Engineering PD-1-Presenting Platelets for Cancer Immunotherapy
工程化 PD-1 呈递血小板用于癌症免疫治疗Click to copy article link
点击复制文章链接Article link copied!
点击复制文章链接Article link copied!
- Xudong Zhang 张旭东Xudong ZhangGuangdong Key Laboratory for Biomedical, Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, ChinaDepartment of Bioengineering, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United StatesJoint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United StatesMore by Xudong Zhang
- Jinqiang Wang 王金强Jinqiang WangDepartment of Bioengineering, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United StatesJoint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United StatesMore by Jinqiang Wang
- Zhaowei Chen 赵伟 陈Zhaowei ChenJoint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United StatesMore by Zhaowei Chen
- Quanyin Hu 胡全银Quanyin HuJoint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United StatesMore by Quanyin Hu
- Chao Wang 王超Chao WangJoint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United StatesMore by Chao Wang
- Junjie Yan 闫俊杰Junjie YanJoint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United StatesMore by Junjie Yan
- Gianpietro Dotti 詹皮耶特罗·多蒂Gianpietro DottiLineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United StatesMore by Gianpietro Dotti
- Peng Huang* 彭 黄*Peng Huang*E-mail: peng.huang@szu.edu.cnGuangdong Key Laboratory for Biomedical, Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, ChinaMore by Peng Huang
- Zhen Gu* 《用于癌症免疫治疗的 PD-1 呈递血小板工程设计 | Nano Letters》Zhen Gu*E-mail: guzhen@ucla.eduDepartment of Bioengineering, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United StatesJoint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United StatesMore by Zhen Gu
Abstract 摘要
点击复制段落链接Section link copied!
Radical surgery still represents the treatment choice for several malignancies. However, local and distant tumor relapses remain the major causes of treatment failure, indicating that a postsurgery consolidation treatment is necessary. Immunotherapy with checkpoint inhibitors has elicited impressive clinical responses in several types of human malignancies and may represent the ideal consolidation treatment after surgery. Here, we genetically engineered platelets from megakaryocyte (MK) progenitor cells to express the programmed cell death protein 1 (PD-1). The PD-1 platelet and its derived microparticle could accumulate within the tumor surgical wound and revert exhausted CD8+ T cells, leading to the eradication of residual tumor cells. Furthermore, when a low dose of cyclophosphamide (CP) was loaded into PD-1-expressing platelets to deplete regulatory T cells (Tregs), an increased frequency of reinvigorated CD8+ lymphocyte cells was observed within the postsurgery tumor microenvironment, directly preventing tumor relapse.
彻底的手术依然是治疗多种恶性肿瘤的首选方案。然而,局部和远处的肿瘤复发仍然是治疗失败的主要原因,表明术后巩固治疗是必要的。免疫疗法中,使用免疫检查点抑制剂在多种人类恶性肿瘤中引发了显著的临床反应,并可能成为术后理想的巩固治疗手段。在此,我们通过基因工程改造巨核细胞(MK)祖细胞来源的血小板,使其表达程序性细胞死亡蛋白 1(PD-1)。这种 PD-1 表达的血小板及其衍生的微粒能够在肿瘤手术伤口内积累,逆转耗竭的 CD8+ T 细胞,从而清除残留的肿瘤细胞。此外,当低剂量的环磷酰胺(CP)被装载到 PD-1 表达的血小板中以耗竭调节性 T 细胞(Tregs)时,术后肿瘤微环境中观察到重新激活的 CD8+淋巴细胞数量增加,直接防止了肿瘤复发。
This publication is licensed under the terms of your
institutional subscription.
Request reuse permissions.
本文出版物根据您所在机构的订阅条款获得许可。请求重用权限。
版权所有 © 2018 美国化学学会
手术是大多数实体肿瘤的主要治疗选择。然而,由于肿瘤切除不完全,局部和远端肿瘤复发频繁发生。(1,2)因此,开发有效策略以预防术后癌症复发引起了极大的兴趣。(3,4)例如,肿瘤抗原特异性 CD8+ T 细胞有助于清除残留的肿瘤细胞,(5)特别是那些携带新抗原(突变蛋白衍生抗原)的细胞。(6−9)然而,肿瘤中 PD-L1 的表达通过导致 T 细胞衰竭抑制了 T 细胞的反应。(10)衰竭的 T 细胞通过抑制性受体 PD-1 被 PD-L1 配体所抑制,从而无法产生免疫细胞因子,如干扰素-γ(IFN-γ)、肿瘤坏死因子-α(TNF-α)、颗粒酶 B 和穿孔素。(11,12)
通过使用检查点抗体阻断 PD-1/PD-L1 轴,可以重新激活耗竭的 T 细胞,从而导致约 30%的黑色素瘤及其他类型癌症患者实现肿瘤清除。(13−15) 然而,由于存在多种免疫逃逸机制,超过半数的患者对 PD-1/PD-L1 阻断反应不佳或仅呈现短暂反应。(16) 例如,研究表明,许多内在和外在的肿瘤相关抗性机制包括靶向肿瘤相关抗原的丢失、主要组织相容性复合体(MHC)分子的下调、其他免疫检查点受体的表达以及免疫抑制细胞群体(调节性 T 细胞、II 型巨噬细胞、髓源性抑制细胞(MDSCs))的丰富。(16) 特别是,除了抑制效应 T 细胞外,调节性 T 细胞还在肿瘤微环境中竞争性消耗白细胞介素-2(IL-2),进一步损害肿瘤浸润的 CD8+ T 细胞的增殖。(17,18) 此外,激活的调节性 T 细胞可能还通过穿孔素直接杀死 T 细胞。 (19) 因此,肿瘤组织中丰富的调节性 T 细胞(Tregs)是实现成功癌症免疫治疗的关键障碍。(20) 清除 Tregs 能显著提高 PD-1/PD-L1 阻断疗法的响应率。 (14)
作为血管损伤的监测者,血小板能够聚集到手术伤口处。(21,22)利用这一特性,与抗 PD-L1 结合的血小板可在肿瘤手术伤口内积聚,重新激活耗竭的 CD8+ T 细胞,从而减少术后肿瘤复发与转移。(23)此外,血小板膜被用于设计针对伤口与炎症的癌症治疗制剂。(24−27)然而,由于源自血液的血小板是无核且终末分化的细胞,无法在体外扩增并进行基因操作以稳定表达转基因,这极大限制了它们作为癌症免疫治疗载体的临床应用。(28)相比之下,从巨核细胞(MKs)体外生产血小板,不仅可提供大量血小板来源,还能进行基因修饰。(29,30)在此,我们通过基因工程改造小鼠巨核细胞,使其稳定表达小鼠 PD-1,并在体外生成呈现 PD-1 的成熟血小板。随后,我们将这些细胞应用于通过重新激活耗竭的 CD8+ T 细胞来靶向手术伤口内的肿瘤细胞(图 1)。 除了 PD-L1 阻断外,表达 PD-1 的血小板还能携带并运输环磷酰胺,从而在肿瘤微环境中消耗调节性 T 细胞(Tregs),进一步增强手术肿瘤微环境中 CD8+ T 淋巴细胞的抗肿瘤效应。
血小板由骨髓和肺驻留的巨核细胞(MKs)释放。(31)为了大规模生产血小板,我们用佛波醇 12-豆蔻酸 13-醋酸酯(PMA)处理了小鼠 MK 祖细胞 L8057。刺激后,细胞体积显著增大,伴随前血小板延伸(图 S1A、B)和血小板释放(图 S1C、D)。观察到含有多倍体核的较大体积的 MKs,表明 MK 成熟并准备释放血小板(图 S2)。为了生成表达 PD-1 的血小板,通过感染慢病毒并使用嘌呤霉素筛选,建立了稳定表达小鼠 EGFP-PD-1 的 L8057 细胞系(图 S3)。(32)值得注意的是,PD-1 被表达并定位于细胞膜,由 EGFP 荧光与细胞膜染料 Alexa Fluor 594 偶联的麦胚凝集素(WGA594)的共定位所指示(图 2A)。通过 Western blot 确认了 PD-1 在 EGFP-PD-1 L8057 细胞上的表达(图 2B)。作为 MKs 标志物的 CD41a 在 PD-1 L8057 细胞系上强烈表达(图 S4A)。 经 PMA 刺激后,表达 PD-1 的 L8057 细胞发生成熟,形态上显示出典型的偏心核和增大的胞质体积(图 S4B)。CD42a,作为巨核细胞(MK)成熟的标志物,在细胞膜上得以表达(图 2C)。此外,成熟 PD-1 L8057 细胞表面还表达了血小板表面受体糖蛋白 VI(GPVI)和 P-选择素(图 S4C,D)。Wright-Giemsa 染色显示,成熟的 PD-1 L8057 细胞含有多倍体核(图 2D)。
成熟的巨核细胞(MKs)通常定位于骨髓和肺部的发芽足体,并延长形成前血小板。(33)前血小板穿过窦状内皮,将血小板释放到血液中。(31,33)同样,成熟的 PD-1 表达 L8057 细胞也具有发芽足体,这些足体延长形成前血小板(图 2E)。值得注意的是,前血小板从细胞膜发芽并延伸,形成珍珠状结构(图 2F)。最终,前血小板解体并释放出血小板(图 S5A,B)。含有 EGFP-PD-1+膜囊泡的 MK 细胞质作为前血小板形成的膜储存库(图 2F)。这些 PD-1 表达的膜囊泡融合形成管状结构,并从细胞表面发芽(图 2F)。从培养基中纯化的血小板显示出绿色荧光,表明 PD-1 存在于血小板中(图 2G)。包括 GPVI 和 P-选择素在内的结合受体也在 L8057 细胞释放的血小板中表达(图 S5C)。此外,动态光散射(DLS)分析显示,血小板的平均直径约为 1.5 微米,ζ电位为−10 ± 2。6 mV(图 2H 和图 S5D)。通过冷冻扫描电子显微镜(CSEM)和透射电子显微镜(TEM)的记录,纯化的血小板展现出球形形态(图 2I、J)。我们进一步定量测量了来自 PD-1 表达 L8057 细胞的血小板生成,发现经过 PMA 刺激后,第 6 天达到最佳血小板生成量(图 2K)。
血小板执行止血功能,招募其他白细胞参与宿主防御反应,并在附着于血管损伤处后释放多种免疫反应分子。(34)胶原蛋白是血小板主动结合的主要内皮下成分。如图 3A、B 所示,经 WGA Alexa-Fluor 594 染料标记的游离及 PD-1 表达血小板显示出相似的胶原蛋白粘附能力。相比之下,胶原蛋白受体 GPVI 的阻断降低了血小板的胶原蛋白粘附能力(图 S6A)。血小板聚集形成的血栓是止血反应的另一关键事件。(35)游离及 PD-1 表达血小板在凝血酶的激动性刺激下均能有效聚集(图 S6B)。血小板微粒(PMPs)由激活的血小板生成。(36,37)为探究 PD-1 表达血小板在刺激下是否产生 PMPs,我们在体外用凝血酶处理血小板。共聚焦激光扫描显微镜(CLSM)、扫描电镜(SEM)和透射电镜(TEM)图像显示,激活的血小板生成了 PMPs(图 3C 及图 S6C)。 血小板在经过凝血酶处理后变得更加树突状且扩展性增强(图 3C)。此外,动态光散射分析检测到了小颗粒的生成,证实了活化血小板释放 PMPs(图 3D)。
PD-L1 在肿瘤细胞表面的表达上调会导致表达 PD-1 的 T 细胞功能耗竭。(10)为了探究表达 PD-1 的血小板能否与黑色素瘤细胞表面结合并阻断 PD-L1,我们在体外将表达 PD-1 的血小板与 B16F10 黑色素瘤细胞共同孵育。观察发现,表达 PD-1 的血小板能够结合到 B16F10 细胞表面,随后被癌细胞内化(图 3E 及图 S7)。相比之下,未修饰的血小板与 B16F10 细胞的结合能力有限(图 3E)。为验证 PD-L1/PD-1 相互作用是否介导了血小板的内化过程,我们在实验中加入抗 PD-L1 抗体以阻断 B16F10 细胞表面的 PD-L1。共聚焦图像显示,当预先与 PD-L1 抗体孵育后,PD-1 血小板的结合显著减少(图 S7A)。此外,EGFP 标记的 PD-1 表达血小板与 B16F10 黑色素瘤细胞表达的 DsRed-PD-L1 发生共定位,表明 PD-1 与 PD-L1 之间存在物理相互作用(图 3F)。为研究自由血小板与 PD-1 表达血小板在体内的分布情况,我们通过尾静脉注射将 Cy5.5 标记的血小板接种于小鼠体内。 自由血小板在血液中的滞留时间比表达 PD-1 的血小板更长(24 小时时分别为 14%和 8%)(图 3G)。在 B16F10 荷瘤小鼠肿瘤切除后,通过静脉注射 Cy5.5 标记的血小板,无论是自由血小板还是 PD-1 血小板,均能在残留肿瘤床中积聚(图 3H,I)。同时,血小板在肝脏和脾脏中也大量积聚(图 3H,I)。GPVI 是血小板上的胶原蛋白受体,负责引导血小板向损伤部位迁移。PD-1 血小板与自由血小板在胶原蛋白上的结合能力相似(图 3A)。因此,自由血小板与 PD-1 血小板在手术肿瘤中的积聚能力相似(图 3H)。
为了探究表达 PD-1 的血小板是否能预防手术后癌症复发,我们采用了 B16F10 黑色素瘤不完全肿瘤切除模型来模拟术后局部复发(图 4A)。荷瘤小鼠通过静脉注射磷酸盐缓冲液(PBS)、游离血小板(2×10^8)或表达 PD-1 的血小板(2×10^8)。在血小板输注后,切除肿瘤以移除约 90%的肿瘤组织。术后,小鼠在伤口愈合期间接受了额外治疗(图 4A)。我们通过监测肿瘤生物发光和测量肿瘤大小发现,接受 PD-1 表达血小板治疗的小鼠肿瘤生长延迟(图 4B、C 及图 S8A)。相比之下,接受游离血小板或 PBS 的小鼠肿瘤迅速进展(图 4B、C 及图 S8A)。接受 PD-1 表达血小板治疗的小鼠中有 25%存活超过 60 天,且未出现明显体重下降或其他毒性症状(图 4D 及图 S8B)。主要器官如肝脏、脾脏、肾脏、心脏和肺被收集并通过免疫组织化学方法评估全身毒性。 在经过处理的血小板治疗的小鼠中,未观察到明显的器官损伤迹象(图 S9)。值得注意的是,我们发现 PD-1 表达血小板处理的小鼠肿瘤中 CD8+肿瘤浸润淋巴细胞(TILs)的频率增加(图 4E-G),并且 T 细胞表现出细胞毒性蛋白颗粒酶 B(GzmB)表达的增强,表明 PD-1 表达的血小板能够在肿瘤微环境中逆转 T 细胞的耗竭状态(图 4H,I)。
低剂量环磷酰胺可增强多种小鼠肿瘤模型及患者的免疫反应,这通常归因于选择性消耗调节性 T 细胞(Tregs)。(38−40)为了在肿瘤部位对抗 Tregs,我们将环磷酰胺装载到血小板中。我们发现,血小板能在体外 24 小时内内化并释放环磷酰胺(图 S10)。为了探究 PD-L1 阻断与环磷酰胺诱导的 Tregs 耗竭同时产生的抗肿瘤效果,我们采用了不完全肿瘤切除的 B16F10 黑色素瘤模型。在该模型中,单独使用环磷酰胺或表达 PD-1 的血小板效果有限(图 5A 和图 S11A),而接受装载环磷酰胺的 PD-1 表达血小板治疗的鼠肿瘤进展显著受到抑制(P < 0.001)(图 5A 和图 S11A)。环磷酰胺对 Tregs 的耗竭与 PD-1 对 PD-L1 的同时阻断改善了治疗鼠的存活率(图 5B)。
我们进一步研究了治疗后肿瘤中 CD4+ Tregs 和 CD8+ TILs 的频率变化。游离环磷酰胺和载有环磷酰胺的血小板选择性地耗竭了肿瘤内的 Tregs(图 5C 和图 S11B),并提高了 Ki67+ T 细胞的频率(图 5D,E)。值得注意的是,尽管表达 PD-1 的血小板在减少 Tregs 方面效果有限,但它们仍然增加了 Ki67+ T 细胞的频率(图 5D,E)。值得注意的是,接受载有环磷酰胺的 PD-1 表达血小板治疗的鼠肿瘤中,CD8+ TILs 的频率显著增加(图 5F,G),这些细胞表现出 GzmB 的表达(图 5H,I)。免疫荧光染色还显示,与对照组小鼠相比,接受载有环磷酰胺的 PD-1 表达血小板治疗的小鼠中,浸润的 CD8+ T 细胞密度有所增强(图 5J,K)。接受低剂量环磷酰胺和载有环磷酰胺的血小板治疗的小鼠表现出腹部毛发生长延迟和轻微体重下降(图 S11A,C)。 这些结果表明,PD-1 表达的血小板与环磷酰胺联合使用,能有效打破 PD-L1 的免疫阻断并清除调节性 T 细胞,从而降低手术后肿瘤复发率。
总之,我们构建了一种细胞药物递送系统,利用表达 PD-1 的血小板进行术后增强型癌症免疫治疗。静脉注射后,这些 PD-1 表达的血小板能在手术伤口部位聚集,阻断残留肿瘤细胞上的 PD-L1,使耗竭的 CD8+ T 细胞恢复功能,从而清除残留的肿瘤细胞。此外,这些血小板还能作为药物载体,如环磷酰胺,同时破坏 PD-L1 的免疫抑制作用并清除调节性 T 细胞(Tregs),促进手术肿瘤微环境中 CD8+Ki67+GzmB+淋巴细胞的出现。这种基于细胞的递送策略可进一步开发,用于向肿瘤部位递送其他检查点阻断抑制剂及其他免疫调节药物。(41,42)
Chemicals and Reagents 化学品与试剂
环磷酰胺、凝血酶、瑞氏-吉姆萨溶液及磷酸酶抑制剂混合物购自 Sigma-Aldrich。小鼠 PD-1 和 PD-L1 抗体分别来自 Thermo Scientific 和 Sigma-Aldrich。小鼠 CD41a(ab63983)、CD42a(ab173503)、CD4 和 CD8 抗体购自 Abcam。P-选择素(sc-8419)来自 Santa Cruz Biotechnology。小鼠 GPVI(MAB6758)抗体源自 R&D Systems。用于 FACS 分析的 CD3、CD4、CD8、Ki67 和 Foxp3 抗体由 Biolegend Inc.提供。麦胚凝集素(WGA)Alexa Fluor 488 和 594 染料购自 Thermo Scientific。
Cell Culture 细胞培养
HEK293T 细胞在含 10%胎牛血清(FBS)的 Dulbecco 改良 Eagle 培养基(DMEM)中培养。小鼠巨核细胞系 L8057 由 Alan Cantor 教授(波士顿儿童医院,丹娜—法伯癌症研究所)慷慨提供,并在含 20% FBS 的 RPMI 1640 中培养。小鼠黑色素瘤细胞系 B16F10 购自美国典型培养物保藏中心。用于活体生物发光肿瘤成像的 B16F10-luc 细胞由 UNC 的 Leaf Huang 博士慷慨提供。B16F10 细胞在含 10% FBS 的 DMEM 中培养。
Plasmid and Stable Cell Line
质粒与稳定细胞系
慢病毒载体编码在小鼠 PD-1 的 C 端区域与 GFP 标签融合(pLenti-C-mGFP-PD-1-puro),以及 Lenti-vpak 包装试剂盒和转染试剂均购自 Origene。小鼠 DsRed-PD-L1 质粒由 Sino biological 提供。L8057 细胞通过慢病毒感染,并使用 6 μg/mL 聚凝胺进行孵育。感染后,L8057 细胞在含 20%胎牛血清的 RPMI 1640 培养基中培养,并添加 1 μg/mL 嘌呤霉素以筛选稳定表达小鼠 PD-1 的细胞系。建立的 EGFP-PD-1 L8057 细胞在含 20%胎牛血清的培养基中维持,并补充 0.5–1 μg/mL 嘌呤霉素。
Preparation of Platelets from L8057 Cells
L8057 细胞制备血小板
L8057 细胞及表达 PD-1 的 L8057 细胞在含 20%胎牛血清的 RPMI 1640 培养基中培养。为促进成熟与分化,L8057 细胞经 100–500 nM PMA 刺激 3 天。随后,细胞再培养 6 天以生成前血小板及血小板。为分离血小板,培养基经 1500 rpm 离心 20 分钟去除细胞,上清液再于室温下以 12000 rpm 离心 20 分钟。所得血小板沉淀物用 Tyrode 缓冲液(134 mM NaCl,12 mM NaHCO3,2.9 mM KCl,0.34 mM Na2HPO4,1 mM MgCl2,10 mM HEPES,pH 7.4)或含 1 μM PGE1 的 PBS 重悬。为激活血小板,向血小板悬液中加入 0.5 U/mL 的凝血酶。激活前需去除 PGE1。
Wright–Giemsa Stain 赖特-吉姆萨染色
L8057 细胞在 100–500 nM PMA 刺激下培养 3 天后被收获,并用 PBS 缓冲液洗涤。随后,细胞在无水甲醇中固定 5 分钟,用瑞氏-吉姆萨染色液染色 5 分钟,再次用 PBS 缓冲液清洗,最后在 40 倍物镜下显微镜观察。
Cell Immunofluorescent Assay
细胞免疫荧光检测
EGFP-PD-1 表达的 L8057 细胞用 PBS 洗涤后,以 4%多聚甲醛固定 10 分钟。随后,细胞再次用 PBS 清洗,加入 0.2% Triton X-100 孵育 5 分钟,并用含 3% BSA 的缓冲液阻断 1 小时。接着,细胞在 4°C 下与 CD41a、CD42a 及 P-选择素抗体共孵育过夜。清洗后,细胞与室温下稀释的罗丹明偶联的二抗(KPL)反应,避光孵育 1 小时。核染色使用 DAPI 进行 10 分钟。最后,经 PBS 清洗后,利用 FLUO-VIEW 激光扫描共聚焦显微镜(Zeiss)在 63×物镜下进行顺序扫描模式的共聚焦显微成像。
