-project.org/package=1me4=1 \mathrm{me} 4 [Accessed July 21, 2023]. Bates, D., Maechler, M., Bolker, B. 2013. lme4:使用 S4 类的线性混合效应模型(R 软件包版本 0.999999-2)。取自 http://CRAN.R-project.org/package=1me4=1 \mathrm{me} 4 [于 2023 年 7 月 21 日访问]。
Bell, J.J., 2007. The use of volunteers for conducting sponge biodiversity assessments and monitoring using a morphological approach on indo-Pacific coral reefs. Aquat. Conserv. Mar. Freshwat. Ecosyst. 17 (2), 133. https://doi.org/10.1002/aqc.789. Bell, J.J., 2007.利用志愿者在印度洋-太平洋珊瑚礁上采用形态学方法进行海绵生物多样性评估和监测。Aquat.Conserv.Mar.Freshwat.Ecosyst.17 (2), 133.https://doi.org/10.1002/aqc.789.
Board of Regents of the University of Wisconsin System, 2023. Water action volunteers stream monitoring data dashboard. Accessed April 21, 2023. https://wateractionvolunteers.org/data/. 威斯康星大学系统监管委员会,2023 年。水行动志愿者溪流监测数据仪表板。2023 年 4 月 21 日访问。https://wateractionvolunteers.org/data/.
British Standard Institution, 2007. Hydrometry-Measurement of liquid flow in open channels using current-meters or floats. Accessed June 28, 2023. https://www.researchgate.net/profile/Filippo-Bandini/post/Hydrology-vertical-velocity-profiles-in-st reams/attachment/5efcaae64597f90001fcf823/AS%3A908510091046912% 401593617093311/download/ISO_748_2007.pdf. 英国标准学会,2007 年。水文测量--使用流速计或浮子测量明渠中的液体流量。2023 年 6 月 28 日访问。https://www.researchgate.net/profile/Filippo-Bandini/post/Hydrology-vertical-velocity-profiles-in-st reams/attachment/5efcaae64597f90001fcf823/AS%3A908510091046912% 401593617093311/download/ISO_748_2007.pdf.
British Standard Institution. 1964. Methods of measurement of liquid flow in open channels. Part 3. Velocity area meethods. London. 英国标准协会。1964.明渠中液体流量的测量方法。第 3 部分。流速面积测量法。伦敦。
Burt, O.R., Baker, M., Helmers, G.A., 2002. Statistical estimation of streamflow depletion from irrigation wells. Water Resour. Res. 38 (12) https://doi.org/10.1029/ 2001WR000961. Burt, O.R., Baker, M., Helmers, G.A., 2002.Statistical estimation of streamflow depletion from irrigation wells.Water Resour.38 (12) https://doi.org/10.1029/ 2001WR000961.
Conrad, C., Hilchey, K.G., 2011. A review of citizen science and community-based environmental monitoirng: issues and opportunities. Environ. Monit. Assess. 176, 273-291. https://doi.org/10.1007/s10661-010-1582-5. Conrad, C., Hilchey, K.G., 2011.A review of citizen science and community-based environmental monitoirng: issues and opportunities.Environ.Monit.Assess.176, 273-291.https://doi.org/10.1007/s10661-010-1582-5.
Cushing, V. 1976. Electromagnetic water current meter. Oceans '76 IEEE, 25C21-25C17. https://doi.org/10.1109/OCEANS.1976.1154309. Cushing, V. 1976.Electromagnetic water current meter.Oceans '76 IEEE, 25C21-25C17.https://doi.org/10.1109/OCEANS.1976.1154309.
Davids, J.C., Rutten, M.M., Pandey, A., Devkota, N., van Oyen, W.D., Prajapati, R., van de Giesen, N., 2019. Citizen science flow-an assessment of simple streamflow measurement methods. Hydrol. Earth Syst. Sci. 23 (2), 1045-1065. https://doi.org/ 10.5194/hess-23-1045-2019. Davids, J.C., Rutten, M.M., Pandey, A., Devkota, N., van Oyen, W.D., Prajapati, R., van de Giesen, N., 2019.Citizen science flow-an assessment of simple streamflow measurement methods.Hydrol.Earth Syst.23 (2), 1045-1065.https://doi.org/ 10.5194/hess-23-1045-2019.
