这是用户在 2024-10-31 14:17 为 https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c00929 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
NIR-II-Responsive Versatile Nanozyme Based on H2O2 Cycling and Disrupting Cellular Redox Homeostasis for Enhanced Synergistic Cancer Therapy

Figure 1Loading Img
  • Subscribed
Applications and Health

NIR-II-Responsive Versatile Nanozyme Based on H2O2 Cycling and Disrupting Cellular Redox Homeostasis for Enhanced Synergistic Cancer Therapy
基于 H2O2 循环和破坏细胞氧化还原稳态的 NIR-II 响应性多功能纳米酶,用于增强协同癌症治疗
Click to copy article linkArticle link copied!

  • Pinghua ling*
    Pinghua ling
    Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
    *Email: phling@ahnu.edu.cn
    More by Pinghua ling
  • Danjie Song
    Danjie Song
    Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
    More by Danjie Song
  • Pei Yang
    Pei Yang
    Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
    More by Pei Yang
  • Chuanye Tang
    Chuanye Tang
    Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
    More by Chuanye Tang
  • Wenwen Xu
    Wenwen Xu
    Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
    More by Wenwen Xu
  • Fang Wang*
    Fang Wang
    Institute of Clinical Pharmacy, Jining No. 1 People’s Hospital, Shandong First Medical University, Jining 272000, Shandong, China
    *Email: wangfang900816@163.com
    More by Fang Wang
Open PDFSupporting Information (1)open URL

ACS Biomaterials Science & Engineering

Cite this: ACS Biomater. Sci. Eng. 2024, 10, 8, 5290–5299
Click to copy citationCitation copied!
https://doi.org/10.1021/acsbiomaterials.4c00929
Published July 16, 2024
Copyright © 2024 American Chemical Society

Abstract

Click to copy section linkSection link copied!

Disturbing cellular redox homeostasis within malignant cells, particularly improving reactive oxygen species (ROS), is one of the effective strategies for cancer therapy. The ROS generation based on nanozymes presents a promising strategy for cancer treatment. However, the therapeutic efficacy is limited due to the insufficient catalytic activity of nanozymes or their high dependence on hydrogen peroxide (H2O2) or oxygen. Herein, we reported a nanozyme (CSA) based on well-defined CuSe hollow nanocubes (CS) uniformly covered with Ag nanoparticles (AgNPs) to disturb cellular redox homeostasis and catalyze a cascade of intracellular biochemical reactions to produce ROS for the synergistic therapy of breast cancer. In this system, CSA could interact with the thioredoxin reductase (TrxR) and deplete the tumor microenvironment-activated glutathione (GSH), disrupting the cellular antioxidant defense system and augmenting ROS generation. Besides, CSA possessed high peroxidase-mimicking activity toward H2O2, leading to the generation of various ROS including hydroxyl radical (OH), superoxide radicals (O2), and singlet oxygen (1O2), facilitated by the Cu(II)/Cu(I) redox and H2O2 cycling, and plentiful catalytically active metal sites. Additionally, due to the absorption and charge separation performance of AgNPs, the CSA exhibited excellent photothermal performance in the second near-infrared (NIR-II, 1064 nm) region and enhanced the photocatalytic ROS level in cancer cells. Owing to the inhibition of TrxR activity, GSH depletion, high peroxidase-mimicking activity of CSA, and abundant ROS generation, CSA displays remarkable and specific inhibition of tumor growth.

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.

Copyright © 2024 American Chemical Society

1. Introduction 1. 引言

Click to copy section link
单击以复制部分链接
Section link copied!

Reactive oxygen species (ROS), encompassing highly reactive ions and free radicals such as singlet oxygen (1O2), superoxide radicals (O2), hydroxyl radicals (OH), and peroxides (O22–), play pivotal roles in various physiological processes. (1,2) As the key mediators of cellular oxidative stress, ROS at the normal concentration are indispensable for the development of living organisms, such as cellular signaling, homeostasis, and metabolism. Conversely, an overproduction of ROS is associated with cellular pathological states including cancer, neurodegenerative diseases, and inflammation. (3−6) Elevated ROS levels could induce cellular oxidative stress, leading to lipids, proteins, and DNA damage, culminating in cell apoptosis. As a result, numerous approaches based on leveraging excessive ROS at pathological sites have been developed for cancer therapy, such as photodynamic therapy, (7) sonodynamic therapy, (8,9) radiation therapy, (10) chemodynamic therapy, (11) and synergistic therapy. (12,13) However, the limited concentration of H2O2, the overexpression of glutathione (GSH) and hypoxic environment in cancer cells, the relatively low tissue-penetrating depth of the laser, and the relatively low activity of the probe still hampered the treatment effect. Therefore, there is an urgent need to design a strategy that could disturb the redox homeostasis and overcome the tumor microenvironment to enhance ROS generation for improved cancer therapy.
活性氧 (ROS) 包括高反应性离子和自由基,如单线态氧 (1O2)、超氧自由基 (O2)、羟基自由基 (OH) 和过氧化物 (O22–),在各种生理过程中起着关键作用。(1,2) 作为细胞氧化应激的关键介质,正常浓度的 ROS 对于生物体的发育是必不可少的,例如细胞信号传导、稳态和新陈代谢。相反,ROS 的过量产生与细胞病理状态有关,包括癌症、神经退行性疾病和炎症。(3-6) ROS 水平升高可诱导细胞氧化应激,导致脂质、蛋白质和 DNA 损伤,最终导致细胞凋亡。因此,已经开发了许多基于在病理部位利用过量 ROS 的方法进行癌症治疗,例如光动力疗法,(7) 声动力疗法,(8,9) 放射疗法,(10) 化学动力学疗法,(11) 和协同疗法。(12,13) 然而,H2O2 的浓度有限、谷胱甘肽 (GSH) 的过表达和癌细胞中的低氧环境、激光相对较低的组织穿透深度以及探针的相对较低的活性仍然阻碍了治疗效果。因此,迫切需要设计一种策略,可以扰乱氧化还原稳态并克服肿瘤微环境,以增强 ROS 的产生以改善癌症治疗。
The thioredoxin (Trx) system, particularly thioredoxin reductase (TrxR), plays crucial roles in the regulation of intracellular redox homeostasis and has been identified as a novel target for anticancer drug owing to its overexpression in various aggressive tumors. (14) TrxR, which is a selenoprotein, could reduce the oxidoreductase Trx in a NADPH-dependent manner, thereby maintaining the intracellular redox balance. Inhibition of TrxR could disrupt the cellular antioxidant defense system, leading to an increase in ROS generation. (15,16) Thus, the inhibition of TrxR activity may represent a potential strategy for cancer therapy.
硫氧还蛋白 (Trx) 系统,特别是硫氧还蛋白还原酶 (TrxR),在细胞内氧化还原稳态的调节中起着至关重要的作用,并且由于其在各种侵袭性肿瘤中的过表达而被确定为抗癌药物的新靶点。(14) TrxR 是一种硒蛋白,可以以 NADPH 依赖性方式还原氧化还原酶 Trx,从而维持细胞内氧化还原平衡。抑制 TrxR 会破坏细胞抗氧化防御系统,导致 ROS 生成增加。(15,16) 因此,抑制 TrxR 活性可能代表了癌症治疗的潜在策略。
Nanozymes, synthetic materials possessing one or more enzyme mimicking activity, (17−20) have garnered considerable attention in recent years. Due to their controlled synthesis, high stability, and tunable catalytic activities, nanozymes have been extensively employed in a variety of applications, biosensing, cancer therapy, imaging, and so on. (21−25) Recently, a wide array of nanozymes, such as metal oxides, (26−28) metal nanoparticles, (29) carbon nanomaterials, (30,31) and their composites, (24) have been utilized for the treatment of various diseases based on their enzyme-like activities. However, the insufficient catalytic efficiency within the tumor microenvironment remains a considerable challenge.
纳米酶是具有一种或多种酶模拟活性 (17−20) 的合成材料,近年来引起了相当大的关注。由于其可控的合成、高稳定性和可调的催化活性,纳米酶已被广泛用于各种应用,如生物传感、癌症治疗、成像等。(21−25) 最近,各种纳米酶,如金属氧化物、(26−28) 金属纳米颗粒、(29) 碳纳米材料、(30,31) 及其复合材料 (24) 已根据其酶样活性被用于治疗各种疾病。然而,肿瘤微环境中的催化效率不足仍然是一个相当大的挑战。
In order to enhance the catalytic activity of nanozymes, various modulation strategies have been used, including optical, acoustic, and new reagents. Among these methods, light, specifically near-infrared II light (NIR II, 1000–1350 nm), provides numerous advantages such as lower tissue background, superior temporal, and spatial resolution. (32−34) Under NIR II, nanozymes could generate enhanced ROS due to the direct electron transfer, light-enhanced catalytic reactions, and photothermal effect. (35,36) In order to extend the light absorption range of the nanozymes, some metal nanoparticles, such as silver nanoparticles (AgNPs), and gold nanoparticles have been utilized for nanozyme modification. Due to the surface plasmon resonance (SPR) effects of metal nanoparticles, the metal nanoparticle-decorated nanozymes demonstrate a widened absorption band in the visible light spectrum, thereby improving visible light utilization and photocatalytic activity. (37−39) Therefore, the design of nanozymes with high catalytic activity and NIR II absorption holds promise for enhanced cancer therapy.
为了增强纳米酶的催化活性,已经使用了各种调制策略,包括光学、声学和新试剂。在这些方法中,光,特别是近红外 II 光 (NIR II, 1000–1350 nm) 具有许多优势,例如较低的组织背景、卓越的时间和空间分辨率。(32−34) 在 NIR II 下,由于直接电子转移、光增强催化反应和光热效应,纳米酶可以产生增强的 ROS。(35,36) 为了扩大纳米酶的光吸收范围,一些金属纳米颗粒,如银纳米颗粒 (AgNPs) 和金纳米颗粒已被用于纳米酶修饰。由于金属纳米粒子的表面等离子体共振 (SPR) 效应,金属纳米粒子修饰的纳米酶在可见光谱中表现出加宽的吸收带,从而提高了可见光利用率和光催化活性。(37−39) 因此,具有高催化活性和 NIR II 吸收的纳米酶的设计有望增强癌症治疗。
Lung cancer is one of the most common malignant tumors with the highest incidence in the world. The high mortality rate of lung cancer is mainly due to drug resistance and the immunosuppression, which limits the effectiveness of anticancer drugs and induces tumor cell resistance. In this work, lung cancer was selected as a model. We fabricated a multifunctional nanozyme (CSA) based on Ag-doped hollow CuSe (CS) with disturbing cellular redox homeostasis, high catalytic activity, and NIR II absorbance for synergistic lung cancer therapy (Scheme 1). The CS nanozyme with a hollow structure was prepared by using Cu2O nanocubes as templates and Na2SeO3 as a selenium source via anion exchange, followed by in situ growth of AgNPs to construct the CSA nanozyme. In this system, CSA displayed remarkable peroxidase-mimicking activity, enabling it to interact with H2O2 to generate a variety of ROS including OH, O2, and 1O2, which can be attributed to the rapid redox cycling of Cu(II)/Cu(I) redox and H2O2, and abundant catalytically active metal binding sites. Upon 1064 nm laser irradiation, CSA demonstrated high photocatalytic activity due to the ability of AgNPs to capture electrons from the CS via the metal to metal charge transfer, thereby reducing O2 to generate O2, and leading to an increase in ROS generation. Moreover, Cu and Se in CSA could deplete GSH, disrupting the cellular antioxidant defense system and resulting in more ROS release. In addition, thioredoxin reductase which is an important selenocysteine (Sec)-containing antioxidant enzyme, plays a pivotal role in regulating intracellular redox balance. (40,41) Due to the presence of Se and AgNPs, CSA could react with the Sec residue in TrxR to inhibit its oxidoreductase thioredoxin reduction activity, leading to a novel pathway for generating ROS. (15,42) Therefore, the synergistic combination of high catalytic activity, NIR II absorbance, GSH depletion, and TrxR inhibition of CSA significantly enhances ROS generation and tumor therapy efficacy. Hence, this work will offer valuable insights into the design of a novel nanozyme for multifunctional synergistic antitumor therapy.
肺癌是世界上发病率最高的最常见恶性肿瘤之一。肺癌的高死亡率主要是由于耐药性和免疫抑制作用,限制了抗癌药物的有效性,诱导了肿瘤细胞耐药。在这项工作中,肺癌被选为模型。我们制造了一种基于 Ag 掺杂空心 CuSe (CS) 的多功能纳米酶 (CSA),具有令人不安的细胞氧化还原稳态、高催化活性和 NIR II 吸光度,用于协同肺癌治疗(方案 1)。以 Cu2O 纳米立方体为模板,Na2SeO3 为硒源,通过阴离子交换制备具有中空结构的 CS 纳米酶,然后原位生长 AgNPs 构建 CSA 纳米酶。在该系统中,CSA 表现出显着的过氧化物酶模拟活性,使其能够与 H2O2 相互作用以产生多种 ROS,包括 OH、O21O2,这可归因于 Cu(II)/Cu(I) 氧化还原和 H2O2 的快速氧化还原循环,以及丰富的催化活性金属结合位点。在 1064 nm 激光照射下,由于 AgNP 能够通过金属到金属的电荷转移从 CS 捕获电子,从而减少 O2 生成 O2,并导致 ROS 生成增加,因此 CSA 表现出高光催化活性。此外,CSA 中的 Cu 和 Se 会消耗 GSH,破坏细胞抗氧化防御系统并导致更多的 ROS 释放。 此外,硫氧还蛋白还原酶是一种重要的含硒代半胱氨酸 (Sec) 的抗氧化酶,在调节细胞内氧化还原平衡中起着关键作用。(40,41) 由于 Se 和 AgNPs 的存在,CSA 可以与 TrxR 中的 Sec 残基反应以抑制其氧化还原酶硫氧还蛋白还原活性,从而产生 ROS 的新途径。(15,42) 因此,CSA 的高催化活性、NIR II 吸光度、GSH 耗竭和 TrxR 抑制的协同组合显着增强了 ROS 的产生和肿瘤治疗效果。因此,这项工作将为设计用于多功能协同抗肿瘤治疗的新型纳米酶的设计提供有价值的见解。

Scheme 1 方案 1

Scheme 1. Illustration of (A) Synthetic Process of CSA and (B) Proposed Antitumor Mechanism of CSA for Improved Photothermal Therapy
方案 1.(a) CSA 的合成过程和 (b) 提出的 CSA 抗肿瘤机制用于改进光热疗法的插图

2. Results and Discussion
2. 结果与讨论

Click to copy section link
单击以复制部分链接
Section link copied!

