Preparation, Characterization and ex vivo Skin Permeability Evaluation of Type I Collagen-Loaded Liposomes I 型胶原负载脂质体的制备、表征和体内外皮肤渗透性评估
Mingyuan Li' , Meng Li', Xinyi Li', Wanhui Shao', Xiujuan Pei ^(2){ }^{2}, Ruyue Dong ^('){ }^{\prime}, Hongmeng Ren ^('){ }^{\prime}, Lin Jia ^('){ }^{\prime}, Shiqin Li', Wenlin Ma', Yi Zeng', Yun Liu' ^('){ }^{\prime}, Hua Sun ^('){ }^{\prime}, Peng Yu' Minyuan Li' , Meng Li', Xinyi Li', Wanhui Shao', Xiujuan Pei ^(2){ }^{2} , Ruyue Dong ^('){ }^{\prime} , Hongmeng Ren ^('){ }^{\prime} , Lin Jia ^('){ }^{\prime} , Shiqin Li', Wenlin Ma', Yi Zeng', Yun Liu' ^('){ }^{\prime} , Hua Sun ^('){ }^{\prime} , Peng Yu''College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China; ^(2){ }^{2} Tianjin Shiji Kangtai Biomedical Engineering Co.,Ltd, Tianjin, 300462, People's Republic of China 天津科技大学生物技术学院/透明质酸应用研究天津市企业重点实验室,天津,300457; ^(2){ }^{2} 天津世纪康泰生物医学工程有限公司,天津,300462Correspondence: Hua Sun; Peng Yu, Email sunhua@tust.edu.cn; yupeng@tust.edu.cn 通讯:Hua Sun; Peng Yu,电子邮件:sunhua@tust.edu.cn; yupeng@tust.edu.cn
Abstract 摘要
Purpose: In the present study, we prepared collagen liposomes with the addition of polyol, which is expected to not only increase the solubility of collagen but also improve skin penetration. Methods: Collagen liposomes were prepared by the film dispersion method, and their characteristics, integrity and biosafety were evaluated by Fourier transform infrared spectroscopy (FTIR), UV-VIS spectroscopy, polyacrylamide gel electrophoresis (SDS-PAGE), dynamic light scattering (DLS) and transmission electron microscope (TEM). The transdermal absorption of collagen and collagen liposomes were tested by an ex vivo horizontal Valia-Chien diffusion cell system. Results: We first demonstrated that collagen extracted from bovine Achilles tendon was type I collagen. The results of DLS measurement and TEM observation showed that the collagen liposomes were spherical in shape with average diameter ( 75.34+-0.93nm75.34 \pm 0.93 \mathrm{~nm} ) and maintained high stability at low temperature (4^(@)C)\left(4^{\circ} \mathrm{C}\right) for at least 42 days without toxicity. The encapsulation rate of collagen liposomes was 57.80+-0.51%57.80 \pm 0.51 \%, and SDS-PAGE analysis showed that collagen was intact in liposomes. Finally, permeability studies indicated that the collagen-loaded liposomes more easily penetrated the skin compared to collagen itself. Conclusion: This study proposed a new method to improve the bioavailability and permeability of bovine type I collagen, which improves the applicability of collagen in biomedicine, cosmeceuticals and pharmaceutical industries. 目的:在本研究中,我们制备了添加多元醇的胶原蛋白脂质体,这不仅有望增加胶原蛋白的溶解度,还能改善皮肤渗透性。制备方法采用薄膜分散法制备胶原蛋白脂质体,并通过傅立叶变换红外光谱(FTIR)、紫外可见光谱(UV-VIS)、聚丙烯酰胺凝胶电泳(SDS-PAGE)、动态光散射(DLS)和透射电子显微镜(TEM)对其特性、完整性和生物安全性进行了评价。通过体外水平 Valia-Chien 扩散细胞系统测试了胶原蛋白和胶原蛋白脂质体的透皮吸收。结果:我们首先证明了从牛跟腱中提取的胶原蛋白是 I 型胶原蛋白。DLS 测量和 TEM 观察结果表明,胶原蛋白脂质体呈球形,平均直径( 75.34+-0.93nm75.34 \pm 0.93 \mathrm{~nm} ),在低温 (4^(@)C)\left(4^{\circ} \mathrm{C}\right) 条件下至少能保持 42 天的高稳定性,且无毒性。胶原蛋白脂质体的包封率为 57.80+-0.51%57.80 \pm 0.51 \% ,SDS-PAGE 分析表明脂质体中的胶原蛋白完好无损。最后,渗透性研究表明,与胶原蛋白本身相比,负载胶原蛋白的脂质体更容易穿透皮肤。结论本研究提出了一种提高牛 I 型胶原蛋白生物利用度和渗透性的新方法,从而提高了胶原蛋白在生物医学、药妆和制药行业的适用性。