Dey, P., Mishra, A., 2017. Separating the impacts of climate change and human activities on streamflow: a review of methodologies and critical assumptions. J. Hydrol. 548, 278-290. https://doi.org/10.1016/j.jhydrol.2017.03.014. Dey, P., Mishra, A., 2017.分离气候变化和人类活动对河水流量的影响:方法论和关键假设评述。J. Hydrol.548, 278-290.https://doi.org/10.1016/j.jhydrol.2017.03.014.
Embody, G.C., 1927. An outline of stream study and the development of a stocking policy. Aquicultural Laboratory of Cornell University. Embody, G.C., 1927.溪流研究概要与放养政策的制定》。康奈尔大学水产养殖实验室。
Ettinger, A., Learner, H., Alexander, A., Bugel, F., Fisk, S. 2003. Illinois water quality and the Clean Water Act: a Report of the Environmental Law and Policy Center. htt ps://www.csu.edu/cerc/researchreports/documents/IllinoisWaterQualityCle anWaterAct2003.pdf [Accessed May 29, 2023]. Ettinger, A., Learner, H., Alexander, A., Bugel, F., Fisk, S. 2003.htt ps://www.csu.edu/cerc/researchreports/documents/IllinoisWaterQualityCle anWaterAct2003.pdf [Accessed May 29, 2023].
Freitag, A., Meyer, R., Whiteman, L., 2016. Strategies employed by citizen science programs to increase the credibility of their data. Citizen Science: Theory and Practice 1 (1). https://doi:10.5334/cstp.6. Freitag, A., Meyer, R., Whiteman, L., 2016.公民科学项目提高数据可信度的策略。公民科学:理论与实践 1 (1)。https://doi:10.5334/cstp.6.
Fulford, J.M., 2001. Accuracy and consistency of water-current meters. J. Am. Water Resour. Assoc. 37 (5), 1215-1224. https://doi.org/10.1111/j.1752-1688.2001. tb03633.x. Fulford, J.M., 2001.水流计的精度和一致性。J. Am.Water Resour.37 (5), 1215-1224.https://doi.org/10.1111/j.1752-1688.2001. tb03633.x.
Genç, O., Ardıçlıoğlu, M., Ağıralioğlu, N., 2015. Calculation of mean velocity and discharge using water surface velocity in small streams. Flow Meas. Instrum. 41, 115-120. https://doi.org/10.1016/j.flowmeasinst.2014.10.013. Genç, O., Ardıçlıoğlu, M., Ağıralioğlu, N., 2015.利用小溪流的水面速度计算平均流速和排水量。Flow Meas.Instrum。41, 115-120.https://doi.org/10.1016/j.flowmeasinst.2014.10.013.
Georgia Department of Natural Resources, 2014. Georgia adopt-A-stream visual stream survey. Accessed April 21, 2023. https://adoptastream.georgia.gov/data-forms-2/aa s-manuals. 佐治亚州自然资源部,2014 年。佐治亚州 "认养溪流 "可视化溪流调查。2023 年 4 月 21 日访问。https://adoptastream.georgia.gov/data-forms-2/aa s-manuals.
Gido, K.B., Dodds, W.K., Eberle, M.E., 2010. Retrospective analysis of fish community change during a half-century of landuse and streamflow changes. J. N. Am. Benthol. Soc. 29 (3), 970-987. https://doi.org/10.1899/09-116.1. Gido, K.B., Dodds, W.K., Eberle, M.E., 2010.半个世纪土地利用和溪流变化期间鱼类群落变化的回顾性分析。J. N. Am.Benthol.29 (3), 970-987.https://doi.org/10.1899/09-116.1.
Hadj-Hammou, J., Loiselle, S., Ophof, D., Thornhill, I., 2017. Getting the full picture: assessing the complementarity of citizen science and agency monitoring data. PLoS One 12 (12), e0188507. Hadj-Hammou, J., Loiselle, S., Ophof, D., Thornhill, I., 2017.了解全貌:评估公民科学与机构监测数据的互补性》(Getting the full picture: assessing the complementarity of citizen science and agency monitoring data.PLoS One 12 (12), e0188507.
