2.1. Acquisition the RoI of Leaf Point Cloud Model
Kinect2.0 was used to photograph eggplant and get the corresponding point cloud to obtain complete scene information. The scene information contains the entire plant, and the research object is the length and width of a leaf, so a complete leaf point cloud without occlusion was manually selected as the experimental object. The length measurement did not include the length of the petiole, so the petiole was removed manually to ensure the accuracy of measurement. Here, eggplant leaves were selected as the research object to prove the effectiveness of the measurement of leaf length and width. The extracted leaf point cloud information contained noise, so the filtering method [
43] and smoothing algorithm [
44] provided by Point Cloud Library were used to process the point cloud in .
Kinect2.0 ็จไบๆๆ่ๅญๅนถ่ทๅ็ธๅบ็็นไบไปฅ่ทๅๅฎๆด็ๅบๆฏไฟกๆฏใๅบๆฏไฟกๆฏๅ
ๅซๆดไธชๆค็ฉ๏ผ็ ็ฉถๅฏน่ฑกๆฏๅถ็็้ฟๅบฆๅๅฎฝๅบฆ๏ผๅ ๆญคๆๅจ้ๅไบๆ ้ฎๆก็ๅฎๆดๅถ็็นไบไฝไธบๅฎ้ชๅฏน่ฑกใ้ฟๅบฆๆต้ไธๅ
ๆฌๅถๆ้ฟๅบฆ๏ผๅ ๆญคๆๅจ็งป้คไบๅถๆไปฅ็กฎไฟๆต้็ๅ็กฎๆงใๅจๆญค๏ผ้ๆฉ่ๅญๅถ็ไฝไธบ็ ็ฉถๅฏน่ฑกไปฅ่ฏๆๆต้ๅถ็้ฟๅบฆๅๅฎฝๅบฆ็ๆๆๆงใๆๅ็ๅถ็็นไบไฟกๆฏๅ
ๅซๅชๅฃฐ๏ผๅ ๆญคไฝฟ็จไบ็นไบๅบๆไพ็[43]ๆปคๆณขๆนๆณๅ[44]ๅนณๆป็ฎๆณๅฏนๅพ 1 ไธญ็็นไบ่ฟ่กๅค็ใ
Figure 1.
Operation flowchart of the system.
When collecting data, the distance between kinect2.0 and the shooting scene was less than 1.1 m, which can increase the density of the point cloud on the leaf. The useless part of the scene point cloud was removed, and information on only one leaf was obtained, which can ensure the integrity of the leaf information. Since the focus of this paper is to compare the geodesic distance method, cross-section method and the improved method to measure the individual leaf on the plant, there is no reconstruction of the plant point cloud.
ๅฝๆถ้ๆฐๆฎๆถ๏ผKinect2.0 ไธๆๆๅบๆฏ็่ท็ฆปๅฐไบ 1.1 ็ฑณ๏ผ่ฟๅฏไปฅๅขๅ ๅถ็ไธ็นไบ็ๅฏๅบฆใ็งป้คไบๅบๆฏ็นไบ็ๆ ็จ้จๅ๏ผไป
่ทๅพไบๅ็ๅถ็็ไฟกๆฏ๏ผ่ฟๅฏไปฅ็กฎไฟๅถ็ไฟกๆฏ็ๅฎๆดๆงใ็ฑไบๆฌๆ็้็นๆฏๅฏนๆฏๆต้ๆค็ฉไธๅ็ๅถ็็ๆตๅฐ็บฟ่ท็ฆปๆณใๆจชๆช้ขๆณๅๆน่ฟๆนๆณ๏ผๅ ๆญคๆฒกๆ้ๅปบๆค็ฉ็นไบใ
The point cloud network of each leaf is defined as
P, including a series of three-dimensional points as nodes,
๐={๐1,๐2โฆ๐๐}. The main directions
(๐ฅ,๐ฆ,๐ง) of the original plant point cloud obtained by the 3D camera are arbitrary, and the key points of the measurement cannot be obtained automatically. In this paper, in order to achieve unified and automatic key points, the direction of the leaf was normalized, and two key points in the width direction and the bottom of the key point in the length direction were obtained automatically. Principal component analysis (PCA) is a method of extracting main feature pairs, which can analyze the main influencing factors from multiple dimensions. The PCA algorithm was used to get the main axis of the point cloud data, on which the variance of the data distribution was the largest. The point cloud data were, respectively, projected into the new coordinate system formed by these three axes. It is mainly used for dimensionality reduction and extraction of the main feature components of the data [
45]. PCA is to sequentially find a set of mutually orthogonal coordinate axes from the original space. The generation of new coordinate axes was closely related to the original point cloud data of the leaf. Among them, the main axis selection was the direction with the largest variance in the original data. The secondary main coordinate axis was selected to maximize the variance in the plane orthogonal to the first coordinate axis. The tertiary main axis had the largest variance in the plane orthogonal to the first and second axes. The realization method of PCA is as follows: Firstly, find the center of the point cloud. For the input point set
