2.Zhu,Z.,Yin,Y.",Lyu,H.Automatic Collision Avoidance Algorithm based on Route Plan Guided Artificial Potential Field Method.Ocean Eng.,2023,271, 113737. https://doi.org/10.1016/j.oceaneng.2023.113737 2.Zhu,Z.,Yin,Y.“,Lyu,H.基于路线规划引导人工势场法的自动避撞算法.海洋工程.,2023,271, 113737.https://doi.org/10.1016/j.oceaneng.2023.113737
9.Zhongxian Zhu,Yong Yin ^(**){ }^{*} ,Helong Shen.A Novel Parallel Algorithm for Computing the Mooring Line Based on Lumped-Mass Method[J].International Journal of Modeling,Simulation,and Scientific Computing(IJMSSC),2016:1750004. 9.朱忠贤,尹 ^(**){ }^{*} 勇,沈赫龙.一种基于集总质量法计算系泊线的新型并行算法[J].国际建模、仿真与科学计算杂志(IJMSSC),2016:1750004.
EI 期刊
10.Zhongxian Zhu,Yong Yin*.Modeling and Visualizing of the Mooring System of Anchor Handling Simulator.in AsiaSim 2012Springer,2012,pp.132-140.(EI). 10.朱忠贤,尹勇*.Modeling and Visualizing of the Mooring System of Anchor Handling Simulator.in AsiaSim 2012Springer,2012,pp.132-140.(EI).
EI 会议
11.Zhongxian Zhu,Yong Yin*,Helong Shen.A Novel Simplified Algorithm for calculating a Mooring Line Based on Lumped-Mass Method.Asian Simulation Conference.Springer Singapore,2016:89-97. 11.朱忠贤,尹勇*,沈贺龙.一种基于集总质量法计算系泊线的新型简化算法.亚洲模拟会议.Springer Singapore,2016:89-97.
EI 会议
发表论文作者,题目,刊物或会议等名称,发表时间等 检索情况
论 1.Zhu,Z.",Wu,P.,Liu,Y.,Wei,Y.,Yin,Y.."A novel route-plan-guided artificial potential field method for ship collision avoidance:Modeling,integration and test. Ocean Eng.,2023,288,116088.https://doi.org/10.1016/j.oceaneng.2023.116088 " SCI (JCR
Q1 区) "
2.Zhu,Z.,Yin,Y.",Lyu,H.Automatic Collision Avoidance Algorithm based on Route Plan Guided Artificial Potential Field Method.Ocean Eng.,2023,271, 113737. https://doi.org/10.1016/j.oceaneng.2023.113737 [" SCI (JCR
Q1 区) "
发 3.Zhu,Z.,Lyu,H.",Zhang,J.,Yin,Y.,\&Fan,X.A practical environment potential field modelling method for complex geometric objects.Journal of Navigation,2022,1-24. doi:10.1017/S0373463322000455. " SCI (JCR
Q2 区) "
表 4.Zhu,Z.;Lyu,H.;Zhang,J.";Yin,Y.An Efficient Ship Automatic Collision Avoidance Method Based on Modified Artificial Potential Field.J.Mar.Sci.Eng.,2022,10, 3. https://doi.org/10.3390/jmse10010003 [" SCI (JCR
Q1 区) "
情 5.Z.Zhu,H.Lyu,J.Zhang*and Y.Yin,"Environment Potential Field Modeling for Ship Automatic Collision Avoidance in Restricted Waters,"in IEEE Access,vol.10,pp. 59290-59307, 2022. " SCI (JCR
Q2 区) "
况 6.朱忠显,尹勇*,神和龙.新型深海系泊系统动力特性分析[J].船舶力学,2019,23(2): 180-189. EI 期刊
7.吕红光;朱忠显;尹勇;吴鹏宇;神和龙;一种基于实船电子海图数据的环境势场建模方法,2021-1 0-15,中国,CN202111203799.0 中国专利
8.朱忠显,尹勇*,神和龙.新型深水复合式锚泊线动力特性分析[J].哈尔滨工程大学学报,2017, 38 (1):13-19. EI 期刊
9.Zhongxian Zhu,Yong Yin ^(**) ,Helong Shen.A Novel Parallel Algorithm for Computing the Mooring Line Based on Lumped-Mass Method[J].International Journal of Modeling,Simulation,and Scientific Computing(IJMSSC),2016:1750004. EI 期刊
10.Zhongxian Zhu,Yong Yin*.Modeling and Visualizing of the Mooring System of Anchor Handling Simulator.in AsiaSim 2012Springer,2012,pp.132-140.(EI). EI 会议
11.Zhongxian Zhu,Yong Yin*,Helong Shen.A Novel Simplified Algorithm for calculating a Mooring Line Based on Lumped-Mass Method.Asian Simulation Conference.Springer Singapore,2016:89-97. EI 会议| | 发表论文作者,题目,刊物或会议等名称,发表时间等 | 检索情况 |
| :---: | :---: | :---: |
| 论 | 1.Zhu,Z.",Wu,P.,Liu,Y.,Wei,Y.,Yin,Y.."A novel route-plan-guided artificial potential field method for ship collision avoidance:Modeling,integration and test. Ocean Eng.,2023,288,116088.https://doi.org/10.1016/j.oceaneng.2023.116088 | $\begin{gathered} \text { SCI (JCR } \\ \text { Q1 区) } \end{gathered}$ |