Keywords: collagen, liposome, physicochemical properties of collagen, skin penetration, drug delivery 关键词:胶原蛋白;脂质体;胶原蛋白的理化特性;皮肤渗透;药物输送
Introduction 导言
Collagen is the major protein in human and animal connective tissues, accounting for approximately 25%25 \% of the total vertebrate protein, ^(1){ }^{1} and it is essential for the mechanical protection of tissues and organs as well as the physiological regulation of the cellular environment. ^(2){ }^{2} To date, among the 29 different types of collagen that have been identified, ^(3){ }^{3} type I collagen is the most abundant and typical one, and it mainly plays a structural role. ^(4){ }^{4} Type I collagen has a relative molecular mass of approximately 300 kDa , and it is mainly found in skin, lung, bone and connective tissue. ^(5){ }^{5} Type I collagen is a three-stranded helical structural protein formed by two alpha_(1)\alpha_{1} peptide chains and one alpha_(2)\alpha_{2} peptide chain intertwined, and each peptide consists of (Gly-XY)_(n)(\mathrm{Gly}-\mathrm{XY})_{\mathrm{n}} with X and Y representing mainly proline and hydroxyproline, respectively. ^(6){ }^{6} Due to its many properties, such as low immunity, good biocompatibility and biodegradability, ^(7-11){ }^{7-11} type I collagen has a wide range of applications in the bioindustry, such as tissue regeneration, ^(12,13){ }^{12,13} pharmaceuticals, ^(14){ }^{14} food ^(15){ }^{15} and cosmetics. ^(16){ }^{16} Although the cost of preparing collagen remains high, the market demand for collagen and its derivatives has been growing at a high rate in recent years. ^(17){ }^{17} 胶原蛋白是人类和动物结缔组织中的主要蛋白质,约占脊椎动物蛋白质总量的 25%25 \%^(1){ }^{1} ,它对组织和器官的机械保护以及细胞环境的生理调节至关重要。 ^(2){ }^{2} 迄今为止,在已发现的 29 种不同类型的胶原蛋白中, ^(3){ }^{3} Ⅰ型胶原蛋白是最丰富、最典型的一种,它主要起结构作用。 ^(4){ }^{4} I 型胶原蛋白的相对分子质量约为 300 kDa,主要存在于皮肤、肺、骨骼和结缔组织中。 ^(5){ }^{5} Ⅰ型胶原蛋白是一种三股螺旋结构蛋白,由两条 alpha_(1)\alpha_{1} 肽链和一条 alpha_(2)\alpha_{2} 肽链交织而成,每条肽链由 (Gly-XY)_(n)(\mathrm{Gly}-\mathrm{XY})_{\mathrm{n}} 组成,其中X和Y分别主要代表脯氨酸和羟脯氨酸。 ^(6){ }^{6} 由于 I 型胶原蛋白具有免疫力低、生物相容性好和可生物降解等多种特性,因此在生物产业中有着广泛的应用,如组织再生、 ^(12,13){ }^{12,13} 制药、 ^(14){ }^{14} 食品 ^(15){ }^{15} 和化妆品等。 ^(16){ }^{16} 虽然制备胶原蛋白的成本仍然很高,但近年来市场对胶原蛋白及其衍生物的需求一直在高速增长。 ^(17){ }^{17}
The increasing market demand has led to more aggressive attempts to extract and isolate type I collagen from different animal species. Currently, the best source of type I collagen is mammals ^(18){ }^{18} due to its high sequence homology with human collagen, ^(19){ }^{19} and bovine and porcine collagen dominate in terms of quality and quantity. ^(20,21){ }^{20,21} In some 市场需求的不断增长促使人们更加积极地尝试从不同动物物种中提取和分离 I 型胶原蛋白。目前,I型胶原蛋白的最佳来源是哺乳动物 ^(18){ }^{18} ,因为它与人类胶原蛋白的序列同源性很高, ^(19){ }^{19} 而牛和猪的胶原蛋白在质量和数量上都占主导地位。 ^(20,21){ }^{20,21} 在某些情况下