Hauet, A., Morlot, T., Daubagnan, L. 2018. Velocity profile and depth-averaged to surface velocity in natural streams: A review over alarge sample of rivers. In E3s web of conferences (Vol. 40, p. 06015). EDP Sciences. https://doi.org/10.1051/e3sconf/ 20184006015. Hauet, A., Morlot, T., Daubagnan, L. 2018.天然河流的流速剖面和深度平均表面流速:对大量河流样本的回顾。In E3s web of conferences (Vol. 40, p. 06015).EDP Sciences。https://doi.org/10.1051/e3sconf/ 20184006015.
Herschy, R.W., 1995. Streamflow measurement, 2nd ed. E & FN Spon, London. Herschy, R.W., 1995.Streamflow measurement, 2nd ed. E & FN Spon, London.
Hulsing, Harry, Smith, Winchell, Cobb, E. D. 1966. Velocity-head coefficients in open channels: United States Geological Survey Water-Supply Paper 1869-C. Hulsing, Harry, Smith, Winchell, Cobb, E. D. 1966.明渠中的流速-水头系数:United States Geological Survey Water-Supply Paper 1869-C.
Hundt, S., Blasch, K., 2019. Laboratory assessment of alternative stream velocity measurement methods. PLoS One 14 (9). https://doi.org/10.1371/journal. pone. 0222263 . Hundt, S., Blasch, K., 2019.替代流速测量方法的实验室评估。PLoS One 14 (9).https://doi.org/10.1371/journal. pone.0222263 .
Inc, M.-M., 1990. Flo-mate model 2000 portable flowmeter instruction manual. Frederick, MD. Inc, M.-M., 1990.Flo-mate 2000 型便携式流量计使用说明书。Frederick, MD.
Indiana Deparment of Environmental Management, 2023. Hoosier riverwatch database. Accessed July 22, 2023. https://www.hoosierriverwatch.com/search/. 印第安纳州环境管理部,2023 年。胡塞尔河流观察数据库。2023 年 7 月 22 日访问。https://www.hoosierriverwatch.com/search/.
Indiana Department of Environmental Management. 2022. Hoosier Riverwatch volunteer stream monitoring training manual. Indiana Department of Environmnetal Management. https://www.in.gov/idem/riverwatch/training-manual/ [Accessed April 21, 2023]. 《印第安纳州环境管理部。2022.胡塞尔河流观察志愿者溪流监测培训手册》。印第安纳州环境管理部。https://www.in.gov/idem/riverwatch/training-manual/ [Accessed April 21, 2023].
ISO. 2021. Hydrometry - measurement of liquid flow in open channels - velocity area methods using point velocity measurements. ISO 748:2021. Fifth edition. 国际标准化组织。2021.水文测量法-明渠中液体流量的测量-利用点速度测量的速度面积法。ISO 748:2021。第五版。
King, T., Hundt, S., Simonson, A., Blasch, K., 2022. Evaluation of select velocity measurement techniques for estimating discharge in small streams across the United States. Journal of the American Water Resources Association. Https://doi. https:// doi.org/10.1111/1752-1688.13053. King, T., Hundt, S., Simonson, A., Blasch, K., 2022.用于估算全美小河排量的速度测量技术评估。美国水资源协会期刊》。Https://doi. https:// doi.org/10.1111/1752-1688.13053.
Krabbenhoft, C.A., Allen, G.H., Lin, P., et al., 2022. Assessing placement bias of the global river gauge network. Nat Sustain 5, 586-592. https://doi.org/10.1038/ s41893-022-00873-0. Krabbenhoft, C.A., Allen, G.H., Lin, P., et al., 2022.Assessing placement bias of the global river gauge network.Nat Sustain 5, 586-592.https://doi.org/10.1038/ s41893-022-00873-0.
Kraft, G.J., Clancy, K., Mechenich, D.J., Haucke, J., 2012. Irrigation effects in the northern lake states: Wisconsin central sands revisited. Groundwater 50 (2), 308-318. https://doi.org/10.1111/j.1745-6584.2011.00836.x. Kraft, G.J., Clancy, K., Mechenich, D.J., Haucke, J., 2012.北部湖泊州的灌溉效应:威斯康星中部沙地再探。Groundwater 50 (2), 308-318.https://doi.org/10.1111/j.1745-6584.2011.00836.x.