Western Blot 免疫印迹法
免疫印迹分析按照先前描述的方法进行。(43) L8057 对照细胞和稳定表达 EGFP-PD1 的 L8057 细胞用 RIPA 裂解缓冲液(赛默飞世尔科技)裂解,细胞裂解物通过 12% SDS-PAGE 分离。免疫印迹与 PD-1、CD41a、CD42a、P-选择素、GPVI 和β-肌动蛋白抗体孵育,随后采用增强化学发光(ECL)检测(赛默飞世尔科技)。
B16F10 Cell Binding Assay
B16F10 细胞结合实验
B16F10 细胞被接种于共聚焦孔板中。表达 EGFP-PD-1 的血小板和未修饰的游离血小板(约 0.5 × 10^8 细胞/孔)用 Cy5.5 标记后加入培养基,并与 B16F10 细胞共同孵育过夜。随后,加入麦胚凝集素(WGA)与 Alexa Fluor 594 偶联物对 B16F10 细胞膜进行染色,染色时间为 10 分钟。细胞核则采用 DAPI 染色,同样为 10 分钟。经 PBS 洗涤后,在配备 63×物镜的共聚焦显微镜(蔡司)上,以顺序扫描模式进行共聚焦显微成像。
Collagen Binding Assay 胶原蛋白结合实验
简而言之,将 200 μL 的胶原溶液(Bio-Rad 的小鼠 I 型/III 型胶原,在 0.25%乙酸中以 2.0 mg/mL 浓度重构)加入 96 孔板中,并在 4 °C 下过夜孵育。在进行胶原结合研究之前,用 2% BSA 封闭板孔,并用 PBS 洗涤。血小板用 WGA Alexa Fluor 594 染色 30 分钟,用 PBS 洗涤后,以三重复方式加入胶原包被或未包被的板中(约 1 × 10^7 细胞/孔)。孵育 30 秒后,洗涤板子。保留的血小板用 100 μL DMSO 溶解,使用 TeCan Infinite M200 阅读器进行荧光定量。对于共聚焦成像,胶原溶液加入共聚焦孔中,在 4 °C 下过夜孵育(约 1 × 10^8 细胞/孔)。孔用 2% BSA 封闭,WGA Alexa Fluor 594 标记的血小板与胶原孵育 2 分钟,用 PBS 洗涤,并通过共聚焦显微镜(Zeiss)在顺序扫描模式下使用 63×物镜进行分析。
Aggregation Assay 聚集试验
通过共聚焦成像评估血小板的聚集情况。血小板用 WGA Alexa Fluor 594 标记,加载到共聚焦孔中,并与 0.5 U/mL 的凝血酶共同孵育 30 分钟。使用 63×物镜在共聚焦显微镜(蔡司)上以顺序扫描模式进行共聚焦显微镜检查。
Drug Loading and Release 药物装载与释放
为制备载环磷酰胺的血小板,将 100 μg 纯化血小板与 100 μg 环磷酰胺轻柔混合于 1 mL PBS 中,并在 37 °C 下孵育 2 小时。(44,45) 随后,通过 12000 rpm 离心将血小板用 PBS 洗涤。对于电穿孔冲击法,100 μg 纯化血小板与 100 μg 环磷酰胺在室温下轻柔混合于 1 mL 电穿孔缓冲液(1.15 mM 磷酸钾 pH 7.2,25 mM 氯化钾,21% Optiprep)中。样品在 0.4 cm 电穿孔比色皿中以 300 V 和 150 μF 的条件使用 MicroPulser 电穿孔仪(Bio-Rad)进行电穿孔处理。电穿孔后的比色皿内样品再孵育 30 分钟以恢复膜结构。血小板通过 12000 rpm 离心用 PBS 洗涤。(46−48) 从血小板(100 μg/mL)中释放的环磷酰胺在 PBS(pH 7.2)中于不同时间点 37 °C 下进行分析。释放的环磷酰胺量通过在 205 nm 处使用紫外-可见分光光度计进行定量。(49,50)
Circulation 循环
PD-1 表达的血小板及 L8057 细胞产生的自由血小板通过 NHS-Cy5.5 进行标记。标记后的血小板(约 2 × 10^8 个细胞)用 PBS 洗涤后,以最终体积 200 μL 通过尾静脉静脉注射到 C57BL/6 小鼠体内。在血小板注射后不同时间点采集外周血,并测量血清中的荧光强度。
Biodistribution 生物分布
自由血小板及 L8057 细胞产生的 PD-1 表达型血小板在 PBS 中通过 NHS-Cy5.5 进行标记。经过一夜孵育后,Cy5.5 标记的血小板(约 2×10^8 细胞/只小鼠)用 PBS 洗涤并注入携带黑色素瘤的 C57BL/6 小鼠体内。对照组则注射 PBS。24 小时后,小鼠被安乐死,肿瘤及器官被采集。使用 Xenogen IVIS spectrum 成像系统记录荧光成像及平均放射强度。
In Vivo Antitumor Effects
体内抗肿瘤效应
B16F10 luciferase-标记的 B16F10(每只小鼠 1×10^6 细胞)黑色素瘤肿瘤细胞被移植到 C57BL/6J 小鼠的右侧腹。当肿瘤体积达到约 130 mm³时,切除肿瘤,留下约 15 mm³(约 10%)的肿瘤以模拟手术床中的残留肿瘤。简言之,动物在诱导室中使用异氟烷麻醉(诱导时最高 5%;维持时 1-3%),并通过鼻锥维持麻醉状态。肿瘤区域被剪毛并进行无菌准备。使用无菌器械切除约 90%的肿瘤。伤口使用 Autoclip 伤口闭合系统闭合。小鼠被随机分组(n=8)。小鼠通过静脉注射 PBS、游离血小板(约 2×10^8 细胞/小鼠)、PD-1 血小板(约 2×10^8 细胞/小鼠)、环磷酰胺(20 mg/kg)、载环磷酰胺的游离血小板(约 2×10^8 细胞/小鼠)或载环磷酰胺的 PD-1 表达血小板(约 2×10^8 细胞/小鼠)。治疗后立即进行肿瘤切除,每只小鼠在 10 分钟内完成。通过肿瘤生物发光监测肿瘤负担。 使用 IVIS Lumina 成像系统(PerkinElmer)拍摄携带肿瘤的小鼠图像。肿瘤大小通过数字卡尺测量。肿瘤体积(mm³)计算公式为(长直径×短直径²)/2。一旦小鼠出现健康状况恶化迹象或肿瘤体积超过 1.5 cm³时,小鼠通过 CO₂安乐死处理。
Tissue Immunofluorescent Assay
组织免疫荧光检测
肿瘤从实验小鼠中取出后,立即在最佳切割介质(O.C.T.)中速冻保存。使用冰冻切片机切割成 10 微米厚的切片,并固定在载玻片上。冷冻的肿瘤切片在磷酸盐缓冲液(PBS)中孵育 15 分钟以去除包埋介质。样品用含 3%牛血清白蛋白(BSA)的缓冲液进行封闭处理,随后与 CD4 和 CD8 抗体(1:50 稀释于 3% BSA 中)在 4℃下过夜孵育,再用 PBS 洗涤。接着,用室温下稀释于 1.5% BSA 中的 TRITC 二抗(KPL)进行染色,并在暗处保持 1 小时。细胞核用 DAPI 染色,并用 PBS 冲洗。使用配备 40×物镜的 FLUO-VIEW 激光扫描共聚焦显微镜(Zeiss),在顺序扫描模式下进行共聚焦显微成像。
Statistical Analysis 统计分析
所有结果均以均值±标准差或均值±标准误表示,具体视情况而定。除非另有说明,所有实验均使用生物学重复。当比较两组以上时,采用单因素或双因素方差分析(ANOVA)及 Tukey 事后检验(多重比较)。生存获益通过 log-rank 检验确定。所有统计分析均使用 IBM SPSS 统计 19 软件进行。统计显著性阈值为 P < 0.05。
Supporting Information 支持信息
点击复制段落链接Section link copied!
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.8b02321.
支持信息可免费在 ACS Publications 网站上获取,DOI: 10.1021/acs.nanolett.8b02321。
In vitro process of platelet releasing from L8057 cells, establishment of L8057 cell line stably expressing EGFP-PD-1, activity of platelets released from L8057 cells, in vitro binding and uptake of platelets by tumor cells, tumor size and body weight of mice, histological images for H&E staining, in vitro loading and release of cyclophosphamide by PD-1-expressing platelets, and the bioluminescence imaging of B16F10 tumor growth in mice after partial tumor resection and receiving the treatments (PDF)
体外从 L8057 细胞释放血小板的过程,建立稳定表达 EGFP-PD-1 的 L8057 细胞系,L8057 细胞释放血小板的活性,血小板与肿瘤细胞的体外结合与摄取,小鼠的肿瘤大小与体重,H&E 染色组织学图像,PD-1 表达血小板体外装载与释放环磷酰胺,以及部分肿瘤切除后接受治疗的小鼠 B16F10 肿瘤生长的生物发光成像(PDF)
Terms & Conditions 条款与条件
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS 网络版即可获取。这些文件可按文章下载用于研究用途(若相关文章附有公共使用许可,该许可可能允许其他用途)。通过 RightsLink 权限系统(网址:http://pubs.acs.org/page/copyright/permissions.html)可向 ACS 申请其他用途的权限。
Acknowledgments 致谢
点击复制段落链接Section link copied!
This work was supported by grants from the Alfred P. Sloan Foundation (Sloan Research Fellowship), and a pilot grant from the University of North Carolina (UNC) Cancer Center, the National Natural Science Foundation of China (31771036, 51573096, 51703132, 51728301), the Basic Research Program of Shenzhen (JCYJ20170412111100742, JCYJ20160422091238319), Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (161032), and China Podtdoctoral Science Foundation (2017M612742). We acknowledge Professor Alan Cantor at Boston Children’s Hospital and Dana-Farber Cancer Institute for providing the mouse megakaryocyte cell line L8057 cells, and Professor Leaf Huang at University of North Carolina at Chapel Hill for providing B16F10-luc cells.
本研究得到了阿尔弗雷德·P·斯隆基金会(斯隆研究奖学金)、北卡罗来纳大学(UNC)癌症中心试点资助、国家自然科学基金(31771036、51573096、51703132、51728301)、深圳市基础研究计划(JCYJ20170412111100742、JCYJ20160422091238319)、中国高等学校青年教师霍英东教育基金会(161032)以及中国博士后科学基金会(2017M612742)的资助。我们感谢波士顿儿童医院和达纳-法伯癌症研究所的 Alan Cantor 教授提供小鼠巨核细胞系 L8057 细胞,以及北卡罗来纳大学教堂山分校的 Leaf Huang 教授提供 B16F10-luc 细胞。
References
This article references 50 other publications.
- 1Stephan, S. B.; Taber, A. M.; Jileaeva, I.; Pegues, E. P.; Sentman, C. L.; Stephan, M. T. Nat. Biotechnol. 2015, 33, 97– 101, DOI: 10.1038/nbt.3104
- 2Tohme, S.; Simmons, R. L.; Tsung, A. Cancer Res. 2017, 77, 1548– 1552, DOI: 10.1158/0008-5472.CAN-16-1536
- 3Uramoto, H.; Tanaka, F. Transl. Lung Cancer Res. 2014, 3 (4), 242– 249Google Scholar3https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BC2MnnslejtQ%253D%253D&md5=f7b88505ec47577e0e7fc37f893fc4e2Recurrence after surgery in patients with NSCLCUramoto Hidetaka; Tanaka FumihiroTranslational lung cancer research (2014), 3 (4), 242-9 ISSN:2218-6751.Surgery remains the only potentially curative modality for early-stage non-small cell lung cancer (NSCLC) patients and tissue availability is made possible. However, a proportion of lung cancer patients develop recurrence, even after curative resection. This review discusses the superiority of surgery, the reasons for recurrence, the timing and pattern of recurrence, the identification of factors related to recurrence, current provisions for treatment and perspectives about surgery for patients with NSCLC.
- 4Kanwar, S. S.; Poolla, A.; Majumdar, A. P. World J. Gastrointest. Pathophysiol. 2012, 3, 1– 9, DOI: 10.4291/wjgp.v3.i1.1Google Scholar4https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BC383msFentA%253D%253D&md5=3c7eaa049a7b7089a803f822f08dbb16Regulation of colon cancer recurrence and development of therapeutic strategiesKanwar Shailender Singh; Poolla Anuradha; Majumdar Adhip PnWorld journal of gastrointestinal pathophysiology (2012), 3 (1), 1-9 ISSN:.Recurrence of colon cancer still remains a major issue which affects nearly 50% of patients treated by conventional therapeutics. Although the underlying causative factor(s) is not fully understood, development of drug-resistance has been associated with induction of cancer stem or stem-like cells (CSCs) which constitute a small sub-population of tumor cells known to be highly resistant to chemotherapy. In fact, the discovery of CSCs in a variety of tumors (including colon cancer) has changed the view of carcinogenesis and therapeutic strategies. Emerging reports have indicated that to improve patient outcomes, conventional anticancer therapies should be replaced with specific approaches targeting CSCs. Thus, therapeutic strategies that specifically target CSCs are being sought to reduce the risk of relapse and metastasis. In order to specifically target colon CSCs (while sparing somatic intestinal stem cells), it is critical to identify unique deregulated pathways responsible for self-renewal of CSCs and colon cancer recurrence. Colon CSCs present a unique opportunity to better understand the biology of solid tumors. Thus, a better understanding of the clinical signs and symptoms of colon cancer patients (undergoing surgery or chemotherapy) during perioperative periods, along with the underlying regulatory events affecting the stem/progenitor cell self-renewal and differentiation of colon epithelial cells, is of immense importance. In this review we discuss the implication of clinical factors and the emerging role of CSCs during recurrence of colon cancer along with the development of new therapeutic strategies involving the use of natural agents.
- 5Disis, M. L.; Stanton, S. E. Clin. Cancer Res. 2013, 19, 6398– 6403, DOI: 10.1158/1078-0432.CCR-13-0734Google Scholar5https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXhvVOitb7E&md5=1bf5983c54196d826179f2793d6c55fdCan Immunity to Breast Cancer Eliminate Residual Micrometastases?Disis, Mary L.; Stanton, Sasha E.Clinical Cancer Research (2013), 19 (23), 6398-6403CODEN: CCREF4; ISSN:1078-0432. (American Association for Cancer Research)A review. An effective immune response has the potential for breast cancer sterilization with marked redn. in the potential for disease relapse. Adaptive type I immune cells uniquely have the capability of (i) cytotoxic T-cell activation and proliferation until all antigen expressing cells are eradicated, (ii) traversing endothelial barriers to penetrate tumor deposits wherever they occur, and (iii) immunol. memory, which allows the persistence of destructive immunity over the years it may take for breast cancer micrometastases to become clin. evident. Numerous recent investigations suggest that some breast cancers stimulate the type of immunity that results in a decreased risk of relapse. Moreover, the endogenous type I tumor microenvironment or type I immunity induced by drugs or biol. agents may improve response to std. therapies, further lowering the probability of disease recurrence. Clin Cancer Res; 19(23); 6398-403. ©2013 AACR.
- 6Schumacher, T. N.; Schreiber, R. D. Science 2015, 348, 69– 74, DOI: 10.1126/science.aaa4971
- 7Balachandran, V. P.; Luksza, M.; Zhao, J. N.; Makarov, V.; Moral, J. A.; Remark, R.; Herbst, B.; Askan, G.; Bhanot, U.; Senbabaoglu, Y.; Wells, D. K. Nature 2017, 551 (7681), 512– 516Google ScholarThere is no corresponding record for this reference.
