这是用户在 2024-11-2 15:28 为 https://wvpn.ustc.edu.cn/https/77726476706e69737468656265737421e0e2438f69316b4330079bab/doi/10.1021/... 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
Raising Near-Infrared Photoluminescence Quantum Yield of Au42 Quantum Rod to 50% in Solutions and 75% in Films

Figure 1Loading Img
  • Open Access
Communication
通讯

Raising Near-Infrared Photoluminescence Quantum Yield of Au42 Quantum Rod to 50% in Solutions and 75% in Films
将 Au42 量子棒的近红外光致发光量子产率提高到 50% 在溶液中和 75%
Click to copy article link
点击复制文章链接
Article link copied!

Open PDF 打开 PDFSupporting Information (1)
支持信息 (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2024, 146, 41, 27993–27997
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.4c11703
Published October 3, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract 抽象

Click to copy section link
单击以复制部分链接
Section link copied!

Highly emissive gold nanoclusters (NCs) in the near-infrared (NIR) region are of wide interest, but challenges arise from the excessive nonradiative dissipation. Here, we demonstrate an effective suppression of the motions of surface motifs on the Au42(PET)32 rod (PET = 2-phenylethanethiolate) by noncoordinative interactions with amide molecules and accordingly raise the NIR emission (875/1045 nm peaks) quantum yield (QY) from 18% to 50% in deaerated solution at room temperature, which is rare in Au NCs. Cryogenic photoluminescence measurements indicate that amide molecules effectively suppress the vibrations associated with the Au–S staple motifs on Au42 and also enhance the radiative relaxation, both of which lead to stronger emission. When Au42 NCs are embedded in a polystyrene film containing amide molecules, the PLQY is further boosted to 75%. This research not only produces a highly emissive material but also provides crucial insights for the rational design of NIR emitters and advances the potential of atomically precise Au NCs for diverse applications.
近红外 (NIR) 区域中的高发射金纳米团簇 (NC) 引起了广泛的关注,但过度的非辐射耗散带来了挑战。在这里,我们证明了通过与酰胺分子的非配位相互作用有效抑制了 Au42(PET)32 棒(PET = 2-苯乙基乙酸盐)上表面基序的运动,并相应地在室温下将脱气溶液中的 NIR 发射(875/1045 nm 峰)量子产率 (QY) 从 18% 提高到 50%,这在 Au NC 中很少见。低温光致发光测量表明,酰胺分子有效抑制了与 Au-S 相关的振动Au42 上的主打图案,并且还增强了辐射弛豫,这两者都导致更强的发射。当 Au42 NC 嵌入含有酰胺分子的聚苯乙烯薄膜中时,PLQY 进一步提高到 75%。这项研究不仅生产出一种高发射材料,还为 NIR 发射器的合理设计提供了重要的见解,并推动了原子精确 Au NC 在各种应用中的潜力。

This publication is licensed under
本出版物已获得

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2024 The Authors. Published by American Chemical Society
版权所有 © 2024 The Authors。由美国化学学会出版

Luminophores emitting in the NIR region (800–1700 nm) window are increasingly valued across many fields, (1−5) such as bioimaging and NIR optics. (6−8) Thiolate-protected Aun(SR)m NCs (SR = thiolate) have recently emerged as a promising class of NIR-emissive materials. (9−15) These NCs feature a core–shell structure, (16−18) in which the inner Au(0) core is enclosed by Au(I)–SR “staple motifs”. The tailorable size, structure, and composition of Au NCs allow them to exhibit emission peaks across the visible to NIR range. (19−22) Moreover, their atomic precision aids in a deeper understanding of photophysical mechanisms, (23,24) facilitating the design of highly luminescent materials. Currently, a few highly luminescent NCs in the visible range have been reported, (25−30) but the NIR region is still difficult due to the energy gap law induced significant loss of excitation energy via nonradiative relaxation. (31,32) The photoluminescence quantum yield (PLQY) of NIR-emissive Au NCs is often below 1%, (33,34) except a few cases (15,21,35−40) under ambient conditions.
在 NIR 区域 (800–1700 nm) 窗口中发射的发光团在许多领域 (1-5) 中越来越受到重视,例如生物成像和 NIR 光学。(6−8) 硫酸盐保护的 Aun(SR)m NC (SR = thiolate) 最近成为一类很有前途的 NIR 发射材料。(9−15) 这些 NC 具有核壳结构,(16−18),其中内部 Au(0) 内核被 Au(I)-SR“主基序”包围。Au NC 的可定制尺寸、结构和组成使它们能够在可见光到 NIR 范围内显示发射峰。(19−22) 此外,它们的原子精度有助于更深入地理解光物理机制,(23,24) 有助于设计高发光材料。目前,已经报道了一些可见光范围内的高发光 NC (25−30),但由于能隙定律通过非辐射弛豫诱导了激发能量的显着损失,因此 NIR 区域仍然很困难。(31,32) 近红外发射 Au NC 的光致发光量子产率 (PLQY) 通常低于 1% (33,34),但在环境条件下,除了少数情况 (15,21,35-40)。

Enhancing the PLQY can be accomplished by increasing the radiative decay rate (kr) and/or decreasing the nonradiative decay rate (knr) according to the formula, PLQY=krkr+knr. In the case of Au NCs, given their significantly higher knr (105–107 s–1) than the kr (104–105 s–1), reducing the knr offers a greater opportunity for PLQY enhancement. (19,41,42) The PL properties of Au NCs have been recognized to be intricately linked to the Au(I)–SR “staple motifs”, thus, restricting motions associated with these surface motifs is generally an effective strategy for achieving higher PLQY by suppressing the knr. (5,43−45)
根据公式 ,可以通过增加辐射衰减率 (kr) 和/或降低非辐射衰减率 (knr) 来实现 PLQY PLQY=krkr+knr 的增强。在 Au NC 的情况下,鉴于它们的 knr (105–107 s–1) 明显高于 kr (104–105 s–1),降低 knr 为 PLQY 增强提供了更大的机会。(19,41,42) Au NC 的 PL 特性已被公认为与 Au(I)-SR“主要基序”有着错综复杂的联系,因此,限制与这些表面基序相关的运动通常是通过抑制 knr 来实现更高 PLQY 的有效策略。(5,43−45)

Here, we report a noncoordinating interaction strategy for the suppression of knr to enhance the NIR emission of rod-shaped Au42(PET)32 (PET = 2-phenylethanethiolate). Specifically, the nonradiative energy loss in Au42 is suppressed by the addition of amide-containing small molecules, thus improving the PLQY to 50% in solution at room temperature. Cryogenic PL analysis reveals that the vibrations associated with the Au–S staples on Au42 are suppressed by amide molecules. Moreover, when Au42 is embedded in a polymer film containing amide molecules, the PLQY is further boosted to 75% at room temperature.
在这里,我们报道了一种抑制 knr 以增强棒状 Au42(PET)32 (PET = 2-苯乙硫酸盐) 的 NIR 发射的非配位相互作用策略。具体来说,通过添加含酰胺的小分子来抑制 Au42 中的非辐射能量损失,从而在室温下将 PLQY 提高到溶液中的 50%。低温 PL 分析表明,酰胺分子抑制了与 Au42 上 Au-S 订书钉相关的振动。此外,当 Au42 嵌入含有酰胺分子的聚合物薄膜中时,PLQY 在室温下进一步提高到 75%。

The Au42 quantum rod was synthesized using a method of N-heterocyclic carbene (NHC)-mediated kinetic control reported by our group. (46) The Au42 structure shows a rod-shaped, hexagonal close-packed Au20 kernel protected by two pairs of interlocked Au4(PET)5 motifs (marked in green and light green) on the two ends and six monomeric Au(PET)2 motifs (marked in blue) on the body (Figure 1A). (34,47) The optical absorption spectrum of Au42 exhibits two major peaks at 375 and 806 nm (Figure 1B, green profile). Theoretical simulations identified that the 806 nm peak originates from the HOMO-to-LUMO transition and the transition dipole is strongly polarized along the longitudinal direction, while the 375 nm peak is not. (47)
Au42 量子棒是使用我们小组报道的 N-杂环卡宾 (NHC) 介导的动力学控制方法合成的。(46) Au42 结构显示了一个棒状、六边形的紧密堆积的 Au20 内核,两端有两对互锁的 Au4(PET)5 基序(标记为绿色和浅绿色),主体上有六个单体 Au(PET)2 基序(标记为蓝色)(图 1A)。(34,47) Au42 的光吸收光谱在 375 和 806 nm 处表现出两个主要峰(图 1B,绿色剖面)。理论模拟确定,806 nm 峰源自 HOMO 到 LUMO 的跃迁,跃迁偶极子沿纵向强烈极化,而 375 nm 峰则不是。