2.1. Synthesis and Characterization of CSA
2.1. CSA 的综合和表征

Hollow CuSe (CS) was prepared by using Cu2O nanospheres as templates and Na2SeO3 as a selenium source via anion exchange based on the Kirkendall effect. (43) Initially, ascorbic acid and a solution of Cu2+ and NaOH were employed to synthesize Cu2O. It can be seen from Figure 1A that the synthesized Cu2O exhibited a regular cubic morphology with a diameter ranging from 80 to 90 nm. In order to further reveal the structure of Cu2O, high-resolution TEM (HR-TEM) and elemental mapping images were performed. The HR-TEM image displayed the presence of Cu and O elements within Cu2O, with a lattice spacing of approximately 0.245 nm. The spacing is increased with the (222) crystal planes of the cubic Cu2O crystal (Figure S1A). When Cu2O was reacted with Se2– solution via ion-exchanging, the formed CuSe (CS) was measured by TEM and HR-TEM. As shown in Figure 1B, the synthesized CS nanoparticles displayed a hollow cubic structure with diameters of approximately 80–90 nm. The HR-TEM revealed that Cu and Se elements were observed in CS, and the lattice spacing of CS was ∼0.326 nm, which was in good agreement with the (101) crystal planes of CS (Figure S1B). The addition of silver nitrate (AgNO3) to CS led to the formation of AgNPs on the surface of the CS. Figure 1C confirms the presence of AgNPs, with a size of approximately 10 nm, within the CuSe@Ag (CSA) nanocomposites. A distinct set of visible lattice fringes, with a spacing of 0.234 nm, was observed in the HR-TEM image of the CSA nanocomposites, which corresponds to the (111) plane spacing of Ag (Figure 1D). (44) Elemental mapping images of CSA confirmed the presence of Cu, Se, and Ag in CSA, indicating the successful formation of AgNPs on the surface of CS (Figure 1E). In addition, energy-dispersive spectroscopy and elemental mapping of the CSA implied the presence of Se, Ag, and Cu elements within the synthesized CSA (Figures S2 and S3). These results suggested that the CSA was successfully synthesized. In Fourier transform infrared spectra (FTIR) (Figure S4), the peak at 633 cm–1 corresponded to the Cu–O stretching vibration in the Cu2O phase. (45) The peak at 863 cm–1 indicated the presence of CuSe. (46) The 633 cm–1 peak diminished and the 430 cm–1 peak increased, suggesting the AgNPs formed. (45,47) FTIR also confirmed the formation of CSA.
以 Cu2O 纳米球为模板,Na2SeO3 为硒源,基于 Kirkendall 效应,通过阴离子交换制备空心 CuSe (CS)。(43) 最初,使用抗坏血酸和 Cu2+ 和 NaOH 的溶液合成 Cu2O。从图 1A 中可以看出,合成的 Cu2O 表现出直径为 80 至 90 nm 的规则立方形貌。为了进一步揭示 Cu2O 的结构,进行了高分辨率 TEM (HR-TEM) 和元素映射图像。HR-TEM 图像显示 Cu2O 中存在 Cu 和 O 元素,晶格间距约为 0.245 nm。间距随着立方 Cu2O 晶体的 (222) 晶面的增加而增加(图 S1A)。当 Cu2O 通过离子交换与 Se2– 溶液反应时,通过 TEM 和 HR-TEM 测量形成的 CuSe (CS)。如图 1B 所示,合成的 CS 纳米颗粒显示出直径约为 80-90 nm 的空心立方结构。HR-TEM 显示,在 CS 中观察到 Cu 和 Se 元素,CS 的晶格间距为 ∼0.326 nm,与 CS 的 (101) 晶面非常吻合(图 S1B)。向 CS 中添加硝酸银 (AgNO3) 导致在 CS 表面形成 AgNP。图 1C 证实了 CuSe@Ag (CSA) 纳米复合材料中存在大小约为 10 nm 的 AgNP。在 CSA 纳米复合材料的 HR-TEM 图像中观察到一组间距为 0.234 nm 的可见晶格条纹,这与 Ag 的 (111) 平面间距相对应(图 1D)。 (44) CSA 的元素映射图像证实了 CSA 中存在 Cu、Se 和 Ag,表明 AgNPs 在 CS 表面成功形成(图 1E)。此外,CSA 的能量色散光谱和元素映射表明合成的 CSA 中存在 Se、Ag 和 Cu 元素(图 S2 和 S3)。这些结果表明 CSA 合成成功。在傅里叶变换红外光谱 (FTIR) 中(图 S4),633 cm–1 处的峰对应于 Cu2O 相中的 Cu-O 拉伸振动。(45) 863 cm–1 处的峰表明存在 CuSe。(46) 633 cm-1 峰减小,430 cm-1 峰增加,表明 AgNPs 形成。(45,47) FTIR 也证实了 CSA 的形成。

Figure 1 图 1

Figure 1. TEM images of (A) Cu2O NPs, (B) CS NPs, and (C) CSA NPs. (D) HR-TEM image of CSA. (E) HAADF-STEM image and elemental mappings of Cu, Se, and Ag elements in CSA NPs. (F) XRD spectra for Cu2O NPs, CS NPs, and CSA NPs. (G) Full XPS spectra for CS and CSA. High-resolution XPS spectra for (H) Cu 2p, (I) Se 3d, and (J) Ag 3d in CSA.
图 1.(A) Cu2O NPs、(B) CS NPs 和 (C) CSA NPs 的 TEM 图像。(D) CSA 的 HR-TEM 图像。(E) CSA NPs中Cu、Se和Ag元素的HAADF-STEM图像和元素映射。(F) Cu2O NPs、CS NPs和CSA NPs的XRD光谱。(G) CS和CSA的完整XPS光谱。CSA 中 (H) Cu 2p、(I) Se 3d 和 (J) Ag 3d 的高分辨率 XPS 光谱。

In order to further elucidate the structure of the as-prepared CSA, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted. As depicted in Figure 1F, the peaks at 29.5, 36.2, 42.6, 61.7, and 73.9° were indexed to the (110), (111), (200), (220), and (311) crystal planes of Cu2O, respectively (JCPDS #65-3288). Additionally, the peaks at 27.5, 43.6, and 52.7° corresponded to the (110), (220), (200), and (311) crystal planes of CS, respectively (JCPDS #86-1240). The peak at 38.1° was observed in the CSA, which could be indexed to the (111) crystal planes of Ag. The XPS spectrum of CSA is shown in Figure 1G. It can be seen that Cu 2p, Ag 3d, and Se 3d elemental signals were observed in the XPS spectrum of CSA. In the Cu 2p spectra (Figure 1H), the peaks at 931.7 and 951.2 eV were assigned to Cu+ or Cu0, and the peaks at 933.92 and 954.62 eV were assigned to Cu2+, (22,23,48) implying a mixed valence state of copper elements in the synthesized CSA nanoparticles. For the high-resolution XPS of Se 3d (Figure 1I), the peaks at 53.8 and 53.3 eV corresponded to Se 3d3/2 and Se 3d5/2, respectively, and the peak at 57.8 eV is due to SeOx. (49−51) In the Ag 3d spectrum (Figure 1J), the appearance of the peaks at 368.5 and 374.5 eV was indexed to Ag 3d5/2 and Ag 3d3/2, respectively, demonstrating that the valence state of Ag was zero and the formation of pure metallic Ag on the surface of CS. (52,53) These results indicated that the as-prepared CSA possesses desirable characteristics for biomedical applications. Additionally, the presence of both Cu(I) and Cu(II) in the CSA could be favorable for achieving mimicking activity under weakly acidic conditions.
为了进一步阐明所制备的 CSA 的结构,进行了 X 射线衍射 (XRD) 和 X 射线光电子能谱 (XPS)。如图 1F 所示,29.5、36.2、42.6、61.7 和 73.9° 处的峰分别标入 Cu2O 的 (110)、(111)、(200)、(220) 和 (311) 晶面 (JCPDS #65-3288)。此外,27.5°、43.6°和52.7°处的峰分别对应于CS的(110)、(220)、(200)和(311)晶面(JCPDS #86-1240)。在 CSA 中观察到 38.1° 的峰,该峰可以索引到 Ag 的 (111) 晶面。CSA 的 XPS 光谱如图 1G 所示。可以看出,在 CSA 的 XPS 谱中观察到 Cu 2p、Ag 3d 和 Se 3d 元素信号。在 Cu 2p 光谱中(图 1H),931.7 和 951.2 eV 处的峰被分配给 Cu+ 或 Cu 0,933.92 和 954.62 eV 处的峰被分配给 Cu2+(22,23,48),这意味着合成的 CSA 纳米颗粒中铜元素的价态混合。对于 Se 3d 的高分辨率 XPS(图 1I),53.8 和 53.3 eV 处的峰分别对应于 Se 3d3/2 和 Se 3d5/2,57.8 eV 处的峰是由于 SeOx 引起的。(49−51) 在 Ag 3d 光谱(图 1J)中,368.5 和 374.5 eV 处峰的出现分别标于 Ag 3d5/2 和 Ag 3d3/2,表明 Ag 的价态为零,并且在 CS 表面形成纯金属 Ag。(52,53) 这些结果表明,制备的 CSA 具有生物医学应用的理想特性。 此外,CSA 中 Cu(I) 和 Cu(II) 的存在可能有利于在弱酸性条件下实现模拟活性。

2.2. Inhibition of TrxR Activity and GSH Consumption
2.2. 抑制 TrxR 活性和 GSH 消耗

Due to the presence of high-valent Cu2+ and Se–Se bonds in CSA, CSA have the potential to deplete GSH and inhibit TrxR. TrxR, which is a selenoprotein, has emerged as an important molecular target for anticancer drug development. Selenium nanoparticles could target the Sec residue of TrxR to inhibit the activity of TrxR and disturb cellular redox homeostasis, reinforcing ROS cytotoxicity. (15) In order to assess TrxR activities after reacting with CS, an activity assay using direct reduction of 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB) was employed. As evidenced in Figure S5, TrxR activity decreased with increasing CS concentration, illustrating that CS could inhibit TrxR activity. As presented in Figure 2A, the CSA group exhibited more obvious TrxR inhibition than CS under the same concentration due to the modified AgNPs, which could inhibit selenoprotein synthesis and inhibition of TrxR1. (42) To confirm the capability of CSA to deplete GSH, DTNB was used as a probe, which could react with sulfhydryl of GSH to form yellow 2-nitro-5-thiobenzoic acid (TNB) with a characteristic absorption peak at 412 nm. Upon GSH reaction with CSA or CS, the absorption at 412 nm was decreased with the increase of time (Figures 2B and S6), suggesting the potential of CSA and CS to lower the GSH level. In order to further investigate that CSA could deplete GSH, XPS on CSA reacted with GSH was performed. As illustrated in Figure S7, after CSA reacted with GSH, the satellite peak of Cu2+ weakened evidently in comparison with that of CSA without reacting with GSH. (51) These results confirmed that the CSA could reduce the GSH level and inhibit TrxR activity and has the potential to boost the oxidative stress in tumors, thereby improving the catalytic treatment efficiency.
由于 CSA 中存在高价 Cu2+ 和 Se-Se 键,CSA 有可能消耗 GSH 并抑制 TrxR。TrxR 是一种硒蛋白,已成为抗癌药物开发的重要分子靶点。硒纳米颗粒可以靶向 TrxR 的 Sec 残基,抑制 TrxR 的活性并扰乱细胞氧化还原稳态,增强 ROS 细胞毒性。(15) 为了评估与 CS 反应后的 TrxR 活性,采用了使用直接还原 5,5′-二硫代-双(2-硝基苯甲酸)(DTNB) 的活性测定。如图 S5 所示,TrxR 活性随着 CS 浓度的增加而降低,表明 CS 可以抑制 TrxR 活性。如图 2A 所示,由于修饰的 AgNPs,在相同浓度下,CSA 组表现出比 CS 更明显的 TrxR 抑制作用,可以抑制硒蛋白合成和抑制 TrxR1。(42) 为了证实 CSA 消耗 GSH 的能力,以 DTNB 为探针,可与 GSH 的巯基反应生成黄色 2-硝基-5-硫代苯甲酸 (TNB),在 412 nm 处具有特征吸收峰。与 CSA 或 CS 反应后,412 nm 处的吸收随着时间的增加而降低(图 2B 和 S6),表明 CSA 和 CS 有可能降低 GSH 水平。为了进一步研究 CSA 可以消耗 GSH,对 CSA 与 GSH 反应进行了 XPS。如图 S7 所示,CSA 与 GSH 反应后,Cu2+ 的卫星峰与未与 GSH 反应的 CSA 相比明显减弱。 (51) 这些结果证实,CSA 可以降低 GSH 水平并抑制 TrxR 活性,并有可能提高肿瘤中的氧化应激,从而提高催化治疗效率。

Figure 2 图 2

Figure 2. (A) Relative activity of TrxR enzyme with the treatment of different amounts of CSA (n = 3). (B) Time-dependent UV/vis absorption changes of DTNB treated with CSA (50 μg/mL) in a PBS solution containing GSH (10 mM). (C) Photothermal heating curves of CSA with different concentrations under 1064 nm laser (1.0 W/cm2). (D) Temperature curves of CSA (50 μg/mL) with a 1064 nm laser of different power irradiation for different times. (E) Recycling–heating profiles of CSA solution (50 μg/mL) under cyclic on/off laser irradiation. (F) Temperature elevation and cooling curves of CSA solution (50 μg/mL) after 5 min of irradiation (1.0 W/cm2) and linear regression data obtained from the cooling period. ESR spectra of (G) DMPO/OH, (H) DMPO/O2, and (I) TEMP/1O2, treated with H2O2, CSA, or NIR irradiation under different conditions.
图 2.(A) TrxR 酶在不同量 CSA 处理下的相对活性 (n = 3)。(B) 在含 GSH (10 mM) 的 PBS 溶液中,CSA (50 μg/mL) 处理的 DTNB 的随时间变化的紫外可见光吸收变化。(C) 不同浓度 CSA 在 1064 nm 激光 (1.0 W/cm2) 下的光热加热曲线。(D) 不同功率激光照射不同时间的 CSA (50 μg/mL) 的温度曲线。(E) CSA 溶液 (50 μg/mL) 在循环开/关激光照射下的回收-加热曲线。(F) 照射 5 分钟 (1.0 W/cm2) 后 CSA 溶液 (50 μg/mL) 的温度升高和冷却曲线以及从冷却期获得的线性回归数据。(G) DMPO/OH、(H) DMPO/O 2 和 (I) TEMP/1O2 在不同条件下用 H2O2、CSA 或 NIR 照射处理的 ESR 光谱。