- 8Ott, P. A.; Hu, Z.; Keskin, D. B.; Shukla, S. A.; Sun, J.; Bozym, D. J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L. Nature 2017, 547, 217– 221, DOI: 10.1038/nature22991Google ScholarThere is no corresponding record for this reference.
- 9Gubin, M. M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J. P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C. D.; Krebber, W. J. Nature 2014, 515 (7528), 577– 81, DOI: 10.1038/nature13988Google ScholarThere is no corresponding record for this reference.
- 10Sharma, P.; Allison, J. P. Cell 2015, 161, 205– 214, DOI: 10.1016/j.cell.2015.03.030Google Scholar10https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXmsVWqsbc%253D&md5=a9cc49380f787e851564e3e5ac9b418fImmune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative PotentialSharma, Padmanee; Allison, James P.Cell (Cambridge, MA, United States) (2015), 161 (2), 205-214CODEN: CELLB5; ISSN:0092-8674. (Cell Press)A review. Research in two fronts has enabled the development of therapies that provide significant benefit to cancer patients. One area stems from a detailed knowledge of mutations that activate or inactivate signaling pathways that drive cancer development. This work triggered the development of targeted therapies that lead to clin. responses in the majority of patients bearing the targeted mutation, although responses are often of limited duration. In the second front are the advances in mol. immunol. that unveiled the complexity of the mechanisms regulating cellular immune responses. These developments led to the successful targeting of immune checkpoints to unleash anti-tumor T cell responses, resulting in durable long-lasting responses but only in a fraction of patients. In this Review, we discuss the evolution of research in these two areas and propose that intercrossing them and increasing funding to guide research of combination of agents represent a path forward for the development of curative therapies for the majority of cancer patients.
- 11Boussiotis, V. A. N. Engl. J. Med. 2016, 375, 1767– 1778, DOI: 10.1056/NEJMra1514296Google Scholar11https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC28XhvF2ksrbI&md5=856e935a0b34db47b57190db05218c24Molecular and biochemical aspects of the PD-1 checkpoint pathwayBoussiotis, Vassiliki A.New England Journal of Medicine (2016), 375 (18), 1767-1778CODEN: NEJMAG; ISSN:1533-4406. (Massachusetts Medical Society)The pathway consisting of the receptor programmed cell death 1 (PD-1; also called CD279) and its ligands, PD-L1 (B7-H1 or CD274) and PD-L2 (B7-DC or CD273), plays a vital role in the maintenance of peripheral tolerance (i.e., mechanisms that maintain the quiescence of autoreactive T cells that have already matured and escaped the mechanisms of central tolerance during development in the thymus). Tumors and pathogens that cause chronic infections can exploit this pathway to escape T-cell-mediated tumor-specific and pathogen-specific immunity. Therapies with antibodies targeting PD-1 and its ligands have been shown to be assocd. with remarkable response rates in various cancers and, together with antibodies targeting CTLA-4, have revolutionized cancer treatment. (See the Supplementary Appendix, available with the full text of this article at NEJM.org, for a list of the protein abbreviations used in this review.) In addn. to the clin. success, ongoing work is currently revealing the mol. mechanisms targeted by PD-1. Here, I provide a brief overview of the mol. and biochem. events that are regulated by PD-1 ligation and their implications for mechanisms intrinsic and extrinsic to the cell that det. the fate and function of T cells.
- 12Zou, W.; Wolchok, J. D.; Chen, L. Sci. Transl. Med. 2016, 8, 328rv4, DOI: 10.1126/scitranslmed.aad7118Google ScholarThere is no corresponding record for this reference.
- 13Sharma, P.; Allison, J. P. Science 2015, 348, 56– 61, DOI: 10.1126/science.aaa8172Google Scholar13https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXls1Wmurg%253D&md5=d63ae85b9c651ec64a3b5b002c609e35The future of immune checkpoint therapySharma, Padmanee; Allison, James P.Science (Washington, DC, United States) (2015), 348 (6230), 56-61CODEN: SCIEAS; ISSN:0036-8075. (American Association for the Advancement of Science)A review. Immune checkpoint therapy, which targets regulatory pathways in T cells to enhance antitumor immune responses, has led to important clin. advances and provided a new weapon against cancer. This therapy has elicited durable clin. responses and, in a fraction of patients, long-term remissions where patients exhibit no clin. signs of cancer for many years. The way forward for this class of novel agents lies in our ability to understand human immune responses in the tumor microenvironment. This will provide valuable information regarding the dynamic nature of the immune response and regulation of addnl. pathways that will need to be targeted through combination therapies to provide survival benefit for greater nos. of patients.
- 14Hoos, A. Nat. Rev. Drug Discovery 2016, 15, 235– 247, DOI: 10.1038/nrd.2015.35Google ScholarThere is no corresponding record for this reference.
- 15Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Nat. Commun. 2016, 7, 13193, DOI: 10.1038/ncomms13193Google Scholar15https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC28XhslGrtrzN&md5=82551fdfc13ac97849f58618cbd90f7ePhotothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapyChen, Qian; Xu, Ligeng; Liang, Chao; Wang, Chao; Peng, Rui; Liu, ZhuangNature Communications (2016), 7 (), 13193CODEN: NCAOBW; ISSN:2041-1723. (Nature Publishing Group)A therapeutic strategy that can eliminate primary tumors, inhibit metastases, and prevent tumor relapses is developed herein by combining adjuvant nanoparticle-based photothermal therapy with checkpoint-blockade immunotherapy. Indocyanine green (ICG), a photothermal agent, and imiquimod (R837), a Toll-like-receptor-7 agonist, are co-encapsulated by poly(lactic-co-glycolic) acid (PLGA). The formed PLGA-ICG-R837 nanoparticles composed purely by three clin. approved components can be used for near-IR laser-triggered photothermal ablation of primary tumors, generating tumor-assocd. antigens, which in the presence of R837-contg. nanoparticles as the adjuvant can show vaccine-like functions. In combination with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4 (CTLA4), the generated immunol. responses will be able to attack remaining tumor cells in mice, useful in metastasis inhibition, and may potentially be applicable for various types of tumor models. Furthermore, such strategy offers a strong immunol. memory effect, which can provide protection against tumor rechallenging post elimination of their initial tumors.
- 16Sharma, P.; Hu-Lieskovan, S.; Wargo, J. A.; Ribas, A. Cell 2017, 168, 707– 723, DOI: 10.1016/j.cell.2017.01.017Google ScholarThere is no corresponding record for this reference.
- 17von Boehmer, H. Nat. Immunol. 2005, 6, 338– 44, DOI: 10.1038/ni1180Google Scholar17https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2MXisVyitb4%253D&md5=5a70a3f463538e8a6e9e534868fe7eabMechanisms of suppression by suppressor T cellsvon Boehmer, HaraldNature Immunology (2005), 6 (4), 338-344CODEN: NIAMCZ; ISSN:1529-2908. (Nature Publishing Group)A review. Mechanisms of immunosuppression by CD4+CD25+ suppressor T cells have been addressed using many in vitro and in vivo conditions. However, those studies have not yielded a single mode of action. This review will discuss the mechanisms of suppression, which include the local secretion of cytokines such as TGF-β and direct cell contact through binding of cell surface mols. such as CTLA-4 on suppressor T cells to CD80 and CD86 mols. on effector T cells. Suppression requires the appropriate colocalization of suppressor and effector T cells in different tissue and may involve the interference with T cell receptor signaling that triggers transcription factors important in regulating effector cell function.
- 18Zou, W. Nat. Rev. Immunol. 2006, 6, 295– 307, DOI: 10.1038/nri1806Google Scholar18https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD28XivVyru7k%253D&md5=c08b6710a4fc3c59fd3a1349d5802ad7Regulatory T cells, tumour immunity and immunotherapyZou, WeipingNature Reviews Immunology (2006), 6 (4), 295-307CODEN: NRIABX; ISSN:1474-1733. (Nature Publishing Group)A review. Tumors express a range of antigens, including self-antigens. Regulatory T cells are crucial for maintaining T-cell tolerance to self-antigens. Regulatory T cells are thought to dampen T-cell immunity to tumor-assocd. antigens and to be the main obstacle tempering successful immunotherapy and active vaccination. In this Review, I consider the nature and characteristics of regulatory T cells in the tumor microenvironment and their potential multiple suppressive mechanisms. Strategies for therapeutic targeting of regulatory T cells and the effect of regulatory T cells on current immunotherapeutic and vaccine regimens are discussed.
- 19Grossman, W. J.; Verbsky, J. W.; Barchet, W.; Colonna, M.; Atkinson, J. P.; Ley, T. J. Immunity 2004, 21, 589– 601, DOI: 10.1016/j.immuni.2004.09.002Google ScholarThere is no corresponding record for this reference.
- 20Maj, T.; Wang, W.; Crespo, J.; Zhang, H.; Wei, S.; Zhao, L.; Vatan, L.; Shao, I.; Szeliga, W.; Lyssiotis, C.; Liu, J. R.; Kryczek, I.; Zou, W. Nat. Immunol. 2017, 18, 1332– 1341, DOI: 10.1038/ni.3868Google Scholar20https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2sXhslejtLrO&md5=ece2a07be77ac266d2384e64ce9622bbOxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumorMaj, Tomasz; Wang, Wei; Crespo, Joel; Zhang, Hongjuan; Wang, Weimin; Wei, Shuang; Zhao, Lili; Vatan, Linda; Shao, Irene; Szeliga, Wojciech; Lyssiotis, Costas; Liu, J. Rebecca; Kryczek, Ilona; Zou, WeipingNature Immunology (2017), 18 (12), 1332-1341CODEN: NIAMCZ; ISSN:1529-2908. (Nature Research)Live regulatory T cells (Treg cells) suppress antitumor immunity, but how Treg cells behave in the metabolically abnormal tumor microenvironment remains unknown. Here we show that tumor Treg cells undergo apoptosis, and such apoptotic Treg cells abolish spontaneous and PD-L1-blockade-mediated antitumor T cell immunity. Biochem. and functional analyses show that adenosine, but not typical suppressive factors such as PD-L1, CTLA-4, TGF-β, IL-35, and IL-10, contributes to apoptotic Treg-cell-mediated immunosuppression. Mechanistically, apoptotic Treg cells release and convert a large amt. of ATP to adenosine via CD39 and CD73, and mediate immunosuppression via the adenosine and A2A pathways. Apoptosis in Treg cells is attributed to their weak NRF2-assocd. antioxidant system and high vulnerability to free oxygen species in the tumor microenvironment. Thus, the data support a model wherein tumor Treg cells sustain and amplify their suppressor capacity through inadvertent death via oxidative stress. This work highlights the oxidative pathway as a metabolic checkpoint that controls Treg cell behavior and affects the efficacy of therapeutics targeting cancer checkpoints.
- 21Golebiewska, E. M.; Poole, A. W. Blood Rev. 2015, 29, 153– 162, DOI: 10.1016/j.blre.2014.10.003Google Scholar21https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXhvFSnu73P&md5=5546fb06f1ff5d85fe6bcae2d31a0ac4Platelet secretion: From haemostasis to wound healing and beyondGolebiewska, Ewelina M.; Poole, Alastair W.Blood Reviews (2015), 29 (3), 153-162CODEN: BLOREB; ISSN:0268-960X. (Elsevier Ltd.)Upon activation, platelets secrete more than 300 active substances from their intracellular granules. Platelet dense granule components, such as ADP and polyphosphates, contribute to haemostasis and coagulation, but also play a role in cancer metastasis. α-Granules contain multiple cytokines, mitogens, pro- and anti-inflammatory factors and other bioactive mols. that are essential regulators in the complex microenvironment of the growing thrombus but also contribute to a no. of disease processes. Our understanding of the mol. mechanisms of secretion and the genetic regulation of granule biogenesis still remains incomplete. In this review we summarise our current understanding of the roles of platelet secretion in health and disease, and discuss some of the hypotheses that may explain how platelets may control the release of its many secreted components in a context-specific manner, to allow platelets to play multiple roles in health and disease.
- 22Nurden, A. T.; Nurden, P.; Sanchez, M.; Andia, I.; Anitua, E. Front Biosci. 2008, 13, 3532– 3548Google Scholar22https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BD1czksVymsQ%253D%253D&md5=bc9408067264404e8f17e44fcbfaffe8Platelets and wound healingNurden Alan T; Nurden Paquita; Sanchez Mikel; Andia Isabel; Anitua EduardoFrontiers in bioscience : a journal and virtual library (2008), 13 (), 3532-48 ISSN:1093-9946.Platelets help prevent blood loss at sites of vascular injury. To do this, they adhere, aggregate and form a procoagulant surface favoring thrombin generation and fibrin formation. In addition, platelets express and release substances that promote tissue repair and influence processes such as angiogenesis, inflammation and the immune response. They contain large secretable pools of biologically active proteins, while newly synthesized active metabolites are also released. Although anucleate, activated platelets possess a spliceosome and can synthesize tissue factor and interleukin-1beta. The binding of secreted proteins within a developing fibrin mesh or to the extracellular matrix can create chemotactic gradients favoring the recruitment of stem cells, stimulating cell migration and differentiation, and promoting repair. The therapeutic use of platelets in a fibrin clot has a positive influence in clinical situations requiring rapid healing. Dental implant surgery, orthopaedic surgery, muscle and tendon repair, skin ulcers, hole repair in eye surgery and cardiac surgery are situations where the use of autologous platelets accelerates healing. We now review the ways in which platelets participate in these processes.
- 23Wang, C.; Sun, W.; Ye, Y.; Hu, Q.; Bomba, H. N.; Gu, Z. Nat. Biomed. Eng. 2017, 1, 0011, DOI: 10.1038/s41551-016-0011Google Scholar23https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC1MXit1ahur%252FO&md5=f19b7813302dd9569c51e471417ed119In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapyWang, Chao; Sun, Wujin; Ye, Yanqi; Hu, Quanyin; Bomba, Hunter N.; Gu, ZhenNature Biomedical Engineering (2017), 1 (2), 0011CODEN: NBEAB3; ISSN:2157-846X. (Nature Research)Cancer recurrence after surgical resection remains a significant challenge in cancer therapy. Platelets, which accumulate in wound sites and interact with circulating tumor cells (CTCs), can however trigger inflammation and repair processes in the remaining tumor microenvironment. Inspired by this intrinsic ability of platelets and the clin. success of immune checkpoint inhibitors, here we show that conjugating anti-PDL1 (engineered monoclonal antibodies against programmed-death ligand 1) to the surface of platelets can reduce post-surgical tumor recurrence and metastasis. Using mice bearing partially removed primary melanomas (B16-F10) or triple-neg. breast carcinomas (4T1), we found that anti-PDL1 was effectively released on platelet activation by platelet-derived microparticles, and that the administration of platelet-bound anti-PDL1 significantly prolonged overall mouse survival after surgery by reducing the risk of cancer regrowth and metastatic spread. Our findings suggest that engineered platelets can facilitate the delivery of the immunotherapeutic anti-PDL1 to the surgical bed and target CTCs in the bloodstream, thereby potentially improving the objective response rate.
- 24Hu, C. M.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. Nature 2015, 526, 118– 121, DOI: 10.1038/nature15373Google Scholar24https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXhsFersL3L&md5=b3ac12cfaaec406bc86e7b816f843a80Nanoparticle biointerfacing by platelet membrane cloakingHu, Che-Ming J.; Fang, Ronnie H.; Wang, Kuei-Chun; Luk, Brian T.; Thamphiwatana, Soracha; Dehaini, Diana; Nguyen, Phu; Angsantikul, Pavimol; Wen, Cindy H.; Kroll, Ashley V.; Carpenter, Cody; Ramesh, Manikantan; Qu, Vivian; Patel, Sherrina H.; Zhu, Jie; Shi, William; Hofman, Florence M.; Chen, Thomas C.; Gao, Weiwei; Zhang, Kang; Chien, Shu; Zhang, LiangfangNature (London, United Kingdom) (2015), 526 (7571), 118-121CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)Development of functional nanoparticles can be encumbered by unanticipated material properties and biol. events, which can affect nanoparticle effectiveness in complex, physiol. relevant systems. Despite the advances in bottom-up nanoengineering and surface chem., reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the prepn. of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens assocd. with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an exptl. rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, resp., show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.
- 25Anselmo, A. C.; Modery-Pawlowski, C. L.; Menegatti, S.; Kumar, S.; Vogus, D. R.; Tian, L. L.; Chen, M.; Squires, T. M.; Sen Gupta, A.; Mitragotri, S. ACS Nano 2014, 8, 11243– 11253, DOI: 10.1021/nn503732mGoogle ScholarThere is no corresponding record for this reference.
- 26Hu, Q.; Sun, W.; Qian, C.; Wang, C.; Bomba, H. N.; Gu, Z. Adv. Mater. 2015, 27, 7043– 7050, DOI: 10.1002/adma.201503323Google Scholar26https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXhsFyqsrnM&md5=fb41127552a9ab172439df259a7c2cbbAnticancer Platelet-Mimicking NanovehiclesHu, Quanyin; Sun, Wujin; Qian, Chengen; Wang, Chao; Bomba, Hunter N.; Gu, ZhenAdvanced Materials (Weinheim, Germany) (2015), 27 (44), 7043-7050CODEN: ADVMEW; ISSN:0935-9648. (Wiley-VCH Verlag GmbH & Co. KGaA)Human plasma membranes were isolated and made into nanocapsules that contained doxorubicin. TRAIL was also added to provide antitumor activity. The nanocapsules were targeted to human breast cancer cells by platelet P-selectin binding to CD44 and TRAIL binding to death receptors. Tumor apoptosis was demonstrated.
- 27Li, S.; Jiang, Q.; Liu, S.; Zhang, Y.; Tian, Y.; Song, C.; Wang, J.; Zou, Y.; Anderson, G. J.; Han, J. Y.; Chang, Y.; Liu, Y.; Zhang, C.; Chen, L.; Zhou, G.; Nie, G.; Yan, H.; Ding, B.; Zhao, Y. Nat. Biotechnol. 2018, 36, 258– 264, DOI: 10.1038/nbt.4071Google Scholar27https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC1cXisFCiurY%253D&md5=b780d2a8958409aeee721f6d96b3aee0A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivoLi, Suping; Jiang, Qiao; Liu, Shaoli; Zhang, Yinlong; Tian, Yanhua; Song, Chen; Wang, Jing; Zou, Yiguo; Anderson, Gregory J.; Han, Jing-Yan; Chang, Yung; Liu, Yan; Zhang, Chen; Chen, Liang; Zhou, Guangbiao; Nie, Guangjun; Yan, Hao; Ding, Baoquan; Zhao, YuliangNature Biotechnology (2018), 36 (3), 258-264CODEN: NABIF9; ISSN:1087-0156. (Nature Research)Nanoscale robots have potential as intelligent drug delivery systems that respond to mol. triggers. Using DNA origami we constructed an autonomous DNA robot programmed to transport payloads and present them specifically in tumors. Our nanorobot is functionalized on the outside with a DNA aptamer that binds nucleolin, a protein specifically expressed on tumor-assocd. endothelial cells, and the blood coagulation protease thrombin within its inner cavity. The nucleolin-targeting aptamer serves both as a targeting domain and as a mol. trigger for the mech. opening of the DNA nanorobot. The thrombin inside is thus exposed and activates coagulation at the tumor site. Using tumor-bearing mouse models, we demonstrate that i.v. injected DNA nanorobots deliver thrombin specifically to tumor-assocd. blood vessels and induce intravascular thrombosis, resulting in tumor necrosis and inhibition of tumor growth. The nanorobot proved safe and immunol. inert in mice and Bama miniature pigs. Our data show that DNA nanorobots represent a promising strategy for precise drug delivery in cancer therapy.