Figure 1 图 1

Figure 1. (A) Structure of Au42(PET)32. Color code: yellow = S, other colors = Au, carbon tails are omitted for clarity. (B) Optical absorption (green) and PL (blue) spectra of Au42 dissolved in C2Cl4. (C) Optical absorption spectra, (D) PL spectra, and (E) PLQY of Au42 dissolved in deaerated 2-MeTHF containing DMBA with different concentrations. (F) The kr and knr of S1 state of Au42 in deaerated 2-MeTHF containing DMBA with different concentrations. For PL measurements: both slit widths 8 nm.
图 1.(A) Au42(PET)32 的结构。颜色代码:黄色 = S,其他颜色 = Au,为清楚起见,省略了碳尾。(B) 溶解在 C2Cl4 中的 Au42 的光吸收(绿色)和 PL(蓝色)光谱。Au42 溶解在含有不同浓度 DMBA 的脱气 2-MeTHF 中的光吸收光谱、(D) PL 光谱和 (E) PLQY。(F) Au42 在含有不同浓度 DMBA 的脱气 2-MeTHF 中 S1 状态的 krknr。对于 PL 测量:两个狭缝宽度均为 8 nm。

Upon excitation at 806 nm, Au42 exhibits fluorescence and phosphorescence dual emission at 875 nm (denoted FL) and 1040 nm (PH) (Figure 1B, blue profile), respectively, with a total PLQY of 18% (Figure S1); note that this value is higher than the 12% reported earlier (46) due to the different excitation wavelengths (806 nm in this work versus 380 nm previously).
在 806 nm 激发时,Au42 分别在 875 nm(表示为 FL)和 1040 nm(PH)处表现出荧光和磷光双发射(图 1B,蓝色剖面),总 PLQY 为 18%(图 S1);请注意,由于激发波长不同(本研究中为 806 nm,而之前为 380 nm),该值高于之前报道的 12% (46)。

When Au42 (0.1 OD at 806 nm, absorption coefficient ε806 = 1.08 × 105 M–1 cm–1, (48) i.e., 9.26 × 10–4 mM) was mixed with nonluminescent N,N-dimethylbenzamide (DMBA, Figure S2), the Au42 absorption profile remains unchanged, but its NIR absorption peak blueshifts from 806 to 781 nm with increasing amide concentration from 0 to 2143.9 mM (Figure 1C and Figure S3), and the integrated PL intensity of Au42 increases significantly by ∼3-fold (Figure 1D and Table S1), reaching a total PLQY of 50.1% (Figure 1E and Table S1). Specifically, the PLQY initially remains unchanged with the concentration up to 53.6 mM (Stage I). It then exhibits a gradual rise, reaching 50.1% at the DMBA concentration of 1286.4 mM (Stage II), and maintains this intensity as the concentration is further increased (Stage III). When Au42 was precipitated out of the solution to remove amides and redissolved in C2Cl4, the PLQY of Au42 recovers to the initial 18%, indicating noncoordinative interactions between Au42 and DMBA.
当 Au42(806 nm 处 0.1 OD,吸收系数ε 806 = 1.08 × 105 M–1 cm–1(48) 即 9.26 × 10–4 mM)与非发光 N,N-二甲基苯甲酰胺(DMBA,图 S2)混合时,Au42 吸收曲线保持不变,但其 NIR 吸收峰从 806 到 781 nm,酰胺浓度从 0 增加到 2143.9 mM(图 1C 和图 S3),Au42 的积分 PL 强度显着增加约 3 倍(图 1D 和表 S1),达到 50.1% 的总 PLQY(图 1E 和表 S1)。具体来说,PLQY 最初保持不变,浓度高达 53.6 mM(I 期)。然后它逐渐升高,在 DMBA 浓度为 1286.4 mM 时达到 50.1%(II 期),并随着浓度的进一步增加(III 期)保持这种强度。当 Au42 从溶液中沉淀以去除酰胺并重新溶解在 C2Cl4 中时,Au42 的 PLQY 恢复到最初的 18%,表明 Au42 和 DMBA 之间存在非配位相互作用。

The dual PL bands are deconvoluted to analyze the respective variation of FL and PH (Figures S4 and S5 and Table S1). It is evident that the FL shows a dependence on the concentration of DMBA, but the PH remains constant. Generally, the FL enhancement can be accomplished either by increasing the kr and/or reducing the knr. Here, our results reveal a significant reduction in the knr for the FL of Au42 upon the addition of DMBA, plummeting from 13.51 × 108 s–1 to 3.33 × 108 s–1, together with a moderate increase in kr from 1.42 × 108 s–1 to 2.51 × 108 s–1 (Figure 1F and Table S1).
对双 PL 波段进行去卷积以分析 FL 和 PH 的相应变化(图 S4 和 S5 以及表 S1)。很明显,FL 显示出对 DMBA 浓度的依赖性,但 PH 保持不变。通常,FL 增强可以通过增加 kr 和/或减少 knr 来实现。在这里,我们的结果表明,添加 DMBA 后,Au42 的 FL 的 knr 显着降低,从 13.51 × 108 s–1 下降到 3.33 × 108 s–1,同时 kr 从 1.42 × 108 s–1 适度增加到 2.51 × 108 s–1图 1F 和表 S1)。

We further conducted cryogenic PL measurements from room temperature to 80 K (Figure 2A and B). For the Au42/DMBA system, we selected a DMBA concentration of 857.6 mM to ensure a significant PL enhancement but preventing the precipitation of DMBA at low temperatures. Given the fact that Au NCs exhibit stronger absorption at low temperatures, we also performed temperature-dependent absorption (Figure S6) to correct PLQY at low temperatures. The cryogenic PL for Au42 and Au42/DMBA in 2-methyltetrahydrofuran (2-MeTHF) are shown in Figure 2A-B. The PLQY of Au42 (without DMBA) increases from 16.8% to 45.6% as the temperature is lowered from 298 to 80 K; note: 16.8% in 2-MeTHF (“glass” forming solvent) slightly differs from 18% in C2Cl4. For the Au42/DMBA, the PLQY rises from 45.7% to 89.1% in the same temperature range. The detailed results of peak deconvolution are provided in Tables S2 and S3. Both FL and PH intensities for the two systems increase as the temperature decreases, in contrast to the sole FL enhancement by amide. The FL for the Au42/DMBA system is consistently higher than that of Au42 (Figure 2C). Conversely, the PH emission remains nearly identical for the two systems at each temperature, though the PH increases at lower temperatures (Figure S7). The PL excitation spectra for Au42 and Au42/DMBA were also compared (Figures S8 and S9). The PL excitation at 80 K shows a blue shift compared to that at 298 K, consistent with the cryogenic absorption (Figure S6A).
我们进一步进行了从室温到 80 K 的低温 PL 测量(图 2A 和 B)。对于 Au42/DMBA 系统,我们选择了 857.6 mM 的 DMBA 浓度,以确保显着增强 PL,但防止 DMBA 在低温下沉淀。鉴于 Au NC 在低温下表现出更强的吸收,我们还进行了温度依赖性吸收(图 S6)以校正低温下的 PLQY。2-甲基四氢呋喃 (2-MeTHF) 中 Au42 和 Au42/DMBA 的低温 PL 如图 2AB 所示。随着温度从 298 K 降低到 80 K,Au42(不含 DMBA)的 PLQY 从 16.8% 增加到 45.6%;注:2-MeTHF(“玻璃”形成溶剂)中的 16.8% 与 C2Cl4 中的 18% 略有不同。对于金42/DMBA,在相同的温度范围内,PLQY 从 45.7% 上升到 89.1%。峰值反卷积的详细结果如表 S2 和 S3 所示。这两个系统的 FL 和 PH 强度都随着温度的降低而增加,这与酰胺的唯一 FL 增强形成鲜明对比。Au42/DMBA 系统的 FL 始终高于 Au42 的 FL(图 2C)。相反,两个系统的 PH 发射在每个温度下几乎相同,尽管 PH 值在较低温度下增加(图 S7)。还比较了 Au42 和 Au42/DMBA 的 PL 激发光谱(图 S8 和 S9)。与 298 K 相比,80 K 时的 PL 激发显示出蓝移,与低温吸收一致(图 S6A)。