P, the number of point clouds is
n, then the center point
๐๐ is Equation (
1),
ๆฏไธชๅถ็็็นไบ็ฝ็ปๅฎไนไธบ P๏ผๅ
ๆฌไธ็ณปๅไธ็ปด็นไฝไธบ่็น๏ผ ๐={๐1,๐2โฆ๐๐} ใ้่ฟ 3D ็ธๆบ่ทๅพ็ๅๅงๆค็ฉ็นไบ็ไธปๆนๅ (๐ฅ,๐ฆ,๐ง) ๆฏไปปๆ็๏ผๆต้็ๅ
ณ้ฎ็นๆ ๆณ่ชๅจ่ทๅพใๅจๆฌๆไธญ๏ผไธบไบๅฎ็ฐ็ปไธๅ่ชๅจ็ๅ
ณ้ฎ็น๏ผๅถ็็ๆนๅ่ขซๅฝไธๅ๏ผๅนถๅจๅฎฝๅบฆๆนๅๅ้ฟๅบฆๆนๅ็ๅ
ณ้ฎ็นๅบ้จ่ชๅจ่ทๅพไบไธคไธชๅ
ณ้ฎ็นใไธปๆๅๅๆ๏ผPCA๏ผๆฏไธ็งๆๅไธป่ฆ็นๅพๅฏน็ๆนๆณ๏ผๅฏไปฅไปๅคไธช็ปดๅบฆๅๆไธป่ฆๅฝฑๅๅ ็ด ใPCA ็ฎๆณ่ขซ็จๆฅ่ทๅ็นไบๆฐๆฎ็ไธป่ฝด๏ผๅจๆญค่ฝดไธๆฐๆฎๅๅธ็ๆนๅทฎๆๅคงใ็นไบๆฐๆฎๅๅซ่ขซๆๅฝฑๅฐ็ฑ่ฟไธไธช่ฝดๅฝขๆ็ๆฐๅๆ ็ณปไธญใๅฎไธป่ฆ็จไบ้็ปดๅๆๅๆฐๆฎ็ไธป่ฆ็นๅพๆๅ[45]ใPCA ๆฏไพๆฌกไปๅๅง็ฉบ้ดไธญๆพๅฐไธไธช็ธไบๆญฃไบค็ๅๆ ่ฝด้ๅใ ๆฐๅๆ ่ฝด็็ๆไธๅถๅญ็ๅๅง็นไบๆฐๆฎๅฏๅ็ธๅ
ณใๅ
ถไธญ๏ผไธป่ฝด้ๆฉๆฏๅๅงๆฐๆฎไธญๅๅผๆงๆๅคง็ๆนๅใๆฌกไธปๅๆ ่ฝด้ๆฉๆฏไธบไบๆๅคงๅไธ็ฌฌไธๅๆ ่ฝดๅ็ด็ๅนณ้ขไธ็ๅๅผๆงใ็ฌฌไธไธป่ฝดๅจ็ฌฌไธๅ็ฌฌไบ่ฝดๅ็ด็ๅนณ้ขไธๅ
ทๆๆๅคง็ๅๅผๆงใไธปๆๅๅๆ๏ผPCA๏ผ็ๅฎ็ฐๆนๆณๅฆไธ๏ผ้ฆๅ
๏ผๆพๅฐ็นไบ็ไธญๅฟใๅฏนไบ่พๅ
ฅ็น้ P๏ผ็นไบๆฐ้ไธบ n๏ผๅไธญๅฟ็น ๐๐ ไธบๆน็จ๏ผ1๏ผThe covariance matrix
๐ถ๐ can be obtained by
๐๐๎ต๎ท๎ถ๎ถ๎ถ๎ถ๎ถ๎ถ in Equation (
2) [
46],
ๅๆนๅทฎ็ฉ้ต ๐ถ๐ ๅฏไปฅ้่ฟๆน็จ(2) ๐๐๎ต๎ท๎ถ๎ถ๎ถ๎ถ๎ถ๎ถ ่ทๅพ[46]Secondly, calculate eigenvectors of the covariance matrix
๐ถ๐ by singular value decomposition [
47]. Since the eigenvectors of the matrix
๐ถ๐ are perpendicular to each other and can be used as the direction axis of the bounding box [
48]. Project the closed aggregate vertices to the axes to find the projection interval of each axis. The greater the variance, the projection distribution of the point cloud on this axis is more scattered and the projection interval on the axis is longer.
ๅ
ถๆฌก๏ผ้่ฟๅฅๅผๅผๅ่งฃ[47]่ฎก็ฎๅๆนๅทฎ็ฉ้ต ๐ถ๐ ็็นๅพๅ้ใ็ฑไบ็ฉ้ต ๐ถ๐ ็็นๅพๅ้ๅฝผๆญคๅ็ด๏ผๅฏไปฅ็จไฝ่พน็ๆก็ๆนๅ่ฝด[48]ใๅฐๅฐ้ญ่ๅ้กถ็นๆๅฝฑๅฐ่ฝดไธ๏ผไปฅๆพๅฐๆฏไธช่ฝด็ๆๅฝฑๅบ้ดใๆนๅทฎ่ถๅคง๏ผ็นไบๅจๆญค่ฝดไธ็ๆๅฝฑๅๅธ่ถๅๆฃ๏ผ่ฝดไธ็ๆๅฝฑๅบ้ด่ถ้ฟใAssuming that the distance of leaf length is greater than leaf width, PCA was used to determine the main diameter axis of the leaf (๐ข,๐ฃ,๐ค), u is the axis of leaf length, v is the axis of leaf width, and w is the axis of thickness. The bounding box of the leaf is made based on the (๐ข,๐ฃ,๐ค) coordinate system, and the points tangent to the bounding box in the u and v directions are the key points required.
ๅ่ฎพๅถ้ฟ่ท็ฆปๅคงไบๅถๅฎฝ๏ผไฝฟ็จไธปๆๅๅๆ๏ผPCA๏ผ็กฎๅฎๅถ็็ไธป็ดๅพ่ฝด (๐ข,๐ฃ,๐ค) ๏ผu ไธบๅถ้ฟ่ฝด๏ผv ไธบๅถๅฎฝ่ฝด๏ผw ไธบๅๅบฆ่ฝดใๅถ็็่พน็ๆกๅบไบ (๐ข,๐ฃ,๐ค) ๅๆ ็ณปๆๅปบ๏ผu ๅ v ๆนๅไธไธ่พน็ๆก็ธๅ็็นไธบๆ้็ๅ
ณ้ฎ็นใ
After obtaining the coordinate system, the intersection points of bounding box and leaf point cloud are extracted, which represent the maximum value of leaf extension and as the key points of measuring length and width. a represents the coordinate system of the original point cloud, where the red straight line is the x axis, green line is the y axis, and blue line is the z axis; b represents the coordinate system of point cloud processed by PCA, where the red straight line is the u axis, green line is the v axis, and blue line is the w axis. Assuming leaf length is greater than leaf width, u is the main axis, v is the secondary main axis, and w is the tertiary main axis. The yellow border of the 3D leaf model in is obtained by the bounding box method. The points intersected with the bounding box in v axis are measuring points of the leaf width, named ๐๐ค๐๐๐, ๐๐ค๐ ๐ก๐๐๐ก. The point where the u axis of the bounding box intersects the bottom of the leaf is ๐๐๐๐๐, while the point on the other side of leaf length cannot be directly used as the point of the leaf tip. Since eggplant petiole is located in the concave surface of the point cloud, the point where the bounding box intersects with the u axis is not the petiole, so the point ๐๐๐ ๐ก๐๐๐ก needs to be selected manually.