- 28Stroncek, D. F.; Rebulla, P. Lancet 2007, 370, 427– 438, DOI: 10.1016/S0140-6736(07)61198-2Google ScholarThere is no corresponding record for this reference.
- 29Moreau, T.; Evans, A. L.; Vasquez, L.; Tijssen, M. R.; Yan, Y.; Trotter, M. W.; Howard, D.; Colzani, M.; Arumugam, M.; Wu, W. H. Nat. Commun. 2016, 7, 11208, DOI: 10.1038/ncomms11208Google Scholar29https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC28Xls1Kmtb8%253D&md5=f0a2623373828c01d2fe868e5a10ac9dLarge-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programmingMoreau, Thomas; Evans, Amanda L.; Vasquez, Louella; Tijssen, Marloes R.; Yan, Ying; Trotter, Matthew W.; Howard, Daniel; Colzani, Maria; Arumugam, Meera; Wu, Wing Han; Dalby, Amanda; Lampela, Riina; Bouet, Guenaelle; Hobbs, Catherine M.; Pask, Dean C.; Payne, Holly; Ponomaryov, Tatyana; Brill, Alexander; Soranzo, Nicole; Ouwehand, Willem H.; Pedersen, Roger A.; Ghevaert, CedricNature Communications (2016), 7 (), 11208CODEN: NCAOBW; ISSN:2041-1723. (Nature Publishing Group)The prodn. of megakaryocytes (MKs)-the precursors of blood platelets-from human pluripotent stem cells (hPSCs) offers exciting clin. opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chem. defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 105 mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufg. practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro prodn. of platelets for transfusion and basic research in MK and platelet biol.
- 30Li, J.; Sharkey, C. C.; Wun, B.; Liesveld, J. L.; King, M. R. J. Controlled Release 2016, 228, 38– 47, DOI: 10.1016/j.jconrel.2016.02.036Google ScholarThere is no corresponding record for this reference.
- 31Lefrancais, E.; Ortiz-Munoz, G.; Caudrillier, A.; Mallavia, B.; Liu, F.; Sayah, D. M.; Thornton, E. E.; Headley, M. B.; David, T.; Coughlin, S. R. Nature 2017, 544 (7648), 105– 109, DOI: 10.1038/nature21706Google ScholarThere is no corresponding record for this reference.
- 32Zhang, X.; Wang, C.; Wang, J.; Hu, Q.; Langworthy, B.; Ye, Y.; Sun, W.; Lin, J.; Wang, T.; Fine, J.; Cheng, H.; Dotti, G.; Huang, P.; Gu, Z. Adv. Mater. 2018, 30, 1707112, DOI: 10.1002/adma.201707112Google ScholarThere is no corresponding record for this reference.
- 33Machlus, K. R.; Italiano, J. E., Jr. J. Cell Biol. 2013, 201, 785– 796, DOI: 10.1083/jcb.201304054Google ScholarThere is no corresponding record for this reference.
- 34Ruggeri, Z. M.; Mendolicchio, G. L. Circ. Res. 2007, 100, 1673– 1685, DOI: 10.1161/01.RES.0000267878.97021.abGoogle Scholar34https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2sXmslygt7c%253D&md5=91f340e290373377e8a8b543f7e3f133Adhesion Mechanisms in Platelet FunctionRuggeri, Zaverio M.; Mendolicchio, G. LoredanaCirculation Research (2007), 100 (12), 1673-1685CODEN: CIRUAL; ISSN:0009-7330. (Lippincott Williams & Wilkins)Platelet adhesion is an essential function in response to vascular injury and is generally viewed as the first step during which single platelets bind through specific membrane receptors to cellular and extracellular matrix constituents of the vessel wall and tissues. This response initiates thrombus formation that arrests hemorrhage and permits wound healing. Pathol. conditions that cause vascular alterations and blood flow disturbances may turn this beneficial process into a disease mechanism that results in arterial occlusion, most frequently in atherosclerotic vessels of the heart and brain. Besides their relevant role in hemostasis and thrombosis, platelet adhesive properties are central to a variety of pathophysiol. processes that extend from inflammation to immune-mediated host defense and pathogenic mechanisms as well as cancer metastasis. All of these activities depend on the ability of platelets to circulate in blood as sentinels of vascular integrity, adhere where alterations are detected, and signal the abnormality to other platelets and blood cells. In this respect, therefore, platelet adhesion to vascular wall structures, to one another (aggregation), or to other blood cells, represent different aspects of the same fundamental biol. process. Detailed studies by many investigators over the past several years have been aimed to dissect the complexity of these functions, and the results obtained now permit an attempt to integrate all the available information into a picture that highlights the balanced diversity and synergy of distinct platelet adhesive interactions.
- 35Semple, J. W.; Italiano, J. E., Jr.; Freedman, J. Nat. Rev. Immunol. 2011, 11, 264– 274, DOI: 10.1038/nri2956Google Scholar35https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXjvVOhu7s%253D&md5=dac67170a4368952bc133aacc5b1bdbdPlatelets and the immune continuumSemple, John W.; Italiano, Joseph E.; Freedman, JohnNature Reviews Immunology (2011), 11 (4), 264-274CODEN: NRIABX; ISSN:1474-1733. (Nature Publishing Group)A review. Platelets are anucleate cells that are crucial mediators of haemostasis. Most immunologists probably don't think about platelets every day, and may even consider these cells to be 'nuisances' in certain in vitro studies. However, it is becoming increasingly clear that platelets have inflammatory functions and can influence both innate and adaptive immune responses. Here, we discuss the mechanisms by which platelets contribute to immunity: these small cells are more immunol. savvy than we once thought.
- 36Siljander, P. R. Thromb. Res. 2011, 127, S30– S33, DOI: 10.1016/S0049-3848(10)70152-3Google Scholar36https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXhs1GksA%253D%253D&md5=8a9f0eee648e1a4ce1e4929e5f0ab038Platelet-derived microparticles - an updated perspectiveSiljander, Pia R. M.Thrombosis Research (2011), 127 (Suppl. 2), S30-S33CODEN: THBRAA; ISSN:0049-3848. (Elsevier Ltd.)A review. Platelet-derived microparticles (PMP) are a heterogeneous population of vesicles (<1mm) generated from the plasma membrane upon platelet activation by various stimuli. They are a discrete population differing from the exosomes which originate from the intracellular multivesicular bodies. PMP also differ from the microparticles derived from megakaryocytes despite the presence of several identical surface markers on the latter. The mol. properties and the functional roles of the PMP are beginning to be elucidated by the rapidly evolving research interest, but novel questions are simultaneously raised. This updated perspective discusses the most recent highlights in the PMP research in context with the methodol. problems and the paradoxical role of the PMP in health and disease.
- 37Mause, S. F.; von Hundelshausen, P.; Zernecke, A.; Koenen, R. R.; Weber, C. Arterioscler., Thromb., Vasc. Biol. 2005, 25, 1512– 1518, DOI: 10.1161/01.ATV.0000170133.43608.37Google Scholar37https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2MXltlSitb0%253D&md5=a60e3f963f73b8bdebb85cbd87a1e55aPlatelet Microparticles: A Transcellular Delivery System for RANTES Promoting Monocyte Recruitment on EndotheliumMause, Sebastian F.; von Hundelshausen, Philipp; Zernecke, Alma; Koenen, Rory R.; Weber, ChristianArteriosclerosis, Thrombosis, and Vascular Biology (2005), 25 (7), 1512-1518CODEN: ATVBFA; ISSN:1079-5642. (Lippincott Williams & Wilkins)Objective: Platelet activation mediates multiple cellular responses, including secretion of chemokines such as RANTES (CCL5), and formation of platelet microparticles (PMPs). We studied the role of PMPs in delivering RANTES and promoting monocyte recruitment. Methods and Results: Here we show that PMPs contain substantial amts. of RANTES and deposit RANTES on activated endothelium or murine atherosclerotic carotid arteries. RANTES deposition is facilitated by flow conditions and more efficient than that conferred by PMP supernatants. Interactions of PMPs with activated endothelium in flow were mostly characterized by rolling. RANTES deposition showed a diffuse distribution pattern and was rarely colocalized with firmly adherent PMPs, substantiating that RANTES deposition occurs during transient interactions. Importantly, preperfusion with PMPs enhanced monocyte arrest on activated endothelium or atherosclerotic carotid arteries, which could be inhibited by a blocking antibody or a RANTES receptor antagonist. Blockade or deficiency of PMP-expressed adhesion receptors demonstrated differential requirement of P-selectin, glycoprotein Ib (GPIb), GPIIb/IIIa, and junctional adhesion mol.-A for PMP interactions with endothelium, PMP-dependent RANTES deposition, and subsequent monocyte arrest. Conclusion: Circulating PMPs may serve as a finely tuned transcellular delivery system for RANTES, triggering monocyte arrest to inflamed and atherosclerotic endothelium, introducing a novel mechanism for platelet-dependent monocyte recruitment in inflammation and atherosclerosis.
- 38Rollinghoff, M.; Starzinski-Powitz, A.; Pfizenmaier, K.; Wagner, H. J. Exp. Med. 1977, 145, 455– 459, DOI: 10.1084/jem.145.2.455Google ScholarThere is no corresponding record for this reference.
- 39Yoshida, S.; Nomoto, K.; Himeno, K.; Takeya, K. Clin. Exp. Immunol. 1979, 38 (2), 211– 217Google Scholar39https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADyaL3c7htFOgtA%253D%253D&md5=ceee5b85ffd7b15cfad133e147e71833Immune response to syngeneic or autologous testicular cells in mice. I. Augmented delayed footpad reaction in cyclophosphamide-treated miceYoshida S; Nomoto K; Himeno K; Takeya KClinical and experimental immunology (1979), 38 (2), 211-7 ISSN:0009-9104.A delayed footpad reaction against syngeneic or autologous testicular cells was detected in mice of inbred C57BL/6, AKR and C3H/He strains. The reaction was only provoked to a measurable level if the immunization was preceded by treatment with cyclophosphamide (CY). Footpad reaction was strongest on day 6 after immunization and was detected in both male and female mice. It was found that the reaction was elicited not only with the immunizing antigen, but also with allogeneic or xenogeneic testicular antigen in mice immunized with syngeneic testicular cells.
- 40Berd, D.; Mastrangelo, M. J. Cancer Res. 1988, 48 (6), 1671– 1675Google ScholarThere is no corresponding record for this reference.
- 41Chen, Q.; Wang, C.; Chen, G.; Hu, Q.; Gu, Z. Adv. Healthcare Mater. 2018, 1800424, DOI: 10.1002/adhm.201800424Google ScholarThere is no corresponding record for this reference.
- 42Wang, C.; Wang, J.; Zhang, X.; Yu, S.; Wen, D.; Hu, Q.; Ye, Y.; Bomba, H.; Hu, X.; Liu, Z.; Dotti, G.; Gu, Z. Sci. Transl. Med. 2018, 10, 429, DOI: 10.1126/scitranslmed.aan3682Google ScholarThere is no corresponding record for this reference.
- 43Zhang, X.; Dong, Y.; Zeng, X.; Liang, X.; Li, X.; Tao, W.; Chen, H.; Jiang, Y.; Mei, L.; Feng, S. S. Biomaterials 2014, 35 (6), 1932– 43, DOI: 10.1016/j.biomaterials.2013.10.034Google ScholarThere is no corresponding record for this reference.
- 44Jang, S. C.; Kim, O. Y.; Yoon, C. M.; Choi, D. S.; Roh, T. Y.; Park, J.; Nilsson, J.; Lotvall, J.; Kim, Y. K.; Gho, Y. S. ACS Nano 2013, 7, 7698– 7710, DOI: 10.1021/nn402232gGoogle ScholarThere is no corresponding record for this reference.
- 45Wen, D.; Peng, Y.; Liu, D.; Weizmann, Y.; Mahato, R. I. J. Controlled Release 2016, 238, 166– 175, DOI: 10.1016/j.jconrel.2016.07.044Google ScholarThere is no corresponding record for this reference.
- 46Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M. J. Nat. Biotechnol. 2011, 29, 341– 345, DOI: 10.1038/nbt.1807Google Scholar46https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXjsVKqsLw%253D&md5=b86a2f2c2338e8dfe6d4cf2f1e788296Delivery of siRNA to the mouse brain by systemic injection of targeted exosomesAlvarez-Erviti, Lydia; Seow, Yiqi; Yin, HaiFang; Betts, Corinne; Lakhal, Samira; Wood, Matthew J. A.Nature Biotechnology (2011), 29 (4), 341-345CODEN: NABIF9; ISSN:1087-0156. (Nature Publishing Group)To realize the therapeutic potential of RNA drugs, efficient, tissue-specific and nonimmunogenic delivery technologies must be developed. Here we show that exosomes-endogenous nano-vesicles that transport RNAs and proteins-can deliver short interfering (si)RNA to the brain in mice. To reduce immunogenicity, we used self-derived dendritic cells for exosome prodn. Targeting was achieved by engineering the dendritic cells to express Lamp2b, an exosomal membrane protein, fused to the neuron-specific RVG peptide. Purified exosomes were loaded with exogenous siRNA by electroporation. I.v. injected RVG-targeted exosomes delivered GAPDH siRNA specifically to neurons, microglia, oligodendrocytes in the brain, resulting in a specific gene knockdown. Pre-exposure to RVG exosomes did not attenuate knockdown, and non-specific uptake in other tissues was not obsd. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated by the strong mRNA (60%) and protein (62%) knockdown of BACE1, a therapeutic target in Alzheimer's disease, in wild-type mice.
- 47El-Andaloussi, S.; Lee, Y.; Lakhal-Littleton, S.; Li, J.; Seow, Y.; Gardiner, C.; Alvarez-Erviti, L.; Sargent, I. L.; Wood, M. J. Nat. Protoc. 2012, 7, 2112– 2126, DOI: 10.1038/nprot.2012.131Google ScholarThere is no corresponding record for this reference.
- 48Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G. J.; Wei, J.; Nie, G. Biomaterials 2014, 35, 2383– 2390, DOI: 10.1016/j.biomaterials.2013.11.083Google Scholar48https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXhvFGrsbzJ&md5=02b3a5d88c448c81b2d57c70b011698cA doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapyTian, Yanhua; Li, Suping; Song, Jian; Ji, Tianjiao; Zhu, Motao; Anderson, Gregory J.; Wei, Jingyan; Nie, GuangjunBiomaterials (2014), 35 (7), 2383-2390CODEN: BIMADU; ISSN:0142-9612. (Elsevier Ltd.)Targeted drug delivery vehicles with low immunogenicity and toxicity are needed for cancer therapy. Here we show that exosomes, endogenous nano-sized membrane vesicles secreted by most cell types, can deliver chemotherapeutics such as doxorubicin (Dox) to tumor tissue in BALB/c nude mice. To reduce immunogenicity and toxicity, mouse immature dendritic cells (imDCs) were used for exosome prodn. Tumor targeting was facilitated by engineering the imDCs to express a well-characterized exosomal membrane protein (Lamp2b) fused to αv integrin-specific iRGD peptide (CRGDKGPDC). Purified exosomes from imDCs were loaded with Dox via electroporation, with an encapsulation efficiency of up to 20%. IRGD exosomes showed highly efficient targeting and Dox delivery to αv integrin-pos. breast cancer cells in vitro as demonstrated by confocal imaging and flow cytometry. I.v. injected targeted exosomes delivered Dox specifically to tumor tissues, leading to inhibition of tumor growth without overt toxicity. Our results suggest that exosomes modified by targeting ligands can be used therapeutically for the delivery of Dox to tumors, thus having great potential value for clin. applications.
- 49Gulfam, M.; Kim, J. E.; Lee, J. M.; Ku, B.; Chung, B. H.; Chung, B. G. Langmuir 2012, 28, 8216– 8223, DOI: 10.1021/la300691nGoogle ScholarThere is no corresponding record for this reference.
- 50Kensler, T. T.; Behme, R. J.; Brooke, D. J. Pharm. Sci. 1979, 68, 172– 174, DOI: 10.1002/jps.2600680213Google ScholarThere is no corresponding record for this reference.
Cited By
This article is cited by 182 publications.