Graphical Abstract 图表摘要
countries, however, the use of pork-derived collagen has been banned, ^(22){ }^{22} resulting in bovine collagen as the main raw material for pharmaceuticals and cosmetics. Despite the many advantages of type I collagen, its low bioavailability and low absorption efficiency still limit its use, suggesting that encapsulation may be an effective solution in this regard. 然而,许多国家已禁止使用猪肉提取的胶原蛋白, ^(22){ }^{22} 因此牛胶原蛋白成为药品和化妆品的主要原料。尽管 I 型胶原蛋白有许多优点,但其生物利用率低和吸收效率低的特点仍然限制了它的使用,这表明封装可能是这方面的一个有效解决方案。
Using liposomes to encapsulate collagen improves its bioavailability and absorption efficiency. ^(23){ }^{23} Liposomes are closed vesicles (usually 50-500nm50-500 \mathrm{~nm} in diameter) consisting of a phospholipid bilayer ^(24){ }^{24} with a biofilm-like structure, ^(25){ }^{25} and they have been widely used to deliver various components, such as DNA, ^(26,27){ }^{26,27} vaccines ^(28,29){ }^{28,29} and drugs ^(30,31){ }^{30,31} into the body, with contributions in the pharmaceutical and cosmetic fields. ^(32){ }^{32} The use of liposomes loaded with fish-derived peptides improves antioxidant properties and skin penetration characteristics. ^(33-35){ }^{33-35} Thus, the liposome encapsulation technique may improve the abovementioned problems. To be applied in the cosmetics industry, in addition to natural lecithin, a certain amount of permeability enhancers can also be added in the preparation of liposomes to enhance skin permeability, allowing the effective ingredients to play a better role, and propylene glycol is the most commonly used permeability enhancer. ^(36){ }^{36} 使用脂质体包裹胶原蛋白可提高其生物利用度和吸收效率。 ^(23){ }^{23} 脂质体是一种封闭的囊(直径通常为 50-500nm50-500 \mathrm{~nm} ),由具有生物膜状结构的磷脂双分子层 ^(24){ }^{24} 组成, ^(25){ }^{25} 脂质体已被广泛用于向体内输送各种成分,如DNA、 ^(26,27){ }^{26,27} 疫苗 ^(28,29){ }^{28,29} 和药物 ^(30,31){ }^{30,31} ,在制药和化妆品领域做出了贡献。 ^(32){ }^{32} 使用含有鱼源性肽的脂质体可提高抗氧化性能和皮肤渗透特性。 ^(33-35){ }^{33-35} 因此,脂质体封装技术可以改善上述问题。应用于化妆品行业,除了天然卵磷脂外,还可以在脂质体的制备过程中加入一定量的渗透增强剂,增强皮肤的渗透性,让有效成分发挥更好的作用,丙二醇是最常用的渗透增强剂。 ^(36){ }^{36}
In the present study, we prepared collagen liposomes with the addition of polyol, which not only increases the solubility of collagen but also improves skin penetration to some extent. Although liposomes have been used as carriers to improve the absorption of protein, nanoliposomes encapsulating bovine-derived type I collagen have not been developed. Therefore, we used bovine-derived type I collagen to prepare collagen nanoliposomes with high molecular mass, resulting in better skin penetration ability compared to conventional bovine collagen. 在本研究中,我们制备了添加多元醇的胶原蛋白脂质体,这不仅增加了胶原蛋白的溶解度,还在一定程度上改善了皮肤渗透性。虽然脂质体已被用作改善蛋白质吸收的载体,但包裹牛源性 I 型胶原蛋白的纳米脂质体尚未开发出来。因此,我们使用牛源性 I 型胶原蛋白制备了高分子质量的胶原蛋白纳米脂质体,与传统的牛胶原蛋白相比,其皮肤渗透能力更强。
Materials and Methods 材料与方法
Materials 材料