Kulin, G., Compton, P. R… 1975. A Guide to methods and standards for the measurement of water flow. NBS Special Publication 421. Institute for Basic Standards, National Bureau of Standards. Washington DC. https://www.govinfo.gov/content/pkg/ GOVPUB-C13-a301a5f6bf6ec378b4fabc9c626c03e2/pdf/GOVPUB-C13-a301a 5f6bf6ec378b4fabc9c626c03e2.pdf [Accessed June 28, 2023]. Kulin, G., Compton, P. R... 1975.水流测量方法和标准指南》。NBS Special Publication 421.Institute for Basic Standards, National Bureau of Standards.华盛顿特区。https://www.govinfo.gov/content/pkg/ GOVPUB-C13-a301a5f6bf6ec378b4fabc9c626c03e2/pdf/GOVPUB-C13-a301a 5f6bf6ec378b4fabc9c626c03e2.pdf [Accessed June 28, 2023].
Kustu, M.D., Fan, Y., Robock, A., 2010. Large-scale water cycle perturbation due to irrigation pumping in the US High Plains: a synthesis of observed streamflow changes. J. Hydrol. 390 (3-4), 222-244. https://doi.org/10.1016/j. jhydrol.2010.06.045. Kustu, M.D., Fan, Y., Robock, A., 2010.美国高原灌溉抽水导致的大尺度水循环扰动:观测到的流量变化综述。J. Hydrol.390 (3-4), 222-244.https://doi.org/10.1016/j. jhydrol.2010.06.045.
Lagler, K.F., 1952. Freshwater fishery biology. WM. C, Brown Company, Dubuque, IA. Lagler, K.F., 1952.Freshwater fishery biology.WM.C, Brown Company, Dubuque, IA.
Lambooy, T., 2011. Corporate social responsibility: sustainable water use. J. Clean. Prod. 19 (8), 852-866. https://doi.org/10.1016/j.jclepro.2010.09.009. Lambooy, T., 2011.企业社会责任:水资源的可持续利用。J. Clean.Prod.19 (8), 852-866.https://doi.org/10.1016/j.jclepro.2010.09.009.
Ledger, M.E., Brown, L.E., Edwards, F.K., Milner, A.M., Woodward, G., 2013. Drought alters the structure and functioning of complex food webs. Nat. Clim. Chang. 3 (3), 223-227. https://doi.org/10.1038/nclimate1684. Ledger, M.E., Brown, L.E., Edwards, F.K., Milner, A.M., Woodward, G., 2013.干旱改变了复杂食物网的结构和功能。Nat.Clim.Chang.3 (3), 223-227.https://doi.org/10.1038/nclimate1684.
Loperfido, J.V., Beyer, P., Just, C.L., Schnoor, J.L., 2010. Uses and biases of volunteer water quality data. Environ. Sci. Tech. 44 (19), 7193-7199. https://doi.org/ 10.1021/es100164c. Loperfido, J.V., Beyer, P., Just, C.L., Schnoor, J.L., 2010.志愿者水质数据的用途和偏差。环境。Sci.44 (19), 7193-7199.https://doi.org/ 10.1021/es100164c.
Merz, R., Blöschl, G., Humer, G., 2008. National flood discharge mapping in Austria. Nat. Hazards 46, 53-72. https://doi.org/10.1007/s11069-007-9181-7. Merz, R., Blöschl, G., Humer, G., 2008.National flood discharge mapping in Austria.Nat.Hazards 46, 53-72.https://doi.org/10.1007/s11069-007-9181-7.
Messager, M.L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Datry, T., 2021. Global prevalence of non-perennial rivers and streams. Nature 594 (7863), 391-397. https://doi.org/10.1038/s41586-021-03565-5. Messager, M.L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Datry, T., 2021.全球非常年性河流和溪流的普遍性。自然》594 (7863), 391-397.https://doi.org/10.1038/s41586-021-03565-5.
Missouri Department of Natural Resources, 2000. Missouri stream team stream discharge worksheet. downloaded electronic file June 28, 2023. [Accessed. 密苏里自然资源部,2000 年。密苏里州溪流团队溪流排放工作表。2023 年 6 月 28 日下载的电子文件。[Accessed.
Missouri Department of Natural Resources, 2022. Missouri stream team stream discharge data sheet. Accessed April 21, 2023. https://www.mostreamteam.org/reporting-f orms.html. 密苏里自然资源部,2022 年。密苏里溪流团队溪流排放数据表。访问日期:2023 年 4 月 21 日。https://www.mostreamteam.org/reporting-f orms.html.