- Yuting Wei, Zhirang Zhang, Tianyuan Xue, Zhongda Lin, Xinyu Chen, Yishi Tian, Yuan Li, Zhangyan Jing, Wenli Fang, Tianliang Fang, Baoqi Li, Qi Chen, Tianyu Lan, Fanqiang Meng, Xudong Zhang, Xin Liang. In Situ Synthesis of an Immune-Checkpoint Blocker from Engineered Bacteria Elicits a Potent Antitumor Response. ACS Synthetic Biology 2024, 13
(6)
, 1679-1693. https://doi.org/10.1021/acssynbio.3c00569
- Suhui Sun, Qingshuang Tang, Yuan Wang, Lulu Zhang, Jing Chen, Menghong Xu, Lihong Sun, Ligang Cui, Xiaolong Liang. In Situ Micro–Nano Conversion Augmented Tumor-Localized Immunochemotherapy. ACS Applied Materials & Interfaces 2022, 14
(23)
, 27013-27027. https://doi.org/10.1021/acsami.2c02490
- Wei Zhao, Ting Li, Yang Long, Rong Guo, Qinglin Sheng, Zhengze Lu, Man Li, Jiaxin Li, Shuya Zang, Zhirong Zhang, Qin He. Self-promoted Albumin-Based Nanoparticles for Combination Therapy against Metastatic Breast Cancer via a Hyperthermia-Induced “Platelet Bridge”. ACS Applied Materials & Interfaces 2021, 13
(22)
, 25701-25714. https://doi.org/10.1021/acsami.1c04442
- Huiying Xu, Chong Liao, Shifu Liang, Bang-Ce Ye. A Novel Peptide-Equipped Exosomes Platform for Delivery of Antisense Oligonucleotides. ACS Applied Materials & Interfaces 2021, 13
(9)
, 10760-10767. https://doi.org/10.1021/acsami.1c00016
- Hong Pan, Hongyan Shi, Peng Fu, Pengfei Shi, Jianyuan Yang. Liposomal Dendritic Cell Vaccine in Breast Cancer Immunotherapy. ACS Omega 2021, 6
(5)
, 3991-3998. https://doi.org/10.1021/acsomega.0c05924
- Yao Li, Ruifang Zhao, Keman Cheng, Kaiyue Zhang, Yazhou Wang, Yinlong Zhang, Yujing Li, Guangna Liu, Junchao Xu, Jiaqi Xu, Gregory J. Anderson, Jian Shi, Lei Ren, Xiao Zhao, Guangjun Nie. Bacterial Outer Membrane Vesicles Presenting Programmed Death 1 for Improved Cancer Immunotherapy via Immune Activation and Checkpoint Inhibition. ACS Nano 2020, 14
(12)
, 16698-16711. https://doi.org/10.1021/acsnano.0c03776
- Xiao Han, Hongjun Li, Daojia Zhou, Zhaowei Chen, Zhen Gu. Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics. Accounts of Chemical Research 2020, 53
(11)
, 2521-2533. https://doi.org/10.1021/acs.accounts.0c00339
- Yufei Xia, Tiantian Song, Yuning Hu, Guanghui Ma. Synthetic Particles for Cancer Vaccines: Connecting the Inherent Supply Chain. Accounts of Chemical Research 2020, 53
(10)
, 2068-2080. https://doi.org/10.1021/acs.accounts.0c00336
- Zhanxue Xu, Hsiang-i Tsai, Youmei Xiao, Yingyi Wu, Dandan Su, Min Yang, Hualian Zha, Fuxia Yan, Xiaoyan Liu, Fang Cheng, Hongbo Chen. Engineering Programmed Death Ligand-1/Cytotoxic T-Lymphocyte-Associated Antigen-4 Dual-Targeting Nanovesicles for Immunosuppressive Therapy in Transplantation. ACS Nano 2020, 14
(7)
, 7959-7969. https://doi.org/10.1021/acsnano.9b09065
- Yadan Zheng, Zhanzhan Zhang, Qi Liu, Yu Zhao, Chunxiong Zheng, Jialei Hao, Kaikai Yi, Ying Wang, Chun Wang, Xinzhi Zhao, Linqi Shi, Chunsheng Kang, Yang Liu. Multifunctional Nanomodulators Regulate Multiple Pathways To Enhance Antitumor Immunity. ACS Applied Bio Materials 2020, 3
(7)
, 4635-4642. https://doi.org/10.1021/acsabm.0c00513
- Qinglian Hu, Zemin Huang, Yukun Duan, Zhengwei Fu, Bin Liu. Reprogramming Tumor Microenvironment with Photothermal Therapy. Bioconjugate Chemistry 2020, 31
(5)
, 1268-1278. https://doi.org/10.1021/acs.bioconjchem.0c00135
- Wenquan Ou, Liyuan Jiang, Ye Gu, Zar Chi Soe, Bo Kyun Kim, Milan Gautam, Kishwor Poudel, Le Minh Pham, Cao Dai Phung, Jae-Hoon Chang, Jae Ryong Kim, Sae Kwang Ku, Chul Soon Yong, Jong Oh Kim. Regulatory T Cells Tailored with pH-Responsive Liposomes Shape an Immuno-Antitumor Milieu against Tumors. ACS Applied Materials & Interfaces 2019, 11
(40)
, 36333-36346. https://doi.org/10.1021/acsami.9b11371
- Junyang Wang, Jia Meng, Wei Ran, Robert J. Lee, Lesheng Teng, Pengcheng Zhang, Yaping Li. Hepatocellular Carcinoma Growth Retardation and PD-1 Blockade Therapy Potentiation with Synthetic High-density Lipoprotein. Nano Letters 2019, 19
(8)
, 5266-5276. https://doi.org/10.1021/acs.nanolett.9b01717
- Zhaowei Chen, Zejun Wang, Zhen Gu. Bioinspired and Biomimetic Nanomedicines. Accounts of Chemical Research 2019, 52
(5)
, 1255-1264. https://doi.org/10.1021/acs.accounts.9b00079
- Deliang Shen, Zhenhua Li, Shiqi Hu, Ke Huang, Teng Su, Hongxia Liang, Feiran Liu, Ke Cheng. Antibody-Armed Platelets for the Regenerative Targeting of Endogenous Stem Cells. Nano Letters 2019, 19
(3)
, 1883-1891. https://doi.org/10.1021/acs.nanolett.8b04970
- Xun Liu, Fan Wu, Yong Ji, Lichen Yin. Recent Advances in Anti-cancer Protein/Peptide Delivery. Bioconjugate Chemistry 2019, 30
(2)
, 305-324. https://doi.org/10.1021/acs.bioconjchem.8b00750
- Tian Liu, Qi Lu, Hao Zhang, Fudan Dong, Zhonggui He, Jin Sun, Bingjun Sun. Biomimetic drug delivery for anticancer: Focusing on the relationship between drugs and biomimetic carriers. Coordination Chemistry Reviews 2025, 524 , 216328. https://doi.org/10.1016/j.ccr.2024.216328
- Andong He, Yuye Huang, Chao Cao, Xuejin Li. Advances in drug delivery systems utilizing blood cells and their membrane-derived microvesicles. Drug Delivery 2024, 31
(1)
https://doi.org/10.1080/10717544.2024.2425156
- Tongtao Zhuang, Shenrong Wang, Xiaoqian Yu, Xiaoyun He, Hongbin Guo, Chunlin Ou. Current status and future perspectives of platelet-derived extracellular vesicles in cancer diagnosis and treatment. Biomarker Research 2024, 12
(1)
https://doi.org/10.1186/s40364-024-00639-0
- Xuefan Xiong, Ying Zhang, Xinqi Huang, Shusheng Zhang, Qiong Li. Generating Immunological Memory Against Cancer by Camouflaging Gold‐Based Photothermal Nanoparticles in NIR‐II Biowindow for Mimicking
T
‐Cells. Small 2024, 20
(51)
https://doi.org/10.1002/smll.202407038
- Kai Zhang, Hongyang Li, Zhaoyu Ma, Wenbin Zhong, Yongkang Yu, Yanli Zhao. Engineered Platelets for Cancer Therapy. Aggregate 2024, 544 https://doi.org/10.1002/agt2.704
- Nathan L. Asquith, Isabelle C. Becker, Mark T. Scimone, Thais Boccia, Virginia Camacho, María N. Barrachina, Shihui Guo, Daniela Freire, Kellie Machlus, Sol Schulman, Robert Flaumenhaft, Joseph E. Italiano. Targeting cargo to an unconventional secretory system within megakaryocytes allows the release of transgenic proteins from platelets. Journal of Thrombosis and Haemostasis 2024, 22
(11)
, 3235-3248. https://doi.org/10.1016/j.jtha.2024.07.021
- Divya Mirgh, Swarup Sonar, Srestha Ghosh, Manab Deb Adhikari, Vetriselvan Subramaniyan, Sukhamoy Gorai, Krishnan Anand. Landscape of exosomes to modified exosomes: a state of the art in cancer therapy. RSC Advances 2024, 14
(42)
, 30807-30829. https://doi.org/10.1039/D4RA04512B
- Zhengjie Zhao, Yinxian Yang, Tao Sheng, Yuhang Bao, Ruixi Yu, Xinmin Yu, Shuangxu Jia, Qing Wu, Chaojie Zhu, Xinyuan Shen, Wentao Zhang, Ziyi Lu, Kangfan Ji, Xiaofeng Chen, Xinyun Jiang, Yuqi Zhang, Zhen Gu, Jicheng Yu. Platelet‐Drug Conjugates Engineered via One‐step Fusion Approach for Metastatic and Postoperative Cancer Treatment. Angewandte Chemie International Edition 2024, 63
(37)
https://doi.org/10.1002/anie.202403541
- Zhengjie Zhao, Yinxian Yang, Tao Sheng, Yuhang Bao, Ruixi Yu, Xinmin Yu, Shuangxu Jia, Qing Wu, Chaojie Zhu, Xinyuan Shen, Wentao Zhang, Ziyi Lu, Kangfan Ji, Xiaofeng Chen, Xinyun Jiang, Yuqi Zhang, Zhen Gu, Jicheng Yu. Platelet‐Drug Conjugates Engineered via One‐step Fusion Approach for Metastatic and Postoperative Cancer Treatment. Angewandte Chemie 2024, 136
(37)
https://doi.org/10.1002/ange.202403541
- Xinyi Cai, Long Qiu, Zhenying Diao, Lintao Cai, Ting Yin, Hong Pan. Platelet-based bioactive systems guided precision targeting and immune regulation for cancer therapy. Nano Research 2024, 17
(9)
, 8269-8284. https://doi.org/10.1007/s12274-024-6777-0
- Jerry Leung, Asel Primbetova, Colton Strong, Brenna N. Hay, Han Hsuan Hsu, Andrew Hagner, Leonard J. Foster, Dana Devine, Pieter R. Cullis, Peter W. Zandstra, Christian J. Kastrup. Genetic engineering of megakaryocytes from blood progenitor cells using messenger RNA lipid nanoparticles. Journal of Thrombosis and Haemostasis 2024, 370 https://doi.org/10.1016/j.jtha.2024.09.008
- Yangtao Xu, Wenxiang Zhu, Jicheng Wu, Lujie Liu, Ludan Yue, Xueyang Zhang, Jiayi Li, Peng She, Jingjing Yang, Chengliang Sun, Ximing Xu, Lang Rao. 3D‐Printed Dendritic Cell Vaccines for Post‐Surgery Cancer Immunotherapy. Advanced Functional Materials 2024, 34
(33)
https://doi.org/10.1002/adfm.202400507
- Xin Huang, Weiyue Zhang. Overcoming T Cell Exhaustion in Tumor Microenvironment via Immune Checkpoint Modulation with Nano‐Delivery Systems for Enhanced Immunotherapy. Small Methods 2024, 8
(8)
https://doi.org/10.1002/smtd.202301326
- Jingrui Shen, Yang Zhou, Lichen Yin. Nano/genetically engineered cells for immunotherapy. BMEMat 2024, 22 https://doi.org/10.1002/bmm2.12112
- Nuerye Tuerhong, Yang Yang, Chenyu Wang, Peng Huang, Qiu Li. Interactions between platelets and the cancer immune microenvironment. Critical Reviews in Oncology/Hematology 2024, 199 , 104380. https://doi.org/10.1016/j.critrevonc.2024.104380
- Jiaxin Ma, Linyu Ding, Xuqi Peng, Lai Jiang, Gang Liu. Recent Advances of Engineered Cell Membrane‐Based Nanotherapeutics to Combat Inflammatory Diseases. Small 2024, 20
(28)
https://doi.org/10.1002/smll.202308646
- Qinzhen Cheng, Runtan Li, Yiling He, Yalan Zhu, Yong Kang, Xiaoyuan Ji. Genetically Engineered Cellular Nanovesicles: Theories, Design and Perspective. Advanced Functional Materials 2024, 4 https://doi.org/10.1002/adfm.202407842
- Yanfang Wang, Jiaqi Shi, Minhang Xin, Anna R. Kahkoska, Jinqiang Wang, Zhen Gu. Cell–drug conjugates. Nature Biomedical Engineering 2024, 17 https://doi.org/10.1038/s41551-024-01230-6
- Ning Li, Hanxu Chen, Dongyu Xu, Yuanjin Zhao. Bio-inspired hierarchical particles for bioassays. Biomedical Technology 2024, 6 , 17-25. https://doi.org/10.1016/j.bmt.2023.09.003
- Jinyu Guo, Changhua Liu, Zhaoyang Qi, Ting Qiu, Jin Zhang, Huanghao Yang. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioactive Materials 2024, 36 , 330-357. https://doi.org/10.1016/j.bioactmat.2024.02.028
- Pratiksha Tiwari, Ravi Prakash Shukla, Krishna Yadav, Dilip Panwar, Neha Agarwal, Ankit Kumar, Neha Singh, Avijit Kumar Bakshi, Disha Marwaha, Shalini Gautam, Nikhil Rai, Prabhat Ranjan Mishra. Exploring nanocarriers as innovative materials for advanced drug delivery strategies in onco-immunotherapies. Journal of Molecular Graphics and Modelling 2024, 128 , 108702. https://doi.org/10.1016/j.jmgm.2024.108702
- Yalan Zhu, Lingling Xu, Yong Kang, Qinzhen Cheng, Yiling He, Xiaoyuan Ji. Platelet-derived drug delivery systems: Pioneering treatment for cancer, cardiovascular diseases, infectious diseases, and beyond. Biomaterials 2024, 306 , 122478. https://doi.org/10.1016/j.biomaterials.2024.122478
- Mo Chen, Jinniu Zhang, Huangjuan Li, Yueyang Deng, Yun Huang, Wenhao Shen, Yixing Zeng, Tianyuan Ci. Engineered platelet-based immune engager for tumor post-surgery treatment. Biomaterials Advances 2024, 158 , 213796. https://doi.org/10.1016/j.bioadv.2024.213796
- Ruizhi Zhao, Qiuqun Xiao, Yuanyuan Wu, Weiqi Zhang, Jiale Liu, Yinghua Zeng, Jie Zhan, Yanbin Cai, Chihua Fang. Dual-crosslinking immunostimulatory hydrogel synchronously suppresses pancreatic fistula and pancreatic cancer relapse post-resection. Biomaterials 2024, 305 , 122453. https://doi.org/10.1016/j.biomaterials.2023.122453
- Yuzhi Jin, Yangyue Huang, Hui Ren, Huanhuan Huang, Chunyu Lai, Wenjun Wang, Zhou Tong, Hangyu Zhang, Wei Wu, Chuan Liu, Xuanwen Bao, Weijia Fang, Hongjun Li, Peng Zhao, Xiaomeng Dai. Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials 2024, 305 , 122463. https://doi.org/10.1016/j.biomaterials.2023.122463
- Yiwei Peng, Yiliang Yang, Zhenzhen Yang, Datong Gao, Jiajia Li, Qi Sun, Yitian Du, Meng Lin, Xianrong Qi. Bionic immunoactivator copresenting autophagy promoting and costimulatory molecules for synergistic cancer immunotherapy. Nano Research 2024, 17
(3)
, 1710-1724. https://doi.org/10.1007/s12274-023-5933-2
- Liqiang Zhou, Kun Li, Yingying Liu, Rongjie Zhang, Yangcheng Yao, Qiqing Chen, Dong Xie, Xuanjun Zhang. Living Cell‐Derived Intelligent Nanobots for Precision Oncotherapy. Advanced Functional Materials 2024, 34
(10)
https://doi.org/10.1002/adfm.202311857
- Akihiro Kayama, Koji Eto. Mass production of iPSC-derived platelets toward the clinical application. Regenerative Therapy 2024, 25 , 213-219. https://doi.org/10.1016/j.reth.2023.12.009
- Xiaoyu An, Yun Zeng, Chao Liu, Gang Liu. Cellular-Membrane-Derived Vesicles for Cancer Immunotherapy. Pharmaceutics 2024, 16
(1)
, 22. https://doi.org/10.3390/pharmaceutics16010022
- Bo Chen, Hongyan Sun, Jiaying Zhang, Junjie Xu, Zeyu Song, Guangdong Zhan, Xue Bai, Lin Feng. Cell‐Based Micro/Nano‐Robots for Biomedical Applications: A Review. Small 2024, 20
(1)
https://doi.org/10.1002/smll.202304607
- Robin Maximilian Awad, Karine Breckpot. Novel technologies for applying immune checkpoint blockers. 2024, 1-101. https://doi.org/10.1016/bs.ircmb.2023.03.003
- Andrea Gottardo, Valerio Gristina, Alessandro Perez, Emilia Di Giovanni, Silvia Contino, Nadia Barraco, Marco Bono, Giuliana Iannì, Ugo Randazzo, Tancredi Didier Bazan Russo, Federica Iacono, Lorena Incorvaia, Giuseppe Badalamenti, Antonio Russo, Antonio Galvano, Viviana Bazan. Roles of Tumor-Rducated Platelets (TEPs) in the biology of Non-Small Cell Lung Cancer (NSCLC): A systematic review. “Re-discovering the neglected biosources of the liquid biopsy family”. The Journal of Liquid Biopsy 2024, 73 , 100136. https://doi.org/10.1016/j.jlb.2024.100136
- Rúben Faria, Ana R. Neves, Diana Costa. Bioinspired drug delivery therapeutics. 2024, 565-592. https://doi.org/10.1016/B978-0-323-91816-9.00008-4
- Guang-Long Ma, Wei-Feng Lin. Immune checkpoint inhibition mediated with liposomal nanomedicine for cancer therapy. Military Medical Research 2023, 10
(1)
https://doi.org/10.1186/s40779-023-00455-x
- Wenli Fang, Liyan Li, Zhongda Lin, Yuli Zhang, Zhangyan Jing, Yuan Li, Zhirang Zhang, Linlin Hou, Xin Liang, Xingding Zhang, Xudong Zhang. Engineered IL-15/IL-15R
α
-expressing cellular vesicles promote T cell anti-tumor immunity. Extracellular Vesicle 2023, 2 , 100021. https://doi.org/10.1016/j.vesic.2022.100021
- Xue Dong, Wei Wu, Pei Pan, Xian‐Zheng Zhang. Engineered Living Materials for Advanced Diseases Therapy. Advanced Materials 2023, 559 https://doi.org/10.1002/adma.202304963
- Hao Chen, Xi Luo, Qinghua Huang, Zeming Liu, Meng Lyu, Dexin Chen, Jianlan Mo, Daoming Zhu. Platelet membrane fusion liposome loaded with type I AIE photosensitizer to induce chemoresistance cancer pyroptosis and immunogenic cell death for enhancing cancer immunotherapy. Chemical Engineering Journal 2023, 476 , 146276. https://doi.org/10.1016/j.cej.2023.146276
- Qinzhen Cheng, Yong Kang, Bin Yao, Jinrui Dong, Yalan Zhu, Yiling He, Xiaoyuan Ji. Genetically Engineered‐Cell‐Membrane Nanovesicles for Cancer Immunotherapy. Advanced Science 2023, 10
(26)
https://doi.org/10.1002/advs.202302131
- Qi Lu, Tian Liu, Zeyu Han, Jian Zhao, Xiaoyuan Fan, Helin Wang, Jiaxuan Song, Hao Ye, Jin Sun. Revolutionizing cancer treatment: The power of cell-based drug delivery systems. Journal of Controlled Release 2023, 361 , 604-620. https://doi.org/10.1016/j.jconrel.2023.08.023
- Ying Kang, Emmanuel Boadi Amoafo, Philomena Entsie, Gregory L. Beatty, Elisabetta Liverani. A role for platelets in metabolic reprogramming of tumor-associated macrophages. Frontiers in Physiology 2023, 14 https://doi.org/10.3389/fphys.2023.1250982