The collagen lyophilized sponge was kindly provided by Tianjin Shiji Kangtai Biomedical Engineering Company, Ltd; BV2 cell line, fetal bovine serum and MEM medium were purchased from Wuhan Procell Life Science & Technology Company; Egg yolk lecithin PL-100M (Injection Grade, Phosphatidylcholine >= 98%\geq 98 \% ), purchased from AVT (Shanghai) Pharmaceutical Technology Company; 1,2-propanediol, 99%99 \%, AR, purchased from Shanghai Macklin Biochemical Technology Co.; Fluorescein Isothiocyanate (FITC), 97%, Biotech Grade, BR, purchased from Shanghai Macklin Biochemical Technology Co.; Coumarin-6, 98%, HPLC grade, purchased from Shanghai Aladdin Biochemical Technology Co. All other chemicals were of analytical grade and were purchased from the Shanghai Aladdin Biochemical Technology Company. Double distilled water, obtained from a water purification system (Nano-pure Infinity, Barnstead International. Dubuque. IA), was used to prepare all solutions. 胶原蛋白冻干海绵由天津世纪康泰生物医学工程有限公司提供;BV2 细胞系、胎牛血清和 MEM 培养基购自武汉普罗凯尔生命科技有限公司;蛋黄卵磷脂 PL-100M(注射级,磷脂酰胆碱 >= 98%\geq 98 \% ),购自 AVT(上海)医药科技有限公司;1,2-丙二醇, 99%99 \% ,AR,购自上海麦林生化科技有限公司;荧光素异硫磷,购自上海麦林生化科技有限公司。异硫氰酸荧光素(FITC),97%,生物技术级,BR,购自上海麦林生化科技有限公司;香豆素-6,98%,HPLC 级,购自上海阿拉丁生化科技有限公司;呋喃妥因(FITC),97%,生物技术级,BR,购自上海麦林生化科技有限公司;香豆素-6,98%,HPLC 级,购自上海阿拉丁生化科技有限公司。其他化学品均为分析级,购自上海阿拉丁生化科技有限公司。所有溶液的配制均使用双蒸馏水,该水来自水纯化系统(Nano-pure Infinity, Barnstead International.
Physical-Chemical Properties of Collagen Measurement of Collagen Solubility 胶原蛋白的物理化学特性 测量胶原蛋白的溶解度
The solubility of collagen can be determined according to Lawal ^(37){ }^{37} with slight modifications. 50 mg lyophilized collagen sponge was dissolved in 20 mL ultrapure water, and the pH value of collagen solution was adjusted with 1.0mol//LHCl1.0 \mathrm{~mol} / \mathrm{L} \mathrm{HCl} or 1.0mol//LNaOH,pH=2.0-12.01.0 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}, \mathrm{pH}=2.0-12.0, at 1.0 unit intervals. The above treated collagen solution was swirled at 25^(@)C25^{\circ} \mathrm{C} with a vortex oscillator until it was fully mixed, centrifuged at 8000 rpm for 10 min , and the supernatant was filtered. The amount of soluble collagen and total collagen in the supernatant were determined using the BCA kit, and the protein standard curve was obtained using bovine serum albumin (BSA). The protein concentration at each pH was determined by comparing it with the highest protein content calculated using the following formula. 胶原蛋白的溶解度可根据 Lawal ^(37){ }^{37} 略加修改后测定。将 50 毫克冻干海绵胶原蛋白溶解在 20 毫升超纯水中,用 1.0mol//LHCl1.0 \mathrm{~mol} / \mathrm{L} \mathrm{HCl} 或 1.0mol//LNaOH,pH=2.0-12.01.0 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}, \mathrm{pH}=2.0-12.0 调节胶原蛋白溶液的 pH 值,每隔 1.0 个单位。将上述处理过的胶原蛋白溶液用漩涡振荡器以 25^(@)C25^{\circ} \mathrm{C} 的转速旋转,直至完全混合,然后在 8000 rpm 转速下离心 10 分钟,过滤上清液。用 BCA 试剂盒测定上清液中可溶性胶原蛋白和总胶原蛋白的含量,并用牛血清白蛋白(BSA)绘制蛋白质标准曲线。将每种 pH 值下的蛋白质浓度与用下式计算的最高蛋白质含量进行比较,从而确定蛋白质浓度。
" Relative solubility "(%)=(" Collagen content in supernatant "(mg))/(" Highest collagen content in sample "(mg))xx100\text { Relative solubility }(\%)=\frac{\text { Collagen content in supernatant }(\mathrm{mg})}{\text { Highest collagen content in sample }(\mathrm{mg})} \times 100