ๅจ่ทๅพๅๆ ็ณปๅ๏ผๆๅไบ่พน็ๆกๅๅถ็นไบ็ไบค็น๏ผ่ฟไบ็นไปฃ่กจๅถๆฉๅฑ็ๆๅคงๅผ๏ผๅนถไฝไธบๆต้้ฟๅบฆๅๅฎฝๅบฆ็ๅ
ณ้ฎ็นใๅพ 2a ่กจ็คบๅๅง็นไบ็ๅๆ ็ณป๏ผๅ
ถไธญ็บข่ฒ็ด็บฟๆฏ x ่ฝด๏ผ็ปฟ่ฒ็บฟๆฏ y ่ฝด๏ผ่่ฒ็บฟๆฏ z ่ฝด๏ผๅพ 2b ่กจ็คบ็ป่ฟ PCA ๅค็ๅ็็นไบๅๆ ็ณป๏ผๅ
ถไธญ็บข่ฒ็ด็บฟๆฏ u ่ฝด๏ผ็ปฟ่ฒ็บฟๆฏ v ่ฝด๏ผ่่ฒ็บฟๆฏ w ่ฝดใๅ่ฎพๅถ้ฟๅคงไบๅถๅฎฝ๏ผu ไธบไธป่ฝด๏ผv ไธบๆฌกไธป่ฝด๏ผw ไธบ็ฌฌไธไธป่ฝดใๅพ 2 ไธญ 3D ๅถๆจกๅ็้ป่ฒ่พน็ๆฏ้่ฟ่พน็ๆกๆนๆณ่ทๅพ็ใไธ่พน็ๆกๅจ v ่ฝด็ธไบค็็นไธบๅถๅฎฝ็ๆต้็น๏ผๅฝๅไธบ ๐๐ค๐๐๐ ๏ผ ๐๐ค๐ ๐ก๐๐๐ก ใ่พน็ๆก็ u ่ฝดไธๅถๅบ็ธไบค็็นไธบ ๐๐๐๐๐ ๏ผ่ๅถ้ฟๅฆไธไพง็็นไธ่ฝ็ดๆฅ็จไฝๅถๅฐ็็นใ ็ฑไบ่ๅญๅถๆไฝไบ็นไบ็ๅน้ข๏ผๅ ๆญคๅ
ๅด็ไธ u ่ฝด็ธไบค็็นไธๆฏๅถๆ๏ผๆไปฅ้่ฆๆๅจ้ๆฉ ๐๐๐ ๐ก๐๐๐ก ็นใ
Figure 2.
Coordinate system of leaf point cloud. (a) Original coordinate system of point cloud. (b) Processed coordinate system of point cloud.
ๅพ 2. ๅถ็นไบๅๆ ็ณปใ๏ผa๏ผ็นไบๅๅงๅๆ ็ณปใ๏ผb๏ผ็นไบๅค็ๅ็ๅๆ ็ณปใ
In a, the original point cloud is projected onto the (๐ฅ,๐ฆ,๐ง) coordinate system, and b the reconstructed point cloud is projected onto the (๐ข,๐ฃ,๐ค) coordinate system. The PCA algorithm is used to process the point cloud, and the elements are mapped to the main coordinate axis, secondary main coordinate axis, and tertiary main coordinate axis. The coordinate axis of the reconstructed point cloud has regularity, which is related to the decreasing projection density of the leaf length, width, and thickness. Therefore, the reconstructed main coordinate axis u represents the length of the leaf, the secondary main coordinate axis v represents the width, and the tertiary main coordinate axis w represents the thickness.
ๅจๅพ 3a ไธญ๏ผๅๅง็นไบ่ขซๆๅฝฑๅฐ (๐ฅ,๐ฆ,๐ง) ๅๆ ็ณปไธญ๏ผๅพ 3b ไธญ้ๅปบ็็นไบ่ขซๆๅฝฑๅฐ (๐ข,๐ฃ,๐ค) ๅๆ ็ณปไธญใไฝฟ็จ PCA ็ฎๆณๅค็็นไบ๏ผๅนถๅฐๅ
็ด ๆ ๅฐๅฐไธปๅๆ ่ฝดใๆฌกไธปๅๆ ่ฝดๅไธ็บงไธปๅๆ ่ฝดใ้ๅปบ็นไบ็ๅๆ ่ฝดๅ
ทๆ่งๅพๆง๏ผ่ฟไธๅถ็้ฟๅบฆใๅฎฝๅบฆๅๅๅบฆ็ๆๅฝฑๅฏๅบฆ้ไฝๆๅ
ณใๅ ๆญค๏ผ้ๅปบ็ไธปๅๆ ่ฝด u ไปฃ่กจๅถ็้ฟๅบฆ๏ผๆฌกไธปๅๆ ่ฝด v ไปฃ่กจๅฎฝๅบฆ๏ผไธ็บงไธปๅๆ ่ฝด w ไปฃ่กจๅๅบฆใ
Figure 3.
Projection of point cloud data onto the coordinate system. (a) Distribution map of the point cloud in the original coordinate system (๐ฅ,๐ฆ,๐ง). (b) Distribution map of the point cloud in the reconstructed coordinate system (๐ข,๐ฃ,๐ค).
ๅพ 3. ็นไบๆฐๆฎๅจๅๆ ็ณปไธ็ๆๅฝฑใ๏ผa๏ผๅๅงๅๆ ็ณปไธ็นไบ็ๅๅธๅพ (๐ฅ,๐ฆ,๐ง) ใ๏ผb๏ผ้ๅปบๅๆ ็ณปไธ็นไบ็ๅๅธๅพ (๐ข,๐ฃ,๐ค) ใ
Algorithm 1 used the PCA algorithm to reconstruct the coordinate system (๐ข,๐ฃ,๐ค) for obtaining the range of interest (RoI) of leaf and the key points of length and width.
็ฎๆณ 1 ไฝฟ็จไบ PCA ็ฎๆณ้ๆๅๆ ็ณป็ป (๐ข,๐ฃ,๐ค) ๏ผไปฅ่ทๅๅถๅญ็ๆๅ
ด่ถฃๅบๅ๏ผRoI๏ผไปฅๅ้ฟๅบฆๅๅฎฝๅบฆ็ๅ
ณ้ฎ็นใ
Algorithm 1 The algorithm of obtaining the measurement points of length and width. ็ฎๆณ 1 ่ทๅ้ฟๅบฆๅๅฎฝๅบฆๆต้็น็็ฎๆณใ |
Require:๐={๐1,๐2โฆ๐๐},๐๐=(๐ฅ๐,๐ฆ๐,๐ง๐)๐โ๐
,๐=1,2โฆ๐ for i = 1:n do Calculate ๐๐๎ต๎ท๎ถ๎ถ๎ถ๎ถ๎ถ๎ถ by Equation (1) end for Calculate covariance matrix ๐ถ๐ by Equation (2) Calculate eigenvalues and eigenvectors of ๐ถ๐, and express eigenvectors as the coordinate system (๐ข,๐ฃ,๐ค), Calculate the minimum bounding box for the leaf model in the coordinate system (๐ข,๐ฃ,๐ค), Define the reconstructed point cloud as ๐={๐1,๐2โฆ๐๐}(๐๐=(๐ข๐,๐ฃ๐,๐ค๐),๐=(1,2โฆ๐)), Define the intersection point of the leaf model and the bounding box in v direction as ๐๐ค๐ ๐ก๐๐๐ก, ๐๐ค๐๐๐, Define the intersection point of the leaf model and the bounding box in u direction as ๐๐๐๐๐, Define the intersection point of the leaf model in u direction as ๐๐๐ ๐ก๐๐๐ก manually. Ensure: ๐๐๐ ๐ก๐๐๐ก,๐๐๐๐๐,๐๐ค๐ ๐ก๐๐๐ก,๐๐ค๐๐๐โ๐๐(๐=1,2โฆ๐) |
2.2. Measurement the Length and Width of Leaf
The commonly used three-dimensional length measurement methods are the cross-section and geodesic distance methods. The cross-section method uses the key points and direction vector to find the tangent plane. In this paper, the key points have been obtained according to the bounding box technique, the length plane and width plane are perpendicular to the ๐ข๐๐ฃ plane. The longitudinal section intersects the leaf length with a line of intersection, and the value of this line is used as the measured value of leaf length. The cross section intersects the leaf width with a line of intersection, the value of this line is used as the measured value of leaf width. The obtained length and width tangent are curves, which is consistent with the actual measurement method to obtain the curve distance from the starting point to the end point on the leaf according to the given points.
ๅธธ็จ็ไธ็ปด้ฟๅบฆๆต้ๆนๆณๆๆจชๆช้ขๅๆตๅฐ่ท็ฆปๆณใๆจชๆช้ขๆณๅฉ็จๅ
ณ้ฎ็นๅๆนๅๅ้ๆพๅฐๅๅนณ้ขใๅจๆฌๆไธญ๏ผๆ นๆฎ่พน็ๆกๆๆฏ่ทๅพไบๅ
ณ้ฎ็น๏ผ้ฟๅบฆๅนณ้ขๅๅฎฝๅบฆๅนณ้ขๅ็ดไบ ๐ข๐๐ฃ ๅนณ้ขใ็บตๅๆช้ขไธๅถ้ฟ็ธไบคๅฝขๆไบค็บฟ๏ผ่ฏฅ็บฟ็ๅผ็จไฝๅถ้ฟๆต้ๅผใๆจชๆช้ขไธๅถๅฎฝ็ธไบคๅฝขๆไบค็บฟ๏ผ่ฏฅ็บฟ็ๅผ็จไฝๅถๅฎฝๆต้ๅผใ่ทๅพ็้ฟๅฎฝๅ็บฟๆฏๆฒ็บฟ๏ผ่ฟไธๆ นๆฎ็ปๅฎ็นไป่ตท็นๅฐ็ป็นๅจๅถไธ่ทๅพๆฒ็บฟ่ท็ฆป็ๅฎ้
ๆต้ๆนๆณไธ่ดใ
The geodesic distance method is a heuristic method, in which the starting point and the end point of the measurement must be provided to find the line connecting two points according to the shortest path principle, such as A* [
49], Dijkstra [
50] geodetic distance method. The Dijkstra algorithm is a typical shortest path algorithm, which is used to calculate the shortest path from the starting node to the final node. The Dijkstra algorithm can obtain the optimal solution of the shortest path. For the current point on the path, A* algorithm records the cost to the source point, and the expected cost from the current point to the target point, so it is a depth-first algorithm. The commonly used heuristic functions of A* algorithm include Manhattan, Euclidean and Chebyshev distances [
51]. The research object of this paper is a 3D point cloud, which can move along any direction when looking for the next target points, so the Euclidean distance is chosen as the heuristic function of A* algorithm in this paper. The space distance between points is the basis of the shortest distance. The start and end key points of the geodesic distance method are the same as those of the cross-section method, and the length and width of the leaf are calculated by the start and end key points, so there are fluctuations between adjacent point
๐๐ and point
๐๐+1 when searching for the shortest path.
ๆตๅฐ่ท็ฆปๆณๆฏไธ็งๅฏๅๅผๆนๆณ๏ผๅ
ถไธญๅฟ
้กปๆไพๆต้็่ตท็นๅ็ป็น๏ผๆ นๆฎๆ็ญ่ทฏๅพๅ็ๆพๅฐ่ฟๆฅไธค็น็็บฟ๏ผไพๅฆ A* [49]ใDijkstra [50]ๆตๅฐ่ท็ฆปๆณใDijkstra ็ฎๆณๆฏไธ็งๅ
ธๅ็ๆ็ญ่ทฏๅพ็ฎๆณ๏ผ็จไบ่ฎก็ฎไป่ตทๅง่็นๅฐๆ็ป่็น็ๆ็ญ่ทฏๅพใDijkstra ็ฎๆณๅฏไปฅ่ทๅพๆ็ญ่ทฏๅพ็ๆไผ่งฃใๅฏนไบ่ทฏๅพไธ็ๅฝๅ็น๏ผA*็ฎๆณ่ฎฐๅฝๅฐๆบ็น็ๆๆฌๅไปๅฝๅ็นๅฐ็ฎๆ ็น็้ขๆๆๆฌ๏ผๅ ๆญคๅฎๆฏไธ็งๆทฑๅบฆไผๅ
็ฎๆณใA*็ฎๆณๅธธ็จ็ๅฏๅๅผๅฝๆฐๅ
ๆฌๆผๅ้กฟ่ท็ฆปใๆฌงๅ ้ๅพ่ท็ฆปๅๅๆฏ้ชๅคซ่ท็ฆป[51]ใๆฌๆ็็ ็ฉถๅฏน่ฑกๆฏ 3D ็นไบ๏ผๅจๅฏปๆพไธไธไธช็ฎๆ ็นๆถๅฏไปฅๆฒฟไปปไฝๆนๅ็งปๅจ๏ผๅ ๆญคๆฌๆ้ๆฉๆฌงๅ ้ๅพ่ท็ฆปไฝไธบ A*็ฎๆณ็ๅฏๅๅผๅฝๆฐใ็นไน้ด็็ฉบ้ด่ท็ฆปๆฏๆ็ญ่ท็ฆป็ๅบ็กใ ่ตทๅงๅ็ปๆญขๅ
ณ้ฎ็นไธๆจชๆช้ขๆนๆณ็ธๅ๏ผๅถๅญ็้ฟๅบฆๅๅฎฝๅบฆ้่ฟ่ตทๅงๅ็ปๆญขๅ
ณ้ฎ็น่ฎก็ฎ๏ผๅ ๆญคๅจๅฏปๆพๆ็ญ่ทฏๅพๆถ๏ผ็ธ้ป็น ๐๐ ๅ็น ๐๐+1 ไน้ดๅญๅจๆณขๅจใIn this paper, based on the cross-section method, the direction of the section is not perpendicular to the coordinate system, but the plane is constructed according to the point on the leaf closest to the center of the starting point and the end point. This paper proposes to use the cutting-plane method to obtain the intersection line of the leaf as the basis for measuring the length and width. For the leaf length, the starting point ๐๐๐ ๐ก๐๐๐ก and end point ๐๐๐๐๐ were obtained, but to determine a plane, three points which are not on the same straight line are required, so the third point is needed to construct the three-dimensional plane. Similarly, for the leaf width, the starting point ๐๐ค๐ ๐ก๐๐๐ก and the end point ๐๐ค๐๐๐ have been obtained by bounding box technology, and the third point is also needed to construct the width plane. The method proposed in this paper is not to calculate the length and width of the leaf according to the point cloud perpendicular to the coordinate system ๐ข๐๐ฃ, and the process of coordinate system transformation can be omitted. It needs to specify the starting point and end point to calculate the target points for the leaf point cloud, then determine the tangent plane of length and width.
