The critical role of osteopontin (OPN) in fibrotic diseases 骨连蛋白(OPN)在纤维性疾病中的关键作用
Ziyi Tang ^(a,b,c,1){ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, 1}, Zijing Xia ^(a,b,c,1){ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, 1}, Xiangpeng Wang ^(a,d){ }^{\mathrm{a}, \mathrm{d}}, Yi Liu ^(a,b,c,^(**)){ }^{\mathrm{a}, \mathrm{b}, \mathrm{c},{ }^{*}} 汤子一 ^(a,b,c,1){ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, 1} ,夏子京 ^(a,b,c,1){ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, 1} ,王向朋 ^(a,d){ }^{\mathrm{a}, \mathrm{d}} ,刘一 ^(a,b,c,^(**)){ }^{\mathrm{a}, \mathrm{b}, \mathrm{c},{ }^{*}}a Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China 四川大学华西医院风湿免疫科,成都 610041,中国^(b){ }^{\mathrm{b}} Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China 川大西部医院风湿免疫实验室,成都 610041,中国^("c "RareDiseasesCenter,InstituteofImmunologyandInflammation,FrontiersScienceCenterforDisease-relatedMolecularNetwork,WestChinaHospital,Sichuan){ }^{\text {c } R a r e ~ D i s e a s e s ~ C e n t e r, ~ I n s t i t u t e ~ o f ~ I m m u n o l o g y ~ a n d ~ I n f l a m m a t i o n, ~ F r o n t i e r s ~ S c i e n c e ~ C e n t e r ~ f o r ~ D i s e a s e-r e l a t e d ~ M o l e c u l a r ~ N e t w o r k, ~ W e s t ~ C h i n a ~ H o s p i t a l, ~ S i c h u a n ~} University, Chengdu 610041, China 四川大学,成都 610041,中国^(d){ }^{\mathrm{d}} Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100000, China 中国北京联合医科大学附属医院风湿病科
Fibrosis is a pathological condition characterized by the excessive deposition of extracellular matrix components in tissues and organs, leading to progressive architectural remodelling and contributing to the development of various diseases. Osteopontin (OPN), a highly phosphorylated glycoprotein, has been increasingly recognized for its involvement in the progression of tissue fibrosis. This review provides a comprehensive overview of the genetic and protein structure of OPN and focuses on our current understanding of the role of OPN in the development of fibrosis in the lungs and other tissues. Additionally, special attention is given to the potential of OPN as a biomarker and a novel therapeutic target in the treatment of fibrosis. 纤维化是一种病理状况,特征是细胞外基质成分在组织和器官中过度沉积,导致建筑结构发生进行性重塑,并促进各种疾病的发展。骨粘蛋白(OPN)是一种高度磷酸化的糖蛋白,其在组织纤维化进程中的参与已逐步得到认识。本文综述了 OPN 的遗传和蛋白结构,并着重阐述了 OPN 在肺部和其他组织纤维化发展中的作用。此外,本文还特别关注 OPN 作为生物标志物和治疗纤维化的新靶点的潜力。
1. Introduction 1. 简介
Human fibrotic diseases constitute a significant human health problem, reflecting a global unmet medical need for therapeutic options [1]. Fibrosis is defined by the excessive deposition of extracellular matrix (ECM) produced by myofibroblasts that supersedes normal wound healing responses to injury and leads to fibrotic remodelling, organ destruction and ultimately organ failure [2,3]. Fibrosis can affect virtually every organ system, and it can be detected after tissue injury in the lungs, liver, kidney, heart and skin. However, the early stage of 人类纤维化疾病构成了一个重大的人类健康问题,反映了对治疗选择存在着全球未满足的医疗需求[1]。纤维化被定义为肌纤维母细胞产生的细胞外基质(ECM)的过度沉积,超过了伤害后正常的创伤愈合反应,导致纤维化重塑、器官破坏和最终器官衰竭[2,3]。纤维化可以影响几乎所有器官系统,可在肺、肝、肾、心和皮肤组织受伤后检测到。然而,早期的
fibrosis is challenging to diagnose since symptoms of organ dysfunction only occur when the organ is already moderately to severely compromised. Fibrosis is commonly associated with severe mortality due to incomplete knowledge of the pathogenesis of fibrotic processes, marked heterogeneity in disease aetiology and clinical presentations, the absence of appropriate and fully validated biomarkers, and, most importantly, a lack of available effective treatments [3]. Consequently, there is an urgent need for standardized diagnostic tools to detect early-stage fibrosis development and effective antifibrotic strategies grounded in well-established underlying mechanisms. 纤维化诊断具有挑战性,因为器官功能障碍的症状只有在器官已中度到重度受损的情况下才会出现。纤维化通常与严重的死亡率相关,这是由于对纤维化过程发病机制的知识不完整、疾病病因和临床表现的高度异质性、缺乏适当和完全验证的生物标志物,最重要的是缺乏有效的治疗手段[3]。因此,急需标准化的诊断工具来检测早期纤维化的发展,以及基于良好确立的潜在机制的有效抗纤维化策略。
Fig. 1. Genomic, transcriptional, and protein features of human OPN. The human Spp1 gene encodes the OPN protein and has seven exons. OPN transcripts have two starting points to generate secreted or/and intracellular forms. Alternative splicing of full-length Spp1 pre-mRNA results in five isoforms. All human OPN isoforms retain critical OPN domains and sites, such as the calcium-binding domain, heparin-binding domain, cleavage sites for thrombin and matrix metalloprotease, and domains with the amino acid sequences ELVTDFPTDLPAT, RGD and SVVYGLR. The receptor-interacting domains and the respective receptors for these domains are shown. Abbreviations: eex, extra exon. 图 1. 人类骨桥蛋白(OPN)的基因组、转录和蛋白质特征。人 Spp1 基因编码 OPN 蛋白,具有 7 个外显子。OPN 转录本有两个起始点,可产生分泌型和/或细胞内型。完整长度的 Spp1 前体 mRNA 经可选择性剪接产生 5 种等位体。所有人类 OPN 等位体均保留关键的 OPN 结构域和位点,如钙结合域、肝素结合域、血栓酶和基质金属蛋白酶的切割位点,以及含有 ELVTDFPTDLPAT、RGD 和 SVVYGLR 氨基酸序列的结构域。受体相互作用结构域及其相应的受体也显示在图中。缩写:eex,额外外显子。
Osteopontin (OPN), which is also referred to as bone sialoprotein 1 (BSP-1) and early T lymphocyte activation 1 (ETA-1), is a highly phosphorylated glycoprotein that is traditionally well recognized as an essential regulator of biomineralization and was first identified in bone tissue in 1986 [4,5]. The prefix “osteo-” is derived from “bone” and the suffix “-pontin” means “bridge”, indicating the role of OPN as a bridging protein within the bone ECM. Indeed, OPN is expressed by a wide variety of cell types. Accumulating evidence has demonstrated that OPN can act as an ECM component, a soluble cytokine or an intracytoplasmic molecule involved in mineralization, inflammation, immune response, and wound healing associated with a variety of pathophysiological processes that play crucial roles in tissue remodelling [6,7]. 骨桥蛋白(OPN),也称为骨硅蛋白 1(BSP-1)和早期 T 淋巴细胞激活 1(ETA-1),是一种高度磷酸化的糖蛋白,传统上被认为是生物矿化的关键调节因子,于 1986 年首次在骨组织中发现[4,5]。"骨骼"前缀来自"骨骼","桥"后缀意味着 OPN 在骨基质中起到桥梁作用。事实上,OPN 由多种细胞类型表达。越来越多的证据表明,OPN 可作为细胞外基质成分、可溶性细胞因子或参与矿化、炎症、免疫反应和创伤愈合的胞内分子,在组织重塑的各种病理生理过程中起关键作用[6,7]。
Over the past decades, studies have indicated close links between OPN and fibrotic diseases. Notably, relatively high local levels of OPN were found in fibrotic lungs, liver, kidney, heart and other tissues, indicating its potential involvement in the development of fibrosis. This review summarizes the current understanding of how OPN affects the development and severity of fibrosis in different organs and tissues. Additional discussions focus on its potential as a biomarker and novel therapeutic target for fibrotic diseases. 过去几十年的研究表明,OPN 与纤维化疾病存在密切联系。值得注意的是,纤维化肺、肝、肾、心等组织中发现 OPN 局部水平相对较高,表明它可能参与了纤维化的发展。本文综述了 OPN 如何影响不同器官和组织纤维化的发展及其严重程度的现有认知。此外,还讨论了它作为生物标志物和治疗纤维化疾病的新靶点的潜力。
2. General features of OPN 2. OPN 的一般特点
OPN, which is a negatively charged and highly acidic protein, belongs to the small integrin-binding ligand N -linked glycoprotein OPN 是一种带有负电荷且高度酸性的蛋白质,属于小型整合素结合配体 N-连接糖蛋白
(SIBLING) protein family based on biochemical and genetic features rather than standard functions [8]. The functions of OPN are based on its gene polymorphisms, posttranslational modifications (PTMs) (phosphorylation, O-linked glycosylation, sialylation, and tyrosine sulfation), splice variants, binding domains and cleavage. 基于生化和遗传特征而非标准功能的(同胞)蛋白质家族[8]。OPN 的功能基于其基因多态性、翻译后修饰(磷酸化、O-连接糖基化、唾液酸化和酪氨酸磺酸化)、剪接变体、结合域和切割。
2.1. The OPN gene 2.1. OPN 基因
In humans, OPN is encoded by the secreted phosphoprotein 1 (Spp1) gene on chromosome 4 near the centromere (4q22.1), which spans 7.8 kilobases and is composed of seven exons and six introns [9]. In contrast, the mouse Spp1 gene is located on chromosome 5 and has an approximately 6 kilobases coding region, including eight exons [10]. Human Spp1 is ∼84%\sim 84 \% homologous to the mouse Spp1 gene [9,11]. In the human Spp1 gene, the first exon is untranslated, and exons 2-72-7 contain the coding sequences [6]: exon 2 contains part of the 5 ’ UTR, the signal peptide, and the first two amino acids (aa) of the mature protein; exon 3 contains diverse consensus sequences for serine phosphorylation and the EESS consensus sequence for casein kinase II; exon 4 contains the target sequence for transglutaminase, and can bind to the ECM via a transglutaminase linkage to facilitate cellular attachment and tissue calcification; exon 5 generally contains the second phosphorylation EESS consensus site for casein kinase II; and exons 6 and 7 typically encode more than 80%80 \% of each protein and contain three integrin domains [9, 12] (Fig. 1). Single nucleotide polymorphisms of the Spp1 gene in 在人类中,OPN 由位于第 4 号染色体近着丝粒的分泌磷蛋白 1(Spp1)基因编码(4q22.1),该基因跨越 7.8 千碱基,由七个外显子和六个内含子组成[9]。相比之下,小鼠 Spp1 基因位于第 5 号染色体,编码区约为 6 千碱基,包括八个外显子[10]。人类 Spp1 与小鼠 Spp1 基因高度同源[9,11]。在人类 Spp1 基因中,第一个外显子未被翻译,外显子 2-72-7 包含编码序列[6]:外显子 2 包含部分 5'非翻译区、信号肽和成熟蛋白的前两个氨基酸(aa);外显子 3 包含多个丝氨酸磷酸化共识序列以及酪蛋白激酶 II 的 EESS 共识序列;外显子 4 包含转谷氨酰胺酶的靶序列,可通过转谷氨酰胺酶的连接与细胞外基质结合,以促进细胞粘附和组织钙化;外显子 5 通常包含酪蛋白激酶 II 的第二个磷酸化 EESS 共识位点;而外显子 6 和 7 通常编码每个蛋白质的 80%80 \% 以上,并包含三个整合素结构域[9,12](图 1)。Spp1 基因的单核苷酸多态性在
humans and mice influence OPN protein expression, and the human Spp1 gene participates in cancer and autoimmune disease development, progression, and prognosis [6,9,13]. 人类和小鼠影响 OPN 蛋白表达,人类 Spp1 基因参与肿瘤和自身免疫疾病的发展、进展和预后。[6,9,13]
2.2. OPN protein structure 2.2. OPN 蛋白质结构
The human OPN protein consists of approximately 314 aa, and its apparent molecular weight ranges from 40 to 80 kDa due to alternative splicing and PTMs [14]. Similarly, the full-length mouse OPN protein consists of 294 aa and exhibits a comparable molecular weight range of 40-80kDa40-80 \mathrm{kDa}, as shown by SDS-PAGE [10]. Although the OPN peptide sequences in humans and mice share only 63%63 \% homology, several structures and motifs in OPN are highly conserved across species [15]. Additionally, OPN lacks a well-defined tertiary structure and often lacks a secondary structure, exhibiting eight alpha\alpha-helices and six beta\beta-sheets [16, 17]. 人类 OPN 蛋白约由 314 个氨基酸组成,由于替代剪接和翻译后修饰,其表观分子量在 40 至 80kDa 之间[14]。同样,全长小鼠 OPN 蛋白由 294 个氨基酸组成,其分子量范围也在 40-80kDa40-80 \mathrm{kDa} 之间,如 SDS-PAGE 所示[10]。尽管人类和小鼠 OPN 肽序列的同源性仅为 63%63 \% ,但 OPN 中的几种结构和结构域在物种之间高度保守[15]。此外,OPN 缺乏明确的三级结构,通常也缺乏二级结构,呈现八个 alpha\alpha -螺旋和六个 beta\beta -折叠[16,17]。
Depending on differences in alternative splicing and the site of initiation of the Spp1 pre-mRNA, OPN has different isoforms. Alternative splicing of full-length Spp1 pre-mRNA results in 5 isoforms, which are mainly studied as human OPN: OPN-a (the full-length isoform; 314 aa), OPN-b (lacking exon 5; 300 aa), OPN-c (lacking exon 4; 287 aa), OPN-4 (lacking exons 4 and 5; 273 aa), and OPN-5 (with an extra exon involved in the retention of a portion of intron 3 and a different start codon; lacking exon 2 and exon 3; 327 aa) [9,11] (Fig. 1). OPN-c is not able to crosslink and form polymeric complexes because of a lack of exon 4 [12]. Intracellular OPN (i-OPN) is another truncated version lacking the signal peptide (aa 1-16) transcription due to the initiation of translation from a downstream noncanonical start codon that prevents OPN secretion [18] (Fig. 1). Mouse and human OPN were identified in the cytoplasm and nucleus of cells. Different OPN isoforms have different physiological and pathological functions. However, most data on fibrotic diseases refer to total OPN, including the different OPN isoforms, and reports describing the expression and roles of each OPN isoform are scarce. 根据 Spp1 前体 mRNA 的可选择性剪接和起始位点的不同,OPN 具有不同的等位基因。Spp1 全长前体 mRNA 的可选择性剪接产生 5 种等位基因,主要研究作为人 OPN:OPN-a(全长等位基因;314 氨基酸)、OPN-b(缺失第 5 外显子;300 氨基酸)、OPN-c(缺失第 4 外显子;287 氨基酸)、OPN-4(缺失第 4 和第 5 外显子;273 氨基酸)以及 OPN-5(涉及保留部分第 3 内含子和不同起始密码子的额外外显子;缺失第 2 和第 3 外显子;327 氨基酸)[9,11](图 1)。由于缺失第 4 外显子,OPN-c 无法交联并形成聚合物[12]。不含信号肽(1-16 氨基酸)的截短版本 i-OPN 是另一种由于从下游非经典起始密码子启动翻译而无法分泌的 OPN[18](图 1)。小鼠和人类 OPN 在细胞的细胞质和核中都有发现。不同的 OPN 等位基因具有不同的生理和病理功能。然而,大多数关于纤维化疾病的数据涉及总的 OPN,包括不同的 OPN 等位基因,而描述每种 OPN 等位基因的表达和作用的报告很少。
OPN proteins exert physiological and pathological effects through the binding of their domains to the corresponding ligands. Integrins and CD44 receptors are among the known binding partners of OPN. There are three integrin domains in human OPN near the N -terminus: the nonconserved ELVTDFPTDLPAT (aa 131-143) domain acts as ligands for alpha4beta1\alpha 4 \beta 1 integrins [19]; the conserved arginine-glycine-aspartic acid (RGD) domain (aa 159-161) mainly engages alpha_(v)beta1,alpha_(v)beta3,alpha_(v)beta5\alpha_{v} \beta 1, \alpha_{v} \beta 3, \alpha_{v} \beta 5, alpha_(v)beta6\alpha_{v} \beta 6, alpha_(v)beta8,alpha5beta1\alpha_{\mathrm{v}} \beta 8, \alpha 5 \beta 1 and alpha8beta1\alpha 8 \beta 1 integrins [20]; and thrombin cleaves OPN at a conserved site (^(168)RS^(169))\left({ }^{168} \mathrm{RS}^{169}\right) and exposes a cryptic SVVYGLR (aa 162-168; SLAYGLR in mouse) domain that allows for the interaction between OPN and integrin receptors alpha4beta1,alpha4beta7\alpha 4 \beta 1, \alpha 4 \beta 7 and alpha9beta1\alpha 9 \beta 1 [21-23]. In addition, matrix metalloproteinase (MMP)-3 and MMP-7 cleave OPN at the site (^(166)GL^(167))\left({ }^{166} \mathrm{GL}^{167}\right) of the SVVYGLR domain, and the cleaved product is recognized by alpha4beta1\alpha 4 \beta 1 integrin [24]. There is one calcium-binding domain (aa 216-228216-228 ) and two heparin-binding domains (aa 165-174 and aa 298-305) near the C-terminus that can be recognized by the v3, v6, and v7 splice variants of CD44 [11,25] (Fig. 1). Interestingly, the thrombin and MMP-3/7 cleavage domains are located close to one heparin-binding domain (aa 165-174). Therefore, heparin binding to the domain may block access to thrombin and MMP-3/7 and maintain the full-length form of OPN. OPN 蛋白通过与相应配体结合其结构域而产生生理和病理效应。整合素和 CD44 受体是 OPN 已知的结合伙伴。人类 OPN 靠近 N 端有三个整合素结合域:不保守的 ELVTDFPTDLPAT(氨基酸 131-143)域作为 alpha4beta1\alpha 4 \beta 1 整合素的配体;保守的精氨酸-甘氨酸-天冬氨酸(RGD)域(氨基酸 159-161)主要与 alpha_(v)beta1,alpha_(v)beta3,alpha_(v)beta5\alpha_{v} \beta 1, \alpha_{v} \beta 3, \alpha_{v} \beta 5 、 alpha_(v)beta6\alpha_{v} \beta 6 、 alpha_(v)beta8,alpha5beta1\alpha_{\mathrm{v}} \beta 8, \alpha 5 \beta 1 和 alpha8beta1\alpha 8 \beta 1 整合素结合;凝血酶在一个保守位点 (^(168)RS^(169))\left({ }^{168} \mathrm{RS}^{169}\right) 切割 OPN,暴露出一个隐藏的 SVVYGLR(氨基酸 162-168;小鼠中为 SLAYGLR)域,允许 OPN 与整合素受体 alpha4beta1,alpha4beta7\alpha 4 \beta 1, \alpha 4 \beta 7 和 alpha9beta1\alpha 9 \beta 1 相互作用。另外,基质金属蛋白酶(MMP)-3 和 MMP-7 在 SVVYGLR 域的位点 (^(166)GL^(167))\left({ }^{166} \mathrm{GL}^{167}\right) 切割 OPN,切割产物被 alpha4beta1\alpha 4 \beta 1 整合素识别。靠近 C 端有一个结合钙的域(氨基酸 216-228216-228 )和两个结合肝素的域(氨基酸 165-174 和 298-305),可被 CD44 的 v3、v6 和 v7 剪接体识别。有趣的是,凝血酶和 MMP-3/7 的切割位点靠近一个肝素结合域(氨基酸 165-174)。因此,肝素与该结合域的结合可能阻碍凝血酶和 MMP-3/7 的作用,维持 OPN 的完整形式。
3. Distribution and physiological function of OPN 3. OPN 的分布和生理功能
OPN is produced by a variety of cell types, including B cells, T cells, natural killer (NK) cells, NKT lymphocytes, macrophages, neutrophils, dendritic cells (DCs), bone cells (osteoblasts and osteocytes), epithelial cells, and neurons, and OPN has been detected in human lungs, liver, bone, joint, brain and adipose tissue. Most Spp1 encodes signal peptides that mediate cellular secretion and accumulation in blood, urine, bile, and milk [6,7][6,7]. The many distribution sites of OPN reflect the involvement of OPN in multiple physiological processes. The binding of OPN to OPN 由各种细胞类型产生,包括 B 细胞、T 细胞、自然杀伤(NK)细胞、NKT 淋巴细胞、巨噬细胞、中性粒细胞、树突状细胞(DC)、骨细胞(成骨细胞和骨细胞)、上皮细胞和神经元,OPN 已在人类肺、肝、骨骼、关节、大脑和脂肪组织中检测到。大多数 Spp1 编码信号肽,介导细胞分泌并在血液、尿液、胆汁和乳汁中积累。OPN 分布广泛反映了其在多种生理过程中的参与。OPN 与
integrins or CD44 participates in mineralization, the immune response and wound healing by activating signalling pathways that regulate cell proliferation, adhesion and migration. 整合素或 CD44 参与矿化、免疫反应和创伤愈合,通过激活调节细胞增殖、黏附和迁移的信号通路来实现。
OPN enhances the adhesion of osteoblasts and osteoclasts to the bone matrix and stimulates osteoclast activity through interactions with the OPN receptors alpha v beta3\alpha v \beta 3 and CD44, resulting in bone resorption [26-28]. Additionally, OPN is secreted by osseous cells and regulates the functions of monocyte-derived cells, including phagocytic macrophages, which play a role in the resorption process [29]. Furthermore, in studies involving OPN-knockout ( OPN^(-//)\mathrm{OPN}^{-/}) mice, enhanced mineralization has been observed in bone and calcified cartilage [30], atherosclerosis [31] and kidney tubules [32]. That is, OPN suppresses hydroxyapatite accumulation and crystal growth during mineralization. 骨鞘蛋白(OPN)通过与 OPN 受体 alpha v beta3\alpha v \beta 3 和 CD44 的相互作用,增强成骨细胞和破骨细胞对骨基质的粘附性,并刺激破骨细胞活性,导致骨吸收[26-28]。此外,OPN 也由骨组织细胞分泌,调节单核细胞衍生细胞(包括吞噬性巨噬细胞)的功能,这些细胞在骨吸收过程中起作用[29]。此外,在涉及 OPN 敲除( OPN^(-//)\mathrm{OPN}^{-/} )小鼠的研究中,观察到骨骼和钙化软骨[30]、动脉粥样硬化[31]和肾小管[32]中矿化的增强。也就是说,OPN 抑制羟基磷灰石的积累和结晶生长,从而抑制矿化。
OPN also regulates immunity under physiological conditions. Its regulatory role is particularly evident in the development of proinflammatory T helper (Th) type-1 and Th17 cells. Specifically, OPN induces the hypomethylation of interferon- gamma\gamma (IFN- gamma\gamma ) and interleukin (IL)17a, enhancing the differentiation of Th1 and Th17 cells by interacting with CD44 in Th cells. Furthermore, OPN promotes the Th1-mediated inflammatory response and increases IL-17 production by Th17 cells [33]. In DCs, i-OPN inhibits IL-27 expression while enhancing the response of Th17 cells [6]. Additionally, OPN mediates the chemotactic properties of macrophages, DCs, mast cells, and T cells, stimulates antibody production by B cells, regulates nitric oxide production, and facilitates efficient type-1 immune responses [26,33-35]. Numerous studies have explored the relationship between OPN and the immune response, and for further in-depth discussions on this topic, we recommend referring to several outstanding review articles [6,10,36][6,10,36]. 骨桥蛋白(OPN)在生理条件下也调节免疫。其调节作用尤其表现在促炎性 T 辅助(Th)1 型和 Th17 细胞的发育中。具体而言,OPN 诱导干扰素-γ(IFN-γ)和白细胞介素(IL)17a 的去甲基化,通过与 Th 细胞上的 CD44 相互作用,增强 Th1 和 Th17 细胞的分化。此外,OPN 还促进 Th1 介导的炎症反应,并增加 Th17 细胞分泌 IL-17[33]。在树突状细胞(DCs)中,i-OPN 抑制 IL-27 的表达,同时增强 Th17 细胞的反应[6]。另外,OPN 介导巨噬细胞、DCs、肥大细胞和 T 细胞的趋化性,刺激 B 细胞产生抗体,调节一氧化氮的产生,并促进有效的 1 型免疫反应[26,33-35]。许多研究已探讨了 OPN 与免疫反应之间的关系,对这一主题的深入讨论,我们建议参考几篇优秀的综述文章[code2]。
Another significant physiological function of OPN is its involvement in the promotion of wound healing, which has garnered considerable attention. Studies have demonstrated that OPN expression is increased during wound healing compared to that in healthy skin. In a study by Liaw and colleagues, OPN^(-//-)\mathrm{OPN}^{-/-}mice exhibited healed wounds with a less organized matrix characterized by reduced collagen fibres, less organized arrangement, and decreased fibril diameters [37]. Ken-ichi’s study showed that cuts in the corneas of OPN^(-//-)\mathrm{OPN}^{-/-}mice experienced delayed healing, a reduced presence of fibroblasts and reduced expression of transforming growth factor- beta1\beta 1 (TGF- beta1\beta 1 ), resulting in an increased incidence of corneal perforation [38]. OPN facilitates the mobilization of bone marrow-derived stem cells into wounds by interacting with CD44, thereby promoting their transdifferentiation into multiple skin cell types that contribute to wound repair [39]. Additionally, OPN plays a role in the recruitment, regulation and differentiation of (myo)fibroblasts, facilitating the proper deposition of ECM components and collagen during wound healing [40]. Notably, while OPN is essential for proper wound healing, prolonged production or excessive levels of OPN can lead to fibrosis and excess scar formation, which is discussed in the subsequent section. 另一个 OPN 的重要生理功能是在伤口愈合过程中的参与,这引起了人们的广泛关注。研究表明,与健康皮肤相比,OPN 在伤口愈合过程中的表达水平会增加。在 Liaw 和同事的研究中, OPN^(-//-)\mathrm{OPN}^{-/-} 小鼠的愈合伤口表现出较不规整的基质,特征为胶原纤维减少、排列无序以及纤维直径降低[37]。Ken-ichi 的研究显示, OPN^(-//-)\mathrm{OPN}^{-/-} 小鼠角膜切口愈合延迟,成纤维细胞的数量减少,以及转化生长因子- beta1\beta 1 (TGF- beta1\beta 1 )表达降低,导致角膜穿孔发生率增加[38]。OPN 通过与 CD44 相互作用,促进骨髓源性干细胞向伤口的转移,从而推动其向多种皮肤细胞类型的跨分化,对伤口修复有贡献[39]。此外,OPN 在(肌)成纤维细胞的 recruitment、调控和分化中发挥作用,促进细胞外基质成分和胶原的适当沉积,从而推进伤口愈合[40]。值得注意的是,尽管 OPN 对适当的伤口愈合至关重要,但其持续过度产生或过高水平会导致纤维化和瘢痕形成过度,这在后续部分中有所讨论。
Moreover, recent studies on OPN have provided strong evidence for its essential roles in infant intestinal proliferation and maturation, brain myelination, neurodevelopment, and immune development when present in breast milk [41-43]. These findings highlight the biotransformational value of OPN in breast milk. 此外,近期关于 OPN 的研究为其在婴儿肠道增殖和成熟、脑髓鞘化、神经发育以及免疫发育中的关键作用提供了有力证据[41-43]。这些发现突出了 OPN 在母乳中的生物转化价值。
4. Roles of OPN in fibrotic diseases 4. OPN 在纤维性疾病中的作用
The association of OPN with the progression of fibrotic disease has recently attracted attention, resulting in accumulating evidence. In general, high levels of OPN correlate with a more severe phenotype and a worse prognosis for fibrotic diseases. In this section, we review studies on pulmonary fibrosis and other fibrotic diseases, and there is a plethora of literature related to OPN. 骨利蛋白(OPN)与纤维性疾病进展的关联近来引起了关注,并产生了大量的证据。通常,OPN 水平较高与更严重的表型和纤维性疾病预后较差相关。在本节中,我们回顾了肺纤维化和其他纤维性疾病的研究,并且与 OPN 相关的文献资料丰富。
4.1. OPN and pulmonary fibrosis 4.1. OPN 和肺纤维化
Pulmonary fibrosis is a chronic, heterogeneous, fatal respiratory 肺纤维化是一种慢性、异质性、致命的呼吸系统疾病
Fig. 2. BLM-induced pulmonary fibrosis in C57BL/6 J mice. Tissue sections of mouse lungs. H&E, Masson, and immunohistochemically stained (OPN) sections were observed under a light microscope (Obj 50 xx50 \times, Bar =50 mum=50 \mu \mathrm{~m} ). Compared with those in the control group, high levels of OPN were found locally in the fibrotic lungs of BLM-induced mice. Abbreviations: IHC, Immunohistochemistry. 图 2. BLM 诱导的 C57BL/6J 小鼠肺纤维化。小鼠肺组织切片。在光学显微镜下观察 H&E 染色、马松染色和免疫组织化学染色(OPN)切片(目镜 50 xx50 \times ,标尺 =50 mum=50 \mu \mathrm{~m} )。与对照组相比,BLM 诱导的小鼠纤维化肺局部检测到高水平的 OPN。缩写:IHC,免疫组织化学。
disease with different causes. Clinically, pulmonary fibrosis is commonly divided into idiopathic pulmonary fibrosis (IPF) with unknown aetiology and secondary pulmonary fibrosis with known aetiology, such as connective tissue disease (CTD), drugs, dust, and infection. The pathogenesis of pulmonary fibrosis includes but is not limited to three main contributing factors [44-48]: (1) repetitive epithelial injury with progenitor cell dysfunction; (2) persistent inflammatory and immune responses by immune cells due to long-term injury; and (3) the differentiation and activation of (myo)fibroblasts, which are the central producers of the ECM, resulting in irreversible changes to lung morphology leading to impaired pulmonary function and high mortality rates. 肺纤维化是具有不同病因的疾病。从临床上来看,肺纤维化通常分为特发性肺纤维化(IPF)和继发性肺纤维化两种,其中特发性肺纤维化病因不明,继发性肺纤维化则有明确病因,如胶原血管病、药物、粉尘和感染等。肺纤维化的发病机制主要包括但不限于三大因素:1)上皮细胞反复受损、干细胞功能障碍;2)长期受损致使免疫细胞持续炎症和免疫反应;3)成纤维细胞及肌成纤维细胞的分化和激活,这些细胞是细胞外基质的主要产生者,导致肺形态学发生不可逆的变化,从而引起肺功能受损,死亡率较高。