UV-Vis Spectroscopy of Collagen 胶原蛋白的紫外可见光谱分析
In brief, 10 mg of lyophilized collagen sponge was dissolved in 10 mL of 0.5 M acetic acid ( 1mg//mL1 \mathrm{mg} / \mathrm{mL} ), and the UV-Vis spectra from 190 to 400 nm absorption light were recorded with a Shimadzu UV-2550 PC type UV-Vis spectrophotometer (Shimadzu, Japan). 将 10 毫克冻干海绵胶原蛋白溶于 10 毫升 0.5 M 乙酸( 1mg//mL1 \mathrm{mg} / \mathrm{mL} )中,用岛津 UV-2550 PC 型紫外可见分光光度计(日本岛津公司)记录 190 至 400 纳米吸收光的紫外可见光谱。
Fourier Transform Infrared Spectroscopy of Collagen 胶原蛋白的傅立叶变换红外光谱分析
The infrared spectra of collagen were measured in the range of 4000∼400cm^(-1)4000 \sim 400 \mathrm{~cm}^{-1} using Fourier transform infrared spectrometer (Thermo Fisher IS50, USA) according to the method of Hamdan. ^(38){ }^{38} 根据 Hamdan 的方法,使用傅立叶变换红外光谱仪(Thermo Fisher IS50,美国)测量了胶原蛋白在 4000∼400cm^(-1)4000 \sim 400 \mathrm{~cm}^{-1} 范围内的红外光谱。 ^(38){ }^{38}
Preparation of Collagen Liposomes 胶原蛋白脂质体的制备
Preparation of Collagen Liposome 胶原蛋白脂质体的制备
Collagen-loaded liposomes were prepared by a combination of film dispersion method and ultrasonication. 240 mg egg yolk lecithin dissolved in anhydrous ethanol was formed into homogeneous lipid films by a rotary evaporator under vacuum at 55^(@)C55^{\circ} \mathrm{C}, and dried in a vacuum drying oven (-0.1MPa)(-0.1 \mathrm{MPa}) for 1 h . Then the lipid films were hydrated by 8 mL collagen solution ( 5%5 \% 1.2-propylene glycol, v//v\mathrm{v} / \mathrm{v} ) at 35^(@)C35^{\circ} \mathrm{C}. The newly formed multilayer lipid capsules were ultrasonically crushed (Power 5%5 \%, mode varphi6\varphi 6, on 2 s , off 2 s ) and squeezed through a 220 nm Millipore Express ^(®){ }^{\circledR} PES membrane filter unit to form small liposomes (The concentration of egg yolk lecithin is 30mg//mL30 \mathrm{mg} / \mathrm{mL} ) of uniform size. Blank liposomes were prepared in the same way as a control. 胶原蛋白负载脂质体的制备结合了薄膜分散法和超声波法。将 240 毫克蛋黄卵磷脂溶于无水乙醇,用旋转蒸发仪在 55^(@)C55^{\circ} \mathrm{C} 真空条件下制成均匀的脂质膜,并在真空干燥箱 (-0.1MPa)(-0.1 \mathrm{MPa}) 中干燥 1 小时。然后在 35^(@)C35^{\circ} \mathrm{C} 下用 8 mL 胶原溶液( 5%5 \% 1.2-丙二醇, v//v\mathrm{v} / \mathrm{v} )对脂膜进行水合。将新形成的多层脂质胶囊用超声波粉碎(功率 5%5 \% ,模式 varphi6\varphi 6 ,开 2 秒,关 2 秒),并通过 220 nm Millipore Express ^(®){ }^{\circledR} PES 膜过滤装置挤压,形成大小均匀的小脂质体(蛋黄卵磷脂的浓度为 30mg//mL30 \mathrm{mg} / \mathrm{mL} )。空白脂质体的制备方法与对照组相同。
Preparation of Fluorescein-Labeled Collagen Liposomes 荧光素标记胶原脂质体的制备
Fluorescein-labeled liposomes loaded with collagen were prepared by a combination of thin-film dispersion and ultrasonication. 240 mg egg yolk lecithin with coumarin-6 dissolved in anhydrous ethanol was formed into homogeneous lipid films by a rotary evaporator under vacuum at 55^(@)C55^{\circ} \mathrm{C}, and dried in a vacuum drying oven (-0.1MPa)(-0.1 \mathrm{MPa}) for 1 h . The lipid films were then hydrated by 8 mL collagen solution ( 5%1.25 \% 1.2-propylene glycol, v//v\mathrm{v} / \mathrm{v} ) at 35^(@)C35^{\circ} \mathrm{C}. The newly formed 采用薄膜分散和超声相结合的方法制备了负载胶原蛋白的荧光素标记脂质体。将 240 毫克含有香豆素-6 的蛋黄卵磷脂溶于无水乙醇,用旋转蒸发仪在 55^(@)C55^{\circ} \mathrm{C} 真空条件下制成均匀的脂膜,并在真空干燥箱 (-0.1MPa)(-0.1 \mathrm{MPa}) 中干燥 1 小时。然后在 35^(@)C35^{\circ} \mathrm{C} 下用 8 mL 胶原溶液( 5%1.25 \% 1.2 - 丙二醇, v//v\mathrm{v} / \mathrm{v} )对脂膜进行水合。新形成的