ๅจ่ฟ็ฏ่ฎบๆไธญ๏ผๅบไบๆจชๆช้ขๆณ๏ผๆช้ขๆนๅๅนถ้ๅ็ดไบๅๆ ็ณป๏ผ่ๆฏๆ นๆฎๅถๅญไธ็ฆป่ตท็นๅ็ป็นๆ่ฟ็็นๆๅปบๅนณ้ขใๆฌๆๆๅบไฝฟ็จๅๅฒๅนณ้ขๆณ่ทๅๅถๅญไบค็บฟไฝไธบๆต้้ฟๅบฆๅๅฎฝๅบฆ็ๅบ็กใๅฏนไบๅถๅญ้ฟๅบฆ๏ผ่ทๅพไบ่ตท็น ๐๐๐ ๐ก๐๐๐ก ๅ็ป็น ๐๐๐๐๐ ๏ผไฝ็กฎๅฎไธไธชๅนณ้ข้่ฆไธไธชไธๅจๅไธ็ด็บฟไธ็็น๏ผๅ ๆญค้่ฆ็ฌฌไธไธช็นๆฅๆๅปบไธ็ปดๅนณ้ขใๅๆ ท๏ผๅฏนไบๅถๅญๅฎฝๅบฆ๏ผ้่ฟ่พน็ๆกๆๆฏ่ทๅพไบ่ตท็น ๐๐ค๐ ๐ก๐๐๐ก ๅ็ป็น ๐๐ค๐๐๐ ๏ผไน้่ฆ็ฌฌไธไธช็นๆฅๆๅปบๅฎฝๅบฆๅนณ้ขใๆฌๆๆๅบ็ๆนๆณไธๆฏๆ นๆฎๅ็ดไบๅๆ ็ณป็็นไบ ๐ข๐๐ฃ ๆฅ่ฎก็ฎๅถๅญ็้ฟๅบฆๅๅฎฝๅบฆ๏ผๅฏไปฅ็็ฅๅๆ ็ณป่ฝฌๆข็่ฟ็จใ ้่ฆๆๅฎ่ตท็นๅ็ป็นๆฅ่ฎก็ฎๅถ็นไบ็็ฎๆ ็น๏ผ็ถๅ็กฎๅฎ้ฟๅบฆๅๅฎฝๅบฆ็ๅๅนณ้ขใ
In order to obtain the third point, the midpoint of the line between the starting point
๐๐๐ ๐ก๐๐๐ก and the end point
๐๐๐๐๐ is set as
๐๐๐๐๐๐ก๐๐ in Equation (
3). The point closest to
๐๐๐๐๐๐ก๐๐ on the leaf point cloud is selected as the third point
๐๐๐ก๐๐๐๐๐ก on the cutting plane in Equation (
4). The target point
๐๐๐ก๐๐๐๐๐ก selected in this way can ensure the closest distance to the point
๐๐๐๐๐๐ก๐๐, and the three points
๐๐๐ ๐ก๐๐๐ก,
๐๐๐๐๐ and
๐๐๐ก๐๐๐๐๐ก constituted the plane from the three-dimensional leaf model.
ไธบไบ่ทๅพ็ฌฌไธ็น๏ผๅฐ่ตท็น ๐๐๐ ๐ก๐๐๐ก ๅ็ป็น ๐๐๐๐๐ ไน้ด็็บฟๆฎตไธญ็น่ฎพไธบๆน็จ๏ผ3๏ผไธญ็ ๐๐๐๐๐๐ก๐๐ ใๅจๅถ็นไบไธ้ๆฉ่ท็ฆป ๐๐๐๐๐๐ก๐๐ ๆ่ฟ็็นไฝไธบๆน็จ๏ผ4๏ผไธญๅๅฒๅนณ้ขไธ็็ฌฌไธ็น ๐๐๐ก๐๐๐๐๐ก ใไปฅ่ฟ็งๆนๅผ้ๆฉ็้ถ็น ๐๐๐ก๐๐๐๐๐ก ๅฏไปฅ็กฎไฟไธ็น ๐๐๐๐๐๐ก๐๐ ็่ท็ฆปๆ่ฟ๏ผ่ไธไธช็น ๐๐๐ ๐ก๐๐๐ก ใ ๐๐๐๐๐ ๅ ๐๐๐ก๐๐๐๐๐ก ๆๆไบไธ็ปดๅถๆจกๅๆๆ็ๅนณ้ขใ
where,
๐๐๐๐ denotes the coordinates of the point with the smallest distance between
๐๐๐๐๐๐ก๐๐ and
๐๐, and
d denotes the Euclidean distance of two points. Similarly, when calculating the width tangent plane, the midpoint of the line between the starting point
๐๐ค๐ ๐ก๐๐๐ก and the end point
๐๐ค๐๐๐ is
๐๐ค๐๐๐๐ก๐๐ in Equation (
5). The point closest to
๐๐ค๐๐๐๐ก๐๐ is selected as
๐๐ค๐ก๐๐๐๐๐ก on the leaf model in Equation (
6).
ๅจๅผไธญ๏ผ ๐๐๐๐ ่กจ็คบ ๐๐๐๐๐๐ก๐๐ ๅ ๐๐ ไน้ด่ท็ฆปๆๅฐ็็น็ๅๆ ๏ผd ่กจ็คบไธค็นไน้ด็ๆฌงๅ ้ๅพ่ท็ฆปใ็ฑปไผผๅฐ๏ผๅจ่ฎก็ฎๅฎฝๅบฆๅๅนณ้ขๆถ๏ผๆน็จ๏ผ5๏ผไธญ็่ตท็น ๐๐ค๐ ๐ก๐๐๐ก ๅ็ป็น ๐๐ค๐๐๐ ไน้ด็็บฟๆฎตไธญ็นไธบ ๐๐ค๐๐๐๐ก๐๐ ใๅจๆน็จ๏ผ6๏ผ็ๅถๆจกๅไธญ๏ผ้ๆฉ่ท็ฆป ๐๐ค๐๐๐๐ก๐๐ ๆ่ฟ็็นไฝไธบ ๐๐ค๐ก๐๐๐๐๐ก ใIn , the red points, respectively, represent ๐๐ ๐ก๐๐๐ก, ๐๐๐๐, and ๐๐๐๐๐ก๐๐, while black points represent the 3D leaf model. The point with the smallest distance to ๐๐๐๐๐ก๐๐ is selected as ๐๐ก๐๐๐๐๐ก, which is represented in blue.