2.3. Photothermal Properties of CSA
2.3. CSA 的光热特性

In order to study the photothermal performance triggered by 1064 nm, the absorption capacity of CSA in the NIR region was first measured, and the result is shown in Figure S8. It can be seen that CSA exhibited absorption in the full spectrum and even in the NIR region superior to CS. This enhanced absorption may be due to the abundant active sites and modified AgNPs, which could enhance the absorption and utilization of laser irradiation. In order to further investigate the optical characteristics of CSA, UV–vis diffuse reflectance spectroscopy (UV–vis DRS) was employed. As displayed in Figure S9, CSA exhibited higher absorption intensities compared to that of CS and shows a wide absorption band in the region of 470–750 nm, which is attributed to the SPR absorption of Ag species. (37,54,55)
为了研究 1064 nm 触发的光热性能,首先测量了 CSA 在 NIR 区域的吸收能力,结果如图 S8 所示。可以看出,CSA 在全光谱中表现出吸收能力,甚至在 NIR 区域也优于 CS。这种增强的吸收可能是由于丰富的活性位点和修饰的 AgNPs,这可能会增强激光照射的吸收和利用。为了进一步研究 CSA 的光学特性,采用了紫外-可见漫反射光谱 (UV-vis DRS)。如图 S9 所示,与 CS 相比,CSA 表现出更高的吸收强度,并且在 470-750 nm 范围内显示出较宽的吸收带,这归因于 Ag 物质的 SPR 吸收。(37,54,55)
Upon 1064 nm laser irradiation for 5 min, the temperatures of CSA (45 μg/mL) increased from 30.2 to 55.2 °C (Figure S10), while PBS only increased by 5.0 °C (Figure 2C), suggesting the good photothermal conversion ability of CSA. Moreover, the temperature of CSA increased under 1064 nm laser at varying concentrations and laser power densities (Figure 2C,D). These results elucidated that CSA exhibits a concentration-, excitation time-, and laser power density-dependent elevated temperature behavior. After six cycles of illumination, no significant change was observed in the temperature increase of CSA, illustrating that CSA exhibited excellent photothermal stability (Figure 2E). Subsequently, the photothermal conversion efficiency (PTCE) was determined by analyzing the linear regression curve of the thermal cooling process. According to calculations, the corresponding PTCE (sηT) of CSA was calculated to be 52.7%. All of these results suggested that CSA possesses significant photothermal conversion capability and has immense potential for photothermal therapy (PTT) application.
1064 nm 激光照射 5 分钟后,CSA (45 μg/mL) 的温度从 30.2 °C 增加到 55.2 °C(图 S10),而 PBS 仅升高了 5.0 °C(图 2C),表明 CSA 具有良好的光热转换能力。此外,在不同浓度和激光功率密度的 1064 nm 激光下,CSA 的温度升高(图 2C,D)。这些结果表明,CSA 表现出与浓度、激发时间和激光功率密度相关的高温行为。经过 6 次照明循环后,未观察到 CSA 的温度升高发生显着变化,表明 CSA 表现出优异的光热稳定性(图 2E)。随后,通过分析热冷却过程的线性回归曲线来确定光热转换效率 (PTCE)。根据计算,CSA 的相应 PTCE (sηT) 计算为 52.7%。所有这些结果表明,CSA 具有显着的光热转换能力,并且在光热疗法 (PTT) 应用方面具有巨大的潜力。

2.4. ROS Generation of CSA NPs
2.4. CSA NP 的 ROS 生成

It is widely recognized that copper-based materials exhibited excellent catalytic activity and had various applications as nanozymes. In order to investigate the Fenton-like activity of CS and CSA, 3,3′,5,5′-Tetramethylbenzidine (TMB) was chosen as an indicator, which could be oxidized to generate the blue substrate oxTMB. oxTMB presents a characteristic absorption band at ∼650 nm, indicating OH generation. As demonstrated in Figure S11, compared to the presence of only TMB or H2O2, the absorbance of oxTMB at 650 nm significantly increased in the presence of H2O2 and CS or CSA, suggesting the generation of OH via the Fenton-like reaction. Besides, fluorescence spectroscopy utilizing terephthalic acid as a probe also confirmed the generation of OH (Figure S12). Furthermore, the OH generation was further validated by electron spin resonance (ESR) spectroscopy employing 5,5-dimethyl-1- pyrroline-N-oxide (DMPO) as the capture agent. As presented in Figure 2G, strong characteristic signals of a 1:2:2:1 line shape appeared in the system of “CSA + H2O2”, indicating the generation of OH. Upon laser irradiation, the peak intensity of OH increased in comparison to the group of “CSA + H2O2” without laser irradiation, showing that NIR-II could improve the production of OH. Then, in order to identify whether other ROS such as 1O2, O2, and H2O2 were generated in the mimicking catalytic process, the O2 probe dihydroethidium (DHE), the 1O2 probe 2,2′-(anthracene-9,10-diyldimethanediyl)dipropanedioic acid (ABDA), and the H2O2 amplex red were utilized. As illustrated in Figure S13A, the absorbance of ABDA decreased with the reaction time increasing, suggesting 1O2 generation. While the absorbance of ABDA exhibited insignificant change in the N2-saturated PBS (Figure S13B). Compared to the control, the fluorescence intensity of DHE increased in the presence of CSA, suggesting O2 generation (Figure S14). In the presence of CSA, the fluorescence intensity of amplex red increased in the presence of O2 compared to that in N2, indicating H2O2 generation (Figure S15). Then, EPR tests were conducted to clarify the formed O2 and 1O2 by using DMPO and 2,2,6,6-tetramethyl-4-piperidine (TEMP) as the trapping probe, respectively. As displayed in Figure 2H, CSA induced the generation of a four-line spectrum with relative intensities of 1:1:1:1, which was the characteristic spectrum of O2. Furthermore, a strong characteristic peak of 1:1:1 was observed in the groups of “CSA + H2O2”, indicative of the presence of 1O2 (Figure 2I). Significantly enhanced characteristic peaks were discovered in the group of “CSA + laser + H2O2” after laser irradiation for 5 min, manifesting the highest production of 1O2. As shown in Figure S16, CS displayed weaker signals of OH, O2, and 1O2 than CSA, demonstrating that AgNP-modified CS could generate more ROS than CS via photocatalysis, attributed to the SPR of AgNPs. These results validated that CSA indeed has the potential to generate OH, O2•–, and 1O2 and that its catalytic activity could be enhanced by laser irradiation. The possibly catalytic mechanisms can be described as follows (22,56,57)
人们普遍认为,铜基材料表现出优异的催化活性,并作为纳米酶具有多种应用。为了研究 CS 和 CSA 的 Fenton 样活性,选择 3,3',5,5'-四甲基联苯胺 (TMB) 作为指示剂,其可被氧化生成蓝色底物 oxTMB。oxTMB 在 ∼650 nm 处呈现特征吸收带,表明 OH 产生。如图 S11 所示,与仅存在 TMB 或 H2O2 相比,在 H2O2 和 CS 或 CSA 存在下,oxTMB 在 650 nm 处的吸光度显著增加,表明通过芬顿样反应生成 OH。此外,使用对苯二甲酸作为探针的荧光光谱也证实了 OH 的产生(图 S12)。此外,采用 5,5-二甲基-1-吡咯啉-N-氧化物 (DMPO) 作为捕获剂的电子自旋共振 (ESR) 光谱进一步验证了 OH 的产生。如图 2G 所示,“CSA + H2O2”系统中出现 1:2:2:1 线形的强特征信号,表明 OH 的产生。与未进行激光照射的“CSA + H2O2”组相比,激光照射后 OH 的峰值强度增加,表明 NIR-II 可以改善 OH 的产生。 然后,为了确定在模拟催化过程中是否产生了其他 ROS,如 1O2O2 和 H2O2,使用了O2 探针二氢乙锭 (DHE)、1O2 探针 2,2′-(蒽-9,10-二基二甲烷二基)二丙二酸 (ABDA) 和 H2O2 amplex red。如图 S13A 所示,ABDA 的吸光度随着反应时间的增加而降低,表明产生 1O2。而 ABDA 的吸光度在 N2 饱和 PBS 中表现出不显着的变化(图 S13B)。与对照相比,在 CSA 存在下 DHE 的荧光强度增加,表明 O2 产生(图 S14)。在 CSA 存在下,与 N2 相比,在 O2 存在下 amplex red 的荧光强度增加,表明 H2O2 产生(图 S15)。然后,分别使用 DMPO 和 2,2,6,6-四甲基-4-哌啶 (TEMP) 作为捕获探针进行 EPR 测试以澄清形成的 O21O2。如图 2H 所示,CSA 诱导产生相对强度为 1:1:1:1 的四线光谱,这是 O2 的特征光谱。此外,在“CSA + H2O2”组中观察到 1:1:1 的强特征峰,表明存在 1O2图 2I)。 激光照射 5 min 后,“CSA + 激光 + H2O2”组发现特征峰显著增强,表现为 1O2 的最高产量。如图 S16 所示,CS 显示出比 CSA 弱的 OH、O21O2 信号,这表明 AgNP 修饰的 CS 可以通过光催化产生比 CS 更多的 ROS,这归因于 AgNPs 的 SPR。这些结果验证了 CSA 确实具有产生 OH、O2•–1O2 的潜力,并且其催化活性可以通过激光照射增强。可能的催化机制可以描述如下 (22,56,57)
Cu++H2O2OH+Cu2++OH
(1)
OH+H2O2O2+H2O+H+
(2)
H2O+O2O21+OH+H2O2
(3)
Cu2++O2O21+Cu+
(4)
In the catalytic system of CSA, H2O2 was adsorbed on the CSA surface and activated by Cu(I) in CSA, leading to the generation of OH, while simultaneously oxidizing Cu(I) to Cu(II). The generated OH reacted with excess H2O2 to generate O2. Subsequently, generated O2 reacted with H2O to generate 1O2 and H2O2, revealing the H2O2 cycling in the system. On the other hand, the generated O2 was further oxidized into 1O2 along with Cu(II) reduced back to Cu(I), achieving the Cu(II)/Cu(I) redox cycling. Additionally, due to the SPR effects of AgNPs, the AgNPs on the surface of CS could enhance the efficiency of the charge reaction and capture electrons that underwent electron transfer with the surrounding O2 to produce O2, thereby accelerating the generation of ROS. This process underscores the potential of CSA as a potent catalyst in relevant reactions. Furthermore, the effect of pH and temperature on the catalyst activity of CSA as well as their catalytic stability under physiological conditions was studied (Figure S17). It can be seen that CSA exhibited excellent enzymatic activity under physiological conditions, implying its potential application for subsequent cancer therapy.
在 CSA 的催化体系中,H2O2 吸附在 CSA 表面并被 CSA 中的 Cu(I) 活化,导致 OH 的生成,同时将 Cu(I) 氧化成 Cu(II)。生成的 OH 与过量的 H2O2 反应生成 O2。随后,生成的 O2 与 H2O 反应生成 1O2 和 H2O2,揭示了系统中的 H2O2 循环。另一方面,生成的 O2 进一步氧化成 1O2 以及 Cu(II) 还原回 Cu(I),实现 Cu(II)/Cu(I) 氧化还原循环。此外,由于 AgNPs 的 SPR 效应,CS 表面的 AgNPs 可以提高电荷反应的效率,并捕获与周围 O2 发生电子转移的电子以产生 O2,从而加速 ROS 的产生。这一过程强调了 CSA 作为相关反应中有效催化剂的潜力。此外,还研究了 pH 值和温度对 CSA 催化剂活性及其在生理条件下催化稳定性的影响(图 S17)。由此可见,CSA 在生理条件下表现出优异的酶活性,暗示其在后续癌症治疗中的潜在应用。

2.5. In Vitro Response of CSA
2.5. CSA 的体外反应

Prior to investigating the in vitro response of CSA, it was first modified with fluorescein isothiocyanate (FITC) to explore the cellular endocytosis. As depicted in Figure S18, following incubation with A549 cells (a human lung cancer cell line) for a prolonged time (2, 4, 6, 8, and 10 h), the green fluorescence intensity was observed to increase with the incubation time, implying effective cellular uptake for further therapeutic applications. Given the excellent catalytic activity of the synthesized CSA nanozyme, the in vitro therapeutic activity of CSA was evaluated. Subsequently, the cytotoxicity of CS and CSA was evaluated using the CCK-8 assay with A549 cells. As depicted in Figures S19 and 3A, both CS and CSA showed significant cytotoxicity and exhibited dose-dependent cytotoxicity toward A549 cells, which could be attributed to the potent redox effect of CSA and CS, along with the depletion of GSH and the inhibition of TrxR. Comparatively, CSA exhibited lower toxicity in normal cells (Figure S20). Upon treatment with a 1064 nm laser (1.0 W/cm2, 5 min), cell inhibition was significantly enhanced in comparison with the absence of irradiation, implying the superior therapeutic effect of PTT and photocatalytic therapy. To further evaluate cell viability, confocal laser scanning microscopy (CLSM) imaging was utilized by staining A549 cells with calcein-AM and PI cell staining assays after various treatments (Figure 3B). It can be seen that the most obvious dead cells appeared in the CSA group. Compared to the group without laser irradiation, CSA with NIR-II irradiation exhibited obviously increased apoptosis, which showed evident concentration dependence and demonstrated a notable synergistic therapeutic effect. Collectively, these investigations implied that CSA could be as an excellent nanogent for enhancing cancer cell apoptosis under NIR excitation.
在研究 CSA 的体外反应之前,首先用异硫氰酸荧光素 (FITC) 修饰它以探索细胞内吞作用。如图 S18 所示,与 A549 细胞(一种人肺癌细胞系)长时间孵育后(2、4、6、8 和 10 小时),观察到绿色荧光强度随着孵育时间的增加而增加,这意味着细胞有效摄取用于进一步的治疗应用。鉴于合成的 CSA 纳米酶具有出色的催化活性,评价了 CSA 的体外治疗活性。随后,使用 A549 细胞的 CCK-8 测定评估 CS 和 CSA 的细胞毒性。如图 S193A 所示,CS 和 CSA 均显示出显着的细胞毒性,并且对 A549 细胞表现出剂量依赖性细胞毒性,这可能归因于 CSA 和 CS 的有效氧化还原效应,以及 GSH 的消耗和 TrxR 的抑制。相比之下,CSA 在正常细胞中表现出较低的毒性(图 S20)。用 1064 nm 激光 (1.0 W/cm2, 5 min) 处理后,与没有照射相比,细胞抑制显着增强,这意味着 PTT 和光催化疗法的治疗效果优越。为了进一步评估细胞活力,在各种处理后用钙黄绿素-AM 和 PI 细胞染色测定法对 A549 细胞进行染色,利用共聚焦激光扫描显微镜 (CLSM) 成像(图 3B)。可以看出,最明显的死细胞出现在 CSA 组中。与未激光照射组相比,NIR-II 照射的 CSA 细胞凋亡明显增加,表现出明显的浓度依赖性,并显示出显着的协同治疗效果。 总的来说,这些研究表明 CSA 可以作为一种在 NIR 激发下增强癌细胞凋亡的优秀纳米剂。