Figure 2 图 2

Figure 2. Temperature-dependent PL spectra of (A) Au42 and (B) Au42/DMBA (857.6 mM) in 2-MeTHF under a He atmosphere. Inset: the variation of total PLQY as the temperature decreases from 298 to 80 K. For PL measurements: excitation at 806 and 781 nm for Au42 and Au42/DMBA (857.6 mM), respectively, slit width 8 nm, and emission slit 8 nm. (C) Variation of QY of FL for Au42 and Au42/DMBA from 298 to 80 K. (D) Plot of kr (green symbols) and knr (yellow symbols) from 80 to 298 K. (E) Normalized integrated intensities of FL for Au42 and Au42/DMBA and fitting using eq 1 (data from panel C). (F) fwhm of the FL as a function of temperature for Au42 and Au42/DMBA and fitting using eq 2. Both eqs 1 and 2 are in the text.
图 2.在 He 气氛下,(A) Au42 和 (B) Au42/DMBA (857.6 mM) 在 2-MeTHF 中的温度依赖性 PL 光谱。插图:随着温度从 298 K 降低到 80 K,总 PLQY 的变化。对于 PL 测量:Au42 和 Au42/DMBA (857.6 mM) 在 806 和 781 nm 处激发,狭缝宽度为 8 nm,发射狭缝为 8 nm。(C) Au42 和 Au42/DMBA 的 FL QY 从 298 到 80 K 的变化。(D) kr(绿色符号)和 knr(黄色符号)从 80 到 298 K 的图。(E) Au42 和 Au42/DMBA 的 FL 归一化积分强度,并使用方程 1 进行拟合(数据来自图 C)。(F) Au42 和 Au42/DMBA 的 FL fwhm 随温度的变化,并使用方程 2 进行拟合。方程 12 都在文本中。

We further compared the kr and knr of the FL for both Au42 and Au42/DMBA systems at low temperatures (Figure 2D). The kr values for both systems remain relatively constant, but the knr values for both Au42 and Au42/DMBA exhibit a notable decrease, attributed to the suppression of staple vibrations at low temperatures; note: the core vibrations are typically manifested at even lower temperatures than 80 K. (49) Additionally, it is important to highlight that the knr of Au42/DMBA is significantly lower than that of Au42 at the same temperatures. To elucidate the mechanism underlying the decrease in knr of FL upon the addition of DMBA, we fitted the temperature-dependent FL intensity evolution by eq 1 (50)
我们进一步比较了低温下 Au42 和 Au42/DMBA 系统FL的krknr图2D)。两种系统的 kr 值保持相对恒定,但 Au42 和 Au42/DMBA 的 knr 值都表现出显着下降,这归因于低温下对订书钉振动的抑制;注:磁芯振动通常在低于 80 K 的温度下表现出来。(49) 此外,需要强调的是,在相同温度下,Au42/DMBA 的 knr 明显低于 Au42。为了阐明添加 DMBA 后 FL 的 knr 降低的机制,我们用方程 1(50) 拟合了温度依赖性的 FL 强度演变

I(T)=I01+aeE/kBT
(1)
where I0 represents the initial intensity, a denotes the ratio of nonradiative and radiative probabilities, and E is the activation energy for the nonradiative relaxation. Here, only one dominant phonon-assisted nonradiative channel is considered in this modeling. The corresponding fitting line and parameters are shown in Figure 2E, where the activation energies of phonon modes that coupled with the FL of Au42 and Au42/DMBA are determined to be 38.9 and 22.3 meV, respectively; note: 1 meV = 8 cm–1. This suggests that the addition of DMBA suppresses the vibrations associated with the Au–S staples on the Au42. Meanwhile, the a value falls drastically from 4.5 to 1.6, also indicating a significant suppression of the staple vibration-induced nonradiative decay. Moreover, we extracted and compared the temperature-dependent full-width at half-maximum (fwhm) values for Au42 and Au42/DMBA (Figure 2F). Generally, both acoustic phonon modes (low energy) and optical phonon modes (high energy) contribute to the broadening of PL line width, but our experiments are conducted down to 80 K only ─ where the contributions from acoustic phonons are trivial and can be omitted, thus we only consider the optical phonon factor to model the line width broadening by eq 2 (24)
其中 I0 表示初始强度,a 表示非辐射和辐射概率的比率,E 是非辐射弛豫的活化能。在这里,在此建模中只考虑了一个占主导地位的声子辅助非辐射通道。相应的拟合线和参数如图 2E 所示,其中与 Au42 和 Au42/DMBA 的 FL 耦合的声子模式的活化能分别为 38.9 和 22.3 meV;注意:1 meV = 8 cm–1。这表明 DMBA 的添加抑制了与 Au42 上的 Au-S 订书钉相关的振动。同时,a 值从 4.5 急剧下降到 1.6,这也表明显着抑制了订书钉振动引起的非辐射衰减。此外,我们提取并比较了 Au42 和 Au42/DMBA 的温度依赖性半峰全宽 (fwhm) 值(图 2F)。通常,声子模式(低能量)和光学声子模式(高能量)都有助于 PL 线宽的展宽,但我们的实验仅进行到 80 K——其中声子的贡献很小,可以省略,因此我们只考虑光声子因子来模拟线宽展宽方程 2(24)
Γ(T)=Γ0+γLO1eELO/kBT1
(2)
where Γ0 is the temperature-independent intrinsic line width, γLO refers to the coupling coefficient of electrons with longitudinal optical (LO) phonons, and ELO denotes the average energy for coupled LO phonon modes. The modeling results (Figure 2F) reveal that the average LO phonon energies for Au42 and Au42/DMBA are 30 and 15 meV, respectively. The reduced phonon energy in Au42/DMBA aligns with the eq 1 fitting analysis, indicating a suppression of surface vibrations. Meanwhile, the coupling strength for Au42/DMBA (γLO = 43 meV) is much lower than that for Au42 (γLO = 132 meV), suggesting a diminished electron–phonon interaction in the Au42/DMBA system.
其中Γ0 是与温度无关的固有线宽,γLO 是指电子与纵向光学 (LO) 声子的耦合系数,ELO 表示耦合 LO 声子模式的平均能量。建模结果(图 2F)显示,Au42 和 Au42/DMBA 的平均 LO 声子能量分别为 30 和 15 meV。Au42/DMBA 中声子能量的降低与 eq 1 拟合分析一致,表明表面振动受到抑制。同时,Au42/DMBA 的耦合强度 (γLO = 43 meV) 远低于 Au42γLO = 132 meV),表明 Au42/DMBA 系统中的电子-声子相互作用减弱。

The high PLQY (50%) of Au42/DMBA in the NIR region is rare among the reported Au NCs (Figure S10). In addition to DMBA, we found that other amide molecules (Figure 3A), such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), and N-methylformanilide (NMFA), have similar effects on Au42, including (i) the longitudinal absorption peak of Au42 at 806 nm undergoes a blueshift when mixed with these molecules (Figure S11), and (ii) a significant enhancement of the PLQY of Au42 is observed (Figure S12 and Table S4), e.g., 29.3% for DMF, 47.0% for DMAc, and 55.8% for NMFA. The peak deconvolution analysis (Figure S13) further indicates that these amides predominantly boost the FL (Figure 3B) but not the PH. Additionally, the observed increase in FL intensity is primarily attributed to the suppression of nonradiative relaxation (Figure 3B).
NIR 区域中 Au42/DMBA 的高 PLQY (50%) 在已报道的 Au NC 中是罕见的(图 S10)。除了 DMBA 之外,我们还发现其他酰胺分子(图 3A),如 N,N-二甲基甲酰胺 (DMF)、N,N-二甲基乙酰胺 (DMAc) 和 N-甲基甲酰苯胺 (NMFA),对 Au42 具有类似的影响,包括 (i) Au42 在 806 nm 处的纵向吸收峰在与这些分子混合时发生蓝移(图 S11),以及 (ii) 观察到 Au42 的 PLQY 显着增强(图 S12表 S4),例如 DMF 为 29.3%,DMAc 为 47.0%,NMFA 为 55.8%。峰值反卷积分析(图 S13)进一步表明,这些酰胺主要提高 FL(图 3B),但不提高 PH。此外,观察到的 FL 强度增加主要归因于对非辐射弛豫的抑制(图 3B)。

Figure 3 图 3

Figure 3. (A) Structures of different small molecules. (B) QYs (bars) and knr (blue symbols) for Au42 mixed with different molecules.
图 3.(A) 不同小分子的结构。(B) Au42 与不同分子混合的 QY(条形)和 knr(蓝色符号)。