ๅจๅพ 4 ไธญ๏ผ็บข่ฒ็นๅๅซไปฃ่กจ ๐๐ ๐ก๐๐๐ก ใ ๐๐๐๐ ๅ ๐๐๐๐๐ก๐๐ ๏ผ่้ป่ฒ็นไปฃ่กจ 3D ๅถ็ๆจกๅใ่ท็ฆป ๐๐๐๐๐ก๐๐ ๆ่ฟ็็น่ขซ้ไธบ ๐๐ก๐๐๐๐๐ก ๏ผ็จ่่ฒ่กจ็คบใ
Figure 4.
Determination of the target point by starting and end point.
ๅพ 4. ็ฑ่ตท็นๅ็ป็น็กฎๅฎ็ฎๆ ็นใ
For the section of leaf length, the three points of ๐๐๐ ๐ก๐๐๐ก, ๐๐๐๐๐ and ๐๐๐๐๐๐ก๐๐ are on the same straight line, then ๐๐๐ก๐๐๐๐๐ก and ๐๐๐ ๐ก๐๐๐ก and ๐๐๐๐ are not on the same straight line, so according to the plane equation, it can be guaranteed that the three points determine a plane. For the section of width, ๐๐ค๐ก๐๐๐๐๐ก and ๐๐ค๐ ๐ก๐๐๐ก and ๐๐ค๐๐๐ are not in a straight line, so here it can be guaranteed that three points define a plane. This process is to compare the distance between the point set ๐๐ and ๐๐๐๐๐ก๐๐, and select the point p corresponding to the smallest distance as the point ๐๐ก๐๐๐๐๐ก. The purpose is to determine a plane through a line and point, and cut a curve through the plane and leaf point cloud surface.
ๅฏนไบๅถ็้ฟๅบฆ็้จๅ๏ผ็น ๐๐๐ ๐ก๐๐๐ก ใ ๐๐๐๐๐ ๅ ๐๐๐๐๐๐ก๐๐ ๅจๅไธ็ด็บฟไธ๏ผ่็น ๐๐๐ก๐๐๐๐๐ก ใ ๐๐๐ ๐ก๐๐๐ก ๅ ๐๐๐๐ ไธๅจๅไธ็ด็บฟไธ๏ผๅ ๆญคๆ นๆฎๅนณ้ขๆน็จ๏ผๅฏไปฅไฟ่ฏ่ฟไธไธช็น็กฎๅฎไธไธชๅนณ้ขใๅฏนไบๅฎฝๅบฆ้จๅ๏ผ็น ๐๐ค๐ก๐๐๐๐๐ก ใ ๐๐ค๐ ๐ก๐๐๐ก ๅ ๐๐ค๐๐๐ ไธๅจๅไธ็ด็บฟไธ๏ผๅ ๆญคๅฏไปฅไฟ่ฏไธไธช็นๅฎไนไธไธชๅนณ้ขใ่ฟไธช่ฟ็จๆฏไธบไบๆฏ่พ็น้ ๐๐ ๅ ๐๐๐๐๐ก๐๐ ไน้ด็่ท็ฆป๏ผๅนถ้ๆฉๅฏนๅบๆๅฐ่ท็ฆป็็น p ไฝไธบ็น ๐๐ก๐๐๐๐๐ก ใ็ฎ็ๆฏ้่ฟไธๆก็ด็บฟๅไธไธช็น็กฎๅฎไธไธชๅนณ้ข๏ผๅนถ้่ฟๅนณ้ขๅๅถ็็นไบ่กจ้ขๅๅฒไธๆกๆฒ็บฟใ
The length and width section of the leaf obtained by the traditional cross-section method is shown in a, the coordinate system was reconstructed according to the PCA method, and the length and width planes are perpendicular to the coordinate plane ๐ข๐๐ฃ. For the width section, suppose the equation is ๐ด๐ค๐ฅ+๐ต๐ค๐ฆ+๐ถ๐ค๐ง+๐ท๐ค=0. The plane ๐น๐ค through three points that are not on the same line in the equation are ๐๐ค๐ ๐ก๐๐๐ก, ๐๐ค๐ก๐๐๐๐๐ก, and ๐๐ค๐๐๐. The transverse plane tangent of the leaf is shown in b. Suppose the length plane equation is ๐ด๐๐ฅ+๐ต๐๐ฆ+๐ถ๐๐ง+๐ท๐=0. The plane ๐น๐ through three points that are not on the same line in the equation are ๐๐๐ ๐ก๐๐๐ก, ๐๐๐ก๐๐๐๐๐ก, and ๐๐๐๐๐. The plane tangent of the leaf length in c. The section intersects the leaf length with a line, as ๐๐. Similarly, the section intersects the leaf width with a line, as ๐๐ค.
ๅพ 5a ๆพ็คบไบ้่ฟไผ ็ปๆจชๅๆณ่ทๅพ็ๅถ็้ฟๅบฆๅๅฎฝๅบฆ้จๅ๏ผๅๆ ็ณป็ปๆ นๆฎไธปๆๅๅๆ๏ผPCA๏ผๆนๆณ้ๅปบ๏ผ้ฟๅบฆๅๅฎฝๅบฆๅนณ้ขๅ็ดไบๅๆ ๅนณ้ข ๐ข๐๐ฃ ใๅฏนไบๅฎฝๅบฆ้จๅ๏ผๅ่ฎพๆน็จไธบ ๐ด๐ค๐ฅ+๐ต๐ค๐ฆ+๐ถ๐ค๐ง+๐ท๐ค=0 ใ้่ฟๆน็จไธญไธๅจๅไธ็ด็บฟไธ็ไธไธช็น ๐๐ค๐ ๐ก๐๐๐ก ใ ๐๐ค๐ก๐๐๐๐๐ก ๅ ๐๐ค๐๐๐ ็กฎๅฎ็ๅนณ้ข ๐น๐ค ใๅถ็็ๆจชๅ้ขๅจๅพ 5b ไธญๆพ็คบใๅ่ฎพ้ฟๅบฆๅนณ้ขๆน็จไธบ ๐ด๐๐ฅ+๐ต๐๐ฆ+๐ถ๐๐ง+๐ท๐=0 ใ้่ฟๆน็จไธญไธๅจๅไธ็ด็บฟไธ็ไธไธช็น ๐๐๐ ๐ก๐๐๐ก ใ ๐๐๐ก๐๐๐๐๐ก ๅ ๐๐๐๐๐ ็กฎๅฎ็ๅนณ้ข ๐น๐ ๆฏๅถ็้ฟๅบฆ็ๅๅนณ้ขใๅพ 5c ไธญๆพ็คบไบไธๅถ็้ฟๅบฆ็ธไบค็ๆช้ข็บฟ๏ผๅฆ ๐๐ ใ็ฑปไผผๅฐ๏ผๆช้ข็บฟไธๅถ็ๅฎฝๅบฆ็ธไบค๏ผๅฆ ๐๐ค ใ
Figure 5.