multilayer lipid capsules were crushed by ultrasonication (Power 5%5 \%, mode varphi6\varphi 6, on 2 s , off 2 s ) and squeezed through a 220 nm Millipore Express® PES membrane filter unit to form small liposomes (The concentration of egg yolk lecithin is 30mg//mL30 \mathrm{mg} / \mathrm{mL} ) of uniform size. 用超声波(功率 5%5 \% ,模式 varphi6\varphi 6 ,开 2 秒,关 2 秒)粉碎多层脂质胶囊,并通过 220 nm 的 Millipore Express® PES 膜过滤装置挤压,形成大小均匀的小脂质体(蛋黄卵磷脂的浓度为 30mg//mL30 \mathrm{mg} / \mathrm{mL} )。
Characterization of Liposomes 脂质体的表征
Size, Size Distribution and zeta\zeta-Potential Measurements 尺寸、尺寸分布和 zeta\zeta 电位测量
The average droplet size, size distribution and zeta\zeta-potential of liposomes were measured by a Malvern Zetasizer Nano ZS90 (Malvern Instruments, Malvern, UK). Size distributions were expressed as polydispersity index (PDI) and depicted graphically. Each sample was analyzed at least three times and the mean value was calculated. 用 Malvern Zetasizer Nano ZS90(英国马尔文仪器公司)测量脂质体的平均液滴大小、大小分布和 zeta\zeta 电位。粒度分布以多分散指数(PDI)表示,并以图形表示。每个样品至少分析三次,并计算平均值。
Determination of Encapsulation Rate 确定封装率
Unencapsulated (free) collagen was separated from liposomes by a D-TUBE ^(TM){ }^{\mathrm{TM}} Dialyzer Maxi with a molecular weight up to 300 kDa according to manufacturer’s instructions. Briefly, 3 mL of sample was placed in the D-TUBE ^(TM){ }^{\mathrm{TM}} dialyzer and dialyzed in 300 mL of deionized water for 12 h to remove unencapsulated collagen retained in the continuous phase. Pure liposomes were then disrupted by Triton X-100 ( 5%5 \%, w/v) to release encapsulated collagen. The collagen concentration was determined using a BCA kit. For this purpose, 10 muL10 \mu \mathrm{~L} bovine serum albumin samples with different concentrations were added to 250 muL250 \mu \mathrm{~L} working solution, mixed, incubated at 37^(@)C37^{\circ} \mathrm{C} for 30 min , and then the absorbance was measured at 562 nm using a microplate reader (Biotek Synergy H1, USA). The encapsulation efficiency was calculated using bovine serum albumin (BSA) to obtain a protein standard curve. The encapsulation efficiency was then calculated as a percentage according to the following equation: 根据制造商的说明,用 D-TUBE ^(TM){ }^{\mathrm{TM}} 透析器 Maxi 从脂质体中分离出未包封(游离)的胶原蛋白,分子量最高可达 300 kDa。简单地说,将 3 mL 样品放入 D-TUBE ^(TM){ }^{\mathrm{TM}} 透析器中,在 300 mL 去离子水中透析 12 小时,以去除连续相中保留的未包封胶原蛋白。然后用 Triton X-100 ( 5%5 \% , w/v)破坏纯脂质体,以释放包封的胶原蛋白。使用 BCA 试剂盒测定胶原蛋白浓度。为此,在 250 muL250 \mu \mathrm{~L} 工作液中加入不同浓度的 10 muL10 \mu \mathrm{~L} 牛血清白蛋白样品,混合,在 37^(@)C37^{\circ} \mathrm{C} 下孵育 30 分钟,然后使用微孔板阅读器(Biotek Synergy H1,美国)在 562 纳米处测量吸光度。使用牛血清白蛋白(BSA)计算封装效率,得到蛋白质标准曲线。然后根据以下公式计算封装效率的百分比: