Brief paper 简短论文Distributed model predictive control—Recursive feasibility under inexact dual optimization☆
分布式模型预测控制——不精确对偶优化下的递归可行性☆
Abstract 摘要
我们提出了一种新颖的模型预测控制(MPC)公式,确保在不精确的对偶优化下的递归可行性、稳定性和性能。对偶优化算法提供了一种可扩展的解决方案,因此可以应用于大型分布式系统。由于通信限制或计算能力有限,大多数实时 MPC 应用必须处理不精确的最小化问题。我们提出了一种受鲁棒 MPC 启发的修改优化问题,尽管存在不精确的对偶最小化,但仍提供理论保证。该方法不依赖于任何特定的优化算法,而是假设可行的优化问题可以在有界的次优性和约束违反下得到解决。结合分布式对偶梯度方法,我们获得了所需在线迭代次数的先验上界。通过基准数值示例展示了该方法的设计和实用性。
Keywords 关键词
预测控制 受限系统的控制 大规模系统 分布式双重优化
1. Introduction 1. 引言
模型预测控制(MPC)是一种成熟的控制方法,可用于控制复杂的动态系统并保证约束满足(Rawlings & Mayne, 2009)。使用 MPC 控制系统的主要限制之一来自计算问题,因为在每个时间步都必须解决一个优化问题。为了将 MPC 应用于大规模系统,我们必须考虑分布式方法,这属于分布式 MPC(DMPC)的范畴(Maestre et al., 2014,Müller 和 Allgöwer,2017)。如果我们希望促进 DMPC 在快速(物理上)互联网络中的应用,通常需要具有可扩展性的分布式优化算法,并对所需迭代次数进行限制。
双重优化算法,如交替方向乘子法(ADMM)、双重梯度方法和近端分解,已被研究用于在线解决 DMPC 优化问题(Kögel 和 Findeisen,2012 年;Necoara 和 Nedelcu,2015 年;Necoara 和 Suykens,2008 年)。虽然这些算法实现了完全分布式的实施并渐近收敛到最优中心解,但实时要求导致了提前终止和不精确解。与原始分解方法(Stewart、Venkat、Rawlings、Wright 和 Pannocchia,2010 年)相反,这些基于双重优化的不精确解不一定满足 MPC 优化问题中提出的约束(动态、状态和输入约束)。这需要额外的修改以确保所得到的 MPC 方案的递归可行性和稳定性。
Related work 相关工作
在 Giselsson 和 Rantzer(2014)中,研究了没有终端约束的 DMPC,并提出了一种基于候选解的分布式迭代的充分停止条件。对于这种方法,无法给出所需迭代次数的先验界限。
在 Kögel 和 Findeisen(2014)中,研究了一种在动态等式约束中存在约束违反的原始优化算法。通过适当的状态和输入约束收紧,确保了递归可行性。
在 Necoara、Ferranti 和 Keviczky(2015)以及 Rubagotti、Patrinos 和 Bemporad(2014)中,由于不精确的对偶优化导致的不等式约束的约束违反通过适当的(常量或自适应)约束收紧来解决。通过使用浓缩形式(Necoara 等,2015)或将中间解投影到动态可行轨迹集(Rubagotti 等,2014),避免了所提出的动态等式约束中的约束违反。然而,这两种方法都不适合分布式大规模系统。
在 Ferranti 和 Keviczky(2015)中,通过使用适当的约束收紧来考虑不等式约束和动态等式约束中的约束违反。通过自适应选择容差,从而确保递归可行性。因此,迭代次数可能会有所不同,并且需要全球通信以实现这种适应。在 Doan、Keviczky 和 Schutter(2011)中,类似的约束收紧被用于分布式层次模型预测控制方案。
Contribution 贡献
我们提出了一个新的框架,以确保由于有限的对偶迭代而导致的不精确分布式模型预测控制(DMPC)的递归可行性。该框架包括一个恒定的约束收紧和一个稳定控制器,受到鲁棒模型预测控制(MPC)(Chisci, Rossiter, & Zappa, 2001)的启发。为了避免过于保守的约束收紧,我们提出了一个修改后的优化问题,并采用了一个不同的候选解,明确考虑了不精确性。这提供了一种适用于不同 MPC 设置的一般程序。通过将该框架与对偶分布式梯度算法相结合,我们获得了确保递归可行性的对偶迭代次数的先验上界。与 Ferranti 和 Keviczky(2015)、Giselsson 和 Rantzer(2014)以及 Necoara 等(2015)相比,不需要自适应约束收紧。此外,与 Doan 等(2011)、Ferranti 和 Keviczky(2015)、Kögel 和 Findeisen(2014)以及 Rubagotti 等(2014)相比,不需要集中操作,从而允许对大规模系统进行完全分布式的实现。
Outline
2. Distributed model predictive control
Notation
2.1. Problem setup
Assumption 1
Remark 2
Theorem 3
Rawlings & Mayne, 2009
2.2. Distributed (dual) optimization
3. Inexact distributed MPC
3.1. Inexact MPC and constraint tightening
Assumption 4
Definition 5
3.2. Feasible consolidated trajectory
Proposition 6
Proof
Remark 7
3.3. Recursive feasibility under inexact minimization
Theorem 8
Proof
3.4. Closed-loop stability

Fig. 1. Illustration of the strictly feasible candidate sequence in relation to the previous solution , the error in the first dynamic constraint and the (shifted) tightened constraints over the prediction horizon.
Definition 9
Proposition 10
Proof
3.5. Dual distributed optimization

Proposition 12
Proof
Remark 13


3.6. Comments
Remark 14
4. Numerical example
Offline computation
Simulations — stability and dual initialization

Fig. 2. Closed-loop Inexact DMPC: Inexact cost (left) and number of iterations (right) with different initialization vs. time .