Under physiological conditions, OPN expression in adult lung tissue is primarily limited to macrophages, bronchioles, fibroblasts, and endothelial cells and occurs at low levels. In an inflammatory environment in the lung, cytokines such as monocyte colony-stimulating factor (MCSF), IL-6, IL-1 beta\beta, and IL-33 have been shown to upregulate OPN expression [49-52]. During lung fibrogenesis, the airway epithelium, alveolar macrophages, and activated fibroblasts are major sources of OPN production [49,53-55]. Additionally, there is a notable increase in OPN expression in lung tissue and bronchoalveolar lavage fluid (BALF), and this increase is correlated with the severity of fibrosis [56-58] (Fig. 2). Inhibiting OPN reduces fibrosis severity in animal models of pulmonary fibrosis [59-63]. Previous studies have indicated that the mechanistic association between OPN and pulmonary fibrosis primarily involves progenitor cell repair, immunoregulation, and the facilitation of myofibroblast differentiation and activation. 在生理条件下,成人肺组织中 OPN 的表达主要局限于巨噬细胞、细支气管、成纤维细胞和内皮细胞,且表达水平较低。在肺部炎症环境中,单核细胞集落刺激因子(MCSF)、IL-6、IL-1 和 IL-33 等细胞因子已被证明可上调 OPN 的表达[49-52]。在肺纤维化过程中,气道上皮细胞、肺泡巨噬细胞和活化的成纤维细胞是 OPN 产生的主要来源[49、53-55]。此外,肺组织和支气管肺泡灌洗液(BALF)中 OPN 的表达明显增加,并且这种增加与纤维化的严重程度相关[56-58](图 2)。抑制 OPN 可减轻动物肺纤维化模型中的纤维化严重程度[59-63]。既往研究表明,OPN 与肺纤维化之间的机制联系主要涉及到祖细胞修复、免疫调节以及促进肌成纤维细胞分化和激活。
4.1.1. OPN and progenitor cells in pulmonary fibrosis 4.1.1. 肺纤维化中的 OPN 和祖细胞
Club cells are considered progenitor cells in human terminal bronchioles and respiratory bronchioles. These cells play a role in repairing the regional epithelium in response to lung damage and are present in the distal lung in IPF, suggesting their association with lung fibrosis [64-66]. A recent study by Kumar and colleagues demonstrated that 俱乐部细胞被认为是人类末端细支气管和呼吸性细支气管的祖细胞。这些细胞在肺损伤后参与修复区域上皮,并存在于特发性肺纤维化患者的远端肺部,这表明它们与肺纤维化有关。Kumar 及同事最近的一项研究表明,
specific depletion of protein disulfide isomerase A3 (PDIA3) in club cells reduced the production of OPN/Spp1 in experimental fibrosis and subsequent improvements in fibrosis [63]. This finding suggests that OPN/Spp1 interacts with and is influenced by club cell PDIA3, which may be involved in progenitor cell repair disorders following repeated epithelial cell injury in the context of lung fibrosis [63]. 特异性消耗蛋白二硫化物异构酶 A3(PDIA3)减少了实验性纤维化中 OPN/Spp1 的产生,并改善了纤维化[63]。这一发现表明,OPN/Spp1 与俱乐部细胞 PDIA3 相互作用并受其影响,可能参与了肺纤维化背景下重复上皮细胞损伤后的祖细胞修复紊乱[63]。
4.1.2. OPN and immune cells in pulmonary fibrosis 4.1.2.肺纤维化中的 OPN 和免疫细胞
Several studies have revealed the link between OPN and immune cells in lung fibrosis. First, OPN plays a role in bleomycin (BLM)-induced lung inflammation and fibrosis by influencing the pathogenic IL-17/ protective IFN- gamma\gamma T-cell ratio [67]. Second, pathogenic memory Th2 cells produce amphiregulin during airway fibrosis in asthma; amphiregulin-mediated signalling directly reprograms eosinophils to an inflammatory state and enhances the production of OPN, which directs fibrotic responses in eosinophilic airway inflammation [50]. Third, a recently discovered population of macrophages associated with fibrosis has been shown to exhibit elevated expression of Spp1 (Spp1 ^(+){ }^{+}). These macrophages exhibit increased proliferation in the lung tissue of patients with IPF compared to healthy individuals [68]. OPN secreted by these macrophages accumulates in and around fibroblastic lesions composed of myofibroblasts, thereby contributing to the activation of myofibroblasts in lung fibrosis [68]. Spp1 ^(+){ }^{+}macrophages have been shown to proliferate in various organs, including the liver, kidney, heart, and lungs, and they play a role in the progression of organ fibrosis [68-70]. Fourth, OPN acts on neighbouring macrophages in an autocrine or paracrine manner, leading to their polarization into the profibrotic phenotype (M2) via activation of the Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) signalling pathway, thereby promoting the progression of pulmonary fibrosis [71]. 几项研究揭示了 OPN 与肺纤维化中免疫细胞之间的联系。首先,OPN 在布洛菌(BLM)诱导的肺炎和肺纤维化中发挥作用,影响致病性 IL-17/保护性 IFN-γ T 细胞比例[67]。其次,致病性记忆 Th2 细胞在哮喘的气道纤维化过程中产生扩张素;扩张素介导的信号传导直接重编程嗜酸性粒细胞呈炎症状态,并促进 OPN 的产生,从而引发嗜酸性粒细胞介导的气道炎症性纤维化反应[50]。第三,最近发现与纤维化相关的巨噬细胞群体表现出 Spp1 基因(编码 OPN 蛋白)的高表达。与健康人相比,这些巨噬细胞在特发性肺纤维化患者的肺组织中增殖明显[68]。这些巨噬细胞分泌的 OPN 蛋白积累在由肌纤维细胞组成的纤维化病灶及周围,从而促进肺纤维化中肌纤维细胞的活化[68]。Spp1 基因高表达的巨噬细胞在肝脏、肾脏、心脏和肺等器官中均有增殖,并参与器官纤维化的进程[68-70]。第四,OPN 通过自分泌或旁分泌方式作用于邻近的巨噬细胞,激活 JAK2/STAT3 信号通路,将其极化为促纤维化表型(M2),从而促进肺纤维化的发展[71]。
4.1.3. OPN and (myo)fibroblasts in pulmonary fibrosis 4.1.3. 在肺纤维化中的 OPN 和(肌)成纤维细胞
In lung fibrosis associated with systemic sclerosis (SSc), the secretion 在与系统性硬化相关的肺纤维化中,分泌
Fig. 3. Role of OPN in fibrotic diseases. In fibrotic diseases, OPN induces the migration, adhesion, differentiation, activation and proliferation of macrophages, fibroblasts, myofibroblasts and other cells, which produce and deposit ECM and promote the occurrence and development of fibrosis. Note: Solid lines indicate experimentally confirmed mechanisms. Dashed lines indicate mechanisms that are under investigation. Here, we show the involvement of OPN/Spp1 and its downstream targets in lungs, liver, kidney and heart fibrosis. The figure was produced using Servier Medical Art (http://www.servier.com). Abbreviations: AC, acetylation; AKT, protein kinase B; AP-1, activator Protein-1; alpha\alpha-SMA, a-smooth muscle actin; beta2\beta 2 AR, beta2\beta 2 adrenergic receptor; cAMP, cyclic 3, 5 -adenosine monophosphate; COL-I, type I collagen; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; Epac1, exchange protein directly activated by cAMP-1; ERK, extracellular regulated protein kinases; FN, fibronectin; FOX3a, forkhead box O3a; HDAC1/2, histone deacetylases 1/2; HMGB1, high-mobility group box-1; HSCs, hepatic stellate cells; IFN- gamma\gamma, interferon- gamma\gamma; FMT, fibroblast-to-myofibroblast transition; GSK-3ß, glycogen synthase kinase-3ß; IL-6, interleukin-6; IL-17, interleukin-17; JAK2, janus kinase 2; M1, classically activated macrophages; M2, alternatively activated macrophages; MAPK, mitogen-activated protein kinase; MMP-2, matrix metalloproteinase-2; NF-кB, nuclear factor kappa B; N-OPN, N-terminal fragment; NOX, NADPH oxidase; OPN, osteopontin; pAKT, phosphorylated protein kinase B; PAI-1, plasminogen activator inhibitor-1; PI3K, phosphoinositide 3-kinase; PTEN, Phosphatase and Tensin Homologue; Shh, sonic hedgehog; Smad, small mother against decapentaplegic; STATA3, signal transducers and activators of transcription 3; TGF- beta1\beta 1, transforming growth factor- beta1\beta 1; TIMP-1, tissue inhibitor of metal-loprotease-1. 图 3. OPN 在纤维化疾病中的作用。在纤维化疾病中,OPN 诱导巨噬细胞、成纤维细胞、肌纤维细胞和其他细胞的迁移、粘附、分化、激活和增殖,这些细胞产生和沉积细胞外基质,促进纤维化的发生和发展。注意:实线表示实验证实的机制,虚线表示正在研究中的机制。在这里,我们展示了 OPN/Spp1 及其在肺、肝、肾和心脏纤维化中的下游靶点的参与。该图使用 Servier Medical Art 制作(http://www.servier.com)。 缩写:AC,乙酰化;AKT,蛋白激酶 B;AP-1,激活蛋白-1;α-SMA,α-平滑肌肌动蛋白;AR,肾上腺素受体;cAMP,环腺苷酸 3',5'-单磷酸;COL-I,I 型胶原;ECM,细胞外基质;EMT,上皮间质转化;Epac1,直接被 cAMP 激活的交换蛋白 1;ERK,细胞外调节蛋白激酶;FN,纤维连接蛋白;FOXO3a,叉头盒蛋白 O3a;HDAC1/2,组蛋白去乙酰化酶 1/2;HMGB1,高迁移率族蛋白盒-1;HSCs,肝星状细胞;IFN-γ,干扰素-γ;FMT,成纤维细胞向肌成纤维细胞转化;GSK-3β,糖原合酶激酶-3β;IL-6,白细胞介素-6;IL-17,白细胞介素-17;JAK2,anus 激酶 2;M1,经典激活巨噬细胞;M2,替代激活巨噬细胞;MAPK,丝裂原活化蛋白激酶;MMP-2,基质金属蛋白酶-2;NF-κB,核因子-κB;N-OPN,N 端片段;NOX,NADPH 氧化酶;OPN,骨桥蛋白;pAKT,磷酸化蛋白激酶 B;PAI-1,纤溶酶激活物抑制剂-1;PI3K,磷酯酶 3 激酶;PTEN,磷酸酶和张力蛋白同源物;Shh,声波趣旨素;Smad,小母反刍分裂蛋白;STAT3,信号转导和转录激活因子 3;TGF-β,转化生长因子-β;TIMP-1,金属蛋白酶抑制剂-1。