- Yanzhao Zhu, Hengqing Cui, Jin Zhang, Ying Bei, Yu Huang, Meiyun Li, Jieting Liu, Yan Wu, Jie Gao. Application of Cell Membrane-Coated Nanomaterials for Tumor Treatment. Mini-Reviews in Medicinal Chemistry 2023, 23
(15)
, 1535-1559. https://doi.org/10.2174/1389557523666230203145645
- Lei Ding, Xiaolong Zhang, Peiwen Yu, Fang Peng, Yupeng Sun, Yanni Wu, Zijin Luo, Hongsheng Li, Yongyi Zeng, Ming Wu, Xiaolong Liu. Genetically engineered nanovesicles mobilize synergistic antitumor immunity by ADAR1 silence and PDL1 blockade. Molecular Therapy 2023, 31
(8)
, 2489-2506. https://doi.org/10.1016/j.ymthe.2023.04.011
- Yuhan Wang, Guojun Huang, Qi Hou, Hong Pan, Lintao Cai. Cell surface‐nanoengineering for cancer targeting immunoregulation and precise immunotherapy. WIREs Nanomedicine and Nanobiotechnology 2023, 15
(4)
https://doi.org/10.1002/wnan.1875
- Chih-Jia Chao, Endong Zhang, Zongmin Zhao. Engineering cells for precision drug delivery: New advances, clinical translation, and emerging strategies. Advanced Drug Delivery Reviews 2023, 197 , 114840. https://doi.org/10.1016/j.addr.2023.114840
- Shiying Zeng, Qinglai Tang, Minna Xiao, Xinying Tong, Tao Yang, Danhui Yin, Lanjie Lei, Shisheng Li. Cell membrane-coated nanomaterials for cancer therapy. Materials Today Bio 2023, 20 , 100633. https://doi.org/10.1016/j.mtbio.2023.100633
- Luyue Wang, Yu Zhang, Yukun Ma, Yujia Zhai, Jianbo Ji, Xiaoye Yang, Guangxi Zhai. Cellular drug delivery system for disease treatment. International Journal of Pharmaceutics 2023, 641 , 123069. https://doi.org/10.1016/j.ijpharm.2023.123069
- Jie Guo, Meng-Fei Wang, Yong Zhu, Fumio Watari, Yong-Hong Xu, Xiao Chen. Exploitation of platelets for antitumor drug delivery and modulation of the tumor immune microenvironment. Acta Materia Medica 2023, 2
(2)
https://doi.org/10.15212/AMM-2023-0005
- Daniel Cacic, Tor Hervig, Håkon Reikvam. Platelets for advanced drug delivery in cancer. Expert Opinion on Drug Delivery 2023, 20
(5)
, 673-688. https://doi.org/10.1080/17425247.2023.2217378
- Nishta Krishnan, Fei-Xing Peng, Animesh Mohapatra, Ronnie H. Fang, Liangfang Zhang. Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials 2023, 296 , 122065. https://doi.org/10.1016/j.biomaterials.2023.122065
- Min Chen, Yun Sun, Huiyu Liu. Cell membrane biomimetic nanomedicines for cancer phototherapy. Interdisciplinary Medicine 2023, 1
(2)
https://doi.org/10.1002/INMD.20220012
- Mengzhen Li, Minxuan Wang, Lingyun Li, Limin Zhang, Bing Ma, Weizhi Wang. A composite peptide-supramolecular microneedle system for melanoma immunotherapy. Nano Research 2023, 16
(4)
, 5335-5345. https://doi.org/10.1007/s12274-022-5236-z
- Bo Li, Tong Yang, Jin Liu, Xixi Yu, Xinying Li, Fei Qin, Jiefei Zheng, Jinxia Liang, Youyan Zeng, Zhenhua Zhou, Lu Liu, Bin Zhang, Weiwei Yao, Zhuo Feng, Guandi Zeng, Qian Zhou, Liang Chen. Genetically engineered PD-1 displaying nanovesicles for synergistic checkpoint blockades and chemo-metabolic therapy against non-small cell lung cancer. Acta Biomaterialia 2023, 161 , 184-200. https://doi.org/10.1016/j.actbio.2023.03.002
- Chenchen Zhao, Yuanwei Pan, Guocan Yu, Xing‐Zhong Zhao, Xiaoyuan Chen, Lang Rao. Vesicular Antibodies: Shedding Light on Antibody Therapeutics with Cell Membrane Nanotechnology. Advanced Materials 2023, 35
(12)
https://doi.org/10.1002/adma.202207875
- Mikyung Kang, Han Young Kim, Suk Ho Bhang. T-cell membrane coating for improving polymeric nanoparticle-based cancer therapy. Journal of Industrial and Engineering Chemistry 2023, 119 , 252-260. https://doi.org/10.1016/j.jiec.2022.11.043
- Zhiqiang Mao, Ji Hyeon Kim, Jieun Lee, Hao Xiong, Fan Zhang, Jong Seung Kim. Engineering of BODIPY-based theranostics for cancer therapy. Coordination Chemistry Reviews 2023, 476 , 214908. https://doi.org/10.1016/j.ccr.2022.214908
- Selin Oncul, Min Soon Cho. Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes. Cancers 2023, 15
(4)
, 1282. https://doi.org/10.3390/cancers15041282
- Yiru Wang, Ming Wu, Xiaorong Wang, Peiyuan Wang, Zhaoyu Ning, Yongyi Zeng, Xiaolong Liu, Haiyan Sun, Aixian Zheng. Biodegradable MnO2-based gene-engineered nanocomposites for chemodynamic therapy and enhanced antitumor immunity. Materials Today Bio 2023, 18 , 100531. https://doi.org/10.1016/j.mtbio.2022.100531
- Li Kong, Conglian Yang, Zhiping Zhang. Organism‐Generated Biological Vesicles In Situ: An Emerging Drug Delivery Strategy. Advanced Science 2023, 10
(2)
https://doi.org/10.1002/advs.202204178
- Yuhan Wang, Humin Zhang, Huang Li, Jie Xiong, Jie Wang, Yuanshuai Huang. Application of tumor-educated platelets as new fluid biopsy markers in various tumors. Clinical and Translational Oncology 2023, 25
(1)
, 114-125. https://doi.org/10.1007/s12094-022-02937-1
- Biswajit Mukherjee, Brahamacharry Paul, Ashique Al Hoque, Ramkrishna Sen, Samrat Chakraborty, Apala Chakraborty. Polymeric nanoparticles as tumor-targeting theranostic platform. 2023, 217-259. https://doi.org/10.1016/B978-0-323-89953-6.00009-X
- Noelia Silva-Pilipich, Ángela Covo-Vergara, Lucía Vanrell, Cristian Smerdou. Checkpoint blockade meets gene therapy: Opportunities to improve response and reduce toxicity. 2023, 43-86. https://doi.org/10.1016/bs.ircmb.2023.05.006
- Ping Wen, Wei Wu, Feifan Wang, Hanqi Zheng, Ziyan Liao, Jiaqi Shi, Chaojie Zhu, Peng Zhao, Hao Cheng, Hongjun Li, Zhen Gu. Cell delivery devices for cancer immunotherapy. Journal of Controlled Release 2023, 353 , 875-888. https://doi.org/10.1016/j.jconrel.2022.11.041
- Xiaoyuan Fan, Kaiyuan Wang, Qi Lu, Yutong Lu, Jin Sun. Cell‐Based Drug Delivery Systems Participate in the Cancer Immunity Cycle for Improved Cancer Immunotherapy. Small 2023, 19
(4)
https://doi.org/10.1002/smll.202205166
- Yongkang Yu, Qinzhen Cheng, Xiaoyuan Ji, Hongzhong Chen, Wenfeng Zeng, Xiaowei Zeng, Yanli Zhao, Lin Mei. Engineered drug-loaded cellular membrane nanovesicles for efficient treatment of postsurgical cancer recurrence and metastasis. Science Advances 2022, 8
(49)
https://doi.org/10.1126/sciadv.add3599
- Tuying Yong, Zhaohan Wei, Lu Gan, Xiangliang Yang. Extracellular‐Vesicle‐Based Drug Delivery Systems for Enhanced Antitumor Therapies through Modulating the Cancer‐Immunity Cycle. Advanced Materials 2022, 34
(52)
https://doi.org/10.1002/adma.202201054
- Xiaoyuan Fan, Kaiyuan Wang, Qi Lu, Yutong Lu, Fengxiang Liu, Lu Li, Songhao Li, Hao Ye, Jian Zhao, Liping Cao, Haotian Zhang, Zhonggui He, Jin Sun. Surface-anchored tumor microenvironment-responsive protein nanogel-platelet system for cytosolic delivery of therapeutic protein in the post-surgical cancer treatment. Acta Biomaterialia 2022, 154 , 412-423. https://doi.org/10.1016/j.actbio.2022.10.031
- Edouard Alphandéry. Ultrasound and nanomaterial: an efficient pair to fight cancer. Journal of Nanobiotechnology 2022, 20
(1)
https://doi.org/10.1186/s12951-022-01243-w
- Hu Chen, Pengfei Zhang, Yesi Shi, Chao Liu, Qianqian Zhou, Yun Zeng, Hongwei Cheng, Qixuan Dai, Xing Gao, Xiaoyong Wang, Gang Liu. Functional nanovesicles displaying anti-PD-L1 antibodies for programmed photoimmunotherapy. Journal of Nanobiotechnology 2022, 20
(1)
https://doi.org/10.1186/s12951-022-01266-3
- Xinyue Dai, Zhaoshuo Wang, Miao Fan, Huifang Liu, Xinjian Yang, Xueyi Wang, Xiaohan Zhou, Yunlu Dai, Jinchao Zhang, Zhenhua Li. PD-L1 antibodies-armed exosomal vaccine for enhanced cancer immunotherapy by simultaneously in situ activating T cells and blocking PD-1/PD-L1 axis. Extracellular Vesicle 2022, 1 , 100012. https://doi.org/10.1016/j.vesic.2022.100012
- Lian Zhu, Jia-Lin Liu, Jiang-Tao Yang, Ding-Wei Wu, Na Xu, Kai-Fu Huo, Hai-Bo Wang. PD-1 engineered cytomembrane cloaked molybdenum nitride for synergistic photothermal and enhanced immunotherapy of breast cancer. Journal of Materials Chemistry B 2022, 10
(44)
, 9249-9257. https://doi.org/10.1039/D2TB01710E
- Vemana Gowd, Anas Ahmad, Mohammad Tarique, Mohd Suhail, Torki A. Zughaibi, Shams Tabrez, Rehan Khan. Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Seminars in Cancer Biology 2022, 86 , 624-644. https://doi.org/10.1016/j.semcancer.2022.03.026
- Wen Wang, Bin Zuo, Yao Wang, Xinyu Li, Zhen Weng, Juping Zhai, Qingyu Wu, Yang He. Megakaryocyte- and Platelet-Derived Microparticles as Novel Diagnostic and Prognostic Biomarkers for Immune Thrombocytopenia. Journal of Clinical Medicine 2022, 11
(22)
, 6776. https://doi.org/10.3390/jcm11226776
- Zengwei Chen, Gaoqiang Yin, Jinxiu Wei, Tongsheng Qi, Ziting Qian, Zhuyuan Wang, Shenfei Zong, Yiping Cui. Quantitative analysis of multiple breast cancer biomarkers using DNA-PAINT. Analytical Methods 2022, 14
(37)
, 3671-3679. https://doi.org/10.1039/D2AY00670G
- Yongchao Chu, Tao Sun, Chen Jiang. Emerging landscapes of nanosystems based on pre-metastatic microenvironment for cancer theranostics. Chinese Chemical Letters 2022, 33
(9)
, 4157-4168. https://doi.org/10.1016/j.cclet.2022.02.051
- Lei Wang, Xueying Wang, Erliang Guo, Xionghui Mao, Susheng Miao. Emerging roles of platelets in cancer biology and their potential as therapeutic targets. Frontiers in Oncology 2022, 12 https://doi.org/10.3389/fonc.2022.939089
- Gaozhe Xiao, Zhikun Zhang, Qiaoying Chen, Tao Wu, Wei Shi, Lu Gan, Xiuli Liu, Yong Huang, Mengyu Lv, Yongxiang Zhao, Pan Wu, Liping Zhong, Jian He. Platelets for cancer treatment and drug delivery. Clinical and Translational Oncology 2022, 24
(7)
, 1231-1237. https://doi.org/10.1007/s12094-021-02771-x
- Yuwei Wu, Yanfei Liu, Ting Wang, Qiao Jiang, Feng Xu, Zhenbao Liu. Living cell for drug delivery. Engineered Regeneration 2022, 3
(2)
, 131-148. https://doi.org/10.1016/j.engreg.2022.03.001
- Hualian Zha, Zhanxue Xu, Xichao Xu, Xingyu Lu, Peilin Shi, Youmei Xiao, Hsiang-I Tsai, Dandan Su, Fang Cheng, Xiaoli Cheng, Hongbo Chen. PD-1 Cellular Nanovesicles Carrying Gemcitabine to Inhibit the Proliferation of Triple Negative Breast Cancer Cell. Pharmaceutics 2022, 14
(6)
, 1263. https://doi.org/10.3390/pharmaceutics14061263
- Wei Xiang, Xue Liu, Lili Zhang, Chao Liu, Gang Liu. Cell membrane-encapsulated nanoparticles for vaccines and immunotherapy. Particuology 2022, 64 , 35-42. https://doi.org/10.1016/j.partic.2021.04.017
- Yanlin Lv, Wei Wei, Guanghui Ma. Recent advances in platelet engineering for anti-cancer therapies. Particuology 2022, 64 , 2-13. https://doi.org/10.1016/j.partic.2021.09.006
- Yongrong Yao, Huachao Chen, Ninghua Tan. Cancer-cell-biomimetic nanoparticles systemically eliminate hypoxia tumors by synergistic chemotherapy and checkpoint blockade immunotherapy. Acta Pharmaceutica Sinica B 2022, 12
(4)
, 2103-2119. https://doi.org/10.1016/j.apsb.2021.10.010
- Tingting Zhang, Yushan Yang, Li Huang, Ying Liu, Gaowei Chong, Weimin Yin, Haiqing Dong, Yan Li, Yongyong Li. Biomimetic and Materials-Potentiated Cell Engineering for Cancer Immunotherapy. Pharmaceutics 2022, 14
(4)
, 734. https://doi.org/10.3390/pharmaceutics14040734
- Kye Il Joo. Emerging strategies for biomaterial-assisted cancer immunotherapy. Korean Journal of Chemical Engineering 2022, 39
(2)
, 227-240. https://doi.org/10.1007/s11814-021-0985-z
- Cherylette Anne Alexander, Yi Yan Yang. Harnessing the combined potential of cancer immunotherapy and nanomedicine: A new paradigm in cancer treatment. Nanomedicine: Nanotechnology, Biology and Medicine 2022, 40 , 102492. https://doi.org/10.1016/j.nano.2021.102492
了解这些指标
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles 推荐文章
Bioengineered Platelets Combining Chemotherapy and Immunotherapy for Postsurgical Melanoma Treatment: Internal Core-Loaded Doxorubicin and External Surface-Anchored Anti-PD-L1 Antibody Backpacks
用于术后黑色素瘤治疗的生物工程血小板:内核载有阿霉素与外表面锚定抗 PD-L1 抗体的双功能背囊,2022 年 3 月 23 日,《纳米快报》A Platelet Intelligent Vehicle with Navigation for Cancer Photothermal-Chemotherapy
用于癌症光热-化学疗法的带导航的血小板智能载体 2022 年 3 月 24 日 ACS NanoEngineering Platelets with PDL1 Antibodies and Iron Oxide Nanoparticles for Postsurgical Cancer Immunotherapy
Targeted Inhibition of Tumor Inflammation and Tumor-Platelet Crosstalk by Nanoparticle-Mediated Drug Delivery Mitigates Cancer Metastasis
A Twindrive Precise Delivery System of Platelet-Neutrophil Hybrid Membrane Regulates Macrophage Combined with CD47 Blocking for Postoperative Immunotherapy
References
This article references 50 other publications.
- 1Stephan, S. B.; Taber, A. M.; Jileaeva, I.; Pegues, E. P.; Sentman, C. L.; Stephan, M. T. Nat. Biotechnol. 2015, 33, 97– 101, DOI: 10.1038/nbt.3104There is no corresponding record for this reference.
- 2Tohme, S.; Simmons, R. L.; Tsung, A. Cancer Res. 2017, 77, 1548– 1552, DOI: 10.1158/0008-5472.CAN-16-1536There is no corresponding record for this reference.
- 3Uramoto, H.; Tanaka, F. Transl. Lung Cancer Res. 2014, 3 (4), 242– 2493https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BC2MnnslejtQ%253D%253D&md5=f7b88505ec47577e0e7fc37f893fc4e2Recurrence after surgery in patients with NSCLCUramoto Hidetaka; Tanaka FumihiroTranslational lung cancer research (2014), 3 (4), 242-9 ISSN:2218-6751.Surgery remains the only potentially curative modality for early-stage non-small cell lung cancer (NSCLC) patients and tissue availability is made possible. However, a proportion of lung cancer patients develop recurrence, even after curative resection. This review discusses the superiority of surgery, the reasons for recurrence, the timing and pattern of recurrence, the identification of factors related to recurrence, current provisions for treatment and perspectives about surgery for patients with NSCLC.
- 4Kanwar, S. S.; Poolla, A.; Majumdar, A. P. World J. Gastrointest. Pathophysiol. 2012, 3, 1– 9, DOI: 10.4291/wjgp.v3.i1.14https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BC383msFentA%253D%253D&md5=3c7eaa049a7b7089a803f822f08dbb16Regulation of colon cancer recurrence and development of therapeutic strategiesKanwar Shailender Singh; Poolla Anuradha; Majumdar Adhip PnWorld journal of gastrointestinal pathophysiology (2012), 3 (1), 1-9 ISSN:.Recurrence of colon cancer still remains a major issue which affects nearly 50% of patients treated by conventional therapeutics. Although the underlying causative factor(s) is not fully understood, development of drug-resistance has been associated with induction of cancer stem or stem-like cells (CSCs) which constitute a small sub-population of tumor cells known to be highly resistant to chemotherapy. In fact, the discovery of CSCs in a variety of tumors (including colon cancer) has changed the view of carcinogenesis and therapeutic strategies. Emerging reports have indicated that to improve patient outcomes, conventional anticancer therapies should be replaced with specific approaches targeting CSCs. Thus, therapeutic strategies that specifically target CSCs are being sought to reduce the risk of relapse and metastasis. In order to specifically target colon CSCs (while sparing somatic intestinal stem cells), it is critical to identify unique deregulated pathways responsible for self-renewal of CSCs and colon cancer recurrence. Colon CSCs present a unique opportunity to better understand the biology of solid tumors. Thus, a better understanding of the clinical signs and symptoms of colon cancer patients (undergoing surgery or chemotherapy) during perioperative periods, along with the underlying regulatory events affecting the stem/progenitor cell self-renewal and differentiation of colon epithelial cells, is of immense importance. In this review we discuss the implication of clinical factors and the emerging role of CSCs during recurrence of colon cancer along with the development of new therapeutic strategies involving the use of natural agents.