To pinpoint the specific atoms in the amide group accountable for the PL enhancement, we tested two small molecules composed of only nitrogen or oxygen atom, e.g., N,N-dimethylaniline (DMA) and acetylacetone (AA), but neither molecule nor their mixture induced any blueshift in the longitudinal absorption peak of Au42 (Figure S14), nor did they enhance the PL intensity of Au42 (Figure S15 and Table S4). This comparison underscores a cooperative effect of nitrogen and oxygen atoms of amides on the PL enhancement of Au42 while retaining its structure (Figure S16).
为了确定酰胺组中负责 PL 增强的特定原子,我们测试了两个仅由氮或氧原子组成的小分子,例如 N,N-二甲基苯胺 (DMA) 和乙酰丙酮 (AA),但分子和它们的混合物都没有在 Au42 的纵向吸收峰中诱导任何蓝移(图 S14),也没有增强 Au42 的 PL 强度(图 S15表 S4).这种比较强调了酰胺的氮原子和氧原子对 Au42 的 PL 增强的协同作用,同时保持其结构(图 S16)。

The amide molecules can further enhance the emission of Au42 embedded in a polymer film. As illustrated in Figure S17, the PLQY of sole Au42 increases from 18% to 52% when embedded in polystyrene (PS) films, and it is further elevated to 75% with the addition of DMBA into the Au42/PS film at room temperature. This highly emissive film holds promise in applications such as NIR optoelectronic devices and security as well as quantum telecom.
酰胺分子可以进一步增强嵌入聚合物薄膜中的 Au42 的发射。如图 S17 所示,当嵌入聚苯乙烯 (PS) 薄膜中时,比目鱼 Au42 的 PLQY 从 18% 增加到 52%,在室温下向 Au42/PS 薄膜中添加 DMBA 后,PLQY 进一步提高到 75%。这种高发射薄膜在 NIR 光电器件和安全以及量子电信等应用中大有可为。

In summary, we report an effective strategy involving noncoordinative interactions between amides and Au42 to achieve high PLQY (50% in solutions and 75% in films) in the NIR range by significantly reducing the nonradiative decay rate. This method is also effective for other Aun quantum rods. (48) Our findings offer inspirations for strategically designing highly efficient NIR emitters, opening new avenues for the use of engineered nanoclusters in diverse applications.
总之,我们报道了一种涉及酰胺和 Au42 之间非配位相互作用的有效策略,通过显著降低非辐射衰变率,在 NIR 范围内实现高 PLQY(溶液中为 50%,薄膜中为 75%)。这种方法对其他 Aun 量子棒也有效。(48) 我们的研究结果为战略性地设计高效 NIR 发射器提供了灵感,为工程纳米团簇在各种应用中的使用开辟了新的途径。

Supporting Information 支持信息

Click to copy section link
单击以复制部分链接
Section link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c11703.
支持信息可在 https://pubs.acs.org/doi/10.1021/jacs.4c11703 免费获取。

  • Details of the synthesis and data analysis and additioanl figures and tables as described in the text (PDF)
    文中描述的综合和数据分析的详细信息以及附加图形和表格 (PDF

Terms & Conditions  条款和条件

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS Web 版本即可获得。此类文件可以按文章下载用于研究用途(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 权限系统请求 ACS 以用于其他用途:http://pubs.acs.org/page/copyright/permissions.html

Author Information 作者信息

Click to copy section link
单击以复制部分链接
Section link copied!

Acknowledgments

Click to copy section linkSection link copied!

R.J. acknowledges financial support from NSF (DMR #2419539) for this research.

References

Click to copy section linkSection link copied!

This article references 50 other publications.