Figure 3 图 3

Figure 3. (A) Cell viability of A549 cells treated with different concentrations of CSA under different conditions. Error bars represent standard deviation for n = 5; P values were based on Student’s t-test: ****P < 0.0001, ***P < 0.001, **P < 0.01, and *P < 0.05. (B) Fluorescence images of calcein AM (green, live cells, Ex = 488 nm) and PI (red, dead cells, Ex = 552 nm) costained A549 cells after incubation with various concentrations of CSA for 24 h. Scale bars: 250 μm. (C) Confocal microscopy images of A549 cells with HPF, DHE, and SOSG to study the OH, O2, and 1O2 generation, respectively, in the presence of CSA (15 μg/mL) with or without laser (Ex = 488 nm). Scale bars: 50 μm.
图 3.(A) 在不同条件下用不同浓度的 CSA 处理的 A549 细胞的细胞活力。误差线表示 n = 5 的标准差;P 值基于学生 t 检验:******P < 0.0001,***P < 0.001,**P < 0.01,*P < 0.05。(B) 钙黄绿素 AM (绿色,活细胞,Ex = 488 nm) 和 PI (红色,死细胞,Ex = 552 nm) 共染色 A549 细胞与不同浓度的 CSA 孵育 24 小时后的荧光图像。比例尺:250 μm。(C) 使用 HPF、DHE 和 SOSG 对 A549 细胞进行共聚焦显微镜成像,分别研究在 CSA (15 μg/mL) 存在下(有或没有激光 (Ex = 488 nm) 的 OH、O2 1O2 代。比例尺:50 μm。

Furthermore, in order to confirm the generation of ROS within the cell, a series of fluorescence probes including hydroxyphenyl fluorescein (HPF), dihydroethidium (DHE), and singlet oxygen sensor green (SOSG) were employed to indicate the generation of OH, O2, and 1O2, respectively, using CLSM. As illustrated in Figures 3C and S21, compared to the control, a weaker fluorescence was observed in the CS and CSA groups, indicating less ROS generation. However, the fluorescence was increased in the presence of NIR-II irradiation, which was attributed to the enhancement of catalytic activity for the ROS generation. This observation underscores the potential of NIR-II irradiation in boosting the catalytic activity of CSA, thereby facilitating ROS generation.
此外,为了确认细胞内 ROS 的产生,采用一系列荧光探针,包括羟苯基荧光素 (HPF)、二氢乙锭 (DHE) 和单线态氧传感器绿色 (SOSG) 来指示 OH、O21O2 的产生,分别使用 CLSM。如图 3C 和 S21 所示,与对照组相比,在 CS 和 CSA 组中观察到较弱的荧光,表明 ROS 生成较少。然而,在 NIR-II 照射存在下荧光增加,这归因于 ROS 生成的催化活性增强。这一观察结果强调了 NIR-II 辐照在提高 CSA 催化活性方面的潜力,从而促进 ROS 的产生。
Based on the generated ROS and the interaction of CSA with biological molecules including GSH, lipid, and TrxR, glutathione peroxidase 4 (GPX4), several fluorescent probes such as C11-BODIPY581/591, and TRFs-green as a fluorescent probe were employed to measure the changes in the intracellular GSH level, lipid peroxidation (LPO), and TrxR level, respectively, using CLSM. As shown in Figure S22, the intracellular GSH levels gradually decreased with increasing CSA concentration with further reductions observed under laser irradiation at the same CSA concentrations. It is well established that intracellular GSH depletion is accompanied by the inactivation of GPX4. As illustrated in Figure 4A, the green fluorescence intensity decreased with the increase in incubation CSA, suggesting a decrease in GPX4 expressions in cells. Moreover, the expression of GPX4 in cells after treatment with CSA under laser irradiation was significantly decreased in comparison with the cell only treated with CSA. Because CSA could inhibit the activity of TrxR, the viability of TrxR in cells was assessed via the TrxR assay kit. The results displayed that incubation of A549 cells with CSA drastically reduced the TrxR activity (Figure S23). Incubation of A549 cells with CSA and treatment with laser irradiation could further reduce the TrxR activity compared to that observed in the presence of only CSA. Furthermore, fluorescence images of TrxR expressed by A549 cells after different treatments were recorded and are presented in Figure 4B. Obviously, the expression of TrxR in A549 cells after incubating with CSA nanoparticles under laser irradiation was significantly decreased in comparison with cells treated with CSA. These results demonstrated that CSA could induce GSH depletion and inhibit TrxR activity.
基于生成的 ROS 和 CSA 与 GSH 、脂质和 TrxR、谷胱甘肽过氧化物酶 4 (GPX4) 等生物分子的相互作用,采用 C11-BODIPY581/591 和 TRFs-green 等几种荧光探针作为荧光探针,分别使用 CLSM 测量细胞内 GSH 水平、脂质过氧化 (LPO) 和 TrxR 水平的变化。如图 S22 所示,细胞内 GSH 水平随着 CSA 浓度的增加而逐渐降低,在相同 CSA 浓度的激光照射下观察到进一步降低。众所周知,细胞内 GSH 耗竭伴随着 GPX4 的失活。如图 4A 所示,绿色荧光强度随着孵育 CSA 的增加而降低,表明细胞中 GPX4 表达降低。此外,与仅用 CSA 处理的细胞相比,在激光照射下用 CSA 处理后细胞中 GPX4 的表达显著降低。由于 CSA 可以抑制 TrxR 的活性,因此通过 TrxR 检测试剂盒评估 TrxR 在细胞中的活力。结果表明,A549 细胞与 CSA 的孵育大大降低了 TrxR 活性(图 S23)。与仅在 CSA 存在下观察到的相比,A549 细胞与 CSA 孵育和激光照射处理可以进一步降低 TrxR 活性。此外,记录了不同处理后 A549 细胞表达的 TrxR 的荧光图像,如图 4B 所示。显然,与用 CSA 处理的细胞相比,在激光照射下与 CSA 纳米颗粒孵育后,A549 细胞中 TrxR 的表达显着降低。 这些结果表明,CSA 可以诱导 GSH 耗竭并抑制 TrxR 活性。

Figure 4 图 4

Figure 4. CLSM images of (A) GPX4, (B) TRFS-green, (C) C11-BODIPY581/591, (D) TF2-DEVD-FMK, and (E) AO-stained A549 cells treated with CSA at different concentrations. Scale bars: 50 μm.

Based on the generation of ROS that could induce the LPO of lysosomal membrane, the C11-BODIPY581/591 probe was used to elucidate CSA-triggered LPO, and the results are shown in Figure 4C. The result showed that the intensity of red fluorescence decreased with an increase in CSA concentration, while the intensity of green fluorescence increased, confirming that the lipids of cells incubated with CSA were severely peroxided. In addition, the expression level of cleaved caspase-3, a marker of apoptosis, was measured using CLSM. The results displayed an increase in the green fluorescence intensity in cells incubated with CSA with or without laser irradiation treatment (Figure 4D), implying the induction of apoptosis in the cells.
基于可诱导溶酶体膜 LPO 的 ROS 的产生,使用 C11-BODIPY581/591 探针阐明 CSA 触发的 LPO,结果如图 4C 所示。结果显示,红色荧光强度随 CSA 浓度的增加而降低,而绿色荧光强度增加,证实 CSA 孵育的细胞脂质严重过氧化物。此外,使用 CLSM 测量细胞凋亡标志物裂解的 caspase-3 的表达水平。结果显示,在有或没有激光照射处理的情况下,用 CSA 孵育的细胞中绿色荧光强度增加(图 4D),这意味着细胞中诱导了细胞凋亡。
To further verify these results, western blotting analysis was utilized to assess the alterations in the expression levels of GPX4 and cleaved caspase-3 following a 48 h treatment with CSA in A549 cells under different conditions (Figure S24). It can be seen that a significant reduction in GPX4 expression and an apparent elevation of caspase-3 cleavage were observed. Furthermore, TrxR expression was reduced after cells were incubated with CSA (Figure S25). These observations indicated that the CSA depleted GSH and inhibited TrxR, subsequently leading to an increase in cellular ROS, inducing cell apoptosis. These findings provide further evidence of the potential of CSA in inducing cellular apoptosis.
为了进一步验证这些结果,利用蛋白质印迹分析来评估在不同条件下 A549 细胞中用 CSA 处理 48 小时后 GPX4 和裂解的 caspase-3 表达水平的变化(图 S24)。可以看出,观察到 GPX4 表达显著降低和 caspase-3 切割明显升高。此外,细胞与 CSA 一起孵育后,TrxR 表达降低(图 S25)。这些观察结果表明,CSA 耗尽 GSH 并抑制 TrxR,随后导致细胞 ROS 增加,诱导细胞凋亡。这些发现进一步证明了 CSA 在诱导细胞凋亡中的潜力。
In order to assess the lysosomal membrane integrity of A549 cells following incubation with CSA, an acridine orange (AO) staining method was utilized. As can be seen in Figure 4E, both green and yellow fluorescence were observed in untreated control cells. Upon incubation of A549 cells with CSA, the yellow fluorescence was greatly diminished, demonstrating that lysosomes were damaged, which may be due to CSA-induced ROS generation. Therefore, the results presented above suggested that laser irradiation of CSA-treated A549 cells could elicit cell apoptosis. The mechanisms implicated in CSA-mediated cancer cell killing involve GSH depletion and inhibition of TrxR and ROS-initiated LPO. These findings imply the potential of CSA as a potent therapeutic agent in cancer treatment.
为了评估 A549 细胞与 CSA 孵育后的溶酶体膜完整性,使用了吖啶橙 (AO) 染色方法。如图 4E 所示,在未处理的对照细胞中观察到绿色和黄色荧光。将 A549 细胞与 CSA 孵育后,黄色荧光大大减弱,表明溶酶体受损,这可能是由于 CSA 诱导的 ROS 生成。因此,上述结果表明,激光照射 CSA 处理的 A549 细胞可以引发细胞凋亡。CSA 介导的癌细胞杀伤机制涉及 GSH 耗竭和抑制 TrxR 和 ROS 启动的 LPO。这些发现意味着 CSA 作为癌症治疗中有效治疗剂的潜力。

2.6. In Vivo Antitumor Therapy of CSA
2.6. CSA 的体内抗肿瘤治疗

Inspired by the satisfactory comprehensive results of CSA in vitro, the synergistic therapeutic efficacy of CSA in vivo was evaluated using A549 tumor-bearing mice models. The A549 tumor-bearing mice were divided into five groups: PBS + L group, CS group, CS + L group, CSA group, and CSA + L group. The treatment groups underwent intratumoral injection of CSA (5 mg/kg), followed by irradiation with a 1064 nm laser. It can be seen that the temperature in the PBS + L group did not significantly change, whereas in the CSA + L group, there was a significant temperature increase, reaching 54 °C within 5 min (Figures 5A and S26), suggesting the excellent photothermal conversion capacity of CSA NPs in the tumor tissue.
受 CSA 体外令人满意的综合结果的启发,使用 A549 荷瘤小鼠模型评价了 CSA 在体内的协同治疗效果。将 A549 荷瘤小鼠分为 PBS + L 组、CS 组、CS + L 组、CSA 组和 CSA + L 组。治疗组瘤内注射 CSA (5 mg/kg),然后用 1064 nm 激光照射。可以看出,PBS + L 组的温度没有显着变化,而在 CSA + L 组中,温度显着升高,在 5 分钟内达到 54 °C(图 5A 和 S26),表明 CSA NPs 在肿瘤组织中具有优异的光热转换能力。

Figure 5 图 5

Figure 5. In vivo therapeutic effect and metastasis inhibition of CSA. (A) Infrared thermal images at the tumor sites of mice. Changes in the relative body weight (B), tumor volume (C), and tumor weight (D) of mice with different treatments (n = 6). (E) Photographs of tumors dissected from each group of mice on the 14th day. (F) Micrographs of H & E stained and TUNEL stained tumor slices on the 14th day in different groups (scale bar: 250 μm). Error bars represent standard deviation for n = 5; P values were based on Student’s t-test: ****P < 0.0001, ***P < 0.001, **P < 0.01, and *P < 0.05.
图 5.CSA 的体内治疗效果和转移抑制。(A) 小鼠肿瘤部位的红外热图像。不同处理 (n = 6) 小鼠相对体重 (B) 、肿瘤体积 (C) 和肿瘤重量 (D) 的变化。(E) 第 14 天从每组小鼠解剖的肿瘤照片。(F) 不同组第 14 天 H & E 染色和 TUNEL 染色肿瘤切片的显微照片(比例尺:250 μm)。误差线表示 n = 5 的标准差;P 值基于学生的 t 检验:******P < 0.0001,***P < 0.001,**P < 0.01,*P < 0.05。