- 5Disis, M. L.; Stanton, S. E. Clin. Cancer Res. 2013, 19, 6398– 6403, DOI: 10.1158/1078-0432.CCR-13-07345https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXhvVOitb7E&md5=1bf5983c54196d826179f2793d6c55fdCan Immunity to Breast Cancer Eliminate Residual Micrometastases?Disis, Mary L.; Stanton, Sasha E.Clinical Cancer Research (2013), 19 (23), 6398-6403CODEN: CCREF4; ISSN:1078-0432. (American Association for Cancer Research)A review. An effective immune response has the potential for breast cancer sterilization with marked redn. in the potential for disease relapse. Adaptive type I immune cells uniquely have the capability of (i) cytotoxic T-cell activation and proliferation until all antigen expressing cells are eradicated, (ii) traversing endothelial barriers to penetrate tumor deposits wherever they occur, and (iii) immunol. memory, which allows the persistence of destructive immunity over the years it may take for breast cancer micrometastases to become clin. evident. Numerous recent investigations suggest that some breast cancers stimulate the type of immunity that results in a decreased risk of relapse. Moreover, the endogenous type I tumor microenvironment or type I immunity induced by drugs or biol. agents may improve response to std. therapies, further lowering the probability of disease recurrence. Clin Cancer Res; 19(23); 6398-403. ©2013 AACR.
- 6Schumacher, T. N.; Schreiber, R. D. Science 2015, 348, 69– 74, DOI: 10.1126/science.aaa4971There is no corresponding record for this reference.
- 7Balachandran, V. P.; Luksza, M.; Zhao, J. N.; Makarov, V.; Moral, J. A.; Remark, R.; Herbst, B.; Askan, G.; Bhanot, U.; Senbabaoglu, Y.; Wells, D. K. Nature 2017, 551 (7681), 512– 516There is no corresponding record for this reference.
- 8Ott, P. A.; Hu, Z.; Keskin, D. B.; Shukla, S. A.; Sun, J.; Bozym, D. J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L. Nature 2017, 547, 217– 221, DOI: 10.1038/nature22991There is no corresponding record for this reference.
- 9Gubin, M. M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J. P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C. D.; Krebber, W. J. Nature 2014, 515 (7528), 577– 81, DOI: 10.1038/nature13988There is no corresponding record for this reference.
- 10Sharma, P.; Allison, J. P. Cell 2015, 161, 205– 214, DOI: 10.1016/j.cell.2015.03.03010https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXmsVWqsbc%253D&md5=a9cc49380f787e851564e3e5ac9b418fImmune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative PotentialSharma, Padmanee; Allison, James P.Cell (Cambridge, MA, United States) (2015), 161 (2), 205-214CODEN: CELLB5; ISSN:0092-8674. (Cell Press)A review. Research in two fronts has enabled the development of therapies that provide significant benefit to cancer patients. One area stems from a detailed knowledge of mutations that activate or inactivate signaling pathways that drive cancer development. This work triggered the development of targeted therapies that lead to clin. responses in the majority of patients bearing the targeted mutation, although responses are often of limited duration. In the second front are the advances in mol. immunol. that unveiled the complexity of the mechanisms regulating cellular immune responses. These developments led to the successful targeting of immune checkpoints to unleash anti-tumor T cell responses, resulting in durable long-lasting responses but only in a fraction of patients. In this Review, we discuss the evolution of research in these two areas and propose that intercrossing them and increasing funding to guide research of combination of agents represent a path forward for the development of curative therapies for the majority of cancer patients.
- 11Boussiotis, V. A. N. Engl. J. Med. 2016, 375, 1767– 1778, DOI: 10.1056/NEJMra151429611https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC28XhvF2ksrbI&md5=856e935a0b34db47b57190db05218c24Molecular and biochemical aspects of the PD-1 checkpoint pathwayBoussiotis, Vassiliki A.New England Journal of Medicine (2016), 375 (18), 1767-1778CODEN: NEJMAG; ISSN:1533-4406. (Massachusetts Medical Society)The pathway consisting of the receptor programmed cell death 1 (PD-1; also called CD279) and its ligands, PD-L1 (B7-H1 or CD274) and PD-L2 (B7-DC or CD273), plays a vital role in the maintenance of peripheral tolerance (i.e., mechanisms that maintain the quiescence of autoreactive T cells that have already matured and escaped the mechanisms of central tolerance during development in the thymus). Tumors and pathogens that cause chronic infections can exploit this pathway to escape T-cell-mediated tumor-specific and pathogen-specific immunity. Therapies with antibodies targeting PD-1 and its ligands have been shown to be assocd. with remarkable response rates in various cancers and, together with antibodies targeting CTLA-4, have revolutionized cancer treatment. (See the Supplementary Appendix, available with the full text of this article at NEJM.org, for a list of the protein abbreviations used in this review.) In addn. to the clin. success, ongoing work is currently revealing the mol. mechanisms targeted by PD-1. Here, I provide a brief overview of the mol. and biochem. events that are regulated by PD-1 ligation and their implications for mechanisms intrinsic and extrinsic to the cell that det. the fate and function of T cells.
- 12Zou, W.; Wolchok, J. D.; Chen, L. Sci. Transl. Med. 2016, 8, 328rv4, DOI: 10.1126/scitranslmed.aad7118There is no corresponding record for this reference.
- 13Sharma, P.; Allison, J. P. Science 2015, 348, 56– 61, DOI: 10.1126/science.aaa817213https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXls1Wmurg%253D&md5=d63ae85b9c651ec64a3b5b002c609e35The future of immune checkpoint therapySharma, Padmanee; Allison, James P.Science (Washington, DC, United States) (2015), 348 (6230), 56-61CODEN: SCIEAS; ISSN:0036-8075. (American Association for the Advancement of Science)A review. Immune checkpoint therapy, which targets regulatory pathways in T cells to enhance antitumor immune responses, has led to important clin. advances and provided a new weapon against cancer. This therapy has elicited durable clin. responses and, in a fraction of patients, long-term remissions where patients exhibit no clin. signs of cancer for many years. The way forward for this class of novel agents lies in our ability to understand human immune responses in the tumor microenvironment. This will provide valuable information regarding the dynamic nature of the immune response and regulation of addnl. pathways that will need to be targeted through combination therapies to provide survival benefit for greater nos. of patients.
- 14Hoos, A. Nat. Rev. Drug Discovery 2016, 15, 235– 247, DOI: 10.1038/nrd.2015.35There is no corresponding record for this reference.
- 15Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Nat. Commun. 2016, 7, 13193, DOI: 10.1038/ncomms1319315https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC28XhslGrtrzN&md5=82551fdfc13ac97849f58618cbd90f7ePhotothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapyChen, Qian; Xu, Ligeng; Liang, Chao; Wang, Chao; Peng, Rui; Liu, ZhuangNature Communications (2016), 7 (), 13193CODEN: NCAOBW; ISSN:2041-1723. (Nature Publishing Group)A therapeutic strategy that can eliminate primary tumors, inhibit metastases, and prevent tumor relapses is developed herein by combining adjuvant nanoparticle-based photothermal therapy with checkpoint-blockade immunotherapy. Indocyanine green (ICG), a photothermal agent, and imiquimod (R837), a Toll-like-receptor-7 agonist, are co-encapsulated by poly(lactic-co-glycolic) acid (PLGA). The formed PLGA-ICG-R837 nanoparticles composed purely by three clin. approved components can be used for near-IR laser-triggered photothermal ablation of primary tumors, generating tumor-assocd. antigens, which in the presence of R837-contg. nanoparticles as the adjuvant can show vaccine-like functions. In combination with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4 (CTLA4), the generated immunol. responses will be able to attack remaining tumor cells in mice, useful in metastasis inhibition, and may potentially be applicable for various types of tumor models. Furthermore, such strategy offers a strong immunol. memory effect, which can provide protection against tumor rechallenging post elimination of their initial tumors.
- 16Sharma, P.; Hu-Lieskovan, S.; Wargo, J. A.; Ribas, A. Cell 2017, 168, 707– 723, DOI: 10.1016/j.cell.2017.01.017There is no corresponding record for this reference.
- 17von Boehmer, H. Nat. Immunol. 2005, 6, 338– 44, DOI: 10.1038/ni118017https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2MXisVyitb4%253D&md5=5a70a3f463538e8a6e9e534868fe7eabMechanisms of suppression by suppressor T cellsvon Boehmer, HaraldNature Immunology (2005), 6 (4), 338-344CODEN: NIAMCZ; ISSN:1529-2908. (Nature Publishing Group)A review. Mechanisms of immunosuppression by CD4+CD25+ suppressor T cells have been addressed using many in vitro and in vivo conditions. However, those studies have not yielded a single mode of action. This review will discuss the mechanisms of suppression, which include the local secretion of cytokines such as TGF-β and direct cell contact through binding of cell surface mols. such as CTLA-4 on suppressor T cells to CD80 and CD86 mols. on effector T cells. Suppression requires the appropriate colocalization of suppressor and effector T cells in different tissue and may involve the interference with T cell receptor signaling that triggers transcription factors important in regulating effector cell function.
- 18Zou, W. Nat. Rev. Immunol. 2006, 6, 295– 307, DOI: 10.1038/nri180618https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD28XivVyru7k%253D&md5=c08b6710a4fc3c59fd3a1349d5802ad7Regulatory T cells, tumour immunity and immunotherapyZou, WeipingNature Reviews Immunology (2006), 6 (4), 295-307CODEN: NRIABX; ISSN:1474-1733. (Nature Publishing Group)A review. Tumors express a range of antigens, including self-antigens. Regulatory T cells are crucial for maintaining T-cell tolerance to self-antigens. Regulatory T cells are thought to dampen T-cell immunity to tumor-assocd. antigens and to be the main obstacle tempering successful immunotherapy and active vaccination. In this Review, I consider the nature and characteristics of regulatory T cells in the tumor microenvironment and their potential multiple suppressive mechanisms. Strategies for therapeutic targeting of regulatory T cells and the effect of regulatory T cells on current immunotherapeutic and vaccine regimens are discussed.
- 19Grossman, W. J.; Verbsky, J. W.; Barchet, W.; Colonna, M.; Atkinson, J. P.; Ley, T. J. Immunity 2004, 21, 589– 601, DOI: 10.1016/j.immuni.2004.09.002There is no corresponding record for this reference.
- 20Maj, T.; Wang, W.; Crespo, J.; Zhang, H.; Wei, S.; Zhao, L.; Vatan, L.; Shao, I.; Szeliga, W.; Lyssiotis, C.; Liu, J. R.; Kryczek, I.; Zou, W. Nat. Immunol. 2017, 18, 1332– 1341, DOI: 10.1038/ni.386820https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2sXhslejtLrO&md5=ece2a07be77ac266d2384e64ce9622bbOxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumorMaj, Tomasz; Wang, Wei; Crespo, Joel; Zhang, Hongjuan; Wang, Weimin; Wei, Shuang; Zhao, Lili; Vatan, Linda; Shao, Irene; Szeliga, Wojciech; Lyssiotis, Costas; Liu, J. Rebecca; Kryczek, Ilona; Zou, WeipingNature Immunology (2017), 18 (12), 1332-1341CODEN: NIAMCZ; ISSN:1529-2908. (Nature Research)Live regulatory T cells (Treg cells) suppress antitumor immunity, but how Treg cells behave in the metabolically abnormal tumor microenvironment remains unknown. Here we show that tumor Treg cells undergo apoptosis, and such apoptotic Treg cells abolish spontaneous and PD-L1-blockade-mediated antitumor T cell immunity. Biochem. and functional analyses show that adenosine, but not typical suppressive factors such as PD-L1, CTLA-4, TGF-β, IL-35, and IL-10, contributes to apoptotic Treg-cell-mediated immunosuppression. Mechanistically, apoptotic Treg cells release and convert a large amt. of ATP to adenosine via CD39 and CD73, and mediate immunosuppression via the adenosine and A2A pathways. Apoptosis in Treg cells is attributed to their weak NRF2-assocd. antioxidant system and high vulnerability to free oxygen species in the tumor microenvironment. Thus, the data support a model wherein tumor Treg cells sustain and amplify their suppressor capacity through inadvertent death via oxidative stress. This work highlights the oxidative pathway as a metabolic checkpoint that controls Treg cell behavior and affects the efficacy of therapeutics targeting cancer checkpoints.
- 21Golebiewska, E. M.; Poole, A. W. Blood Rev. 2015, 29, 153– 162, DOI: 10.1016/j.blre.2014.10.00321https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXhvFSnu73P&md5=5546fb06f1ff5d85fe6bcae2d31a0ac4Platelet secretion: From haemostasis to wound healing and beyondGolebiewska, Ewelina M.; Poole, Alastair W.Blood Reviews (2015), 29 (3), 153-162CODEN: BLOREB; ISSN:0268-960X. (Elsevier Ltd.)Upon activation, platelets secrete more than 300 active substances from their intracellular granules. Platelet dense granule components, such as ADP and polyphosphates, contribute to haemostasis and coagulation, but also play a role in cancer metastasis. α-Granules contain multiple cytokines, mitogens, pro- and anti-inflammatory factors and other bioactive mols. that are essential regulators in the complex microenvironment of the growing thrombus but also contribute to a no. of disease processes. Our understanding of the mol. mechanisms of secretion and the genetic regulation of granule biogenesis still remains incomplete. In this review we summarise our current understanding of the roles of platelet secretion in health and disease, and discuss some of the hypotheses that may explain how platelets may control the release of its many secreted components in a context-specific manner, to allow platelets to play multiple roles in health and disease.
- 22Nurden, A. T.; Nurden, P.; Sanchez, M.; Andia, I.; Anitua, E. Front Biosci. 2008, 13, 3532– 354822https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BD1czksVymsQ%253D%253D&md5=bc9408067264404e8f17e44fcbfaffe8Platelets and wound healingNurden Alan T; Nurden Paquita; Sanchez Mikel; Andia Isabel; Anitua EduardoFrontiers in bioscience : a journal and virtual library (2008), 13 (), 3532-48 ISSN:1093-9946.Platelets help prevent blood loss at sites of vascular injury. To do this, they adhere, aggregate and form a procoagulant surface favoring thrombin generation and fibrin formation. In addition, platelets express and release substances that promote tissue repair and influence processes such as angiogenesis, inflammation and the immune response. They contain large secretable pools of biologically active proteins, while newly synthesized active metabolites are also released. Although anucleate, activated platelets possess a spliceosome and can synthesize tissue factor and interleukin-1beta. The binding of secreted proteins within a developing fibrin mesh or to the extracellular matrix can create chemotactic gradients favoring the recruitment of stem cells, stimulating cell migration and differentiation, and promoting repair. The therapeutic use of platelets in a fibrin clot has a positive influence in clinical situations requiring rapid healing. Dental implant surgery, orthopaedic surgery, muscle and tendon repair, skin ulcers, hole repair in eye surgery and cardiac surgery are situations where the use of autologous platelets accelerates healing. We now review the ways in which platelets participate in these processes.
- 23Wang, C.; Sun, W.; Ye, Y.; Hu, Q.; Bomba, H. N.; Gu, Z. Nat. Biomed. Eng. 2017, 1, 0011, DOI: 10.1038/s41551-016-001123https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC1MXit1ahur%252FO&md5=f19b7813302dd9569c51e471417ed119In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapyWang, Chao; Sun, Wujin; Ye, Yanqi; Hu, Quanyin; Bomba, Hunter N.; Gu, ZhenNature Biomedical Engineering (2017), 1 (2), 0011CODEN: NBEAB3; ISSN:2157-846X. (Nature Research)Cancer recurrence after surgical resection remains a significant challenge in cancer therapy. Platelets, which accumulate in wound sites and interact with circulating tumor cells (CTCs), can however trigger inflammation and repair processes in the remaining tumor microenvironment. Inspired by this intrinsic ability of platelets and the clin. success of immune checkpoint inhibitors, here we show that conjugating anti-PDL1 (engineered monoclonal antibodies against programmed-death ligand 1) to the surface of platelets can reduce post-surgical tumor recurrence and metastasis. Using mice bearing partially removed primary melanomas (B16-F10) or triple-neg. breast carcinomas (4T1), we found that anti-PDL1 was effectively released on platelet activation by platelet-derived microparticles, and that the administration of platelet-bound anti-PDL1 significantly prolonged overall mouse survival after surgery by reducing the risk of cancer regrowth and metastatic spread. Our findings suggest that engineered platelets can facilitate the delivery of the immunotherapeutic anti-PDL1 to the surgical bed and target CTCs in the bloodstream, thereby potentially improving the objective response rate.
- 24Hu, C. M.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. Nature 2015, 526, 118– 121, DOI: 10.1038/nature1537324https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXhsFersL3L&md5=b3ac12cfaaec406bc86e7b816f843a80Nanoparticle biointerfacing by platelet membrane cloakingHu, Che-Ming J.; Fang, Ronnie H.; Wang, Kuei-Chun; Luk, Brian T.; Thamphiwatana, Soracha; Dehaini, Diana; Nguyen, Phu; Angsantikul, Pavimol; Wen, Cindy H.; Kroll, Ashley V.; Carpenter, Cody; Ramesh, Manikantan; Qu, Vivian; Patel, Sherrina H.; Zhu, Jie; Shi, William; Hofman, Florence M.; Chen, Thomas C.; Gao, Weiwei; Zhang, Kang; Chien, Shu; Zhang, LiangfangNature (London, United Kingdom) (2015), 526 (7571), 118-121CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)Development of functional nanoparticles can be encumbered by unanticipated material properties and biol. events, which can affect nanoparticle effectiveness in complex, physiol. relevant systems. Despite the advances in bottom-up nanoengineering and surface chem., reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the prepn. of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens assocd. with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an exptl. rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, resp., show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.
- 25Anselmo, A. C.; Modery-Pawlowski, C. L.; Menegatti, S.; Kumar, S.; Vogus, D. R.; Tian, L. L.; Chen, M.; Squires, T. M.; Sen Gupta, A.; Mitragotri, S. ACS Nano 2014, 8, 11243– 11253, DOI: 10.1021/nn503732mThere is no corresponding record for this reference.