Obtaining spatial length and width planes of leaf. (a) Spatial planes of length and width by cross-section method. (b) Spatial plane of width according to this paper. (c) Spatial plane of length according to this paper.
ๅพ 5. ่ทๅๅถ็็็ฉบ้ด้ฟๅบฆๅๅฎฝๅบฆๅนณ้ขใ๏ผa๏ผ้่ฟๆจชๅๆณ่ทๅพ็้ฟๅบฆๅๅฎฝๅบฆ็ฉบ้ดๅนณ้ขใ๏ผb๏ผๆ นๆฎๆฌๆ่ทๅพ็ๅฎฝๅบฆ็ฉบ้ดๅนณ้ขใ๏ผc๏ผๆ นๆฎๆฌๆ่ทๅพ็้ฟๅบฆ็ฉบ้ดๅนณ้ขใ
The length and width cut planes obtained by this paper are not perpendicular to the coordinate plane. The essence of our method is to use the tangent plane to cut the model and obtain the point on the intersection line as the basis for calculating the length and width. The leaf model intersects with the length and width planes, which are used to measure the distance of length and width in Algorithm 2.
่ฏฅๆ่ทๅพ็้ฟๅบฆๅๅฎฝๅบฆๅๅฒๅนณ้ขไธๅๆ ๅนณ้ขไธๅ็ดใๆไปฌๆนๆณ็ๆ ธๅฟๆฏๅฉ็จๅๅนณ้ขๅๅฒๆจกๅ๏ผๅนถๅฐไบค็บฟไธ็็นไฝไธบ่ฎก็ฎ้ฟๅบฆๅๅฎฝๅบฆ็ๅบ็กใๅถๆจกๅไธ้ฟๅบฆๅๅฎฝๅบฆๅนณ้ข็ธไบค๏ผ่ฟไบๅนณ้ข็จไบๅจ็ฎๆณ 2 ไธญๆต้้ฟๅบฆๅๅฎฝๅบฆใ
Algorithm 2 The algorithm of calculating leaf length and width. ็ฎๆณ 2 ่ฎก็ฎๅถ้ฟๅๅถๅฎฝ็็ฎๆณใ |
Process of calculating leaf length ่ฎก็ฎๅถ็้ฟๅบฆ็่ฟ็จ Require: ๐={๐1,๐2โฆ๐๐},๐=(1,2โฆ๐) ้่ฆ๏ผ ๐={๐1,๐2โฆ๐๐},๐=(1,2โฆ๐) Calculate the midpoint ๐๐๐๐๐๐ก๐๐ of line ๐๐ using Equation (3). ่ฎก็ฎ็ด็บฟ ๐๐ ็ไธญ็น ๐๐๐๐๐๐ก๐๐ ๏ผไฝฟ็จๅ
ฌๅผ๏ผ3๏ผใ for i = 1:n do ๅฏนไบ i = 1 ๅฐ n ๅพช็ฏ Calculate the distance between ๐๐ and ๐๐๐ as ๐๐๐, ่ฎก็ฎ ๐๐ ไธ ๐๐๐ ไน้ด็่ท็ฆปไธบ ๐๐๐ ๏ผ Find ๐๐๐๐๐=min๐๐๐, and the keypoint ๐๐๐ก๐๐๐๐๐ก using Equation (4). ๆพๅฐ ๐๐๐๐๐=min๐๐๐ ๏ผๅนถไฝฟ็จๅ
ฌๅผ๏ผ4๏ผ็กฎๅฎๅ
ณ้ฎ็น ๐๐๐ก๐๐๐๐๐ก ใ end for Calculate the cutting plane of ๐๐๐ ๐ก๐๐๐ก,๐๐๐๐๐,๐๐๐ก๐๐๐๐๐ก as ๐ด๐๐ฅ+๐ต๐๐ฆ+๐ถ๐๐ง+๐ท๐=0, ่ฎก็ฎ ๐๐๐ ๐ก๐๐๐ก,๐๐๐๐๐,๐๐๐ก๐๐๐๐๐ก ็ๅๅฒๅนณ้ขไธบ ๐ด๐๐ฅ+๐ต๐๐ฆ+๐ถ๐๐ง+๐ท๐=0 ๏ผ Define the tangent point set of leaf model and cutting plane as the length. ๅฎไนๅถๆจกๅๅ็น้ๅๅๅฒๅนณ้ข็้ฟๅบฆใ Ensure: ่ฏทๆไพ้่ฆ็ฟป่ฏ็ๆบๆๆฌ๏ผไปฅไพฟๆ่ฟ่ก็ฟป่ฏ ๐๐๐โ tangent point set ๐=1,2โฆ๐ ๐๐๐โ ๅ็น้ ๐=1,2โฆ๐ Process of calculating leaf width ่ฎก็ฎๅถ็ๅฎฝๅบฆ่ฟ็จ Require: ๐={๐1,๐2โฆ๐๐},๐=(1,2โฆ๐) ้่ฆ๏ผ ๐={๐1,๐2โฆ๐๐},๐=(1,2โฆ๐) Calculate the midpoint ๐๐ค๐๐๐๐ก๐๐ of line ๐๐ค using Equation (5). ่ฎก็ฎ็ด็บฟ ๐๐ค ็ไธญ็น ๐๐ค๐๐๐๐ก๐๐ ๏ผไฝฟ็จๅ
ฌๅผ๏ผ5๏ผใ for i = 1:n do ๅฏนไบ i = 1 ๅฐ n ๅพช็ฏ Calculate the distance between ๐๐ and ๐๐ค๐ as ๐๐ค๐, ่ฎก็ฎ ๐๐ ไธ ๐๐ค๐ ไน้ด็่ท็ฆปไธบ ๐๐ค๐ ๏ผ Find ๐๐ค๐๐๐=min๐๐ค๐, and the keypoint ๐๐ค๐ก๐๐๐๐๐ก using Equation (6). ๆพๅฐ ๐๐ค๐๐๐=min๐๐ค๐ ๏ผๅนถไฝฟ็จๅ
ฌๅผ๏ผ6๏ผ็กฎๅฎๅ
ณ้ฎ็น ๐๐ค๐ก๐๐๐๐๐ก ใ end for Calculate the cutting plane of ๐๐ค๐ ๐ก๐๐๐ก,๐๐ค๐๐๐,๐๐ค๐ก๐๐๐๐๐ก as ๐ด๐ค๐ฅ+๐ต๐ค๐ฆ+๐ถ๐ค๐ง+๐ท๐ค=0, ่ฎก็ฎ ๐๐ค๐ ๐ก๐๐๐ก,๐๐ค๐๐๐,๐๐ค๐ก๐๐๐๐๐ก ็ๅๅฒๅนณ้ขไธบ ๐ด๐ค๐ฅ+๐ต๐ค๐ฆ+๐ถ๐ค๐ง+๐ท๐ค=0 ๏ผ Define the tangent point set of leaf model and cutting plane as the width. ๅฎไนๅถๆจกๅ็ๅ็น้ๅๅๅฒๅนณ้ขไธบๅฎฝๅบฆใ Ensure: ่ฏทๆไพ้่ฆ็ฟป่ฏ็ๆบๆๆฌ๏ผไปฅไพฟๆ่ฟ่ก็ฟป่ฏ ๐๐ค๐โ tangent point set ๐=1,2โฆ๐ ๐๐ค๐โ ๅ็น้ ๐=1,2โฆ๐ |