of OPN by macrophages plays a role in tissue remodelling by sensitizing and mobilizing fibroblasts in response to other fibrogenic growth factors, thereby contributing to the progression of fibrosis [52]. Multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) can induce pulmonary fibrosis. OPN plays a role in initiating cellular mechanisms leading to SWCNT-induced pulmonary fibrosis upstream of TGF- beta1\beta 1 [61]. MWCNTs significantly induce OPN expression to activate the small mother against decapentaplegic (Smad)-dependent TGF- beta1\beta 1 signalling pathway and promote the transformation and functionalization of myofibroblasts [60]. Additionally, OPN has been associated with enhanced fibroblast migration and the enlargement of fibrotic foci through increased IL-6 secretion mediated by the extracellular signal-regulated kinase (ERK) pathway [72]. 巨噬细胞分泌的 OPN 在纤维化进程中发挥作用,通过增强其对其他纤维化生长因子的敏感性和迁移性来调节成纤维细胞,从而推动了纤维化的发展[52]。多壁碳纳米管(MWCNTs)和单壁碳纳米管(SWCNTs)可诱导肺纤维化。OPN 在启动导致 SWCNT 诱导的肺纤维化的细胞机制中起作用,位于 TGF- beta1\beta 1 之上[61]。MWCNTs 显著诱导 OPN 表达,激活 Smad 依赖的 TGF- beta1\beta 1 信号通路并促进肌成纤维细胞的转化和功能化[60]。此外,OPN 还与增强纤维细胞迁移和纤维灶的扩大有关,这是通过 ERK 通路介导的 IL-6 分泌增加所致[72]。
The differentiation of myofibroblasts involves multiple sources. Several different myofibroblast origin hypotheses have been proposed, and includes fibroblast-to-myofibroblast transition (FMT), endothelial-to-mesenchymal transition, and epithelial-mesenchymal transition (EMT). Silicosis, a systemic disease caused by crystalline silica, results in diffuse lung fibrosis. A study showed that exposure to silica increased the expression of OPN/Spp1 in macrophages and exosomes [73]. Inhibiting exosomal OPN/Spp1 derived from macrophages has been shown to suppress FMT [73]. Furthermore, Hatipoglu et al. [62] 成纤维细胞向肌成纤维细胞的转化涉及多种来源。已提出几种不同的肌成纤维细胞起源假说,包括成纤维细胞向肌成纤维细胞的转化(FMT)、内皮间质转化和上皮间质转化(EMT)。硅尘肺是由结晶硅引起的系统性疾病,导致弥漫性肺纤维化。一项研究显示,暴露于硅粉会增加巨噬细胞和外泌体中 OPN/Spp1 的表达[73]。抑制来自巨噬细胞的外泌体 OPN/Spp1 可抑制 FMT[73]。此外,Hatipoglu 等人[62]
demonstrated the attenuation of lung fibrosis by targeting EMT in a mouse model of BLM-induced pulmonary fibrosis. This effect was achieved by using a small interfering RNA (siRNA) to specifically reduce OPN expression [62]. The macrophage-myofibroblast transition (MMT) pathway is a newly discovered pathway of myofibroblast transdifferentiation that was initially identified in renal fibrosis [74]. Our recent unpublished research provided evidence of the involvement of the MMT pathway in the development of pulmonary fibrosis in humans and established animal models. In the BLM-induced pulmonary fibrosis mouse model, MMT cells were identified and labelled by immunofluorescence staining and flow cytometry, confirming that they were the primary sources of myofibroblasts. OPN plays a regulatory role in MMT-related lung fibrosis in vitro and in vivo. 在一个 BLM 诱导的肺纤维化小鼠模型中,通过靶向 EMT 来减轻肺纤维化。这一效果是通过使用小干扰 RNA(siRNA)来特异性降低 OPN 表达实现的[62]。巨噬细胞-肌纤维细胞转化(MMT)通路是一种新发现的肌纤维细胞转分化通路,最初是在肾纤维化中发现的[74]。我们最近未发表的研究证明了 MMT 通路在人类肺纤维化以及建立的动物模型中的参与。在 BLM 诱导的肺纤维化小鼠模型中,通过免疫荧光染色和流式细胞术鉴定和标记了 MMT 细胞,证实它们是肌纤维细胞的主要来源。OPN 在体外和体内调节与 MMT 相关的肺纤维化。
4.2. OPNO P N and other fibrotic diseases 4.2. OPNO P N 和其他纤维化疾病
4.2.1. Liver fibrosis 4.2.1.肝纤维化
The characteristic of liver fibrosis is that hepatic stellate cells (HSCs) transform into myofibroblasts, resulting in the excessive deposition of ECM, which is known as HSCs activation [75]. OPN is a crucial signalling molecule that mediates this activation process. In 2012, Urtasun et al. demonstrated that mice overexpressing the OPN gene 肝纤维化的特征是肝星状细胞(HSCs)转化为肌纤维细胞,导致细胞外基质(ECM)过度沉积,即所谓的 HSCs 激活[75]。OPN 是一种关键的信号分子,介导了这一激活过程。2012 年,Urtasun 等人证明了过度表达 OPN 基因的小鼠
Table 1 表 1
Overview of OPN/Spp1 in lung fibrosis. 肺纤维化中 OPN/Spp1 的概述。
Profibrotic: OPN promotes migration, adhesion, and proliferation of fibroblasts via alpha v\alpha v integrin. 促纤维化:OPN 通过 alpha v\alpha v 整合素促进成纤维细胞的迁移、粘附和增殖。
2001[141]
Human, Mice 人类,老鼠
人类 UIP、BLM 诱导的肺纤维化小鼠
Human UIP,
BLM-induced pulmonary fibrosis mice
Human UIP,
BLM-induced pulmonary fibrosis mice| Human UIP, |
| :--- |
| BLM-induced pulmonary fibrosis mice |
Profibrotic: OPN^(-//-)\mathrm{OPN}^{-/-}mice develop altered BLM-induced lung fibrosis characterized by cystic dilated air spaces, decreased COL-I expression, and a reduction of active TGF- beta1\beta 1 and MMP-2. 促纤维化: OPN^(-//-)\mathrm{OPN}^{-/-} 小鼠发展改变的 BLM 诱导肺纤维化,特点为囊性扩张的气道空间、降低 COL-I 表达和活性 TGF- beta1\beta 1 和 MMP-2 的降低。
2004[59]
Human 人类
Human interstitial pneumonia, The plasma of human interstitial pneumonia 人类肺间质性肺炎,人类肺间质性肺炎的血浆
Macrophages, Airway epithelium 巨噬细胞, 呼吸道上皮
Profibrotic: Plasma OPN levels are inversely and closely correlated with PaO_(2)\mathrm{PaO}_{2} in patients with interstitial pneumonia. 纤维化促进性:血浆 OPN 水平与肺间质性肺炎患者的 PaO_(2)\mathrm{PaO}_{2} 呈负相关且密切相关。
2005[142]
Human 人类
肺纤维化,肺成纤维细胞和 A549
IPF,
Lung fibroblasts and A549
IPF,
Lung fibroblasts and A549| IPF, |
| :--- |
| Lung fibroblasts and A549 |
Alveolar epithelium, BALF 肺泡上皮细胞,支气管肺泡灌洗液
Profibrotic: OPN induces an increase of migration and proliferation in fibroblasts and epithelial cells: in fibroblasts, OPN upregulated TIMP-1 and COL-I, and downregulated matrix MMP-1; in A549, OPN caused upregulation of MMP-7. 促纤维化:OPN 诱导成纤维细胞和上皮细胞迁移和增殖的增加:在成纤维细胞中,OPN 上调 TIMP-1 和 COL-I,下调基质 MMP-1;在 A549 细胞中,OPN 引起 MMP-7 的上调。
Profibrotic: OPN is involved in initiating the cellular mechanisms of SWCNT-induced pulmonary fibrosis upstream of TGF- beta1\beta 1. 促纤维化:OPN 参与了 SWCNT 诱导的肺纤维化细胞机制的启动,位于 TGF-β之上。
2017[61]
Mice 小鼠
Exposure of house dust mites to mice induced collagen deposition around the respiratory tract 将房尘螨暴露于小鼠引起了呼吸道周围的胶原沉积
Inflammatory, Eosinophils 炎症性, 嗜酸性粒细胞
Profibrotic: The IL-33-amphiregulin-OPN axis directs fibrotic responses in eosinophilic airway inflammation. 促纤维化:IL-33-扩张素-骨桥蛋白轴在嗜酸性气道炎症中主导纤维化响应。
Profibrotic: OPN affects the secretion of alveolar macrophages, thereby speeding up the process of fibrosis. 促纤维化:OPN 影响肺泡巨噬细胞的分泌,从而加快了纤维化的过程。
2019[55]
Human 人类
肺纤维化患者的成纤维细胞
NHLFs,
Fibroblasts of PF patients
NHLFs,
Fibroblasts of PF patients| NHLFs, |
| :--- |
| Fibroblasts of PF patients |
Fibroblasts 成纤维细胞
Profibrotic: OPN increases the secretion of IL-6 via the ERK pathway, and the elevated IL-6 enhances fibroblast migration. 促纤维化:OPN 通过 ERK 通路增加 IL-6 的分泌,而升高的 IL-6 增强成纤维细胞的迁移。
2020[72]
Human 人类
Human SSc lung samples 人类 SSc 肺样本
Macrophages, Monocytes 巨噬细胞,单核细胞
Profibrotic: OPN sensitizes and mobilizes fibroblasts to other fibroblast growth factors and contributes to fibrosis progression. 促纤维化:OPN 增强和动员成纤维细胞对其他成纤维细胞生长因子的敏感性,并促进纤维化的进展。
2020[52]
Human, Mice 人类,老鼠
骨髓细胞来自 C57BL/6 小鼠
IPF,
Bone marrow cells from C57BL/6 mice
IPF,
Bone marrow cells from C57BL/6 mice| IPF, |
| :--- |
| Bone marrow cells from C57BL/6 mice |
Macrophages 巨噬细胞
Profibrotic: OPN induces alternative macrophage activation by activating the JAK2/STAT3 signalling pathway. 促纤维化:OPN 通过激活 JAK2/STAT3 信号通路诱导替代性巨噬细胞激活。
Profibrotic: PDIA3 with Spp1 forms a pathological profibrotic milieu. 促纤维化:PDIA3 与 Spp1 形成病理促纤维化环境。
2022[63]
Organ Species Model/Samples Expression by Function & Mechanism Publication year & Ref.