Fig. 3. Quantitative impact of tolerance and number of subsystems on number of iterations .
5. Conclusion
Acknowledgments
References
- Chisci et al., 2001Systems with persistent disturbances: predictive control with restricted constraintsAutomatica, 37 (2001), pp. 1019-1028
- Conte et al., 2016Distributed synthesis and stability of cooperative distributed model predictive control for linear systemsAutomatica, 69 (2016), pp. 117-125
- Conte et al., 2013Robust distributed model predictive control of linear systemsProc. European control Conf. (ECC) (2013), pp. 2764-2769
- Doan et al., 2011A distributed optimization-based approach for hierarchical model predictive control of large-scale systems with coupled dynamics and constraintsProc. 50th IEEE Conf. Decision and control (CDC) (2011), pp. 5236-5241
- Ferranti and Keviczky, 2015A parallel dual fast gradient methodfor MPC applicationsProc. 54th IEEE Conf. Decision and control (CDC) (2015), pp. 2406-2413
- Giselsson and Rantzer, 2014On feasibility, stability and performance in distributed model predictive controlIEEE Transactions on Automatic Control, 59103 (2014), pp. 1-1036
- Grüne and Pannek, 2017Nonlinear model predictive controlSpringer (2017)
- Kögel and Findeisen, 2012Cooperative distributed MPC using the alternating direction multiplier methodProc. 8th IFAC symposium on advanced control of chemical processes (2012), pp. 445-450
- Kögel and Findeisen, 2014Stabilization of inexact MPC schemesProc. 53rd IEEE Conf. Decision and control (CDC) (2014), pp. 5922-5928
- Köhler et al., 2018aInexact distributed model predictive control - recursive feasibility under inexact dual optimizationTech. rep, University of Stuttgart (2018)
- Köhler et al., 2018bA novel constraint tightening approach for nonlinear robust model predictive controlProc. American control Conf. (ACC) (2018), pp. 728-734
- Köhler et al., 2017Real time economic dispatch for power networks: A distributed economic model predictive control approachProc. 56th IEEE Conf. Decision and control (CDC) (2017), pp. 6340-6345
- Maestre et al., 2014Distributed model predictive control made easySpringer (2014)
- Müller and Allgöwer, 2017Economic and distributed model predictive control: Recent developments in optimization-based controlSICE J. of Control, Measurement, and System Integration, 10 (2017), pp. 39-52
- Necoara et al., 2015An adaptive constraint tightening approach to linear model predictive control based on approximation algorithms for optimizationOptimal Control Applications & Methods, 36 (2015), pp. 648-666
- Necoara and Nedelcu, 2015On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problemsAutomatica, 55 (2015), pp. 209-216
- Necoara and Suykens, 2008Application of a smoothing technique to decomposition in convex optimizationIEEE Transactions on Automatic Control, 53 (2008), pp. 2674-2679
- Rawlings and Mayne, 2009Model predictive control: Theory and designNob Hill Pub (2009)
- Rubagotti et al., 2014Stabilizing linear model predictive control under inexact numerical optimizationIEEE Transactions on Automatic Control, 59 (2014), pp. 1660-1666
- Scokaert et al., 1999Suboptimal model predictive control (feasibility implies stability)IEEE Transactions on Automatic Control, 44 (1999), pp. 648-654
- Stewart et al., 2010Cooperative distributed model predictive controlSystems & Control Letters, 59 (2010), pp. 460-469
- Trodden, 2016A one-step approach to computing a polytopic robustpositively invariant setIEEE Transactions on Automatic Control, 61 (12) (2016), pp. 4100-4105
Cited by (22)
Analysis and design of model predictive control frameworks for dynamic operation—An overview
2024, Annual Reviews in ControlCitation Excerpt :MPC formulations without terminal ingredients (Section 6) are simple to apply for large scale systems due to the absence of any offline designs. For example, Giselsson and Rantzer (2014) and Köhler et al. (2019a, App. A) derive closed-loop guarantees for regulation and economic performance despite inexact distributed optimization. In the following, we mention existing results that combine the nominal results in Sections 3–6 with a robust MPC formulation.
Distributed model predictive safety certification for learning-based control
2020, IFAC-PapersOnLineTube-Based Model Predictive Full Containment Control for Stochastic Multiagent Systems
2023, IEEE Transactions on Automatic ControlRobust-to-Early Termination Model Predictive Control
2023, IEEE Transactions on Automatic ControlStochastic Distributed Predictive Tracking Control under Inexact Minimization
2021, IEEE Transactions on Control of Network SystemsDistributed Model Predictive Control and Optimization for Linear Systems with Global Constraints and Time-Varying Communication
2021, IEEE Transactions on Automatic Control



- ☆
- The authors thank the German Research Foundation (DFG) for support of this work within grant AL 316/11-1 and within the Research Training Group Soft Tissue Robotics (GRK 2198/1). The material in this paper was not presented at any conference. This paper was recommended for publication in revised form by Associate Editor Giancarlo Ferrari-Trecate under the direction of Editor Ian R. Petersen.
- 1
- The feasibility recovery scheme described in Kögel and Findeisen (2014) to obtain a (dynamically) feasible solution is comparable to the definition of the consolidated trajectory.
- 2
- This would not hold, if we would use for the definition of the -step support function, compare Remark 7.
- 3
- The minimization can be further decoupled along the time axis with the variables , compare (Ferranti & Keviczky, 2015).
- 4
- The following properties remain valid if the initialization satisfies .
- 5
- To improve the numerical conditioning, we set .