The weight of mouse, tumor volumes, and tumor weight of different groups were recorded every 2 days post irradiation during 14 days. It was found that within 14 days of the treatment, the body weight of all the treated mice showed no obvious change (Figure 5B), indicating excellent biocompatibility and no acute in vivo toxicity of CSA. Besides, negligible hemolysis of red blood cells was observed in the presence of CSA (Figure S27), suggesting its compatibility with blood. As presented in Figure 5C, the tumors of mice in the PBS + L, CS, and CSA groups showed rapid growth, showing minimal antitumor effects. In contrast, the tumors of mice in CS + L and CSA + L groups displayed effective tumor-restraint and gradual disappearance, implying the best synergistic effect of NIR-II photothermal and enhanced catalytic properties for antitumor therapy. After 14 days, the tumors and major organs were harvested. As displayed in Figure 5D,E, the weights of tumors from the dissected mice further confirmed the superior therapeutic effect of the CSA + L group, offering the same conclusion about the excellent tumor inhibition effect. In order to investigate the antitumor effect of CSA, the histological analysis for tumor sections harvested from each group of mice, including hematoxylin and eosin staining (H & E) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), was performed (Figure 5F). It can be seen that nearly no or litter dead cells were observed in the PBS + L, CS, and CS + L groups, while severe damage and necrosis presented in the CSA + L group in H & E staining, suggesting that photothermal-enhanced catalytic activity could significantly improve the therapeutic efficiency in tumor treatment. TUNEL staining revealed that compared to other groups, the tumor cell apoptosis increased in the CSA + L group. Taken together, these findings provide further evidence of the efficient antitumor effect of CSA for photothermal/catalytic synergistic therapy. Furthermore, to further assess the biosafety of CSA, H & E staining was performed to study the histological changes of major organs such as liver, spleen, lung, and kidney (Figure S28). No obvious signs of inflammation or tissue damage were observed in these main organs. In order to evaluate the in vivo biodistribution behavior of CSA in A549 tumor-bearing mice, in vivo fluorescence imaging and ICP-MS were performed. As shown in Figures S29 and S30, CSA could deposit at the site of the tumor tissues and then be cleared by the liver. All of these results suggested that CSA does not have any obvious side effects or toxicity, thus supporting the feasibility of using CSA as a smart agent for cancer therapy in vivo.
照射后 14 天内每 2 天记录小鼠体重、肿瘤体积和不同组的肿瘤重量。结果发现,在治疗后 14 天内,所有治疗小鼠的体重均无明显变化(图 5B),表明具有良好的生物相容性,并且没有 CSA 的急性体内毒性。此外,在 CSA 存在下观察到红细胞溶血可忽略不计(图 S27),表明它与血液相容。如图 5C 所示,PBS + L 、 CS 和 CSA 组小鼠的肿瘤表现出快速生长,显示出最小的抗肿瘤作用。相比之下,CS + L 和 CSA + L 组小鼠的肿瘤表现出有效的肿瘤抑制和逐渐消失,表明 NIR-II 光热和增强的抗肿瘤治疗催化作用最佳。14 天后,收获肿瘤和主要器官。如图 5D、E 所示,解剖小鼠的肿瘤重量进一步证实了 CSA + L 组的优越治疗效果,提供了关于优异肿瘤抑制效果的相同结论。为了研究CSA的抗肿瘤作用,对从每组小鼠身上收获的肿瘤切片进行了组织学分析,包括苏木精和伊红染色(H&E)和末端脱氧核苷酸转移酶dUTP缺口末端标记(TUNEL)(图5F)。可以看出,PBS + L、CS 和 CS + L 组几乎没有或观察到死细胞,而 CSA + L 组在 H & E 染色中呈现严重的损伤和坏死,表明光热增强的催化活性可以显着提高肿瘤治疗的治疗效果。 TUNEL 染色显示,与其他组相比,CSA + L 组肿瘤细胞凋亡增加。综上所述,这些发现进一步证明了 CSA 对光热/催化协同治疗的有效抗肿瘤作用。此外,为了进一步评估CSA的生物安全性,进行了H和E染色以研究肝、脾、肺和肾等主要器官的组织学变化(图S28)。在这些主要器官中未观察到明显的炎症或组织损伤迹象。为了评估 CSA 在 A549 荷瘤小鼠体内的生物分布行为,进行了体内荧光成像和 ICP-MS。如图 S29 和 S30 所示,CSA 可以沉积在肿瘤组织部位,然后被肝脏清除。所有这些结果表明,CSA 没有任何明显的副作用或毒性,从而支持了使用 CSA 作为体内癌症治疗的智能药物的可行性。

3. Conclusions 3. 结论

Click to copy section link
单击以复制部分链接
Section link copied!

In summary, a nanozyme platform (CSA) based on Ag-decorated CuSe hollow nanocubes was designed to interfere with cellular redox homeostasis and catalyze a cascade of intracellular biochemical reactions to produce ROS for synergistic cancer therapy of PTT/chemodynamic therapy/photoenhanced catalytic therapy. CSA shows the activity to deplete GSH, leading to GSH reduction, and inhibits the TrxR activity, disrupting redox homeostasis and increasing intracellular ROS levels. Due to the rapid Cu(II)/Cu(I) redox cycling, H2O2 cycling, and abundant catalytically active metal binding sites, CSA shows strong peroxidase-mimicking activity, releasing ROS including OH, O2, and 1O2. Additionally, the SPR effects of Ag enable CSA to exhibit excellent optical adsorption under the NIR II window. The AgNPs can capture the electrons from the CS via the metal to metal charge transfer, reducing O2 to generate O2. Taking advantage of the high peroxidase-mimicking activity, excellent photothermal performance, GSH depletion, and inhibition of TrxR, this platform realized excellent tumor growth inhibition. Therefore, this work presents a new method for designing nanozymes as a ROS source for inducing cell apoptosis and targeting TrxR activity to disrupt cellular redox homeostasis, thereby offering an effective strategy in cancer therapy. Although this work is more an initial proof study, we believe that it lays the foundation for cancer therapy through disrupting cellular redox homeostasis to amplify ROS generation, greatly expanding the application of nanozymes in life science.
综上所述,基于 Ag 修饰的 CuSe 空心纳米立方体的纳米酶平台 (CSA) 旨在干扰细胞氧化还原稳态并催化细胞内生化反应的级联反应,以产生 ROS,用于 PTT/化学动力学疗法/光增强催化疗法的协同癌症治疗。CSA 显示出消耗 GSH 的活性,导致 GSH 减少,并抑制 TrxR 活性,破坏氧化还原稳态并增加细胞内 ROS 水平。由于快速的 Cu(II)/Cu(I) 氧化还原循环、H2O2 循环和丰富的催化活性金属结合位点,CSA 显示出很强的过氧化物酶模拟活性,释放出包括 OH、O21O2 在内的 ROS。此外,Ag 的 SPR 效应使 CSA 能够在 NIR II 窗口下表现出优异的光学吸附。AgNP 可以通过金属到金属的电荷转移从 CS 捕获电子,还原 O2 以产生 O2。利用高过氧化物酶模拟活性、优异的光热性能、GSH 耗竭和 TrxR 抑制作用,该平台实现了优异的肿瘤生长抑制。因此,这项工作提出了一种将纳米酶设计为诱导细胞凋亡和靶向 TrxR 活性以破坏细胞氧化还原稳态的 ROS 来源的新方法,从而为癌症治疗提供有效的策略。虽然这项工作更多的是初步验证研究,但我们相信它通过破坏细胞氧化还原稳态以扩增 ROS 的产生,为癌症治疗奠定了基础,极大地扩展了纳米酶在生命科学中的应用。

Supporting Information 支持信息

Click to copy section link
单击以复制部分链接
Section link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c00929.
支持信息可在 https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c00929 免费获取。

  • Additional experimental materials, methods, and characterization data for the preparation of CSA and CS and other in vitro and in vivo experimental data (PDF)
    用于制备 CSA 和 CS 的其他实验材料、方法和表征数据以及其他体外和体内实验数据 (PDF

Terms & Conditions  条款和条件

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS Web 版本即可获得。此类文件可以按文章下载用于研究用途(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 权限系统请求 ACS 以用于其他用途:http://pubs.acs.org/page/copyright/permissions.html

Author Information 作者信息

Click to copy section link
单击以复制部分链接
Section link copied!

  • Corresponding Authors 通讯作者
    • Pinghua ling - Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, ChinaOrcidhttps://orcid.org/0000-0002-0289-8147 Email: phling@ahnu.edu.cn
      凌平华 - 功能化分子固体教育部实验室,安徽师范大学化学与材料科学学院,安徽省生物医用材料与化学测量重点实验室,中国 241002; Orcid https://orcid.org/0000-0002-0289-8147 电子邮件: phling@ahnu.edu.cn
    • Fang Wang - Institute of Clinical Pharmacy, Jining No. 1 People’s Hospital, Shandong First Medical University, Jining 272000, Shandong, China Email: wangfang900816@163.com
      王芳 - 山东第一医科大学济宁市第一人民医院临床药学研究所, 山东 济宁 272000; 电子邮件:wangfang900816@163.com
  • Authors 作者
    • Danjie Song - Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
      宋丹杰 - 功能化分子固体教育部实验室,安徽师范大学化学与材料科学学院,安徽省生物医用材料与化学测量重点实验室,中国 芜湖241002
    • Pei Yang - Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
      杨 培 - 功能化分子固体教育部实验室,安徽师范大学化学与材料科学学院,安徽省生物医用材料与化学测量重点实验室,中国 241002 芜湖
    • Chuanye Tang - Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
      唐传业 - 功能化分子固体教育部实验室,安徽省生物医用材料与化学测量重点实验室,安徽师范大学化学与材料科学学院,中国 241002
    • Wenwen Xu - Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
      徐雯雯 - 功能化分子固体教育部实验室,安徽师范大学化学与材料科学学院,安徽省生物医用材料与化学测量重点实验室,中国 241002 芜湖
  • Author Contributions 作者贡献

    All authors have given approval to the final version of the manuscript.
    所有作者均已批准手稿的最终版本。

  • Notes 笔记
    The authors declare no competing financial interest.
    作者声明没有竞争性的经济利益。

Acknowledgments 确认

Click to copy section link
单击以复制部分链接
Section link copied!

We gratefully acknowledge support from the National Natural Science Foundation of China (22074002 and 21705004), the University Scientific Research Plan of Anhui Province for funding (2023AH020030), the Doctoral Fund of Jining NO.1 People’s Hospital (2022-BS-004), and the Natural Science Foundation of Shandong Province (ZR2023QB151).
感谢国家自然科学基金(22074002和21705004)、安徽省高校科学研究计划(2023AH020030)、济宁市第一人民医院博士生基金(2022-BS-004)和山东省自然科学基金(ZR2023QB151)的支持。

References 引用

Click to copy section link
单击以复制部分链接
Section link copied!

This article references 57 other publications.
本文引用了其他 57 种出版物。

  1. 1
    Halliwell, B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med. 1991, 91, S14S22,  DOI: 10.1016/0002-9343(91)90279-7

    1
    Halliwell, B. 生命系统中的活性氧:来源、生物化学和在人类疾病中的作用美国医学杂志 199191S14S22 DOI: 10.1016/0002-9343(91)90279-7
    内容
  2. 2
    Yang, B.; Chen, Y.; Shi, J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem. Rev. 2019, 119, 48814985,  DOI: 10.1021/acs.chemrev.8b00626

    2
    杨 B.;陈 Y.;石 J. 基于活性氧 (ROS) 的纳米医学化学修订版 201911948814985 DOI: 10.1021/acs.chemrev.8b00626
  3. 3
    Schumacker, P. T. Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell 2006, 10, 175176,  DOI: 10.1016/j.ccr.2006.08.015

    3
    Schumacker, PT 癌细胞中的活性氧:活在刀剑下,死于刀剑癌细胞 200610175176 DOI: 10.1016/j.ccr.2006.08.015
    内容
  4. 4
    Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat. Rev. Drug Discovery 2009, 8, 579591,  DOI: 10.1038/nrd2803

    4
    特拉楚瑟姆,D.;亚历山大,J.;黄 P. 通过 ROS 介导的机制靶向癌细胞:一种激进的治疗方法?Nat. Rev. 药物发现 20098579591 DOI: 10.1038/nrd2803
    内容
  5. 5
    Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349361,  DOI: 10.1038/nri3423

    5
    内森,C.;坎宁安-巴塞尔 超越氧化应激:免疫学家的活性氧指南Nat. Rev. 免疫学。 201313349361 DOI: 10.1038/nri3423
    内容
  6. 6
    Fraisl, P.; Aragonés, J.; Carmeliet, P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat. Rev. Drug Discovery 2009, 8, 139152,  DOI: 10.1038/nrd2761

    6
    弗莱尔,P.;阿拉贡内斯,J.;卡梅利特,P. 抑制氧传感器作为缺血性和炎症性疾病的治疗策略Nat. Rev. Drug Discovery 20098139152 DOI: 10.1038/nrd2761
    内容
  7. 7
    Yu, L.; Xu, Y.; Pu, Z.; Kang, H.; Li, M.; Sessler, J. L.; Kim, J. S. Photocatalytic Superoxide Radical Generator that Induces Pyroptosis in Cancer Cells. J. Am. Chem. Soc. 2022, 144, 1132611337,  DOI: 10.1021/jacs.2c03256

    7
    余 L.;徐 Y.;蒲 Z.;康,H.;李 M.;塞斯勒,JL;金 J. S. 光催化超氧自由基发生器,在癌细胞中诱导焦亡J. Am. Chem. Soc. 20221441132611337 DOI: 10.1021/jacs.2c03256
    内容
  8. 8
    Wang, Z.; Wei, M.; Liu, Q.; Lu, X.; Zhou, J.; Wang, J. Oxygen-defective zinc oxide nanoparticles as highly efficient and safe sonosensitizers for cancer therapy. Chem. Commun. 2023, 59, 1096810971,  DOI: 10.1039/D3CC02486E

    8
    王 Z.;魏,M.;刘 Q.;卢 X.;周,J.;王 J. 缺氧氧化锌纳米颗粒作为癌症治疗的高效和安全的声敏剂化学公报。 2023591096810971 DOI: 10.1039/D3CC02486E
  9. 9
    Wang, Y.; Tang, Q.; Wu, R.; Sun, S.; Zhang, J.; Chen, J.; Gong, M.; Chen, C.; Liang, X. Ultrasound-Triggered Piezocatalysis for Selectively Controlled NO Gas and Chemodrug Release to Enhance Drug Penetration in Pancreatic Cancer. ACS Nano 2023, 17, 35573573,  DOI: 10.1021/acsnano.2c09948

    9
    王 Y.;唐 Q.;吴,R.;Sun, S.;张 J.;陈 J.;龚,M.;陈 C.;梁 X. 超声触发的压电催化,用于选择性控制 NO 气体和化疗药物释放,以增强药物在胰腺癌中的渗透性。ACS Nano 20231735573573 DOI: 10.1021/acsnano.2c09948
  10. 10
    Du, Z.; Wang, X.; Zhang, X.; Gu, Z.; Fu, X.; Gan, S.; Fu, T.; Xie, S.; Tan, W. X-Ray-triggered Carbon Monoxide and Manganese Dioxide Generation based on Scintillating Nanoparticles for Cascade Cancer Radiosensitization. Angew. Chem., Int. Ed. 2023, 62, e202302525  DOI: 10.1002/anie.202302525