Lungs Mice BLM-induced pulmonary fibrosis mice Alveolar macrophages Profibrotic: OPN promotes migration, adhesion, and proliferation of fibroblasts via alpha v integrin. 2001[141]
Human, Mice "Human UIP,
BLM-induced pulmonary fibrosis mice" Macrophages, Lymphocytes, Bronchiolar epithelium, Alveolar epithelium Profibrotic: OPN^(-//-)mice develop altered BLM-induced lung fibrosis characterized by cystic dilated air spaces, decreased COL-I expression, and a reduction of active TGF- beta1 and MMP-2. 2004[59]
Human Human interstitial pneumonia, The plasma of human interstitial pneumonia Macrophages, Airway epithelium Profibrotic: Plasma OPN levels are inversely and closely correlated with PaO_(2) in patients with interstitial pneumonia. 2005[142]
Human "IPF,
Lung fibroblasts and A549" Alveolar epithelium, BALF Profibrotic: OPN induces an increase of migration and proliferation in fibroblasts and epithelial cells: in fibroblasts, OPN upregulated TIMP-1 and COL-I, and downregulated matrix MMP-1; in A549, OPN caused upregulation of MMP-7. 2005[143]
Mice BLM-induced pulmonary fibrosis mice Lung parenchymal, Bone marrowderived components Profibrotic: OPN upregulates pathogenic IL-17 T cells and downregulated protective IFN- gammaT cells. 2015[67]
Mice MWCNTs-induced lung fibrosis mice Interstitial fibrotic foci, Granulomas, Interstitial macrophages, BALF Profibrotic: OPN activates Smad-dependent TGF- beta1 signalling and stimulates myofibroblast transformation and functionalization. 2017[60]
Mice SWCNT-induced lung fibrosis mice NA Profibrotic: OPN is involved in initiating the cellular mechanisms of SWCNT-induced pulmonary fibrosis upstream of TGF- beta1. 2017[61]
Mice Exposure of house dust mites to mice induced collagen deposition around the respiratory tract Inflammatory, Eosinophils Profibrotic: The IL-33-amphiregulin-OPN axis directs fibrotic responses in eosinophilic airway inflammation. 2018[50]
Human IPF Macrophages Profibrotic: OPN activates myofibroblasts. 2019[68]
Human IPF Alveolar macrophages Profibrotic: OPN affects the secretion of alveolar macrophages, thereby speeding up the process of fibrosis. 2019[55]
Human "NHLFs,
Fibroblasts of PF patients" Fibroblasts Profibrotic: OPN increases the secretion of IL-6 via the ERK pathway, and the elevated IL-6 enhances fibroblast migration. 2020[72]
Human Human SSc lung samples Macrophages, Monocytes Profibrotic: OPN sensitizes and mobilizes fibroblasts to other fibroblast growth factors and contributes to fibrosis progression. 2020[52]
Human, Mice "IPF,
Bone marrow cells from C57BL/6 mice" Macrophages Profibrotic: OPN induces alternative macrophage activation by activating the JAK2/STAT3 signalling pathway. 2021[71]
Mice RAW264.7 (Silicosis) Macrophages Profibrotic: OPN promotes FMT. 2021 [73]
Mice BLM-induced pulmonary fibrosis mice NA Profibrotic: OPN promotes EMT. 2021[62]
Mice BLM-induced pulmonary fibrosis mice NA Profibrotic: PDIA3 with Spp1 forms a pathological profibrotic milieu. 2022[63]| Organ | Species | Model/Samples | Expression by | Function & Mechanism | Publication year & Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lungs | Mice | BLM-induced pulmonary fibrosis mice | Alveolar macrophages | Profibrotic: OPN promotes migration, adhesion, and proliferation of fibroblasts via $\alpha v$ integrin. | 2001[141] |
| | Human, Mice | Human UIP, <br> BLM-induced pulmonary fibrosis mice | Macrophages, Lymphocytes, Bronchiolar epithelium, Alveolar epithelium | Profibrotic: $\mathrm{OPN}^{-/-}$mice develop altered BLM-induced lung fibrosis characterized by cystic dilated air spaces, decreased COL-I expression, and a reduction of active TGF- $\beta 1$ and MMP-2. | 2004[59] |
| | Human | Human interstitial pneumonia, The plasma of human interstitial pneumonia | Macrophages, Airway epithelium | Profibrotic: Plasma OPN levels are inversely and closely correlated with $\mathrm{PaO}_{2}$ in patients with interstitial pneumonia. | 2005[142] |
| | Human | IPF, <br> Lung fibroblasts and A549 | Alveolar epithelium, BALF | Profibrotic: OPN induces an increase of migration and proliferation in fibroblasts and epithelial cells: in fibroblasts, OPN upregulated TIMP-1 and COL-I, and downregulated matrix MMP-1; in A549, OPN caused upregulation of MMP-7. | 2005[143] |
| | Mice | BLM-induced pulmonary fibrosis mice | Lung parenchymal, Bone marrowderived components | Profibrotic: OPN upregulates pathogenic IL-17 T cells and downregulated protective IFN- $\gamma \mathrm{T}$ cells. | 2015[67] |
| | Mice | MWCNTs-induced lung fibrosis mice | Interstitial fibrotic foci, Granulomas, Interstitial macrophages, BALF | Profibrotic: OPN activates Smad-dependent TGF- $\beta 1$ signalling and stimulates myofibroblast transformation and functionalization. | 2017[60] |
| | Mice | SWCNT-induced lung fibrosis mice | NA | Profibrotic: OPN is involved in initiating the cellular mechanisms of SWCNT-induced pulmonary fibrosis upstream of TGF- $\beta 1$. | 2017[61] |
| | Mice | Exposure of house dust mites to mice induced collagen deposition around the respiratory tract | Inflammatory, Eosinophils | Profibrotic: The IL-33-amphiregulin-OPN axis directs fibrotic responses in eosinophilic airway inflammation. | 2018[50] |
| | Human | IPF | Macrophages | Profibrotic: OPN activates myofibroblasts. | 2019[68] |
| | Human | IPF | Alveolar macrophages | Profibrotic: OPN affects the secretion of alveolar macrophages, thereby speeding up the process of fibrosis. | 2019[55] |
| | Human | NHLFs, <br> Fibroblasts of PF patients | Fibroblasts | Profibrotic: OPN increases the secretion of IL-6 via the ERK pathway, and the elevated IL-6 enhances fibroblast migration. | 2020[72] |
| | Human | Human SSc lung samples | Macrophages, Monocytes | Profibrotic: OPN sensitizes and mobilizes fibroblasts to other fibroblast growth factors and contributes to fibrosis progression. | 2020[52] |
| | Human, Mice | IPF, <br> Bone marrow cells from C57BL/6 mice | Macrophages | Profibrotic: OPN induces alternative macrophage activation by activating the JAK2/STAT3 signalling pathway. | 2021[71] |
| | Mice | RAW264.7 (Silicosis) | Macrophages | Profibrotic: OPN promotes FMT. | 2021 [73] |
| | Mice | BLM-induced pulmonary fibrosis mice | NA | Profibrotic: OPN promotes EMT. | 2021[62] |
| | Mice | BLM-induced pulmonary fibrosis mice | NA | Profibrotic: PDIA3 with Spp1 forms a pathological profibrotic milieu. | 2022[63] |
Abbreviations: BALF, bronchoalveolar lavage fluid; BLM, bleomycin; COL-I, type I collagen; EMT, epithelial-mesenchymal transition; ERK, extracellular regulated protein kinases; FMT, fibroblasts-to-myofibroblasts transition; IFN- gamma\gamma, interferon- gamma\gamma; IL-6, interleukin-6; IL-17, interleukin-17; IL-33, interleukin-33; IPF, idiopathic pulmonary fibrosis; JAK2, Janus kinase 2; MMP-1, matrix metalloproteinase-1; MMP-2, matrix metalloproteinase-2; MMP-7, matrix metalloproteinase-7; MWCNTs, multi-walled carbon nanotubes; NHLFs, human-derived lung fibroblasts; OPN, osteopontin; OPN ^(-//){ }^{-/}, OPN knockout; PaO 2 , arterial oxygen tension; PDIA3, protein disulfide isomerases A3; Smad, small mother against decapentaplegic; Spp1, secreted phosphoprotein 1; SSc, systemic sclerosis; STAT3, signal transducers and activators of transcription 3; SWCNT, single-walled carbon nanotubes; TGF- beta1\beta 1, transforming growth factor- beta1\beta 1; TIMP-1, tissue inhibitor of metalloprotease-1; UIP, usual interstitial pneumonitis; NA, not applicable. 缩写:BALF,支气管肺泡灌洗液;BLM,博来霉素;COL-I,I 型胶原蛋白;EMT,上皮-间质转化;ERK,细胞外调节蛋白激酶;FMT,成纤维细胞向肌成纤维细胞转化;IFN-γ,干扰素-γ;IL-6,白细胞介素-6;IL-17,白细胞介素-17;IL-33,白细胞介素-33;IPF,特发性肺纤维化;JAK2,Janus 激酶 2;MMP-1,基质金属蛋白酶-1;MMP-2,基质金属蛋白酶-2;MMP-7,基质金属蛋白酶-7;MWCNTs,多壁碳纳米管;NHLFs,人源肺成纤维细胞;OPN,骨桥蛋白;OPN-/-,OPN 敲除;PaO2,动脉血氧分压;PDIA3,蛋白二硫键异构酶 A3;Smad,小母亲反装式;Spp1,分泌性磷蛋白 1;SSc,系统性硬化症;STAT3,信号转导和转录激活因子 3;SWCNT,单壁碳纳米管;TGF-β,转化生长因子-β;TIMP-1,金属蛋白酶抑制剂-1;UIP,常见间质性肺炎;NA,不适用。