Mitchem, C.E.J., 1999. A comparative study of stream-gaging methods employed in nonpoint source pollution studies in small streams. Virginia Polytechnic Institute and State University, [Blacksburg (VA)] [Master’s thesis]. Mitchem, C.E.J., 1999.A comparative study of stream-gaging methods employed in nonpoint source pollution studies in small streams.弗吉尼亚理工学院和州立大学,[布莱克斯堡(弗吉尼亚州)] [硕士论文]。
Nicholson, E., Ryan, J., Hodgkins, D., 2002. Community data - where does the value lie? assessing confidence limits of community collected water quality data. Water Sci. Technol. 45 (11), 193-200. https://pubmed.ncbi.nlm.nih.gov/12171352/. Nicholson, E., Ryan, J., Hodgkins, D., 2002.评估社区收集的水质数据的置信区间。Water Sci.45 (11), 193-200.https://pubmed.ncbi.nlm.nih.gov/12171352/.
Pumo, D., Caracciolo, D., Viola, F., Noto, L.V., 2016. Climate change effects on the hydrological regime of small non-perennial river basins. Sci. Total Environ. 542, 76-92. https://doi.org/10.1016/j.scitotenv.2015.10.109. Pumo, D., Caracciolo, D., Viola, F., Noto, L.V., 2016.气候变化对非多年生小流域水文系统的影响。Sci.542, 76-92.https://doi.org/10.1016/j.scitotenv.2015.10.109.
R Core Team, 2013. R: a language and environment for statistical computing (version R version 3.0.1). R Foundation for Statistical Computing, Vienna, Austria [Accessed May 29, 2023] R 核心团队,2013 年。R: a language and environment for statistical computing (version R version 3.0.1).R 统计计算基金会,奥地利维也纳 [于 2023 年 5 月 29 日访问]。
Rantz, S.E., et al., 1982. Measurement and Computation of Streamflow, Volume 1. Measurement of stage and discharge, United States Geological Survey, Washington. Rantz, S.E., et al., 1982.Measurement and Computation of Streamflow, Volume 1.Measurement of stage and discharge, United States Geological Survey, Washington.
Russell, P.P., Gale, S.M., Muñoz, B., Dorney, J.R., Rubino, M.J., 2015. A spatially explicit model for mapping headwater streams. JAWRA Journal of the American Water Resources Association 51 (1), 226-239. https://doi.org/10.1111/jawr. 12250. Russell, P.P., Gale, S.M., Muñoz, B., Dorney, J.R., Rubino, M.J., 2015.绘制上游溪流的空间显式模型。JAWRA Journal of the American Water Resources Association 51 (1), 226-239.https://doi.org/10.1111/jawr.12250.
Sarnelle, O., Morrison, J., Kaul, R., Horst, G., Wandell, H., Bednarz, R., 2010. Citizen monitoring: testing hypotheses about the interactive influences of eutrophication and mussel invasion on a cyanobacterial toxin in lakes. Water Res. 44 (1), 141-150. https://doi.org/10.1016/j.watres.2009.09.014. Sarnelle, O., Morrison, J., Kaul, R., Horst, G., Wandell, H., Bednarz, R., 2010.公民监测:测试富营养化和贻贝入侵对湖泊中蓝藻毒素的交互影响的假设。水研究》,44 (1),141-150。https://doi.org/10.1016/j.watres.2009.09.014.
Sauer, V.B., Meyer, R.W., 1992. Determination of error in individual discharge measurements. US Department of the Interior, US Geological Survey, Norcross, Georgia https://pubs.usgs.gov/of/1992/ofr92-144/. Sauer, V.B., Meyer, R.W., 1992.Determination of error in individual discharge measurements.US Department of the Interior, US Geological Survey, Norcross, Georgia https://pubs.usgs.gov/of/1992/ofr92-144/.
Shi, R., Wang, T., Yang, D., Yang, Y., 2022. Streamflow decline threatens water security in the upper Yangtze River. J. Hydrol. 606, 127448 https://doi.org/10.1016/j. jhydrol.2022.127448. Shi, R., Wang, T., Yang, D., Yang, Y., 2022.长江上游水量下降威胁水安全。J. Hydrol.606, 127448 https://doi.org/10.1016/j. jhydrol.2022.127448.