- 26Hu, Q.; Sun, W.; Qian, C.; Wang, C.; Bomba, H. N.; Gu, Z. Adv. Mater. 2015, 27, 7043– 7050, DOI: 10.1002/adma.20150332326https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXhsFyqsrnM&md5=fb41127552a9ab172439df259a7c2cbbAnticancer Platelet-Mimicking NanovehiclesHu, Quanyin; Sun, Wujin; Qian, Chengen; Wang, Chao; Bomba, Hunter N.; Gu, ZhenAdvanced Materials (Weinheim, Germany) (2015), 27 (44), 7043-7050CODEN: ADVMEW; ISSN:0935-9648. (Wiley-VCH Verlag GmbH & Co. KGaA)Human plasma membranes were isolated and made into nanocapsules that contained doxorubicin. TRAIL was also added to provide antitumor activity. The nanocapsules were targeted to human breast cancer cells by platelet P-selectin binding to CD44 and TRAIL binding to death receptors. Tumor apoptosis was demonstrated.
- 27Li, S.; Jiang, Q.; Liu, S.; Zhang, Y.; Tian, Y.; Song, C.; Wang, J.; Zou, Y.; Anderson, G. J.; Han, J. Y.; Chang, Y.; Liu, Y.; Zhang, C.; Chen, L.; Zhou, G.; Nie, G.; Yan, H.; Ding, B.; Zhao, Y. Nat. Biotechnol. 2018, 36, 258– 264, DOI: 10.1038/nbt.407127https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC1cXisFCiurY%253D&md5=b780d2a8958409aeee721f6d96b3aee0A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivoLi, Suping; Jiang, Qiao; Liu, Shaoli; Zhang, Yinlong; Tian, Yanhua; Song, Chen; Wang, Jing; Zou, Yiguo; Anderson, Gregory J.; Han, Jing-Yan; Chang, Yung; Liu, Yan; Zhang, Chen; Chen, Liang; Zhou, Guangbiao; Nie, Guangjun; Yan, Hao; Ding, Baoquan; Zhao, YuliangNature Biotechnology (2018), 36 (3), 258-264CODEN: NABIF9; ISSN:1087-0156. (Nature Research)Nanoscale robots have potential as intelligent drug delivery systems that respond to mol. triggers. Using DNA origami we constructed an autonomous DNA robot programmed to transport payloads and present them specifically in tumors. Our nanorobot is functionalized on the outside with a DNA aptamer that binds nucleolin, a protein specifically expressed on tumor-assocd. endothelial cells, and the blood coagulation protease thrombin within its inner cavity. The nucleolin-targeting aptamer serves both as a targeting domain and as a mol. trigger for the mech. opening of the DNA nanorobot. The thrombin inside is thus exposed and activates coagulation at the tumor site. Using tumor-bearing mouse models, we demonstrate that i.v. injected DNA nanorobots deliver thrombin specifically to tumor-assocd. blood vessels and induce intravascular thrombosis, resulting in tumor necrosis and inhibition of tumor growth. The nanorobot proved safe and immunol. inert in mice and Bama miniature pigs. Our data show that DNA nanorobots represent a promising strategy for precise drug delivery in cancer therapy.
- 28Stroncek, D. F.; Rebulla, P. Lancet 2007, 370, 427– 438, DOI: 10.1016/S0140-6736(07)61198-2There is no corresponding record for this reference.
- 29Moreau, T.; Evans, A. L.; Vasquez, L.; Tijssen, M. R.; Yan, Y.; Trotter, M. W.; Howard, D.; Colzani, M.; Arumugam, M.; Wu, W. H. Nat. Commun. 2016, 7, 11208, DOI: 10.1038/ncomms1120829https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC28Xls1Kmtb8%253D&md5=f0a2623373828c01d2fe868e5a10ac9dLarge-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programmingMoreau, Thomas; Evans, Amanda L.; Vasquez, Louella; Tijssen, Marloes R.; Yan, Ying; Trotter, Matthew W.; Howard, Daniel; Colzani, Maria; Arumugam, Meera; Wu, Wing Han; Dalby, Amanda; Lampela, Riina; Bouet, Guenaelle; Hobbs, Catherine M.; Pask, Dean C.; Payne, Holly; Ponomaryov, Tatyana; Brill, Alexander; Soranzo, Nicole; Ouwehand, Willem H.; Pedersen, Roger A.; Ghevaert, CedricNature Communications (2016), 7 (), 11208CODEN: NCAOBW; ISSN:2041-1723. (Nature Publishing Group)The prodn. of megakaryocytes (MKs)-the precursors of blood platelets-from human pluripotent stem cells (hPSCs) offers exciting clin. opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chem. defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 105 mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufg. practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro prodn. of platelets for transfusion and basic research in MK and platelet biol.
- 30Li, J.; Sharkey, C. C.; Wun, B.; Liesveld, J. L.; King, M. R. J. Controlled Release 2016, 228, 38– 47, DOI: 10.1016/j.jconrel.2016.02.036There is no corresponding record for this reference.
- 31Lefrancais, E.; Ortiz-Munoz, G.; Caudrillier, A.; Mallavia, B.; Liu, F.; Sayah, D. M.; Thornton, E. E.; Headley, M. B.; David, T.; Coughlin, S. R. Nature 2017, 544 (7648), 105– 109, DOI: 10.1038/nature21706There is no corresponding record for this reference.
- 32Zhang, X.; Wang, C.; Wang, J.; Hu, Q.; Langworthy, B.; Ye, Y.; Sun, W.; Lin, J.; Wang, T.; Fine, J.; Cheng, H.; Dotti, G.; Huang, P.; Gu, Z. Adv. Mater. 2018, 30, 1707112, DOI: 10.1002/adma.201707112There is no corresponding record for this reference.
- 33Machlus, K. R.; Italiano, J. E., Jr. J. Cell Biol. 2013, 201, 785– 796, DOI: 10.1083/jcb.201304054There is no corresponding record for this reference.
- 34Ruggeri, Z. M.; Mendolicchio, G. L. Circ. Res. 2007, 100, 1673– 1685, DOI: 10.1161/01.RES.0000267878.97021.ab34https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2sXmslygt7c%253D&md5=91f340e290373377e8a8b543f7e3f133Adhesion Mechanisms in Platelet FunctionRuggeri, Zaverio M.; Mendolicchio, G. LoredanaCirculation Research (2007), 100 (12), 1673-1685CODEN: CIRUAL; ISSN:0009-7330. (Lippincott Williams & Wilkins)Platelet adhesion is an essential function in response to vascular injury and is generally viewed as the first step during which single platelets bind through specific membrane receptors to cellular and extracellular matrix constituents of the vessel wall and tissues. This response initiates thrombus formation that arrests hemorrhage and permits wound healing. Pathol. conditions that cause vascular alterations and blood flow disturbances may turn this beneficial process into a disease mechanism that results in arterial occlusion, most frequently in atherosclerotic vessels of the heart and brain. Besides their relevant role in hemostasis and thrombosis, platelet adhesive properties are central to a variety of pathophysiol. processes that extend from inflammation to immune-mediated host defense and pathogenic mechanisms as well as cancer metastasis. All of these activities depend on the ability of platelets to circulate in blood as sentinels of vascular integrity, adhere where alterations are detected, and signal the abnormality to other platelets and blood cells. In this respect, therefore, platelet adhesion to vascular wall structures, to one another (aggregation), or to other blood cells, represent different aspects of the same fundamental biol. process. Detailed studies by many investigators over the past several years have been aimed to dissect the complexity of these functions, and the results obtained now permit an attempt to integrate all the available information into a picture that highlights the balanced diversity and synergy of distinct platelet adhesive interactions.
- 35Semple, J. W.; Italiano, J. E., Jr.; Freedman, J. Nat. Rev. Immunol. 2011, 11, 264– 274, DOI: 10.1038/nri295635https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXjvVOhu7s%253D&md5=dac67170a4368952bc133aacc5b1bdbdPlatelets and the immune continuumSemple, John W.; Italiano, Joseph E.; Freedman, JohnNature Reviews Immunology (2011), 11 (4), 264-274CODEN: NRIABX; ISSN:1474-1733. (Nature Publishing Group)A review. Platelets are anucleate cells that are crucial mediators of haemostasis. Most immunologists probably don't think about platelets every day, and may even consider these cells to be 'nuisances' in certain in vitro studies. However, it is becoming increasingly clear that platelets have inflammatory functions and can influence both innate and adaptive immune responses. Here, we discuss the mechanisms by which platelets contribute to immunity: these small cells are more immunol. savvy than we once thought.
- 36Siljander, P. R. Thromb. Res. 2011, 127, S30– S33, DOI: 10.1016/S0049-3848(10)70152-336https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXhs1GksA%253D%253D&md5=8a9f0eee648e1a4ce1e4929e5f0ab038Platelet-derived microparticles - an updated perspectiveSiljander, Pia R. M.Thrombosis Research (2011), 127 (Suppl. 2), S30-S33CODEN: THBRAA; ISSN:0049-3848. (Elsevier Ltd.)A review. Platelet-derived microparticles (PMP) are a heterogeneous population of vesicles (<1mm) generated from the plasma membrane upon platelet activation by various stimuli. They are a discrete population differing from the exosomes which originate from the intracellular multivesicular bodies. PMP also differ from the microparticles derived from megakaryocytes despite the presence of several identical surface markers on the latter. The mol. properties and the functional roles of the PMP are beginning to be elucidated by the rapidly evolving research interest, but novel questions are simultaneously raised. This updated perspective discusses the most recent highlights in the PMP research in context with the methodol. problems and the paradoxical role of the PMP in health and disease.
- 37Mause, S. F.; von Hundelshausen, P.; Zernecke, A.; Koenen, R. R.; Weber, C. Arterioscler., Thromb., Vasc. Biol. 2005, 25, 1512– 1518, DOI: 10.1161/01.ATV.0000170133.43608.3737https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2MXltlSitb0%253D&md5=a60e3f963f73b8bdebb85cbd87a1e55aPlatelet Microparticles: A Transcellular Delivery System for RANTES Promoting Monocyte Recruitment on EndotheliumMause, Sebastian F.; von Hundelshausen, Philipp; Zernecke, Alma; Koenen, Rory R.; Weber, ChristianArteriosclerosis, Thrombosis, and Vascular Biology (2005), 25 (7), 1512-1518CODEN: ATVBFA; ISSN:1079-5642. (Lippincott Williams & Wilkins)Objective: Platelet activation mediates multiple cellular responses, including secretion of chemokines such as RANTES (CCL5), and formation of platelet microparticles (PMPs). We studied the role of PMPs in delivering RANTES and promoting monocyte recruitment. Methods and Results: Here we show that PMPs contain substantial amts. of RANTES and deposit RANTES on activated endothelium or murine atherosclerotic carotid arteries. RANTES deposition is facilitated by flow conditions and more efficient than that conferred by PMP supernatants. Interactions of PMPs with activated endothelium in flow were mostly characterized by rolling. RANTES deposition showed a diffuse distribution pattern and was rarely colocalized with firmly adherent PMPs, substantiating that RANTES deposition occurs during transient interactions. Importantly, preperfusion with PMPs enhanced monocyte arrest on activated endothelium or atherosclerotic carotid arteries, which could be inhibited by a blocking antibody or a RANTES receptor antagonist. Blockade or deficiency of PMP-expressed adhesion receptors demonstrated differential requirement of P-selectin, glycoprotein Ib (GPIb), GPIIb/IIIa, and junctional adhesion mol.-A for PMP interactions with endothelium, PMP-dependent RANTES deposition, and subsequent monocyte arrest. Conclusion: Circulating PMPs may serve as a finely tuned transcellular delivery system for RANTES, triggering monocyte arrest to inflamed and atherosclerotic endothelium, introducing a novel mechanism for platelet-dependent monocyte recruitment in inflammation and atherosclerosis.
- 38Rollinghoff, M.; Starzinski-Powitz, A.; Pfizenmaier, K.; Wagner, H. J. Exp. Med. 1977, 145, 455– 459, DOI: 10.1084/jem.145.2.455There is no corresponding record for this reference.
- 39Yoshida, S.; Nomoto, K.; Himeno, K.; Takeya, K. Clin. Exp. Immunol. 1979, 38 (2), 211– 21739https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADyaL3c7htFOgtA%253D%253D&md5=ceee5b85ffd7b15cfad133e147e71833Immune response to syngeneic or autologous testicular cells in mice. I. Augmented delayed footpad reaction in cyclophosphamide-treated miceYoshida S; Nomoto K; Himeno K; Takeya KClinical and experimental immunology (1979), 38 (2), 211-7 ISSN:0009-9104.A delayed footpad reaction against syngeneic or autologous testicular cells was detected in mice of inbred C57BL/6, AKR and C3H/He strains. The reaction was only provoked to a measurable level if the immunization was preceded by treatment with cyclophosphamide (CY). Footpad reaction was strongest on day 6 after immunization and was detected in both male and female mice. It was found that the reaction was elicited not only with the immunizing antigen, but also with allogeneic or xenogeneic testicular antigen in mice immunized with syngeneic testicular cells.
- 40Berd, D.; Mastrangelo, M. J. Cancer Res. 1988, 48 (6), 1671– 1675There is no corresponding record for this reference.
- 41Chen, Q.; Wang, C.; Chen, G.; Hu, Q.; Gu, Z. Adv. Healthcare Mater. 2018, 1800424, DOI: 10.1002/adhm.201800424There is no corresponding record for this reference.
- 42Wang, C.; Wang, J.; Zhang, X.; Yu, S.; Wen, D.; Hu, Q.; Ye, Y.; Bomba, H.; Hu, X.; Liu, Z.; Dotti, G.; Gu, Z. Sci. Transl. Med. 2018, 10, 429, DOI: 10.1126/scitranslmed.aan3682There is no corresponding record for this reference.
- 43Zhang, X.; Dong, Y.; Zeng, X.; Liang, X.; Li, X.; Tao, W.; Chen, H.; Jiang, Y.; Mei, L.; Feng, S. S. Biomaterials 2014, 35 (6), 1932– 43, DOI: 10.1016/j.biomaterials.2013.10.034There is no corresponding record for this reference.
- 44Jang, S. C.; Kim, O. Y.; Yoon, C. M.; Choi, D. S.; Roh, T. Y.; Park, J.; Nilsson, J.; Lotvall, J.; Kim, Y. K.; Gho, Y. S. ACS Nano 2013, 7, 7698– 7710, DOI: 10.1021/nn402232gThere is no corresponding record for this reference.
- 45Wen, D.; Peng, Y.; Liu, D.; Weizmann, Y.; Mahato, R. I. J. Controlled Release 2016, 238, 166– 175, DOI: 10.1016/j.jconrel.2016.07.044There is no corresponding record for this reference.
- 46Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M. J. Nat. Biotechnol. 2011, 29, 341– 345, DOI: 10.1038/nbt.180746https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXjsVKqsLw%253D&md5=b86a2f2c2338e8dfe6d4cf2f1e788296Delivery of siRNA to the mouse brain by systemic injection of targeted exosomesAlvarez-Erviti, Lydia; Seow, Yiqi; Yin, HaiFang; Betts, Corinne; Lakhal, Samira; Wood, Matthew J. A.Nature Biotechnology (2011), 29 (4), 341-345CODEN: NABIF9; ISSN:1087-0156. (Nature Publishing Group)To realize the therapeutic potential of RNA drugs, efficient, tissue-specific and nonimmunogenic delivery technologies must be developed. Here we show that exosomes-endogenous nano-vesicles that transport RNAs and proteins-can deliver short interfering (si)RNA to the brain in mice. To reduce immunogenicity, we used self-derived dendritic cells for exosome prodn. Targeting was achieved by engineering the dendritic cells to express Lamp2b, an exosomal membrane protein, fused to the neuron-specific RVG peptide. Purified exosomes were loaded with exogenous siRNA by electroporation. I.v. injected RVG-targeted exosomes delivered GAPDH siRNA specifically to neurons, microglia, oligodendrocytes in the brain, resulting in a specific gene knockdown. Pre-exposure to RVG exosomes did not attenuate knockdown, and non-specific uptake in other tissues was not obsd. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated by the strong mRNA (60%) and protein (62%) knockdown of BACE1, a therapeutic target in Alzheimer's disease, in wild-type mice.
- 47El-Andaloussi, S.; Lee, Y.; Lakhal-Littleton, S.; Li, J.; Seow, Y.; Gardiner, C.; Alvarez-Erviti, L.; Sargent, I. L.; Wood, M. J. Nat. Protoc. 2012, 7, 2112– 2126, DOI: 10.1038/nprot.2012.131There is no corresponding record for this reference.
- 48Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G. J.; Wei, J.; Nie, G. Biomaterials 2014, 35, 2383– 2390, DOI: 10.1016/j.biomaterials.2013.11.08348https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXhvFGrsbzJ&md5=02b3a5d88c448c81b2d57c70b011698cA doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapyTian, Yanhua; Li, Suping; Song, Jian; Ji, Tianjiao; Zhu, Motao; Anderson, Gregory J.; Wei, Jingyan; Nie, GuangjunBiomaterials (2014), 35 (7), 2383-2390CODEN: BIMADU; ISSN:0142-9612. (Elsevier Ltd.)Targeted drug delivery vehicles with low immunogenicity and toxicity are needed for cancer therapy. Here we show that exosomes, endogenous nano-sized membrane vesicles secreted by most cell types, can deliver chemotherapeutics such as doxorubicin (Dox) to tumor tissue in BALB/c nude mice. To reduce immunogenicity and toxicity, mouse immature dendritic cells (imDCs) were used for exosome prodn. Tumor targeting was facilitated by engineering the imDCs to express a well-characterized exosomal membrane protein (Lamp2b) fused to αv integrin-specific iRGD peptide (CRGDKGPDC). Purified exosomes from imDCs were loaded with Dox via electroporation, with an encapsulation efficiency of up to 20%. IRGD exosomes showed highly efficient targeting and Dox delivery to αv integrin-pos. breast cancer cells in vitro as demonstrated by confocal imaging and flow cytometry. I.v. injected targeted exosomes delivered Dox specifically to tumor tissues, leading to inhibition of tumor growth without overt toxicity. Our results suggest that exosomes modified by targeting ligands can be used therapeutically for the delivery of Dox to tumors, thus having great potential value for clin. applications.
- 49Gulfam, M.; Kim, J. E.; Lee, J. M.; Ku, B.; Chung, B. H.; Chung, B. G. Langmuir 2012, 28, 8216– 8223, DOI: 10.1021/la300691nThere is no corresponding record for this reference.
- 50Kensler, T. T.; Behme, R. J.; Brooke, D. J. Pharm. Sci. 1979, 68, 172– 174, DOI: 10.1002/jps.2600680213There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.8b02321.
In vitro process of platelet releasing from L8057 cells, establishment of L8057 cell line stably expressing EGFP-PD-1, activity of platelets released from L8057 cells, in vitro binding and uptake of platelets by tumor cells, tumor size and body weight of mice, histological images for H&E staining, in vitro loading and release of cyclophosphamide by PD-1-expressing platelets, and the bioluminescence imaging of B16F10 tumor growth in mice after partial tumor resection and receiving the treatments (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.