spontaneously developed liver fibrosis; HSCs isolated from wild-type (WT) mice exhibited a more profibrogenic phenotype than those from OPN^(-//-)\mathrm{OPN}^{-/-}mice [76]. This effect was mediated by activation of the phosphoinositide 3-kinase (PI3K)/phosphorylated protein kinase B (pAkt)/nuclear factor kappa B (NF-кB) signalling pathway, which was triggered by the interaction between OPN and alphavbeta3\alpha \mathrm{v} \beta 3 integrin on the surface of HSCs [76]. This interaction led to the upregulation of collagen type I (COL-I) and the subsequent development of fibrosis [76]. 自发发展的肝脏纤维化;从野生型(WT)小鼠分离的肝星状细胞表现出比从 OPN^(-//-)\mathrm{OPN}^{-/-} 小鼠更有促纤维化表型[76]。这种作用是通过激活磷酸肌醇 3-激酶(PI3K)/磷酸化蛋白激酶 B(pAkt)/核因子κB(NF-κB)信号通路介导的,这种通路是由 OPN 与 HSCs 表面的 alphavbeta3\alpha \mathrm{v} \beta 3 整合素的相互作用触发的[76]。这种相互作用导致 1 型胶原(COL-I)的上调和随后的纤维化发展[76]。
In a subsequent study, OPN was shown to be upstream of highmobility group box-1 (HMGB1), a damage-associated molecular pattern involved in liver fibrosis [77]. In vitro, recombinant human OPN (rOPN) induced HMGB1 expression and translocation in primary rat HSCs, contributing to the increase in COL-I production [77]. Mechanistically, rOPN induced the acetylation (AC) of HMGB1 in HSCs due to an increase in NADPH oxidase (NOX) activity and an associated decrease in histone deacetylases 1//21 / 2 (HDAC1/2), leading to the upregulation of COL-I [77]. Some studies have revealed that HSCs have increased production of COL-I through an OPN-TGF- beta1\beta 1-dependent pathway [78,79]. Furthermore, OPN inhibited miR-129-5p expression, thereby activating HSCs and promoting COL-I expression [80]. Notably, thrombin-cleaved 在随后的研究中,发现 OPN 位于高迁移率族蛋白盒-1(HMGB1)的上游,HMGB1 是一种与肝纤维化相关的损伤相关分子模式[77]。体外实验中,重组人 OPN(rOPN)诱导了主要大鼠肝星状细胞(HSCs)中 HMGB1 的表达和转位,从而增加了 I 型胶原(COL-I)的产生[77]。从机理上看,rOPN 诱导 HSCs 中 HMGB1 乙酰化,这是由于 NADPH 氧化酶(NOX)活性的增加以及组蛋白去乙酰化酶(HDAC1/2)活性的降低,从而导致 COL-I 的上调[77]。一些研究表明,HSCs 通过一条 OPN-TGF-β依赖性通路增加了 COL-I 的产生[78,79]。此外,OPN 抑制了 miR-129-5p 的表达,从而激活 HSCs 并促进 COL-I 的表达[80]。值得注意的是,凝血酶切割的
OPN but not full-length OPN was shown to promote HSCs activation, proliferation, and migration by alpha4beta1\alpha 4 \beta 1 and alpha9beta1\alpha 9 \beta 1 integrins via the mito-gen-activated protein kinase (MAPK) and NF-кB signalling pathways [81]. 截短型 OPN 而非完整长度 OPN 已被证明通过 alpha4beta1\alpha 4 \beta 1 和 alpha9beta1\alpha 9 \beta 1 整合素促进造血干细胞的激活、增殖和迁移,涉及丝裂原活化蛋白激酶(MAPK)和 NF-кB 信号通路[81]。
4.2.2. Kidney fibrosis 4.2.2. 肾脏纤维化
OPN stimulates the development of kidney tubulointerstitial fibrosis by promoting the infiltration of macrophages. Studies have shown that OPN^(-//-)\mathrm{OPN}^{-/-}mice subjected to unilateral ureteral obstruction (UUO) exhibit reduced macrophage influx, collagen deposition, and TGF- beta1mRNA\beta 1 \mathrm{mRNA} expression compared to WT mice [82,83]. A separate study discovered that MMP-9-cleaved OPN enhanced macrophage Transwell migration [84]. Inhibiting MMP-9 significantly reduced MMP-9-cleaved OPN levels and decreased macrophage infiltration and renal fibrosis in the kidneys of UUO mice [84]. OPN 刺激宏噬细胞的浸润,促进肾小管间质纤维化的发展。研究表明,经单侧输尿管梗阻(UUO)处理的 OPN^(-//-)\mathrm{OPN}^{-/-} 小鼠,与野生型小鼠相比,宏噬细胞侵润、胶原沉积和 TGF- beta1mRNA\beta 1 \mathrm{mRNA} 表达均有所降低[82,83]。另一项研究发现,MMP-9 裂解的 OPN 增强了宏噬细胞穿过 Transwell 膜的迁移[84]。抑制 MMP-9 明显降低了 MMP-9 裂解的 OPN 水平,并减少了 UUO 小鼠肾脏中的宏噬细胞浸润和肾纤维化[84]。
In an aldosterone-induced animal model of renal fibrosis, OPN expression is transcriptionally regulated by aldosterone through mineralocorticoid receptors. OPN deficiency protects against aldosterone-induced inflammation, oxidative stress, and interstitial fibrosis in the kidney [85]. In angiotensin II-induced renal injury, OPN 在一种醛固酮诱导的肾纤维化动物模型中,OPN 表达受醛固酮通过矿物质皮质激素受体的转录调控。OPN 缺乏可以保护肾脏免受醛固酮诱导的炎症、氧化应激和间质性纤维化[85]。在血管紧张素 II 诱导的肾损伤中,OPN
Table 2 表格 2
Overview of OPN/Spp1 in other fibrotic diseases. 关于 OPN/Spp1 在其他纤维化疾病中的概述。
Organ 器官
Species 物种
Model/Samples 模型/示例
Expression by 表达者
Function & Mechanism 功能和机制
Publication year & Ref. 出版年份和参考文献
Liver 肝
Human, Mice 人类,老鼠
MCD-induced NASH-related fibrosis in mice 在小鼠中,甲基胆汁缺乏诱导的非酒精性脂肪肝相关性纤维化
Acute and chronic liver injury by CCl_(4)\mathrm{CCl}_{4} injection or TAA treatment
Human HSCs,
Acute and chronic liver injury by CCl_(4) injection or TAA treatment| Human HSCs, |
| :--- |
| Acute and chronic liver injury by $\mathrm{CCl}_{4}$ injection or TAA treatment |
HSCs 高中毕业证书
Profibrotic: OPN activates the PI3K/pAkt/NF-кB signalling cascade and upregulates COL-I. 促纤维生成:OPN 激活 PI3K/pAkt/NF-κB 信号级联,并上调 COL-I。
Profibrotic: OPN could regulate TGF- beta\beta and enhance COL-I synthesis by HSCs. 促纤维化:OPN 可以调节 TGF- beta\beta 并增强 HSCs 的 COL-I 合成。
2014[78]
Human, Mice 人类,老鼠
Liver biopsies from HCV patients, CCl_(4)\mathrm{CCl}_{4}-induced liver injury in mice 乙型肝炎病毒患者的肝穿刺活检,小鼠中的 CCl_(4)\mathrm{CCl}_{4} 诱导的肝损伤
Hepatocytes, HSCs 肝细胞, 肝星状细胞
Profibrotic: OPN-induced acetylation of HMGB1 in HSCs due to increased NADPH oxidase activity and the associated decrease in HDAC1/2, leading to upregulation of COL-I. 促纤维化:OPN 诱导的 HMGB1 乙酰化,由于 NADPH 氧化酶活性增加以及 HDAC1/2 相关减少,导致 I 型胶原(COL-I)表达上调。
2017[77]
Human, Mice 人类,老鼠
Liver biopsies from liver cirrhosis patients caused by HBV, LX-2 cells 由乙型肝炎引起的肝硬化患者的肝穿刺活检,LX-2 细胞
HSCs 高中毕业证书
Profibrotic: OPN activates HSCs via the downregulation of miR-129-5p. 促纤维化:OPN 通过下调 miR-129-5p 来激活 HSCs。
2018[80]
Human, Mice 人类,老鼠
Liver biopsies from liver cirrhosis patient, CCl_(4)\mathrm{CCl}_{4}-induced liver injury in mice 肝硬化患者的肝活检,小鼠中由 CCl_(4)\mathrm{CCl}_{4} 引起的肝损伤
NA
Profibrotic: Thrombin-cleaved OPN is involved in the pathogenesis of liver fibrosis by alpha9\alpha 9 and alpha4\alpha 4 integrins via MAPK and NF-кB signalling pathway. 促纤维化:血浆凝血酶裂解的 OPN 通过 alpha9\alpha 9 和 alpha4\alpha 4 整合素激活 MAPK 和 NF-кB 信号通路,参与肝纤维化的发病机理。
Hepatic fibrosis model in cholestatic rats 胆汁淤积大鼠的肝纤维化模型
HSCs 高中毕业证书
Profibrotic: OPN promotes the proliferation and activation of HSCs through the TGF- beta1\beta 1 /Smads signalling pathway. 促纤维化:OPN 通过 TGF-β/Smad 信号通路促进 HSCs 的增殖和激活。
Tubular cells, Parietal epithelial cells of Bowman's capsules 输尿管细胞,鲍曼囊膜壁上皮细胞
Profibrotic: OPN is an essential mediator of macrophage accumulation and tubulointerstitial fibrosis in the UUO model. 促纤维化:OPN 是单核细胞聚集和肾小管间质纤维化 UUO 模型中不可缺少的调节因子。
1999[82]
Mice 小鼠
Ischemia model 缺血模型
Distal tubules 远端肾小管
Profibrotic: OPN favours macrophage recruitment, inhibits apoptosis, and stimulates the development of tubulointerstitial fibrosis. 促纤维化:OPN 有利于巨噬细胞的招募,抑制细胞凋亡,并刺激肾小管间质纤维化的发展。
Profibrotic: OPN enhances macrophage recruitment and induces EMT. 促纤维化:OPN 增强巨噬细胞招募并诱导上皮间质转化。
2011 [85]
Mice 小鼠
UUO
NA
Profibrotic: OPN promotes the infiltration of macrophages. 促纤维化:OPN 促进巨噬细胞的浸润。
2013[84]
Rats 老鼠
Cisplatin-induced renal fibrosis 顺铂诱导的肾脏纤维化
Renal tubules 肾小管
Profibrotic: OPN significantly correlate with the alpha\alpha-SMA positive myofibroblast appearance, expression of TGFbeta1\beta 1 and the number of CD68 positive macrophages. 促纤维化: OPN 显著相关于 alpha\alpha -SMA 阳性肌成纤维细胞的出现、TGF beta1\beta 1 的表达以及 CD68 阳性巨噬细胞的数量。
2014[148]
Rats 老鼠
Cisplatin-induced renal fibrosis 顺铂诱导的肾脏纤维化
Renal epithelial cells 肾上皮细胞
Profibrotic: OPN participates in progressive renal fibrosis through the development of myofibroblasts. 促纤维化的:OPN 通过肌纤维细胞的发展参与了肾脏纤维化的进程。
2015[149]
Mice 小鼠
UUO
Tubular cells 管状细胞
Profibrotic: OPN binding with CD44 promotes fibroblast proliferation and activation. 促纤维化:OPN 与 CD44 结合促进成纤维细胞增殖和活化。
2022[87]
Human, Mice 人类,老鼠
ScRNA-seq dataset of CKD patients, Renal unilateral IRI mice model, CD11b ^(+){ }^{+}monocytes of mice 肾脏单侧缺血再灌注损伤小鼠模型的 scRNA-seq 数据集,CD11b ^(+){ }^{+} 小鼠单核细胞
Monocytes, Macrophages 单核细胞,巨噬细胞
Profibrotic: CXCL4 drives Spp1 ^(+){ }^{+}macrophage activation and macrophage-fibroblast crosstalk in kidney fibrosis. 纤维化促进因子:CXCL4 驱动 Spp1 ^(+){ }^{+} 巨噬细胞激活和肾脏纤维化中的巨噬细胞-成纤维细胞交互作用。
2023[70]
Heart 心
Human, Rats 人类,老鼠
Rat model of ischemic cardiomyopathy, Cardiac fibroblasts 缺血性心肌病大鼠模型,心肌成纤维细胞
NA
Profibrotic: The SVVYGLR sequence of the OPN Nfragment induces the activation of the Smad signal, alpha\alpha-SMA expression, and COL-III production in cardiac fibroblasts. 促纤维化:OPN N 段的 SVVYGLR 序列诱导心肌成纤维细胞 Smad 信号的激活、α-SMA 表达和 III 型胶原的产生。
2015[93]
人类小鼠
Human
Mice
Human
Mice| Human |
| :--- |
| Mice |
Myocardial biopsies of myocardial fibrosis patients related to aortic stenosis, Ang II model of cardiac stress 与主动脉瓣狭窄相关的心肌纤维化患者的心肌活检,心脏应激的血管紧张素 II 模型
Fibroblasts, Cardiomyocytes 成纤维细胞,心肌细胞