shows the length and width points of eggplant leaves obtained by geodesic distance and cross-section methods. A* and Dijkstra methods were used for geodesic distance method. The starting point and ending point of geodesic distance method and cross-section method are the same, that is ๐๐๐ ๐ก๐๐๐ก, ๐๐ค๐ ๐ก๐๐๐ก, ๐๐๐๐๐, ๐๐ค๐๐๐. The red line represents the width in a and length e of the leaf obtained by A* method, the blue line represents the width in b and length f of the leaf obtained by the Dijkstra method, and the orange line represents the width in c and length g of the leaf obtained by the cross-section method. The green line represents the width in d and length h of the leaf obtained by our method. When the starting point and end point are given, our method obtains the key points through the starting and end point.
Figure 6.
Obtaining the point sets of leaf length and width. (a) Obtaining the key point set of width by A* algorithm. (b) Obtaining the key point set of width by Dijkstra algorithm. (c) Obtaining the key point set of width by cross-section algorithm. (d) Obtaining the key point set of width by our method. (e) Obtaining the key point set of length by A* algorithm. (f) Obtaining the key point set of length by Dijkstra algorithm. (g) Obtaining the key point set of length by cross-section algorithm. (h) Obtaining the key point set of length by our method.
ๅพ 6. ่ทๅๅถ้ฟๅๅถๅฎฝ็็น้ใ๏ผa๏ผ้่ฟ A*็ฎๆณ่ทๅๅฎฝๅบฆๅ
ณ้ฎ็น้ใ๏ผb๏ผ้่ฟ Dijkstra ็ฎๆณ่ทๅๅฎฝๅบฆๅ
ณ้ฎ็น้ใ๏ผc๏ผ้่ฟๆช้ข็ฎๆณ่ทๅๅฎฝๅบฆๅ
ณ้ฎ็น้ใ๏ผd๏ผ้่ฟๆไปฌ็ๆนๆณ่ทๅๅฎฝๅบฆๅ
ณ้ฎ็น้ใ๏ผe๏ผ้่ฟ A*็ฎๆณ่ทๅ้ฟๅบฆๅ
ณ้ฎ็น้ใ๏ผf๏ผ้่ฟ Dijkstra ็ฎๆณ่ทๅ้ฟๅบฆๅ
ณ้ฎ็น้ใ๏ผg๏ผ้่ฟๆช้ข็ฎๆณ่ทๅ้ฟๅบฆๅ
ณ้ฎ็น้ใ๏ผh๏ผ้่ฟๆไปฌ็ๆนๆณ่ทๅ้ฟๅบฆๅ
ณ้ฎ็น้ใ
The geodetic distance method, cross-section method, and the method of this paper have the same starting and end points. The points obtained by A*, Dijkstra method are all on the original point cloud, and the shortest distance from the starting point to the end point obtaining according to the distance between each point of the leaf model. Therefore, the geodetic distance method requires more time, and the time complexity of the Dijkstra method is
๐ช(๐2) [
52]. The essence of the cross-section method and this paper is to take the intersection point of the section and the model as the key points. The principle of the cross-section method to obtain the plane is based on the starting point, the end point and the vector perpendicular to the coordinate plane. The principle of this paper is based on the starting point, end point and target points. Therefore, in d,h, there is starting point, end point and target point indicated by yellow dots.
ๅคงๅฐๆต้่ท็ฆปๆณใๆจชๆช้ขๆณๅๆฌๆ็ๆนๆณๅ
ทๆ็ธๅ็่ตท็นๅ็ป็นใA*็ฎๆณๅ Dijkstra ็ฎๆณๅพๅฐ็ๆๆ็น้ฝๅจๅๅง็นไบไธ๏ผๆ นๆฎๅถๆจกๅไธญๆฏไธ็นไน้ด็่ท็ฆป่ทๅพไป่ตท็นๅฐ็ป็น็ๆ็ญ่ท็ฆปใๅ ๆญค๏ผๅคงๅฐๆต้่ท็ฆปๆณ้่ฆๆดๅคๆถ้ด๏ผDijkstra ็ฎๆณ็ๆถ้ดๅคๆๅบฆไธบ ๐ช(๐2) [ 52]ใๆจชๆช้ขๆณๅๆฌๆ็ๆฌ่ดจๆฏๅฐๆจชๆช้ขไธๆจกๅ็ไบค็นไฝไธบๅ
ณ้ฎ็นใๆจชๆช้ขๆณ่ทๅพๅนณ้ข็ๅ็ๅบไบ่ตท็นใ็ป็นๅๅ็ดไบๅๆ ๅนณ้ข็ๅ้ใๆฌๆ็ๅ็ๅบไบ่ตท็นใ็ป็นๅ็ฎๆ ็นใๅ ๆญค๏ผๅจๅพ 6dใh ไธญ๏ผๆ้ป่ฒๅ็นๆ ่ฎฐ็่ตท็นใ็ป็นๅ็ฎๆ ็นใ