| | 2.Zhu,Z.,Yin,Y.",Lyu,H.Automatic Collision Avoidance Algorithm based on Route Plan Guided Artificial Potential Field Method.Ocean Eng.,2023,271, 113737. https://doi.org/10.1016/j.oceaneng.2023.113737 | $\begin{array}{\|l\|l} \hline \text { SCI (JCR } \\ \text { Q1 区) } \end{array}$ |
| 发 | 3.Zhu,Z.,Lyu,H.",Zhang,J.,Yin,Y.,\&Fan,X.A practical environment potential field modelling method for complex geometric objects.Journal of Navigation,2022,1-24. doi:10.1017/S0373463322000455. | $\begin{aligned} & \text { SCI (JCR } \\ & \text { Q2 区) } \end{aligned}$ |
| 表 | 4.Zhu,Z.;Lyu,H.;Zhang,J.";Yin,Y.An Efficient Ship Automatic Collision Avoidance Method Based on Modified Artificial Potential Field.J.Mar.Sci.Eng.,2022,10, 3. https://doi.org/10.3390/jmse10010003 | $\begin{array}{\|l} \hline \text { SCI (JCR } \\ \text { Q1 区) } \end{array}$ |
| 情 | 5.Z.Zhu,H.Lyu,J.Zhang*and Y.Yin,"Environment Potential Field Modeling for Ship Automatic Collision Avoidance in Restricted Waters,"in IEEE Access,vol.10,pp. 59290-59307, 2022. | $\begin{aligned} & \text { SCI (JCR } \\ & \text { Q2 区) } \end{aligned}$ |
| 况 | 6.朱忠显,尹勇*,神和龙.新型深海系泊系统动力特性分析[J].船舶力学,2019,23(2): 180-189. | EI 期刊 |
| | 7.吕红光;朱忠显;尹勇;吴鹏宇;神和龙;一种基于实船电子海图数据的环境势场建模方法,2021-1 0-15,中国,CN202111203799.0 | 中国专利 |
| | 8.朱忠显,尹勇*,神和龙.新型深水复合式锚泊线动力特性分析[J].哈尔滨工程大学学报,2017, 38 (1):13-19. | EI 期刊 |
| | 9.Zhongxian Zhu,Yong Yin ${ }^{*}$ ,Helong Shen.A Novel Parallel Algorithm for Computing the Mooring Line Based on Lumped-Mass Method[J].International Journal of Modeling,Simulation,and Scientific Computing(IJMSSC),2016:1750004. | EI 期刊 |
| | 10.Zhongxian Zhu,Yong Yin*.Modeling and Visualizing of the Mooring System of Anchor Handling Simulator.in AsiaSim 2012Springer,2012,pp.132-140.(EI). | EI 会议 |
| | 11.Zhongxian Zhu,Yong Yin*,Helong Shen.A Novel Simplified Algorithm for calculating a Mooring Line Based on Lumped-Mass Method.Asian Simulation Conference.Springer Singapore,2016:89-97. | EI 会议 |
A novel route-plan-guided artificial potential field method for ship collision avoidance: Modeling, integration and test 一种新型航线规划引导的船舶避碰人工势场方法:建模、集成与测试
Zhongxian Zhu ^("a, *** "){ }^{\text {a, *** }}, Pengyu Wu ^("b "){ }^{\text {b }}, Yongle Liu ^("c "){ }^{\text {c }}, Yubo Wei ^("d "){ }^{\text {d }}, Yong Yin ^("e,* "){ }^{\text {e,* }}^("a "){ }^{\text {a }} Maritime College, Tianjin University of Technology, Tianjin, 300384, China^(b){ }^{\mathrm{b}} Zhilong (Dalian) Marine Technology Co., Ltd, Dalian, 116085, China^("c "){ }^{\text {c }} Systems Engineering Research Institute, China State Shipbuilding Corporation Limited, Beijing, 100000, China ^("c "){ }^{\text {c }} 中国船舶工业集团有限公司 系统工程研究院, 北京 100000^("d "){ }^{\text {d }} Dalian Scientific Test & Control Technology Institute, Dalian, 116013, China^(e){ }^{\mathrm{e}} Navigation College, Dalian Maritime University, Dalian, 116026, China
A R T I C L E I N F O
Handling Editor: Prof. A.I. Incecik
Keywords:
Maritime autonomous surface ships
Artificial potential field
Collision avoidance
Simulation-based real-ship accompanying test
Abstract
To address the technical difficulties of artificial potential filed (APF)-based automatic collision avoidance (CA) algorithms, a stable and reliable technological framework was established for autonomous CA from the perspectives of navigation practice and real-ship application. First, an improved route-plan-guided APF (RPGAPF) approach was introduced, considering the ship motion and constraints by the International Regulations for Preventing Collisions at Sea (COLREGS). Second, a simulation-based real-ship accompanying test system (SRSATS) was well-designed for the intelligent navigation projects and installed on a 45.0 m length ship. Third, various real-ship open-loop CA tests were conducted under different encountering situations, and concurrently, simulation testing in both open-loop and closed-loop were carried out. The results indicated that simulation tests may be used as precursors before real-ship trials, and that the proposed SRSATS can be employed as a practical verification method for real-ship testing to generate variety of complex encountering situations. The CA procedures and results for the corresponding real-ship and simulation tests produced similar trends, and the improved RPGAPF approach can be applied in real-ship automatic CA systems owing to its dependability, determinism, and repeatability. This study proposes a complete solution for the APF-base CA approach, including system modelling, integration and testing. The findings provide valuable insights into the ship CA research and contribute to the improvement of ship intelligence. 针对基于人工势场 (APF) 的自动避碰 (CA) 算法的技术难点,从导航实践和实船应用的角度建立了稳定可靠的自主 CA 技术框架。首先,考虑到国际海上碰撞防止规则 (COLREGS) 的船舶运动和约束,引入了一种改进的航线计划引导 APF (RPGAPF) 方法。其次,为智能导航项目精心设计了基于仿真的实船伴随测试系统 (SRSATS),并安装在 45.0 m 长的船舶上。第三,在不同遭遇情况下进行了各种实船开环 CA 测试,同时进行了开环和闭环的仿真测试。结果表明,仿真测试可以用作实船试验前的前体,并且所提出的 SRSATS 可以用作实船测试的实用验证方法,以生成各种复杂的遭遇情况。相应的实船和模拟测试的 CA 程序和结果产生了类似的趋势,改进的 RPGAPF 方法由于其可靠性、确定性和可重复性,可以应用于实船自动 CA 系统。本研究为基于 APF 的 CA 方法提出了一个完整的解决方案,包括系统建模、集成和测试。这些发现为船舶 CA 研究提供了有价值的见解,并有助于提高船舶智能。
1. Introduction
1.1. Background
Due to its potential socioeconomic advantages and capacity to enhance safety and economy, maritime autonomous surface ships (MASSs) have gradually become a research hotspot in recent years. It can use perceptual information to replace the officers on watch (OOW) to make navigation decisions through intelligent systems, so as to make navigation more intelligent, safe, and reliable (Wang et al., 2023). 由于其潜在的社会经济优势以及提高安全和经济的能力,海上自主水面舰艇 (MASS) 近年来逐渐成为研究热点。它可以利用感知信息代替值班人员 (OOW) 通过智能系统做出导航决策,从而使导航更加智能、安全和可靠(Wang et al., 2023)。
The rapid development in MASS enable the real-ship applications in large merchant shipping (Liu et al., 2022). The key challenges in MASSs involve autonomous collision avoidance (CA) decision-making, algorithm testing and optimization, and real-ship verification. Autonomous MASS 的快速发展使大型商船的真实船舶应用成为可能(Liu et al., 2022)。MASS 的主要挑战涉及自主防撞 (CA) 决策、算法测试和优化以及真实船舶验证。自治
CA requires the MASS to sense the navigation environment, as well as make timely, accurate, and reasonable CA decisions while adhering to the International Regulations for Preventing Collisions at Sea (COLREGS). Additionally, a MASS must conduct various completeness tests (including simulation, model, real-ship, and mixed tests) and fast optimization iterations. CA 要求 MASS 感知导航环境,并在遵守国际防止海上碰撞规则 (COLREGS) 的同时做出及时、准确和合理的 CA 决策。此外,MASS 必须执行各种完整性测试(包括仿真、模型、真实交付和混合测试)和快速优化迭代。
However, the state-of-the-art study lacks a comprehensive investigation on modeling, integration, algorithm testing and verification, and real-ship trials. It is extremely complex and challenging to make a practically useful CA decision for a large merchant ship, owing to the underactuated ship characteristics, convention of the COLREGS, and complex constraints of navigation environments (Huang et al., 2020; Lyu et al., 2023; Lyu and Yin, 2019). 然而,这项最先进的研究缺乏对建模、集成、算法测试和验证以及真实船舶试验的全面调查。由于驱动不足的船舶特性、COLREGS 的约定以及导航环境的复杂约束,为大型商船做出实用的 CA 决策是极其复杂和具有挑战性的(Huang et al., 2020;Lyu et al., 2023;Lyu 和 Yin,2019 年)。