    10
    杜,Z.;王 X.;张 X.;顾 Z.;Fu, X.;甘,S.;傅 T.;谢 S.;谭 W. 基于闪烁纳米粒子的 X 射线触发的一氧化碳和二氧化锰生成,用于级联癌症放射增敏Angew. Chem., 国际教育 202362e202302525  DOI: 10.1002/anie.202302525
  11. 11
    Zhang, R.; Ma, Q.; Hu, G.; Wang, L. Acid-Triggered H2O2 Self-Supplying Nanoplatform for 19F-MRI with Enhanced Chemo-Chemodynamic Therapy. Anal. Chem. 2022, 94, 37273734,  DOI: 10.1021/acs.analchem.2c00023

    11
    张 R.;马,Q.;胡 G.;王 L. 酸触发的 H2O2 自供给纳米平台,用于 19F-MRI 和增强的化学化学动力学治疗Anal. 化学。 20229437273734 DOI: 10.1021/acs.analchem.2c00023
    内容
  12. 12
    Zhang, Y.; Zhang, Q.; Wang, F.; Li, M.; Shi, X.; Li, J. Activatable Semiconducting Polymer Nanoinducers Amplify Oxidative Damage via Sono-Ferroptosis for Synergistic Therapy of Bone Metastasis. Nano Lett. 2023, 23, 76997708,  DOI: 10.1021/acs.nanolett.3c02414

    12
    张 Y.;张 Q.;王 F.;李 M.;石 X.;李杰 可激活的半导体聚合物纳米诱导剂通过声铁死亡放大氧化损伤,以协同治疗骨转移纳米莱特。 20232376997708 DOI: 10.1021/acs.nanolett.3c02414
    内容
  13. 13
    Zhao, B.; Ma, Z.; Ding, S.; Cao, Y.; Du, J.; Zeng, L.; Hu, Y.; Zhou, J.; Zhang, X.; Bian, X. w.; Tian, G. Catalytic MnWO4 Nanorods for Chemodynamic Therapy Synergized Radiotherapy of Triple Negative Breast Cancer. Adv. Funct. Mater. 2023, 33, 2306328,  DOI: 10.1002/adfm.202306328

    13
    赵 B.;马,Z.;丁 S.;曹 Y.;杜 J.;曾, L.;胡 Y.;周,J.;张 X.;Bian, X. w.;田 G. 催化 MnWO4 纳米棒用于三阴性乳腺癌的化学动力学治疗协同放疗Adv. Funct.母公司。 2023332306328 DOI: 10.1002/adfm.202306328
    内容
  14. 14
    Zhang, J.; Li, X.; Han, X.; Liu, R.; Fang, J. Targeting the Thioredoxin System for Cancer Therapy. Trends Pharmacol. Sci. 2017, 38, 794808,  DOI: 10.1016/j.tips.2017.06.001
  15. 15
    Purohit, M. P.; Verma, N. K.; Kar, A. K.; Singh, A.; Ghosh, D.; Patnaik, S. Inhibition of Thioredoxin Reductase by Targeted Selenopolymeric Nanocarriers Synergizes the Therapeutic Efficacy of Doxorubicin in MCF7 Human Breast Cancer Cells. ACS Appl. Mater. Interfaces 2017, 9, 3649336512,  DOI: 10.1021/acsami.7b07056
  16. 16
    Lu, J.; Chew, E. H.; Holmgren, A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 1228812293,  DOI: 10.1073/pnas.0701549104
  17. 17
    Sun, X.; Xu, X.; Yue, X.; Wang, T.; Wang, Z.; Zhang, C.; Wang, J. Nanozymes With Osteochondral Regenerative Effects: An Overview of Mechanisms and Recent Applications. Adv. Healthcare Mater. 2023, 13, 2301924,  DOI: 10.1002/adhm.202301924
  18. 18
    Fedeli, S.; Im, J.; Gopalakrishnan, S.; Elia, J. L.; Gupta, A.; Kim, D.; Rotello, V. M. Nanomaterial-based bioorthogonal nanozymes for biological applications. Chem. Soc. Rev. 2021, 50, 1346713480,  DOI: 10.1039/D0CS00659A
  19. 19
    Huang, X.; Zhang, S.; Tang, Y.; Zhang, X.; Bai, Y.; Pang, H. Advances in metal-organic framework-based nanozymes and their applications. Coord. Chem. Rev. 2021, 449, 214216,  DOI: 10.1016/j.ccr.2021.214216
  20. 20
    Wei, H.; Gao, L.; Fan, K.; Liu, J.; He, J.; Qu, X.; Dong, S.; Wang, E.; Yan, X. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269,  DOI: 10.1016/j.nantod.2021.101269
  21. 21
    Wang, Z.; Zhang, Y.; Ju, E.; Liu, Z.; Cao, F.; Chen, Z.; Ren, J.; Qu, X. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334,  DOI: 10.1038/s41467-018-05798-x
  22. 22
    Yi, G.; Tao, Z.; Fan, W.; Zhou, H.; Zhuang, Q.; Wang, Y. Copper Ion-Induced Self-Assembled Aerogels of Carbon Dots as Peroxidase-Mimicking Nanozymes for Colorimetric Biosensing of Organophosphorus Pesticide. ACS Sustainable Chem. Eng. 2024, 12, 13781387,  DOI: 10.1021/acssuschemeng.3c04729
  23. 23
    Zhao, L.; Sun, Z.; Wang, Y.; Huang, J.; Wang, H.; Li, H.; Chang, F.; Jiang, Y. Plasmonic nanobipyramids with photo-enhanced catalytic activity under near-infrared II window for effective treatment of breast cancer. Acta Biomater. 2023, 170, 496506,  DOI: 10.1016/j.actbio.2023.08.055
  24. 24
    Liu, W.; Zhang, Y.; Wei, G.; Zhang, M.; Li, T.; Liu, Q.; Zhou, Z.; Du, Y.; Wei, H. Integrated Cascade Nanozymes with Antisenescence Activities for Atherosclerosis Therapy. Angew. Chem., Int. Ed. 2023, 62, e202304465  DOI: 10.1002/anie.202304465
  25. 25
    Kim, J.; Kim, H. Y.; Song, S. Y.; Go, S. H.; Sohn, H. S.; Baik, S.; Soh, M.; Kim, K.; Kim, D.; Kim, H. C.; Lee, N.; Kim, B. S.; Hyeon, T. Synergistic Oxygen Generation and Reactive Oxygen Species Scavenging by Manganese Ferrite/Ceria Co-decorated Nanoparticles for Rheumatoid Arthritis Treatment. ACS Nano 2019, 13, 32063217,  DOI: 10.1021/acsnano.8b08785
  26. 26
    Liu, S.; Li, W.; Ding, H.; Tian, B.; Fang, L.; Zhao, X.; Zhao, R.; An, B.; Ding, L.; Zhong, L.; Yang, P. Biomineralized RuO2 Nanozyme with Multi-Enzyme Activity for Ultrasound-Triggered Peroxynitrite-Boosted Ferroptosis. Small 2023, 19, 2303057,  DOI: 10.1002/smll.202303057
  27. 27
    Fu, R.; Ma, Z.; Zhao, H.; Jin, H.; Tang, Y.; He, T.; Ding, Y.; Zhang, J.; Ye, D. Research Progress in Iron-Based Nanozymes: Catalytic Mechanisms, Classification, and Biomedical Applications. Anal. Chem. 2023, 95, 1084410858,  DOI: 10.1021/acs.analchem.3c01005
  28. 28
    Zou, Y.; Jin, B.; Li, H.; Wu, X.; Liu, Y.; Zhao, H.; Zhong, D.; Wang, L.; Chen, W.; Wen, M.; Liu, Y. N. Cold Nanozyme for Precise Enzymatic Antitumor Immunity. ACS Nano 2022, 16, 2149121504,  DOI: 10.1021/acsnano.2c10057
  29. 29
    James, C. C.; de Bruin, B.; Reek, J. N. H. Transition Metal Catalysis in Living Cells: Progress, Challenges, and Novel Supramolecular Solutions. Angew. Chem., Int. Ed. 2023, 62, e202306645  DOI: 10.1002/anie.202306645
  30. 30
    Hu, C.; Man, R.; Li, H.; Xia, M.; Yu, Z.; Tang, B. Near-Infrared Triggered Self-Accelerating Nanozyme Camouflaged with a Cancer Cell Membrane for Precise Targeted Imaging and Enhanced Cancer Immunotherapy. Anal. Chem. 2023, 95, 1357513585,  DOI: 10.1021/acs.analchem.3c02218
  31. 31
    Gong, J.; Liu, Q.; Cai, L.; Yang, Q.; Tong, Y.; Chen, X.; Kotha, S.; Mao, X.; He, W. Multimechanism Collaborative Superior Antioxidant CDzymes To Alleviate Salt Stress-Induced Oxidative Damage in Plant Growth. ACS Sustainable Chem. Eng. 2023, 11, 42374247,  DOI: 10.1021/acssuschemeng.2c07371
  32. 32
    Xu, G.; Du, X.; Wang, W.; Qu, Y.; Liu, X.; Zhao, M.; Li, W.; Li, Y. Q. Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme-Mimicking Activity of Nanomaterials. Small 2022, 18, 2204131,  DOI: 10.1002/smll.202204131
  33. 33
    He, T.; Jiang, C.; He, J.; Zhang, Y.; He, G.; Wu, J.; Lin, J.; Zhou, X.; Huang, P. Manganese-Dioxide-Coating-Instructed Plasmonic Modulation of Gold Nanorods for Activatable Duplex-Imaging-Guided NIR-II Photothermal-Chemodynamic Therapy. Adv. Mater. 2021, 33, 2008540,  DOI: 10.1002/adma.202008540
  34. 34
    Ye, J.; Lv, W.; Li, C.; Liu, S.; Yang, X.; Zhang, J.; Wang, C.; Xu, J.; Jin, G.; Li, B.; Fu, Y.; Liang, X. Tumor Response and NIR-II Photonic Thermal Co-Enhanced Catalytic Therapy Based on Single-Atom Manganese Nanozyme. Adv. Funct. Mater. 2022, 32, 2206157,  DOI: 10.1002/adfm.202206157
  35. 35
    An, L.; Wang, C.; Tian, Q.; Tao, C.; Xue, F.; Yang, S.; Zhou, X.; Chen, X.; Huang, G. NIR-II laser-mediated photo-Fenton-like reaction via plasmonic Cu9S8 for immunotherapy enhancement. Nano Today 2022, 43, 101397,  DOI: 10.1016/j.nantod.2022.101397
  36. 36
    Li, S.; Shang, L.; Xu, B.; Wang, S.; Gu, K.; Wu, Q.; Sun, Y.; Zhang, Q.; Yang, H.; Zhang, F.; Gu, L.; Zhang, T.; Liu, H. A Nanozyme with Photo-Enhanced Dual Enzyme-Like Activities for Deep Pancreatic Cancer Therapy. Angew. Chem., Int. Ed. 2019, 58, 1262412631,  DOI: 10.1002/anie.201904751
  37. 37
    Meng, X.; Sun, S.; Gong, C.; Yang, J.; Yang, Z.; Zhang, X.; Dong, H. Ag-Doped Metal-Organic Frameworks’ Heterostructure for Sonodynamic Therapy of Deep-Seated Cancer and Bacterial Infection. ACS Nano 2023, 17, 11741186,  DOI: 10.1021/acsnano.2c08687
  38. 38
    Oh, W. D.; Lok, L. W.; Veksha, A.; Giannis, A.; Lim, T. T. Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4 under solar irradiation: Performance and mechanistic studies. Chem. Eng. J. 2018, 333, 739749,  DOI: 10.1016/j.cej.2017.09.182
  39. 39
    Wang, N.; Li, P.; Zhao, J.; Liu, Y.; Hu, X.; Ling, D.; Li, F. An anisotropic photocatalytic agent elicits robust photoimmunotherapy through plasmonic catalysis-mediated tumor microenvironment modulation. Nano Today 2023, 50, 101827,  DOI: 10.1016/j.nantod.2023.101827
  40. 40
    Hasan, A. A.; Kalinina, E.; Tatarskiy, V.; Shtil, A. The Thioredoxin System of Mammalian Cells and Its Modulators. Biomedicines 2022, 10, 1757,  DOI: 10.3390/biomedicines10071757
  41. 41
    Zeisel, L.; Felber, J. G.; Scholzen, K. C.; Poczka, L.; Cheff, D.; Maier, M. S.; Cheng, Q.; Shen, M.; Hall, M. D.; Arnér, E. S. J.; Thorn-Seshold, J.; Thorn-Seshold, O. Selective cellular probes for mammalian thioredoxin reductase TrxR1: Rational design of RX1, a modular 1,2-thiaselenane redox probe. Chem. 2022, 8, 14931517,  DOI: 10.1016/j.chempr.2022.03.010
  42. 42
    Srivastava, M.; Singh, S.; Self, W. T. Exposure to Silver Nanoparticles Inhibits Selenoprotein Synthesis and the Activity of Thioredoxin Reductase. Environ. Health Perspect. 2012, 120, 5661,  DOI: 10.1289/ehp.1103928
  43. 43
    Pang, M.; Zeng, H. C. Highly Ordered Self-Assemblies of Submicrometer Cu2O Spheres and Their Hollow Chalcogenide Derivatives. Langmuir 2010, 26, 59635970,  DOI: 10.1021/la904292t
  44. 44
    Mao, Z.; Yang, Z.; Tao, W.; Tang, Q.; Xiao, Y.; Jiang, Y.; Guo, S. Ultrafine Ag Nanoparticles Anchored on Hollow S-Doped CeO2 Spheres for Synergistically Enhanced Tetracycline Degradation under Visible Light. Ind. Eng. Chem. Res. 2022, 61, 1709217101,  DOI: 10.1021/acs.iecr.2c02674
  45. 45
    Guo, Y.; Wang, H.; Ma, X.; Jin, J.; Ji, W.; Wang, X.; Song, W.; Zhao, B.; He, C. Fabrication of Ag-Cu2O/Reduced Graphene Oxide Nanocomposites as Surface-Enhanced Raman Scattering Substrates for in Situ Monitoring of Peroxidase-Like Catalytic Reaction and Biosensing. ACS Appl. Mater. Interfaces 2017, 9, 1907419081,  DOI: 10.1021/acsami.7b02149
  46. 46
    Rasheed, M.; Saira, F.; Batool, Z.; khan, H. M.; Yaseen, J.; Arshad, M.; Kalsoom, A.; Ahmeda, H. E.; Naeem Ashiq, M. N. Facile synthesis of a CuSe/PVP nanocomposite for ultrasensitive non-enzymatic glucose biosensing. RSC Adv. 2023, 13, 2675526765,  DOI: 10.1039/d3ra03175f
  47. 47
    Kayed, K.; Mayada Issa, M.; Al-ourabi, H. The FTIR spectra of Ag/Ag2O composites doped with silver nanoparticles. J. Exp. Nanosci. 2024, 19, 2336227,  DOI: 10.1080/17458080.2024.2336227
  48. 48
    Abu-Elsaad, N. I.; Nawara, A. S.; Mazen, S. A. Synthesis, structural characterization, and magnetic properties of Ni-Zn nanoferrites substituted with different metal ions (Mn2+, Co2+, and Cu2+). J. Phys. Chem. Solids 2020, 146, 109620,  DOI: 10.1016/j.jpcs.2020.109620
  49. 49
    Khurana, A.; Tekula, S.; Saifi, M. A.; Venkatesh, P.; Godugu, C. Therapeutic applications of selenium nanoparticles. Pharmacother. 2019, 111, 802812,  DOI: 10.1016/j.biopha.2018.12.146