Soupir, M.L., Mostaghimi, S., Mitchem Jr., C.E., 2009. A comparative study of streamgaging techniques for low-flow measurements in two Virginia tributaries. J. Am. Water Resour. Assoc. 45 (1), 110-122. https://doi.org/10.1111/j.17521688.2008.00264.x. Soupir, M.L., Mostaghimi, S., Mitchem Jr., C.E., 2009.弗吉尼亚州两条支流低流量测量的溪流测量技术比较研究。J. Am.J. Am.45 (1), 110-122.https://doi.org/10.1111/j.17521688.2008.00264.x.
Stepenuck, K.F., 2013. Improving understanding of outcomes and credibility of volunteer environmental monitoring programs. University of Wisconsin-Madison [Doctoral dissertation]. [Madison (WI)]: Stepenuck, K.F., 2013.提高对志愿者环境监测项目成果和可信度的理解。威斯康星大学麦迪逊分校 [博士论文]。[麦迪逊(威斯康星州)]:
Stepenuck, K.F., Wolfson, L.G., Liukkonen, B.W., Iles, J.M., Grant, T.S., 2011. Volunteer monitoring of E. coli in streams of the upper midwestern United States: a comparison of methods. Environ. Monit. Assess. 174 (1), 625-633. https://doi.org/10.1007/ s10661-010-1483-7 Stepenuck, K.F., Wolfson, L.G., Liukkonen, B.W., Iles, J.M., Grant, T.S., 2011.志愿者监测美国中西部上游溪流中的大肠杆菌:方法比较。Environ.Monit.Assess.174 (1), 625-633.https://doi.org/10.1007/ s10661-010-1483-7
Turnipseed, D.P., Sauer, V.B., 2010. Discharge measurements at gaging stations: United States Department of the Interior. United States Geological Survey. Https://doi. https://doi.org/10.3133/tm3A8. Turnipseed, D.P., Sauer, V.B., 2010.Dcharge measurement at gaging stations:United States Department of the Interior.美国地质调查局。Https://doi.https://doi.org/10.3133/tm3A8.
United States Bureau of Reclamation. 2001. Water Measurement Manual Chapter 13.10 https://www.usbr.gov/tsc/techreferences/mands/wmm/ [Accessed June 28, 2023]. 《美国垦务局。2001.水量测量手册》第 13.10 章 https://www.usbr.gov/tsc/techreferences/mands/wmm/ [访问日期:2023 年 6 月 28 日]。
United States Environmental Protection Agency. 1997. Volunteer stream monitoring: A methods manual. EPA 841-B-97-003. https://www.epa.gov/sites/default/files /2015-06/documents/stream.pdf [Accessed June 28, 2023]. 美国环境保护局。1997.志愿者溪流监测:A methods manual.Epa 841-B-97-003。https://www.epa.gov/sites/default/files /2015-06/documents/stream.pdf [Accessed June 28, 2023].
United States Geological Survey, 2023. USGS streamgaging network. Accessed October 14, 2023. https://www.usgs.gov/mission-areas/water-resources/science/usgs-stre amgaging-network. 美国地质调查局,2023 年。USGS streamgaging network.2023 年 10 月 14 日访问。https://www.usgs.gov/mission-areas/water-resources/science/usgs-stre amgaging-network.
University of Wisconsin, 2010. Streamflow: flow speaks volumes. University of Wisconsin-Extension, Madison, WI [Accessed May 1, 2023]. 威斯康星大学,2010 年。Streamflow: flow speaks volumes.威斯康星大学推广部,威斯康星州麦迪逊市 [2023 年 5 月 1 日访问]。
Van Dijk, A.I., Brakenridge, G.R., Kettner, A.J., Beck, H.E., De Groeve, T., Schellekens, J., 2016. River gauging at global scale using optical and passive microwave remote sensing. Water Resour. Res. 52 (8), 6404-6418. https://doi.org/10.1002/ 2015WR018545. Van Dijk, A.I., Brakenridge, G.R., Kettner, A.J., Beck, H.E., De Groeve, T., Schellekens, J., 2016.利用光学和被动微波遥感进行全球范围的河流测量。Water Resour.52 (8), 6404-6418.https://doi.org/10.1002/ 2015WR018545.
Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Davies, P.M., 2010. Global threats to human water security and river biodiversity. Nature 467 (7315), 555-561. https://doi-org.ezproxy.uvm.edu/10.1038/nat ure09549. Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Davies, P.M., 2010.人类用水安全和河流生物多样性面临的全球威胁。自然》467 (7315),555-561。https://doi-org.ezproxy.uvm.edu/10.1038/nat ure09549.
Wang, R., Kalin, L., Kuang, W., Tian, H., 2014. Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama. Hydrol. Process. 28 (22), 5530-5546. https://doi.org/10.1002/ hyp. 10057 . Wang, R., Kalin, L., Kuang, W., Tian, H., 2014.土地利用/覆盖和气候变化对阿拉巴马州南部狼湾流域水流的单独和综合影响。Hydrol.过程。28 (22), 5530-5546.https://doi.org/10.1002/ hyp.10057 .
Wisconsin Department of Natural Resources, 1998. 2301 Open Channel flow measurement. WI DNR field procedures manual, Intranet Edition. Field Measurement. Madison, WI, Part C. 威斯康星州自然资源部,1998 年。2301 明渠流量测量。威斯康星州自然资源部现场程序手册,内联网版。现场测量。威斯康星州麦迪逊,C 部分。
WWALS Watershed Coalition. 2021. Typical USGS streamgage costs with example near Okapilco Creek. https://wwals.net/2015/07/12/typical-usgs-streamgage-costs-with -example-near-okapilco-creek/#: :text=Update%202021%2D03%2D09%3A,the% 20USGS%20contributes%20about%20%24900. [Accessed October 14, 2023]. WWALS 流域联盟。2021.典型的 USGS 流速计成本,以 Okapilco 溪附近为例。https://wwals.net/2015/07/12/typical-usgs-streamgage-costs-with -example-near-okapilco-creek/#: :text=Update%202021%2D03%2D09%3A,the% 20USGS%20contributes%20about%20%24900.[Accessed October 14, 2023].
Zou, J., Xie, Z., Zhan, C., Qin, P., Sun, Q., Jia, B., Xia, J., 2015. Effects of anthropogenic groundwater exploitation on land surface processes: a case study of the Haihe River basin, Northern China. J. Hydrol. 524, 625-641. https://doi.org/10.1016/j. jhydrol.2015.03.026. Zou, J., Xie, Z., Zhan, C., Qin, P., Sun, Q., Jia, B., Xia, J., 2015.人为地下水开采对地表过程的影响:中国北方海河流域案例研究。J. Hydrol.524, 625-641.https://doi.org/10.1016/j. jhydrol.2015.03.026.
Corresponding author at: University of Vermont, Rubenstein School of Environment and Natural Resources, Lake Champlain Sea Grant, and Gund Institute for Environment, 81 Carrigan Dr, Burlington, Vermont, 05405, USA. 通讯作者佛蒙特大学鲁宾斯坦环境与自然资源学院、尚普兰湖海洋赠款和 Gund 环境研究所,地址:81 Carrigan Dr, Burlington, Vermont, 05405, USA。
E-mail address: kris.stepenuck@uvm.edu (K.F. Stepenuck). 电子邮件地址:kris.stepenuck@uvm.edu (K.F. Stepenuck)。 ^(1){ }^{1} Present address: United States Geological Survey, 505 Science Drive, Madison, Wisconsin, 53711 USA. ^(1){ }^{1} 现住址:美国威斯康星州麦迪逊市科学大道 505 号美国地质调查局:美国地质调查局,505 Science Drive, Madison, Wisconsin, 53711 USA。 ^(2){ }^{2} Present address: The Watershed Center Grand Traverse Bay, 13170 S W Bay Shore Dr Suite 102, Traverse City, Michigan, 49684 USA. ^(2){ }^{2} 目前地址:The Watershed Center Grand Traverse Bay, 13170 S W Bay Shore Dr Suite 102, Traverse City, Michigan, 49684 USA. ^(3){ }^{3} Present address: Wisconsin Department of Natural Resources, 101 S. Webster St, PO Box 7921, Madison, Wisconsin, 53707 USA. ^(3){ }^{3} 目前地址:Wisconsin Department of Natural Resources, 101 S. Webster St, PO Box 7921, Madison, Wisconsin, 53707 USA.