  1. 1
    Sharma, A.; Verwilst, P.; Li, M.; Ma, D.; Singh, N.; Yoo, J.; Kim, Y.; Yang, Y.; Zhu, J. H.; Huang, H.; Hu, X. L.; He, X. P.; Zeng, L.; James, T. D.; Peng, X.; Sessler, J. L.; Kim, J. S. Theranostic Fluorescent Probes. Chem. Rev. 2024, 124, 26992804,  DOI: 10.1021/acs.chemrev.3c00778
  2. 2
    Lei, Z.; Zhang, F. Molecular Engineering of NIR-II Fluorophores for Improved Biomedical Detection. Angew. Chem., Int. Ed. 2021, 60, 1629416308,  DOI: 10.1002/anie.202007040
  3. 3
    Zampetti, A.; Minotto, A.; Cacialli, F. Near-Infrared (NIR) Organic Light-Emitting Diodes (OLEDs): Challenges and Opportunities. Adv. Funct. Mater. 2019, 29, 1807623,  DOI: 10.1002/adfm.201807623
  4. 4
    Liu, H.; Hong, G.; Luo, Z.; Chen, J.; Chang, J.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L.; Mu, X.; Wang, J.; Mi, W.; Luo, J.; Xie, J.; Zhang, X.-D. Atomic-Precision Gold Clusters for NIR-II Imaging. Adv. Mater. 2019, 31, 1901015,  DOI: 10.1002/adma.201901015
  5. 5
    Wan, X. K.; Han, X. S.; Guan, Z. J.; Shi, W. Q.; Li, J. J.; Wang, Q. M. Interplay of Kernel Shape and Surface Structure for NIR Luminescence in Atomically Precise Gold Nanorods. Nat. Commun. 2024, 15, 7214,  DOI: 10.1038/s41467-024-51642-w
  6. 6
    Ma, H.; Wang, J.; Zhang, X.-D. Near-Infrared II Emissive Metal Clusters: from Atom Physics to Biomedicine. Coord. Chem. Rev. 2021, 448, 214184,  DOI: 10.1016/j.ccr.2021.214184
  7. 7
    Wang, F.; Zhong, Y.; Bruns, O.; Liang, Y.; Dai, H. In vivo NIR-II Fluorescence Imaging for Biology and Medicine. Nat. Photonics 2024, 18, 535547,  DOI: 10.1038/s41566-024-01391-5
  8. 8
    Du, B.; Jiang, X.; Das, A.; Zhou, Q.; Yu, M.; Jin, R.; Zheng, J. Glomerular Barrier Behaves as an Atomically Precise Bandpass Filter in a Sub-Nanometre Regime. Nat. Nanotechnol. 2017, 12, 10961102,  DOI: 10.1038/nnano.2017.170
  9. 9
    Li, Y.; Zhou, M.; Song, Y.; Higaki, T.; Wang, H.; Jin, R. Double-Helical Assembly of Heterodimeric Nanoclusters into Supercrystals. Nature 2021, 594, 380384,  DOI: 10.1038/s41586-021-03564-6
  10. 10
    Kang, X.; Zhu, M. Tailoring the Photoluminescence of Atomically Precise Nanoclusters. Chem. Soc. Rev. 2019, 48, 24222457,  DOI: 10.1039/C8CS00800K
  11. 11
    Biswas, S.; Das, A. K.; Mandal, S. Surface Engineering of Atomically Precise M(I) Nanoclusters: From Structural Control to Room Temperature Photoluminescence Enhancement. Acc. Chem. Res. 2023, 56, 18381849,  DOI: 10.1021/acs.accounts.3c00176
  12. 12
    Lin, H.; Song, X.; Chai, O. J. H.; Yao, Q.; Yang, H.; Xie, J. Photoluminescent Characterization of Metal Nanoclusters: Basic Parameters, Methods, and Applications. Adv. Mater. 2024, 36, e2401002  DOI: 10.1002/adma.202401002
  13. 13
    Albright, E. L.; Levchenko, T. I.; Kulkarni, V. K.; Sullivan, A. I.; DeJesus, J. F.; Malola, S.; Takano, S.; Nambo, M.; Stamplecoskie, K.; Hakkinen, H.; Tsukuda, T.; Crudden, C. M. N-Heterocyclic Carbene-Stabilized Atomically Precise Metal Nanoclusters. J. Am. Chem. Soc. 2024, 146, 57595780,  DOI: 10.1021/jacs.3c11031
  14. 14
    Huang, Y.-Z.; Gupta, R. K.; Luo, G.-G.; Zhang, Q.-C.; Sun, D. Luminescence Thermochromism in Atomically Precise Silver Custers: A Comprehensive Review. Coord. Chem. Rev. 2024, 499, 215508,  DOI: 10.1016/j.ccr.2023.215508
  15. 15
    Shi, W.-Q.; Zeng, L.; He, R.-L.; Han, X.-S.; Guan, Z.-J.; Zhou, M.; Wang, Q.-M. Near-Unity NIR Phosphorescent Quantum Yield from a Room-Temperature Solvated Metal Nanocluster. Science 2024, 383, 326330,  DOI: 10.1126/science.adk6628
  16. 16
    Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 2016, 116, 1034610413,  DOI: 10.1021/acs.chemrev.5b00703
  17. 17
    Xia, N.; Wu, Z. Controlling Ultrasmall Gold Nanoparticles with Atomic Precision. Chem. Sci. 2021, 12, 23682380,  DOI: 10.1039/D0SC05363E
  18. 18
    Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. From Aggregation-Induced Emission of Au(I)-Thiolate Complexes to Ultrabright Au(0)@Au(I)-Thiolate Core-Shell Nanoclusters. J. Am. Chem. Soc. 2012, 134, 1666216670,  DOI: 10.1021/ja306199p
  19. 19
    Liu, Z.; Luo, L.; Jin, R. Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters. Adv. Mater. 2024, 36, e2309073  DOI: 10.1002/adma.202309073
  20. 20
    Si, W.-D.; Zhang, C.; Zhou, M.; Wang, Z.; Feng, L.; Tung, C.-H.; Sun, D. Arylgold nanoclusters: Phenyl-Stabilized Au44 with Thermal-Controlled NIR Single/Dual-Channel Phosphorescence. Sci. Adv. 2024, 10, eadm6928  DOI: 10.1126/sciadv.adm6928
  21. 21
    Hirai, H.; Takano, S.; Nakashima, T.; Iwasa, T.; Taketsugu, T.; Tsukuda, T. Doping-Mediated Energy-Level Engineering of M@Au12 Superatoms (M = Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202207290  DOI: 10.1002/anie.202207290
  22. 22
    Yang, G.; Pan, X.; Feng, W.; Yao, Q.; Jiang, F.; Du, F.; Zhou, X.; Xie, J.; Yuan, X. Engineering Au44 Nanoclusters for NIR-II Luminescence Imaging-Guided Photoactivatable Cancer Immunotherapy. ACS Nano 2023, 17, 1560515614,  DOI: 10.1021/acsnano.3c02370
  23. 23
    Weerawardene, K. L.; Aikens, C. M. Theoretical Insights into the Origin of Photoluminescence of Au25(SR)18 Nanoparticles. J. Am. Chem. Soc. 2016, 138, 1120211210,  DOI: 10.1021/jacs.6b05293
  24. 24
    Liu, Z.; Zhou, M.; Luo, L.; Wang, Y.; Kahng, E.; Jin, R. Elucidating the Near-Infrared Photoluminescence Mechanism of Homometal and Doped M25(SR)18 Nanoclusters. J. Am. Chem. Soc. 2023, 145, 1996919981,  DOI: 10.1021/jacs.3c06543
  25. 25
    Pyo, K.; Thanthirige, V. D.; Kwak, K.; Pandurangan, P.; Ramakrishna, G.; Lee, D. Ultrabright Luminescence from Gold Nanoclusters: Rigidifying the Au(I)-Thiolate Shell. J. Am. Chem. Soc. 2015, 137, 82448250,  DOI: 10.1021/jacs.5b04210
  26. 26
    Ma, X. H.; Li, J.; Luo, P.; Hu, J. H.; Han, Z.; Dong, X. Y.; Xie, G.; Zang, S. Q. Carbene-Stabilized Enantiopure Heterometallic Clusters Featuring EQE of 20.8% in Circularly-Polarized OLED. Nat. Commun. 2023, 14, 4121,  DOI: 10.1038/s41467-023-39802-w
  27. 27
    Zhong, Y.; Zhang, J.; Li, T.; Xu, W.; Yao, Q.; Lu, M.; Bai, X.; Wu, Z.; Xie, J.; Zhang, Y. Suppression of Kernel Vibrations by Layer-by-Layer Ligand Engineering Boosts Photoluminescence Efficiency of Gold Nanoclusters. Nat. Commun. 2023, 14, 658,  DOI: 10.1038/s41467-023-36387-2
  28. 28
    Dong, J.; Gan, Z.; Gu, W.; You, Q.; Zhao, Y.; Zha, J.; Li, J.; Deng, H.; Yan, N.; Wu, Z. Synthesizing Photoluminescent Au28(SCH2Ph-tBu)22 Nanoclusters with Structural Features by Using a Combined Method. Angew. Chem., Int. Ed. 2021, 60, 1793217936,  DOI: 10.1002/anie.202105530
  29. 29
    Peng, Q. C.; Si, Y. B.; Wang, Z. Y.; Dai, S. H.; Chen, Q. S.; Li, K.; Zang, S. Q. Thermally Activated Delayed Fluorescence Coinage Metal Cluster Scintillator. ACS Cent. Sci. 2023, 9, 14191426,  DOI: 10.1021/acscentsci.3c00563
  30. 30
    Li, Q.; Zhou, M.; So, W. Y.; Huang, J.; Li, M.; Kauffman, D. R.; Cotlet, M.; Higaki, T.; Peteanu, L. A.; Shao, Z.; Jin, R. A Mono-cuboctahedral Series of Gold Nanoclusters: Photoluminescence Origin, Large Enhancement, Wide Tunability, and Structure-Property Correlation. J. Am. Chem. Soc. 2019, 141, 53145325,  DOI: 10.1021/jacs.8b13558
  31. 31
    Zhou, M.; Du, X.; Wang, H.; Jin, R. The Critical Number of Gold Atoms for a Metallic State Nanocluster: Resolving a Decades-Long Question. ACS Nano 2021, 15, 1398013992,  DOI: 10.1021/acsnano.1c04705
  32. 32
    Kwak, K.; Thanthirige, V. D.; Pyo, K.; Lee, D.; Ramakrishna, G. Energy Gap Law for Exciton Dynamics in Gold Cluster Molecules. J. Phys. Chem. Lett. 2017, 8, 48984905,  DOI: 10.1021/acs.jpclett.7b01892
  33. 33
    Li, Q.; Zhou, D.; Chai, J.; So, W. Y.; Cai, T.; Li, M.; Peteanu, L. A.; Chen, O.; Cotlet, M.; Wendy Gu, X.; Zhu, H.; Jin, R. Structural Distortion and Electron Redistribution in Dual-Emitting Gold Nanoclusters. Nat. Commun. 2020, 11, 2897,  DOI: 10.1038/s41467-020-16686-8
  34. 34
    Fan, W.; Yang, Y.; You, Q.; Li, J.; Deng, H.; Yan, N.; Wu, Z. Size- and Shape-Dependent Photoexcitation Electron Transfer in Metal Nanoclusters. J. Phys. Chem. C 2023, 127, 816823,  DOI: 10.1021/acs.jpcc.2c07678
  35. 35
    Wang, Y.; Liu, Z.; Mazumder, A.; Gianopoulos, C. G.; Kirschbaum, K.; Peteanu, L. A.; Jin, R. Tailoring Carbon Tails of Ligands on Au52(SR)32 Nanoclusters Enhances the Near-Infrared Photoluminescence Quantum Yield from 3.8 to 18.3%. J. Am. Chem. Soc. 2023, 145, 2632826338,  DOI: 10.1021/jacs.3c09846
  36. 36
    Liu, Z.; Luo, L.; Kong, J.; Kahng, E.; Zhou, M.; Jin, R. Bright Near-Infrared Emission from the Au39(SR)29 Nanocluster. Nanoscale 2024, 16, 74197426,  DOI: 10.1039/D4NR00677A
  37. 37
    Pniakowska, A.; Kumaranchira Ramankutty, K.; Obstarczyk, P.; Peric Bakulic, M.; Sanader Marsic, Z.; Bonacic-Koutecky, V.; Burgi, T.; Olesiak-Banska, J. Gold-Doping Effect on Two-Photon Absorption and Luminescence of Atomically Precise Silver Ligated Nanoclusters. Angew. Chem., Int. Ed. 2022, 61, e202209645  DOI: 10.1002/anie.202209645
  38. 38
    Li, Q.; Zeman, C. J. t.; Schatz, G. C.; Gu, X. W. Source of Bright Near-Infrared Luminescence in Gold Nanoclusters. ACS Nano 2021, 15, 1609516105,  DOI: 10.1021/acsnano.1c04759
  39. 39
    Narouz, M. R.; Takano, S.; Lummis, P. A.; Levchenko, T. I.; Nazemi, A.; Kaappa, S.; Malola, S.; Yousefalizadeh, G.; Calhoun, L. A.; Stamplecoskie, K. G.; Hakkinen, H.; Tsukuda, T.; Crudden, C. M. Robust, Highly Luminescent Au13 Superatoms Protected by N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2019, 141, 1499715002,  DOI: 10.1021/jacs.9b07854
  40. 40
    She, J.; Pei, W.; Zhou, S.; Zhao, J. Enhanced Fluorescence with Tunable Color in Doped Diphosphine-Protected Gold Nanoclusters. J. Phys. Chem. Lett. 2022, 13, 58735880,  DOI: 10.1021/acs.jpclett.2c01522
  41. 41
    Takano, S.; Hirai, H.; Nakashima, T.; Iwasa, T.; Taketsugu, T.; Tsukuda, T. Photoluminescence of Doped Superatoms M@Au12 (M = Ru, Rh, Ir) Homoleptically Capped by (Ph2)PCH2P(Ph2): Efficient Room-Temperature Phosphorescence from Ru@Au12. J. Am. Chem. Soc. 2021, 143, 1056010564,  DOI: 10.1021/jacs.1c05019
  42. 42
    Chen, Y.; Zhou, M.; Li, Q.; Gronlund, H.; Jin, R. Isomerization-Induced Enhancement of Luminescence in Au28(SR)20 Nanoclusters. Chem. Sci. 2020, 11, 81768183,  DOI: 10.1039/D0SC01270J
  43. 43
    Deng, H.; Huang, K.; Xiu, L.; Sun, W.; Yao, Q.; Fang, X.; Huang, X.; Noreldeen, H. A. A.; Peng, H.; Xie, J.; Chen, W. Bis-Schiff Base Linkage-Triggered Highly Bright Luminescence of Gold Nanoclusters in Aqueous Solution at the Single-Cluster Level. Nat. Commun. 2022, 13, 3381,  DOI: 10.1038/s41467-022-30760-3
  44. 44
    Wei, X.; Kang, X.; Jin, S.; Wang, S.; Zhu, M. Aggregation of Surface Structure Induced Photoluminescence Enhancement in Atomically Precise Nanoclusters. CCS Chem. 2021, 3, 19291939,  DOI: 10.31635/ccschem.020.202000372
  45. 45
    Jin, Y.; Zhang, C.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Shell Engineering to Achieve Modification and Assembly of Atomically-precise Silver Clusters. Chem. Soc. Rev. 2021, 50, 22972319,  DOI: 10.1039/D0CS01393E
  46. 46
    Luo, L.; Liu, Z.; Du, X.; Jin, R. Near-Infrared Dual Emission from the Au42(SR)32 Nanocluster and Tailoring of Intersystem Crossing. J. Am. Chem. Soc. 2022, 144, 1924319247,  DOI: 10.1021/jacs.2c09107
  47. 47
    Li, Y.; Song, Y.; Zhang, X.; Liu, T.; Xu, T.; Wang, H.; Jiang, D.-e.; Jin, R. Atomically Precise Au42 Nanorods with Longitudinal Excitons for an Intense Photothermal Effect. J. Am. Chem. Soc. 2022, 144, 1238112389,  DOI: 10.1021/jacs.2c03948
  48. 48
    Luo, L.; Liu, Z.; Kong, J.; Gianopoulos, C. G.; Coburn, I.; Kirschbaum, K.; Zhou, M.; Jin, R. Three-Atom-Wide Gold Quantum Rods with Periodic Elongation and Strongly Polarized Excitons. Proc. Natl. Acad. Sci. U S A 2024, 121, e2318537121  DOI: 10.1073/pnas.2318537121
  49. 49
    Liu, Z.; Li, Y.; Shin, W.; Jin, R. Observation of Core Phonon in Electron-Phonon Coupling in Au25 Nanoclusters. J. Phys. Chem. Lett. 2021, 12, 16901695,  DOI: 10.1021/acs.jpclett.1c00050
  50. 50
    Steele, J. A.; Puech, P.; Monserrat, B.; Wu, B.; Yang, R. X.; Kirchartz, T.; Yuan, H.; Fleury, G.; Giovanni, D.; Fron, E.; Keshavarz, M.; Debroye, E.; Zhou, G.; Sum, T. C.; Walsh, A.; Hofkens, J.; Roeffaers, M. B. J. Role of Electron-Phonon Coupling in the Thermal Evolution of Bulk Rashba-Like Spin-Split Lead Halide Perovskites Exhibiting Dual-Band Photoluminescence. ACS Energy Lett. 2019, 4, 22052212,  DOI: 10.1021/acsenergylett.9b01427