    49
    库拉纳,A.;Tekula, S.;马萨诸塞州 Saifi;文卡特什,P.;戈杜古 C. 硒纳米颗粒的治疗应用药剂师。 2019111802812 DOI: 10.1016/j.biopha.2018.12.146
  50. 50
    Zhang, X. L.; Hu, S. J.; Zheng, Y. R.; Wu, R.; Gao, F. Y.; Yang, P. P.; Niu, Z. Z.; Gu, C.; Yu, X.; Zheng, X. S.; Ma, C.; Zheng, X.; Zhu, J. F.; Gao, M. R.; Yu, S. H. Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy. Nat. Commun. 2019, 10, 5338,  DOI: 10.1038/s41467-019-12992-y

    50
    张 X. L.;胡, SJ;郑,YR;吴,R.;高,FY;杨,PP;牛,ZZ;顾 C.;于,X.;郑,XS;马,C.;郑 X.;朱,JF;高,MR;余 S. H. 多晶型二硒化钴作为酸性介质中极其稳定的电催化剂,通过相混合策略Nat. Commun. 2019105338 DOI: 10.1038/s41467-019-12992-y
    内容
  51. 51
    Yang, C.; Wang, M.; Chang, M.; Yuan, M.; Zhang, W.; Tan, J.; Ding, B.; Ma, P. a.; Lin, J. Heterostructural Nanoadjuvant CuSe/CoSe2 for Potentiating Ferroptosis and Photoimmunotherapy through Intratumoral Blocked Lactate Efflux. J. Am. Chem. Soc. 2023, 145, 72057217,  DOI: 10.1021/jacs.2c12772

    51
    杨 C.;王 M.;张,M.;袁 M.;张 W.;谭 J.;丁 B.;宾夕法尼亚州马;林 J. 异质结构纳米辅助 CuSe/CoSe2 通过瘤内阻断乳酸外排增强铁死亡和光免疫治疗J. Am. Chem. Soc. 202314572057217 DOI: 10.1021/jacs.2c12772
  52. 52
    Ji, R.; Sun, W.; Chu, Y. One-step hydrothermal synthesis of Ag/Cu2O heterogeneous nanostructures over Cu foil and their SERS applications. RSC Adv. 2014, 4, 60556059,  DOI: 10.1039/c3ra44281k
  53. 53
    Liu, J.; Zhang, X.; Wen, B.; Li, Y.; Wu, J.; Wang, Z.; Wu, T.; Zhao, R.; Yang, S. Pre-carbonized nitrogen-rich polytriazines for the controlled growth of silver nanoparticles: catalysts for enhanced CO2 chemical conversion at atmospheric pressure. Catal. Sci. Technol. 2021, 11, 31193127,  DOI: 10.1039/D0CY02473B
  54. 54
    Yu, B.; Zhou, Y.; Li, P.; Tu, W.; Li, P.; Tang, L.; Ye, J.; Zou, Z. Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 2016, 8, 1187011874,  DOI: 10.1039/C6NR02547A
  55. 55
    Sathishkumar, K.; Sowmiya, K.; Arul Pragasan, L.; Rajagopal, R.; Sathya, R.; Ragupathy, S.; Krishnakumar, M.; Minnam Reddy, V. R. Enhanced photocatalytic degradation of organic pollutants by Ag-TiO2 loaded cassava stem activated carbon under sunlight irradiation. Chemosphere 2022, 302, 134844,  DOI: 10.1016/j.chemosphere.2022.134844
  56. 56
    Wang, C.; Cao, F. J.; Ruan, Y.; Jia, X.; Zhen, W.; Jiang, X. Specific Generation of Singlet Oxygen through the Russell Mechanism in Hypoxic Tumors and GSH Depletion by Cu-TCPP Nanosheets for Cancer Therapy. Angew. Chem. 2019, 131, 99519955,  DOI: 10.1002/ange.201903981
  57. 57
    Chiang, C.; Chu, K.; Lin, C.; Xie, S.; Liu, Y.; Demeshko, S.; Lee, G.; Meyer, F.; Tsai, M.; Chiang, M.; Chien-Ming Lee, C. Photoinduced NO and HNO Production from Mononuclear {FeNO}6 Complex Bearing a Pendant Thiol. J. Am. Chem. Soc. 2020, 142, 86498661,  DOI: 10.1021/jacs.9b13837

Cited By

Click to copy section linkSection link copied!

This article has not yet been cited by other publications.

ACS Biomaterials Science & Engineering

Cite this: ACS Biomater. Sci. Eng. 2024, 10, 8, 5290–5299
Click to copy citationCitation copied!
https://doi.org/10.1021/acsbiomaterials.4c00929
Published July 16, 2024
Copyright © 2024 American Chemical Society

Article Views

289

Altmetric

-

Citations

-
Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Scheme 1

    Scheme 1. Illustration of (A) Synthetic Process of CSA and (B) Proposed Antitumor Mechanism of CSA for Improved Photothermal Therapy

    Figure 1

    Figure 1. TEM images of (A) Cu2O NPs, (B) CS NPs, and (C) CSA NPs. (D) HR-TEM image of CSA. (E) HAADF-STEM image and elemental mappings of Cu, Se, and Ag elements in CSA NPs. (F) XRD spectra for Cu2O NPs, CS NPs, and CSA NPs. (G) Full XPS spectra for CS and CSA. High-resolution XPS spectra for (H) Cu 2p, (I) Se 3d, and (J) Ag 3d in CSA.

    Figure 2

    Figure 2. (A) Relative activity of TrxR enzyme with the treatment of different amounts of CSA (n = 3). (B) Time-dependent UV/vis absorption changes of DTNB treated with CSA (50 μg/mL) in a PBS solution containing GSH (10 mM). (C) Photothermal heating curves of CSA with different concentrations under 1064 nm laser (1.0 W/cm2). (D) Temperature curves of CSA (50 μg/mL) with a 1064 nm laser of different power irradiation for different times. (E) Recycling–heating profiles of CSA solution (50 μg/mL) under cyclic on/off laser irradiation. (F) Temperature elevation and cooling curves of CSA solution (50 μg/mL) after 5 min of irradiation (1.0 W/cm2) and linear regression data obtained from the cooling period. ESR spectra of (G) DMPO/OH, (H) DMPO/O2, and (I) TEMP/1O2, treated with H2O2, CSA, or NIR irradiation under different conditions.

    Figure 3

    Figure 3. (A) Cell viability of A549 cells treated with different concentrations of CSA under different conditions. Error bars represent standard deviation for n = 5; P values were based on Student’s t-test: ****P < 0.0001, ***P < 0.001, **P < 0.01, and *P < 0.05. (B) Fluorescence images of calcein AM (green, live cells, Ex = 488 nm) and PI (red, dead cells, Ex = 552 nm) costained A549 cells after incubation with various concentrations of CSA for 24 h. Scale bars: 250 μm. (C) Confocal microscopy images of A549 cells with HPF, DHE, and SOSG to study the OH, O2, and 1O2 generation, respectively, in the presence of CSA (15 μg/mL) with or without laser (Ex = 488 nm). Scale bars: 50 μm.

    Figure 4

    Figure 4. CLSM images of (A) GPX4, (B) TRFS-green, (C) C11-BODIPY581/591, (D) TF2-DEVD-FMK, and (E) AO-stained A549 cells treated with CSA at different concentrations. Scale bars: 50 μm.

    Figure 5

    Figure 5. In vivo therapeutic effect and metastasis inhibition of CSA. (A) Infrared thermal images at the tumor sites of mice. Changes in the relative body weight (B), tumor volume (C), and tumor weight (D) of mice with different treatments (n = 6). (E) Photographs of tumors dissected from each group of mice on the 14th day. (F) Micrographs of H & E stained and TUNEL stained tumor slices on the 14th day in different groups (scale bar: 250 μm). Error bars represent standard deviation for n = 5; P values were based on Student’s t-test: ****P < 0.0001, ***P < 0.001, **P < 0.01, and *P < 0.05.

  • References


    This article references 57 other publications.