Cited By

Click to copy section linkSection link copied!

This article has not yet been cited by other publications.

Journal of the American Chemical Society
美国化学会杂志

Cite this: J. Am. Chem. Soc. 2024, 146, 41, 27993–27997
引用此: J. Am. Chem. Soc.2024, 146, 41, 27993–27997
Click to copy citation 点击复制引文Citation copied!
https://doi.org/10.1021/jacs.4c11703
Published October 3, 2024
发布时间 2024 年 10 月 3 日

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under
版权所有 © 2024 The Authors。由美国化学学会出版。本出版物已获得

CC-BY 4.0 .

Article Views 文章浏览量

1646

Citations 引文

-
Learn about these metrics
了解这些指标

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract 抽象

    Figure 1 图 1

    Figure 1. (A) Structure of Au42(PET)32. Color code: yellow = S, other colors = Au, carbon tails are omitted for clarity. (B) Optical absorption (green) and PL (blue) spectra of Au42 dissolved in C2Cl4. (C) Optical absorption spectra, (D) PL spectra, and (E) PLQY of Au42 dissolved in deaerated 2-MeTHF containing DMBA with different concentrations. (F) The kr and knr of S1 state of Au42 in deaerated 2-MeTHF containing DMBA with different concentrations. For PL measurements: both slit widths 8 nm.
    图 1.(A) Au42(PET)32 的结构。颜色代码:黄色 = S,其他颜色 = Au,为清楚起见,省略了碳尾。(B) 溶解在 C2Cl4 中的 Au42 的光吸收(绿色)和 PL(蓝色)光谱。Au42 溶解在含有不同浓度 DMBA 的脱气 2-MeTHF 中的光吸收光谱、(D) PL 光谱和 (E) PLQY。(F) Au42 在含有不同浓度 DMBA 的脱气 2-MeTHF 中 S1 状态的 kknr。对于 PL 测量:两个狭缝宽度均为 8 nm。

    Figure 2

    Figure 2. Temperature-dependent PL spectra of (A) Au42 and (B) Au42/DMBA (857.6 mM) in 2-MeTHF under a He atmosphere. Inset: the variation of total PLQY as the temperature decreases from 298 to 80 K. For PL measurements: excitation at 806 and 781 nm for Au42 and Au42/DMBA (857.6 mM), respectively, slit width 8 nm, and emission slit 8 nm. (C) Variation of QY of FL for Au42 and Au42/DMBA from 298 to 80 K. (D) Plot of kr (green symbols) and knr (yellow symbols) from 80 to 298 K. (E) Normalized integrated intensities of FL for Au42 and Au42/DMBA and fitting using eq 1 (data from panel C). (F) fwhm of the FL as a function of temperature for Au42 and Au42/DMBA and fitting using eq 2. Both eqs 1 and 2 are in the text.

    Figure 3

    Figure 3. (A) Structures of different small molecules. (B) QYs (bars) and knr (blue symbols) for Au42 mixed with different molecules.

  • References


    This article references 50 other publications.