    1. 1
      Halliwell, B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med. 1991, 91, S14S22,  DOI: 10.1016/0002-9343(91)90279-7
    2. 2
      Yang, B.; Chen, Y.; Shi, J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem. Rev. 2019, 119, 48814985,  DOI: 10.1021/acs.chemrev.8b00626
    3. 3
      Schumacker, P. T. Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell 2006, 10, 175176,  DOI: 10.1016/j.ccr.2006.08.015
    4. 4
      Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat. Rev. Drug Discovery 2009, 8, 579591,  DOI: 10.1038/nrd2803
    5. 5
      Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349361,  DOI: 10.1038/nri3423
    6. 6
      Fraisl, P.; Aragonés, J.; Carmeliet, P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat. Rev. Drug Discovery 2009, 8, 139152,  DOI: 10.1038/nrd2761
    7. 7
      Yu, L.; Xu, Y.; Pu, Z.; Kang, H.; Li, M.; Sessler, J. L.; Kim, J. S. Photocatalytic Superoxide Radical Generator that Induces Pyroptosis in Cancer Cells. J. Am. Chem. Soc. 2022, 144, 1132611337,  DOI: 10.1021/jacs.2c03256
    8. 8
      Wang, Z.; Wei, M.; Liu, Q.; Lu, X.; Zhou, J.; Wang, J. Oxygen-defective zinc oxide nanoparticles as highly efficient and safe sonosensitizers for cancer therapy. Chem. Commun. 2023, 59, 1096810971,  DOI: 10.1039/D3CC02486E
    9. 9
      Wang, Y.; Tang, Q.; Wu, R.; Sun, S.; Zhang, J.; Chen, J.; Gong, M.; Chen, C.; Liang, X. Ultrasound-Triggered Piezocatalysis for Selectively Controlled NO Gas and Chemodrug Release to Enhance Drug Penetration in Pancreatic Cancer. ACS Nano 2023, 17, 35573573,  DOI: 10.1021/acsnano.2c09948
    10. 10
      Du, Z.; Wang, X.; Zhang, X.; Gu, Z.; Fu, X.; Gan, S.; Fu, T.; Xie, S.; Tan, W. X-Ray-triggered Carbon Monoxide and Manganese Dioxide Generation based on Scintillating Nanoparticles for Cascade Cancer Radiosensitization. Angew. Chem., Int. Ed. 2023, 62, e202302525  DOI: 10.1002/anie.202302525
    11. 11
      Zhang, R.; Ma, Q.; Hu, G.; Wang, L. Acid-Triggered H2O2 Self-Supplying Nanoplatform for 19F-MRI with Enhanced Chemo-Chemodynamic Therapy. Anal. Chem. 2022, 94, 37273734,  DOI: 10.1021/acs.analchem.2c00023
    12. 12
      Zhang, Y.; Zhang, Q.; Wang, F.; Li, M.; Shi, X.; Li, J. Activatable Semiconducting Polymer Nanoinducers Amplify Oxidative Damage via Sono-Ferroptosis for Synergistic Therapy of Bone Metastasis. Nano Lett. 2023, 23, 76997708,  DOI: 10.1021/acs.nanolett.3c02414
    13. 13
      Zhao, B.; Ma, Z.; Ding, S.; Cao, Y.; Du, J.; Zeng, L.; Hu, Y.; Zhou, J.; Zhang, X.; Bian, X. w.; Tian, G. Catalytic MnWO4 Nanorods for Chemodynamic Therapy Synergized Radiotherapy of Triple Negative Breast Cancer. Adv. Funct. Mater. 2023, 33, 2306328,  DOI: 10.1002/adfm.202306328
    14. 14
      Zhang, J.; Li, X.; Han, X.; Liu, R.; Fang, J. Targeting the Thioredoxin System for Cancer Therapy. Trends Pharmacol. Sci. 2017, 38, 794808,  DOI: 10.1016/j.tips.2017.06.001
    15. 15
      Purohit, M. P.; Verma, N. K.; Kar, A. K.; Singh, A.; Ghosh, D.; Patnaik, S. Inhibition of Thioredoxin Reductase by Targeted Selenopolymeric Nanocarriers Synergizes the Therapeutic Efficacy of Doxorubicin in MCF7 Human Breast Cancer Cells. ACS Appl. Mater. Interfaces 2017, 9, 3649336512,  DOI: 10.1021/acsami.7b07056
    16. 16
      Lu, J.; Chew, E. H.; Holmgren, A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 1228812293,  DOI: 10.1073/pnas.0701549104
    17. 17
      Sun, X.; Xu, X.; Yue, X.; Wang, T.; Wang, Z.; Zhang, C.; Wang, J. Nanozymes With Osteochondral Regenerative Effects: An Overview of Mechanisms and Recent Applications. Adv. Healthcare Mater. 2023, 13, 2301924,  DOI: 10.1002/adhm.202301924
    18. 18
      Fedeli, S.; Im, J.; Gopalakrishnan, S.; Elia, J. L.; Gupta, A.; Kim, D.; Rotello, V. M. Nanomaterial-based bioorthogonal nanozymes for biological applications. Chem. Soc. Rev. 2021, 50, 1346713480,  DOI: 10.1039/D0CS00659A
    19. 19
      Huang, X.; Zhang, S.; Tang, Y.; Zhang, X.; Bai, Y.; Pang, H. Advances in metal-organic framework-based nanozymes and their applications. Coord. Chem. Rev. 2021, 449, 214216,  DOI: 10.1016/j.ccr.2021.214216
    20. 20
      Wei, H.; Gao, L.; Fan, K.; Liu, J.; He, J.; Qu, X.; Dong, S.; Wang, E.; Yan, X. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269,  DOI: 10.1016/j.nantod.2021.101269
    21. 21
      Wang, Z.; Zhang, Y.; Ju, E.; Liu, Z.; Cao, F.; Chen, Z.; Ren, J.; Qu, X. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334,  DOI: 10.1038/s41467-018-05798-x
    22. 22
      Yi, G.; Tao, Z.; Fan, W.; Zhou, H.; Zhuang, Q.; Wang, Y. Copper Ion-Induced Self-Assembled Aerogels of Carbon Dots as Peroxidase-Mimicking Nanozymes for Colorimetric Biosensing of Organophosphorus Pesticide. ACS Sustainable Chem. Eng. 2024, 12, 13781387,  DOI: 10.1021/acssuschemeng.3c04729
    23. 23
      Zhao, L.; Sun, Z.; Wang, Y.; Huang, J.; Wang, H.; Li, H.; Chang, F.; Jiang, Y. Plasmonic nanobipyramids with photo-enhanced catalytic activity under near-infrared II window for effective treatment of breast cancer. Acta Biomater. 2023, 170, 496506,  DOI: 10.1016/j.actbio.2023.08.055
    24. 24
      Liu, W.; Zhang, Y.; Wei, G.; Zhang, M.; Li, T.; Liu, Q.; Zhou, Z.; Du, Y.; Wei, H. Integrated Cascade Nanozymes with Antisenescence Activities for Atherosclerosis Therapy. Angew. Chem., Int. Ed. 2023, 62, e202304465  DOI: 10.1002/anie.202304465
    25. 25
      Kim, J.; Kim, H. Y.; Song, S. Y.; Go, S. H.; Sohn, H. S.; Baik, S.; Soh, M.; Kim, K.; Kim, D.; Kim, H. C.; Lee, N.; Kim, B. S.; Hyeon, T. Synergistic Oxygen Generation and Reactive Oxygen Species Scavenging by Manganese Ferrite/Ceria Co-decorated Nanoparticles for Rheumatoid Arthritis Treatment. ACS Nano 2019, 13, 32063217,  DOI: 10.1021/acsnano.8b08785
    26. 26
      Liu, S.; Li, W.; Ding, H.; Tian, B.; Fang, L.; Zhao, X.; Zhao, R.; An, B.; Ding, L.; Zhong, L.; Yang, P. Biomineralized RuO2 Nanozyme with Multi-Enzyme Activity for Ultrasound-Triggered Peroxynitrite-Boosted Ferroptosis. Small 2023, 19, 2303057,  DOI: 10.1002/smll.202303057
    27. 27
      Fu, R.; Ma, Z.; Zhao, H.; Jin, H.; Tang, Y.; He, T.; Ding, Y.; Zhang, J.; Ye, D. Research Progress in Iron-Based Nanozymes: Catalytic Mechanisms, Classification, and Biomedical Applications. Anal. Chem. 2023, 95, 1084410858,  DOI: 10.1021/acs.analchem.3c01005
    28. 28
      Zou, Y.; Jin, B.; Li, H.; Wu, X.; Liu, Y.; Zhao, H.; Zhong, D.; Wang, L.; Chen, W.; Wen, M.; Liu, Y. N. Cold Nanozyme for Precise Enzymatic Antitumor Immunity. ACS Nano 2022, 16, 2149121504,  DOI: 10.1021/acsnano.2c10057
    29. 29
      James, C. C.; de Bruin, B.; Reek, J. N. H. Transition Metal Catalysis in Living Cells: Progress, Challenges, and Novel Supramolecular Solutions. Angew. Chem., Int. Ed. 2023, 62, e202306645  DOI: 10.1002/anie.202306645
    30. 30
      Hu, C.; Man, R.; Li, H.; Xia, M.; Yu, Z.; Tang, B. Near-Infrared Triggered Self-Accelerating Nanozyme Camouflaged with a Cancer Cell Membrane for Precise Targeted Imaging and Enhanced Cancer Immunotherapy. Anal. Chem. 2023, 95, 1357513585,  DOI: 10.1021/acs.analchem.3c02218
    31. 31
      Gong, J.; Liu, Q.; Cai, L.; Yang, Q.; Tong, Y.; Chen, X.; Kotha, S.; Mao, X.; He, W. Multimechanism Collaborative Superior Antioxidant CDzymes To Alleviate Salt Stress-Induced Oxidative Damage in Plant Growth. ACS Sustainable Chem. Eng. 2023, 11, 42374247,  DOI: 10.1021/acssuschemeng.2c07371
    32. 32
      Xu, G.; Du, X.; Wang, W.; Qu, Y.; Liu, X.; Zhao, M.; Li, W.; Li, Y. Q. Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme-Mimicking Activity of Nanomaterials. Small 2022, 18, 2204131,  DOI: 10.1002/smll.202204131
    33. 33
      He, T.; Jiang, C.; He, J.; Zhang, Y.; He, G.; Wu, J.; Lin, J.; Zhou, X.; Huang, P. Manganese-Dioxide-Coating-Instructed Plasmonic Modulation of Gold Nanorods for Activatable Duplex-Imaging-Guided NIR-II Photothermal-Chemodynamic Therapy. Adv. Mater. 2021, 33, 2008540,  DOI: 10.1002/adma.202008540
    34. 34
      Ye, J.; Lv, W.; Li, C.; Liu, S.; Yang, X.; Zhang, J.; Wang, C.; Xu, J.; Jin, G.; Li, B.; Fu, Y.; Liang, X. Tumor Response and NIR-II Photonic Thermal Co-Enhanced Catalytic Therapy Based on Single-Atom Manganese Nanozyme. Adv. Funct. Mater. 2022, 32, 2206157,  DOI: 10.1002/adfm.202206157
    35. 35
      An, L.; Wang, C.; Tian, Q.; Tao, C.; Xue, F.; Yang, S.; Zhou, X.; Chen, X.; Huang, G. NIR-II laser-mediated photo-Fenton-like reaction via plasmonic Cu9S8 for immunotherapy enhancement. Nano Today 2022, 43, 101397,  DOI: 10.1016/j.nantod.2022.101397
    36. 36
      Li, S.; Shang, L.; Xu, B.; Wang, S.; Gu, K.; Wu, Q.; Sun, Y.; Zhang, Q.; Yang, H.; Zhang, F.; Gu, L.; Zhang, T.; Liu, H. A Nanozyme with Photo-Enhanced Dual Enzyme-Like Activities for Deep Pancreatic Cancer Therapy. Angew. Chem., Int. Ed. 2019, 58, 1262412631,  DOI: 10.1002/anie.201904751
    37. 37
      Meng, X.; Sun, S.; Gong, C.; Yang, J.; Yang, Z.; Zhang, X.; Dong, H. Ag-Doped Metal-Organic Frameworks’ Heterostructure for Sonodynamic Therapy of Deep-Seated Cancer and Bacterial Infection. ACS Nano 2023, 17, 11741186,  DOI: 10.1021/acsnano.2c08687
    38. 38
      Oh, W. D.; Lok, L. W.; Veksha, A.; Giannis, A.; Lim, T. T. Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4 under solar irradiation: Performance and mechanistic studies. Chem. Eng. J. 2018, 333, 739749,  DOI: 10.1016/j.cej.2017.09.182
    39. 39
      Wang, N.; Li, P.; Zhao, J.; Liu, Y.; Hu, X.; Ling, D.; Li, F. An anisotropic photocatalytic agent elicits robust photoimmunotherapy through plasmonic catalysis-mediated tumor microenvironment modulation. Nano Today 2023, 50, 101827,  DOI: 10.1016/j.nantod.2023.101827
    40. 40
      Hasan, A. A.; Kalinina, E.; Tatarskiy, V.; Shtil, A. The Thioredoxin System of Mammalian Cells and Its Modulators. Biomedicines 2022, 10, 1757,  DOI: 10.3390/biomedicines10071757
    41. 41
      Zeisel, L.; Felber, J. G.; Scholzen, K. C.; Poczka, L.; Cheff, D.; Maier, M. S.; Cheng, Q.; Shen, M.; Hall, M. D.; Arnér, E. S. J.; Thorn-Seshold, J.; Thorn-Seshold, O. Selective cellular probes for mammalian thioredoxin reductase TrxR1: Rational design of RX1, a modular 1,2-thiaselenane redox probe. Chem. 2022, 8, 14931517,  DOI: 10.1016/j.chempr.2022.03.010
    42. 42
      Srivastava, M.; Singh, S.; Self, W. T. Exposure to Silver Nanoparticles Inhibits Selenoprotein Synthesis and the Activity of Thioredoxin Reductase. Environ. Health Perspect. 2012, 120, 5661,  DOI: 10.1289/ehp.1103928
    43. 43
      Pang, M.; Zeng, H. C. Highly Ordered Self-Assemblies of Submicrometer Cu2O Spheres and Their Hollow Chalcogenide Derivatives. Langmuir 2010, 26, 59635970,  DOI: 10.1021/la904292t
    44. 44
      Mao, Z.; Yang, Z.; Tao, W.; Tang, Q.; Xiao, Y.; Jiang, Y.; Guo, S. Ultrafine Ag Nanoparticles Anchored on Hollow S-Doped CeO2 Spheres for Synergistically Enhanced Tetracycline Degradation under Visible Light. Ind. Eng. Chem. Res. 2022, 61, 1709217101,  DOI: 10.1021/acs.iecr.2c02674
    45. 45
      Guo, Y.; Wang, H.; Ma, X.; Jin, J.; Ji, W.; Wang, X.; Song, W.; Zhao, B.; He, C. Fabrication of Ag-Cu2O/Reduced Graphene Oxide Nanocomposites as Surface-Enhanced Raman Scattering Substrates for in Situ Monitoring of Peroxidase-Like Catalytic Reaction and Biosensing. ACS Appl. Mater. Interfaces 2017, 9, 1907419081,  DOI: 10.1021/acsami.7b02149
    46. 46
      Rasheed, M.; Saira, F.; Batool, Z.; khan, H. M.; Yaseen, J.; Arshad, M.; Kalsoom, A.; Ahmeda, H. E.; Naeem Ashiq, M. N. Facile synthesis of a CuSe/PVP nanocomposite for ultrasensitive non-enzymatic glucose biosensing. RSC Adv. 2023, 13, 2675526765,  DOI: 10.1039/d3ra03175f
    47. 47
      Kayed, K.; Mayada Issa, M.; Al-ourabi, H. The FTIR spectra of Ag/Ag2O composites doped with silver nanoparticles. J. Exp. Nanosci. 2024, 19, 2336227,  DOI: 10.1080/17458080.2024.2336227
    48. 48
      Abu-Elsaad, N. I.; Nawara, A. S.; Mazen, S. A. Synthesis, structural characterization, and magnetic properties of Ni-Zn nanoferrites substituted with different metal ions (Mn2+, Co2+, and Cu2+). J. Phys. Chem. Solids 2020, 146, 109620,  DOI: 10.1016/j.jpcs.2020.109620
    49. 49
      Khurana, A.; Tekula, S.; Saifi, M. A.; Venkatesh, P.; Godugu, C. Therapeutic applications of selenium nanoparticles. Pharmacother. 2019, 111, 802812,  DOI: 10.1016/j.biopha.2018.12.146
    50. 50
      Zhang, X. L.; Hu, S. J.; Zheng, Y. R.; Wu, R.; Gao, F. Y.; Yang, P. P.; Niu, Z. Z.; Gu, C.; Yu, X.; Zheng, X. S.; Ma, C.; Zheng, X.; Zhu, J. F.; Gao, M. R.; Yu, S. H. Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy. Nat. Commun. 2019, 10, 5338,  DOI: 10.1038/s41467-019-12992-y
    51. 51
      Yang, C.; Wang, M.; Chang, M.; Yuan, M.; Zhang, W.; Tan, J.; Ding, B.; Ma, P. a.; Lin, J. Heterostructural Nanoadjuvant CuSe/CoSe2 for Potentiating Ferroptosis and Photoimmunotherapy through Intratumoral Blocked Lactate Efflux. J. Am. Chem. Soc. 2023, 145, 72057217,  DOI: 10.1021/jacs.2c12772
    52. 52
      Ji, R.; Sun, W.; Chu, Y. One-step hydrothermal synthesis of Ag/Cu2O heterogeneous nanostructures over Cu foil and their SERS applications. RSC Adv. 2014, 4, 60556059,  DOI: 10.1039/c3ra44281k
    53. 53
      Liu, J.; Zhang, X.; Wen, B.; Li, Y.; Wu, J.; Wang, Z.; Wu, T.; Zhao, R.; Yang, S. Pre-carbonized nitrogen-rich polytriazines for the controlled growth of silver nanoparticles: catalysts for enhanced CO2 chemical conversion at atmospheric pressure. Catal. Sci. Technol. 2021, 11, 31193127,  DOI: 10.1039/D0CY02473B
    54. 54
      Yu, B.; Zhou, Y.; Li, P.; Tu, W.; Li, P.; Tang, L.; Ye, J.; Zou, Z. Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 2016, 8, 1187011874,  DOI: 10.1039/C6NR02547A
    55. 55
      Sathishkumar, K.; Sowmiya, K.; Arul Pragasan, L.; Rajagopal, R.; Sathya, R.; Ragupathy, S.; Krishnakumar, M.; Minnam Reddy, V. R. Enhanced photocatalytic degradation of organic pollutants by Ag-TiO2 loaded cassava stem activated carbon under sunlight irradiation. Chemosphere 2022, 302, 134844,  DOI: 10.1016/j.chemosphere.2022.134844
    56. 56
      Wang, C.; Cao, F. J.; Ruan, Y.; Jia, X.; Zhen, W.; Jiang, X. Specific Generation of Singlet Oxygen through the Russell Mechanism in Hypoxic Tumors and GSH Depletion by Cu-TCPP Nanosheets for Cancer Therapy. Angew. Chem. 2019, 131, 99519955,  DOI: 10.1002/ange.201903981
    57. 57
      Chiang, C.; Chu, K.; Lin, C.; Xie, S.; Liu, Y.; Demeshko, S.; Lee, G.; Meyer, F.; Tsai, M.; Chiang, M.; Chien-Ming Lee, C. Photoinduced NO and HNO Production from Mononuclear {FeNO}6 Complex Bearing a Pendant Thiol. J. Am. Chem. Soc. 2020, 142, 86498661,  DOI: 10.1021/jacs.9b13837
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c00929.

    • Additional experimental materials, methods, and characterization data for the preparation of CSA and CS and other in vitro and in vivo experimental data (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.