    1. 1
      Sharma, A.; Verwilst, P.; Li, M.; Ma, D.; Singh, N.; Yoo, J.; Kim, Y.; Yang, Y.; Zhu, J. H.; Huang, H.; Hu, X. L.; He, X. P.; Zeng, L.; James, T. D.; Peng, X.; Sessler, J. L.; Kim, J. S. Theranostic Fluorescent Probes. Chem. Rev. 2024, 124, 26992804,  DOI: 10.1021/acs.chemrev.3c00778
    2. 2
      Lei, Z.; Zhang, F. Molecular Engineering of NIR-II Fluorophores for Improved Biomedical Detection. Angew. Chem., Int. Ed. 2021, 60, 1629416308,  DOI: 10.1002/anie.202007040
    3. 3
      Zampetti, A.; Minotto, A.; Cacialli, F. Near-Infrared (NIR) Organic Light-Emitting Diodes (OLEDs): Challenges and Opportunities. Adv. Funct. Mater. 2019, 29, 1807623,  DOI: 10.1002/adfm.201807623
    4. 4
      Liu, H.; Hong, G.; Luo, Z.; Chen, J.; Chang, J.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L.; Mu, X.; Wang, J.; Mi, W.; Luo, J.; Xie, J.; Zhang, X.-D. Atomic-Precision Gold Clusters for NIR-II Imaging. Adv. Mater. 2019, 31, 1901015,  DOI: 10.1002/adma.201901015
    5. 5
      Wan, X. K.; Han, X. S.; Guan, Z. J.; Shi, W. Q.; Li, J. J.; Wang, Q. M. Interplay of Kernel Shape and Surface Structure for NIR Luminescence in Atomically Precise Gold Nanorods. Nat. Commun. 2024, 15, 7214,  DOI: 10.1038/s41467-024-51642-w
    6. 6
      Ma, H.; Wang, J.; Zhang, X.-D. Near-Infrared II Emissive Metal Clusters: from Atom Physics to Biomedicine. Coord. Chem. Rev. 2021, 448, 214184,  DOI: 10.1016/j.ccr.2021.214184
    7. 7
      Wang, F.; Zhong, Y.; Bruns, O.; Liang, Y.; Dai, H. In vivo NIR-II Fluorescence Imaging for Biology and Medicine. Nat. Photonics 2024, 18, 535547,  DOI: 10.1038/s41566-024-01391-5
    8. 8
      Du, B.; Jiang, X.; Das, A.; Zhou, Q.; Yu, M.; Jin, R.; Zheng, J. Glomerular Barrier Behaves as an Atomically Precise Bandpass Filter in a Sub-Nanometre Regime. Nat. Nanotechnol. 2017, 12, 10961102,  DOI: 10.1038/nnano.2017.170
    9. 9
      Li, Y.; Zhou, M.; Song, Y.; Higaki, T.; Wang, H.; Jin, R. Double-Helical Assembly of Heterodimeric Nanoclusters into Supercrystals. Nature 2021, 594, 380384,  DOI: 10.1038/s41586-021-03564-6
    10. 10
      Kang, X.; Zhu, M. Tailoring the Photoluminescence of Atomically Precise Nanoclusters. Chem. Soc. Rev. 2019, 48, 24222457,  DOI: 10.1039/C8CS00800K
    11. 11
      Biswas, S.; Das, A. K.; Mandal, S. Surface Engineering of Atomically Precise M(I) Nanoclusters: From Structural Control to Room Temperature Photoluminescence Enhancement. Acc. Chem. Res. 2023, 56, 18381849,  DOI: 10.1021/acs.accounts.3c00176
    12. 12
      Lin, H.; Song, X.; Chai, O. J. H.; Yao, Q.; Yang, H.; Xie, J. Photoluminescent Characterization of Metal Nanoclusters: Basic Parameters, Methods, and Applications. Adv. Mater. 2024, 36, e2401002  DOI: 10.1002/adma.202401002
    13. 13
      Albright, E. L.; Levchenko, T. I.; Kulkarni, V. K.; Sullivan, A. I.; DeJesus, J. F.; Malola, S.; Takano, S.; Nambo, M.; Stamplecoskie, K.; Hakkinen, H.; Tsukuda, T.; Crudden, C. M. N-Heterocyclic Carbene-Stabilized Atomically Precise Metal Nanoclusters. J. Am. Chem. Soc. 2024, 146, 57595780,  DOI: 10.1021/jacs.3c11031
    14. 14
      Huang, Y.-Z.; Gupta, R. K.; Luo, G.-G.; Zhang, Q.-C.; Sun, D. Luminescence Thermochromism in Atomically Precise Silver Custers: A Comprehensive Review. Coord. Chem. Rev. 2024, 499, 215508,  DOI: 10.1016/j.ccr.2023.215508
    15. 15
      Shi, W.-Q.; Zeng, L.; He, R.-L.; Han, X.-S.; Guan, Z.-J.; Zhou, M.; Wang, Q.-M. Near-Unity NIR Phosphorescent Quantum Yield from a Room-Temperature Solvated Metal Nanocluster. Science 2024, 383, 326330,  DOI: 10.1126/science.adk6628
    16. 16
      Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 2016, 116, 1034610413,  DOI: 10.1021/acs.chemrev.5b00703
    17. 17
      Xia, N.; Wu, Z. Controlling Ultrasmall Gold Nanoparticles with Atomic Precision. Chem. Sci. 2021, 12, 23682380,  DOI: 10.1039/D0SC05363E
    18. 18
      Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. From Aggregation-Induced Emission of Au(I)-Thiolate Complexes to Ultrabright Au(0)@Au(I)-Thiolate Core-Shell Nanoclusters. J. Am. Chem. Soc. 2012, 134, 1666216670,  DOI: 10.1021/ja306199p
    19. 19
      Liu, Z.; Luo, L.; Jin, R. Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters. Adv. Mater. 2024, 36, e2309073  DOI: 10.1002/adma.202309073
    20. 20
      Si, W.-D.; Zhang, C.; Zhou, M.; Wang, Z.; Feng, L.; Tung, C.-H.; Sun, D. Arylgold nanoclusters: Phenyl-Stabilized Au44 with Thermal-Controlled NIR Single/Dual-Channel Phosphorescence. Sci. Adv. 2024, 10, eadm6928  DOI: 10.1126/sciadv.adm6928
    21. 21
      Hirai, H.; Takano, S.; Nakashima, T.; Iwasa, T.; Taketsugu, T.; Tsukuda, T. Doping-Mediated Energy-Level Engineering of M@Au12 Superatoms (M = Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202207290  DOI: 10.1002/anie.202207290
    22. 22
      Yang, G.; Pan, X.; Feng, W.; Yao, Q.; Jiang, F.; Du, F.; Zhou, X.; Xie, J.; Yuan, X. Engineering Au44 Nanoclusters for NIR-II Luminescence Imaging-Guided Photoactivatable Cancer Immunotherapy. ACS Nano 2023, 17, 1560515614,  DOI: 10.1021/acsnano.3c02370
    23. 23
      Weerawardene, K. L.; Aikens, C. M. Theoretical Insights into the Origin of Photoluminescence of Au25(SR)18 Nanoparticles. J. Am. Chem. Soc. 2016, 138, 1120211210,  DOI: 10.1021/jacs.6b05293
    24. 24
      Liu, Z.; Zhou, M.; Luo, L.; Wang, Y.; Kahng, E.; Jin, R. Elucidating the Near-Infrared Photoluminescence Mechanism of Homometal and Doped M25(SR)18 Nanoclusters. J. Am. Chem. Soc. 2023, 145, 1996919981,  DOI: 10.1021/jacs.3c06543
    25. 25
      Pyo, K.; Thanthirige, V. D.; Kwak, K.; Pandurangan, P.; Ramakrishna, G.; Lee, D. Ultrabright Luminescence from Gold Nanoclusters: Rigidifying the Au(I)-Thiolate Shell. J. Am. Chem. Soc. 2015, 137, 82448250,  DOI: 10.1021/jacs.5b04210
    26. 26
      Ma, X. H.; Li, J.; Luo, P.; Hu, J. H.; Han, Z.; Dong, X. Y.; Xie, G.; Zang, S. Q. Carbene-Stabilized Enantiopure Heterometallic Clusters Featuring EQE of 20.8% in Circularly-Polarized OLED. Nat. Commun. 2023, 14, 4121,  DOI: 10.1038/s41467-023-39802-w
    27. 27
      Zhong, Y.; Zhang, J.; Li, T.; Xu, W.; Yao, Q.; Lu, M.; Bai, X.; Wu, Z.; Xie, J.; Zhang, Y. Suppression of Kernel Vibrations by Layer-by-Layer Ligand Engineering Boosts Photoluminescence Efficiency of Gold Nanoclusters. Nat. Commun. 2023, 14, 658,  DOI: 10.1038/s41467-023-36387-2
    28. 28
      Dong, J.; Gan, Z.; Gu, W.; You, Q.; Zhao, Y.; Zha, J.; Li, J.; Deng, H.; Yan, N.; Wu, Z. Synthesizing Photoluminescent Au28(SCH2Ph-tBu)22 Nanoclusters with Structural Features by Using a Combined Method. Angew. Chem., Int. Ed. 2021, 60, 1793217936,  DOI: 10.1002/anie.202105530
    29. 29
      Peng, Q. C.; Si, Y. B.; Wang, Z. Y.; Dai, S. H.; Chen, Q. S.; Li, K.; Zang, S. Q. Thermally Activated Delayed Fluorescence Coinage Metal Cluster Scintillator. ACS Cent. Sci. 2023, 9, 14191426,  DOI: 10.1021/acscentsci.3c00563
    30. 30
      Li, Q.; Zhou, M.; So, W. Y.; Huang, J.; Li, M.; Kauffman, D. R.; Cotlet, M.; Higaki, T.; Peteanu, L. A.; Shao, Z.; Jin, R. A Mono-cuboctahedral Series of Gold Nanoclusters: Photoluminescence Origin, Large Enhancement, Wide Tunability, and Structure-Property Correlation. J. Am. Chem. Soc. 2019, 141, 53145325,  DOI: 10.1021/jacs.8b13558
    31. 31
      Zhou, M.; Du, X.; Wang, H.; Jin, R. The Critical Number of Gold Atoms for a Metallic State Nanocluster: Resolving a Decades-Long Question. ACS Nano 2021, 15, 1398013992,  DOI: 10.1021/acsnano.1c04705
    32. 32
      Kwak, K.; Thanthirige, V. D.; Pyo, K.; Lee, D.; Ramakrishna, G. Energy Gap Law for Exciton Dynamics in Gold Cluster Molecules. J. Phys. Chem. Lett. 2017, 8, 48984905,  DOI: 10.1021/acs.jpclett.7b01892
    33. 33
      Li, Q.; Zhou, D.; Chai, J.; So, W. Y.; Cai, T.; Li, M.; Peteanu, L. A.; Chen, O.; Cotlet, M.; Wendy Gu, X.; Zhu, H.; Jin, R. Structural Distortion and Electron Redistribution in Dual-Emitting Gold Nanoclusters. Nat. Commun. 2020, 11, 2897,  DOI: 10.1038/s41467-020-16686-8
    34. 34
      Fan, W.; Yang, Y.; You, Q.; Li, J.; Deng, H.; Yan, N.; Wu, Z. Size- and Shape-Dependent Photoexcitation Electron Transfer in Metal Nanoclusters. J. Phys. Chem. C 2023, 127, 816823,  DOI: 10.1021/acs.jpcc.2c07678
    35. 35
      Wang, Y.; Liu, Z.; Mazumder, A.; Gianopoulos, C. G.; Kirschbaum, K.; Peteanu, L. A.; Jin, R. Tailoring Carbon Tails of Ligands on Au52(SR)32 Nanoclusters Enhances the Near-Infrared Photoluminescence Quantum Yield from 3.8 to 18.3%. J. Am. Chem. Soc. 2023, 145, 2632826338,  DOI: 10.1021/jacs.3c09846
    36. 36
      Liu, Z.; Luo, L.; Kong, J.; Kahng, E.; Zhou, M.; Jin, R. Bright Near-Infrared Emission from the Au39(SR)29 Nanocluster. Nanoscale 2024, 16, 74197426,  DOI: 10.1039/D4NR00677A
    37. 37
      Pniakowska, A.; Kumaranchira Ramankutty, K.; Obstarczyk, P.; Peric Bakulic, M.; Sanader Marsic, Z.; Bonacic-Koutecky, V.; Burgi, T.; Olesiak-Banska, J. Gold-Doping Effect on Two-Photon Absorption and Luminescence of Atomically Precise Silver Ligated Nanoclusters. Angew. Chem., Int. Ed. 2022, 61, e202209645  DOI: 10.1002/anie.202209645
    38. 38
      Li, Q.; Zeman, C. J. t.; Schatz, G. C.; Gu, X. W. Source of Bright Near-Infrared Luminescence in Gold Nanoclusters. ACS Nano 2021, 15, 1609516105,  DOI: 10.1021/acsnano.1c04759
    39. 39
      Narouz, M. R.; Takano, S.; Lummis, P. A.; Levchenko, T. I.; Nazemi, A.; Kaappa, S.; Malola, S.; Yousefalizadeh, G.; Calhoun, L. A.; Stamplecoskie, K. G.; Hakkinen, H.; Tsukuda, T.; Crudden, C. M. Robust, Highly Luminescent Au13 Superatoms Protected by N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2019, 141, 1499715002,  DOI: 10.1021/jacs.9b07854
    40. 40
      She, J.; Pei, W.; Zhou, S.; Zhao, J. Enhanced Fluorescence with Tunable Color in Doped Diphosphine-Protected Gold Nanoclusters. J. Phys. Chem. Lett. 2022, 13, 58735880,  DOI: 10.1021/acs.jpclett.2c01522
    41. 41
      Takano, S.; Hirai, H.; Nakashima, T.; Iwasa, T.; Taketsugu, T.; Tsukuda, T. Photoluminescence of Doped Superatoms M@Au12 (M = Ru, Rh, Ir) Homoleptically Capped by (Ph2)PCH2P(Ph2): Efficient Room-Temperature Phosphorescence from Ru@Au12. J. Am. Chem. Soc. 2021, 143, 1056010564,  DOI: 10.1021/jacs.1c05019
    42. 42
      Chen, Y.; Zhou, M.; Li, Q.; Gronlund, H.; Jin, R. Isomerization-Induced Enhancement of Luminescence in Au28(SR)20 Nanoclusters. Chem. Sci. 2020, 11, 81768183,  DOI: 10.1039/D0SC01270J
    43. 43
      Deng, H.; Huang, K.; Xiu, L.; Sun, W.; Yao, Q.; Fang, X.; Huang, X.; Noreldeen, H. A. A.; Peng, H.; Xie, J.; Chen, W. Bis-Schiff Base Linkage-Triggered Highly Bright Luminescence of Gold Nanoclusters in Aqueous Solution at the Single-Cluster Level. Nat. Commun. 2022, 13, 3381,  DOI: 10.1038/s41467-022-30760-3
    44. 44
      Wei, X.; Kang, X.; Jin, S.; Wang, S.; Zhu, M. Aggregation of Surface Structure Induced Photoluminescence Enhancement in Atomically Precise Nanoclusters. CCS Chem. 2021, 3, 19291939,  DOI: 10.31635/ccschem.020.202000372
    45. 45
      Jin, Y.; Zhang, C.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Shell Engineering to Achieve Modification and Assembly of Atomically-precise Silver Clusters. Chem. Soc. Rev. 2021, 50, 22972319,  DOI: 10.1039/D0CS01393E
    46. 46
      Luo, L.; Liu, Z.; Du, X.; Jin, R. Near-Infrared Dual Emission from the Au42(SR)32 Nanocluster and Tailoring of Intersystem Crossing. J. Am. Chem. Soc. 2022, 144, 1924319247,  DOI: 10.1021/jacs.2c09107
    47. 47
      Li, Y.; Song, Y.; Zhang, X.; Liu, T.; Xu, T.; Wang, H.; Jiang, D.-e.; Jin, R. Atomically Precise Au42 Nanorods with Longitudinal Excitons for an Intense Photothermal Effect. J. Am. Chem. Soc. 2022, 144, 1238112389,  DOI: 10.1021/jacs.2c03948
    48. 48
      Luo, L.; Liu, Z.; Kong, J.; Gianopoulos, C. G.; Coburn, I.; Kirschbaum, K.; Zhou, M.; Jin, R. Three-Atom-Wide Gold Quantum Rods with Periodic Elongation and Strongly Polarized Excitons. Proc. Natl. Acad. Sci. U S A 2024, 121, e2318537121  DOI: 10.1073/pnas.2318537121
    49. 49
      Liu, Z.; Li, Y.; Shin, W.; Jin, R. Observation of Core Phonon in Electron-Phonon Coupling in Au25 Nanoclusters. J. Phys. Chem. Lett. 2021, 12, 16901695,  DOI: 10.1021/acs.jpclett.1c00050
    50. 50
      Steele, J. A.; Puech, P.; Monserrat, B.; Wu, B.; Yang, R. X.; Kirchartz, T.; Yuan, H.; Fleury, G.; Giovanni, D.; Fron, E.; Keshavarz, M.; Debroye, E.; Zhou, G.; Sum, T. C.; Walsh, A.; Hofkens, J.; Roeffaers, M. B. J. Role of Electron-Phonon Coupling in the Thermal Evolution of Bulk Rashba-Like Spin-Split Lead Halide Perovskites Exhibiting Dual-Band Photoluminescence. ACS Energy Lett. 2019, 4, 22052212,  DOI: 10.1021/acsenergylett.9b01427
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c11703.

    • Details of the synthesis and data analysis and additioanl figures and tables as described in the text (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.