Profibrotic: OPN activates the transcription factor AP-1 and the subsequent regulation of miR-21, ultimately resulting in fibroblast proliferation. 促纤维化:OPN 激活转录因子 AP-1 以及随后调节 miR-21,最终导致成纤维细胞增殖。
2015[89]
Rats 老鼠
H9c2 rat cardiac myoblast cell line H9c2 大鼠心肌母细胞细胞系
H9c2 cardiac cells H9c2 心脏细胞
Profibrotic: OPN impedes beta2\beta 2 AR-induced, cAMP/Epac1dependent antifibrotic signalling in cardiac cells. 促纤维化:OPN 阻碍 beta2\beta 2 AR 诱导的 cAMP/Epac1 依赖的抗纤维化信号传导在心脏细胞中。
2019[91]
Human, 人类,
Left atrial appendage tissues of AF patients, Human atrial fibroblasts 房颤患者左心房耳组织,人类心房成纤维细胞
NA
Profibrotic: OPN induces atrial fibrosis by activating Akt/ GSK-3 beta//beta\beta / \beta-catenin pathway and suppressing autophagy. 促纤维化:OPN 通过激活 Akt/GSK-3β-catenin 通路并抑制自噬来诱导心房纤维化。
Right atrial appendages and isolated right atrial fibroblasts from AF patients, Primary human right atrial fibroblasts, Isolated beating heart model from mice 从心房颤动患者中分离的右心房耳和单独的右心房成纤维细胞,人原代右心房成纤维细胞,来自小鼠的单独节律性心脏模型
Cardiac fibroblasts 心肌成纤维细胞
Profibrotic: PLK2-OPN axis in atrial fibroblasts contributes to fibroblast dysfunction and the creation of AF -promoting atrial fibrosis. 促纤维化:PLK2-OPN 轴在心房成纤维细胞中促进成纤维细胞功能紊乱和创造有利于心房颤动的心房纤维化。
ScRNA-seq dataset of HF patients,
MI mice model, CD11b ^(+)monocytes of mice| ScRNA-seq dataset of HF patients, |
| :--- |
| MI mice model, CD11b ${ }^{+}$monocytes of mice |
Monocytes, Macrophages 单核细胞,巨噬细胞
Profibrotic: Chemokine CXCL4 drives Spp1+ macrophage activation and macrophage-fibroblast crosstalk in cardiac fibrosis. 促纤维化:趋化因子 CXCL4 驱动 Spp1+巨噬细胞激活和心脏纤维化中的巨噬细胞-成纤维细胞交互作用。
2023[70]
Organ Species Model/Samples Expression by Function & Mechanism Publication year & Ref.
Liver Human, Mice MCD-induced NASH-related fibrosis in mice Ductular cells Profibrotic: Hedgehog/OPN signalling increases HSCs activation. 2011[144]
Human, Mice "Human HSCs,
Acute and chronic liver injury by CCl_(4) injection or TAA treatment" HSCs Profibrotic: OPN activates the PI3K/pAkt/NF-кB signalling cascade and upregulates COL-I. 2012[76]
Mice TAA-treated mice "BEC,
OC" Profibrotic: OPN could regulate TGF- beta and enhance COL-I synthesis by HSCs. 2014[78]
Human, Mice Liver biopsies from HCV patients, CCl_(4)-induced liver injury in mice Hepatocytes, HSCs Profibrotic: OPN-induced acetylation of HMGB1 in HSCs due to increased NADPH oxidase activity and the associated decrease in HDAC1/2, leading to upregulation of COL-I. 2017[77]
Human, Mice Liver biopsies from liver cirrhosis patients caused by HBV, LX-2 cells HSCs Profibrotic: OPN activates HSCs via the downregulation of miR-129-5p. 2018[80]
Human, Mice Liver biopsies from liver cirrhosis patient, CCl_(4)-induced liver injury in mice NA Profibrotic: Thrombin-cleaved OPN is involved in the pathogenesis of liver fibrosis by alpha9 and alpha4 integrins via MAPK and NF-кB signalling pathway. 2018[81]
Mice NASH mice Hepatocytes Profibrotic: Notch/OPN increases HSCs activation. "2022[145,
146]"
Rats Hepatic fibrosis model in cholestatic rats HSCs Profibrotic: OPN promotes the proliferation and activation of HSCs through the TGF- beta1 /Smads signalling pathway. 2022[79]
Mice Diet-induced NASH in mice Hepatocytes Profibrotic: CREBZF/OPN signalling increases HSCs activation. 2023[147]
Kidney Mice UUO Tubular cells, Parietal epithelial cells of Bowman's capsules Profibrotic: OPN is an essential mediator of macrophage accumulation and tubulointerstitial fibrosis in the UUO model. 1999[82]
Mice Ischemia model Distal tubules Profibrotic: OPN favours macrophage recruitment, inhibits apoptosis, and stimulates the development of tubulointerstitial fibrosis. 2003[83]
Mice Ang II-mediated renal injury NA Profibrotic: OPN enhances FN, TGF- beta1 and alpha-SMA expression and inhibits PAI-1 expression. 2009[86]
Mice Aldosterone-induced renal fibrosis Proximal tubules Profibrotic: OPN enhances macrophage recruitment and induces EMT. 2011 [85]
Mice UUO NA Profibrotic: OPN promotes the infiltration of macrophages. 2013[84]
Rats Cisplatin-induced renal fibrosis Renal tubules Profibrotic: OPN significantly correlate with the alpha-SMA positive myofibroblast appearance, expression of TGFbeta1 and the number of CD68 positive macrophages. 2014[148]
Rats Cisplatin-induced renal fibrosis Renal epithelial cells Profibrotic: OPN participates in progressive renal fibrosis through the development of myofibroblasts. 2015[149]
Mice UUO Tubular cells Profibrotic: OPN binding with CD44 promotes fibroblast proliferation and activation. 2022[87]
Human, Mice ScRNA-seq dataset of CKD patients, Renal unilateral IRI mice model, CD11b ^(+)monocytes of mice Monocytes, Macrophages Profibrotic: CXCL4 drives Spp1 ^(+)macrophage activation and macrophage-fibroblast crosstalk in kidney fibrosis. 2023[70]
Heart Human, Rats Rat model of ischemic cardiomyopathy, Cardiac fibroblasts NA Profibrotic: The SVVYGLR sequence of the OPN Nfragment induces the activation of the Smad signal, alpha-SMA expression, and COL-III production in cardiac fibroblasts. 2015[93]
"Human
Mice" Myocardial biopsies of myocardial fibrosis patients related to aortic stenosis, Ang II model of cardiac stress Fibroblasts, Cardiomyocytes Profibrotic: OPN activates the transcription factor AP-1 and the subsequent regulation of miR-21, ultimately resulting in fibroblast proliferation. 2015[89]
Rats H9c2 rat cardiac myoblast cell line H9c2 cardiac cells Profibrotic: OPN impedes beta2 AR-induced, cAMP/Epac1dependent antifibrotic signalling in cardiac cells. 2019[91]
Human, Left atrial appendage tissues of AF patients, Human atrial fibroblasts NA Profibrotic: OPN induces atrial fibrosis by activating Akt/ GSK-3 beta//beta-catenin pathway and suppressing autophagy. 2020[90]
Mice Pressure overload model of mice Cardiac fibroblasts Profibrotic: Extracellular cleaved OPN promotes collagen expression by cardiac fibroblasts. 2020[92]
Human, Mice Right atrial appendages and isolated right atrial fibroblasts from AF patients, Primary human right atrial fibroblasts, Isolated beating heart model from mice Cardiac fibroblasts Profibrotic: PLK2-OPN axis in atrial fibroblasts contributes to fibroblast dysfunction and the creation of AF -promoting atrial fibrosis. 2021[133]
Human, Mice "ScRNA-seq dataset of HF patients,
MI mice model, CD11b ^(+)monocytes of mice" Monocytes, Macrophages Profibrotic: Chemokine CXCL4 drives Spp1+ macrophage activation and macrophage-fibroblast crosstalk in cardiac fibrosis. 2023[70]| Organ | Species | Model/Samples | Expression by | Function & Mechanism | Publication year & Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Liver | Human, Mice | MCD-induced NASH-related fibrosis in mice | Ductular cells | Profibrotic: Hedgehog/OPN signalling increases HSCs activation. | 2011[144] |
| | Human, Mice | Human HSCs, <br> Acute and chronic liver injury by $\mathrm{CCl}_{4}$ injection or TAA treatment | HSCs | Profibrotic: OPN activates the PI3K/pAkt/NF-кB signalling cascade and upregulates COL-I. | 2012[76] |
| | Mice | TAA-treated mice | $\begin{gathered} \mathrm{BEC}, \\ \mathrm{OC} \end{gathered}$ | Profibrotic: OPN could regulate TGF- $\beta$ and enhance COL-I synthesis by HSCs. | 2014[78] |
| | Human, Mice | Liver biopsies from HCV patients, $\mathrm{CCl}_{4}$-induced liver injury in mice | Hepatocytes, HSCs | Profibrotic: OPN-induced acetylation of HMGB1 in HSCs due to increased NADPH oxidase activity and the associated decrease in HDAC1/2, leading to upregulation of COL-I. | 2017[77] |
| | Human, Mice | Liver biopsies from liver cirrhosis patients caused by HBV, LX-2 cells | HSCs | Profibrotic: OPN activates HSCs via the downregulation of miR-129-5p. | 2018[80] |
| | Human, Mice | Liver biopsies from liver cirrhosis patient, $\mathrm{CCl}_{4}$-induced liver injury in mice | NA | Profibrotic: Thrombin-cleaved OPN is involved in the pathogenesis of liver fibrosis by $\alpha 9$ and $\alpha 4$ integrins via MAPK and NF-кB signalling pathway. | 2018[81] |
| | Mice | NASH mice | Hepatocytes | Profibrotic: Notch/OPN increases HSCs activation. | $\begin{gathered} 2022[145, \\ 146] \end{gathered}$ |
| | Rats | Hepatic fibrosis model in cholestatic rats | HSCs | Profibrotic: OPN promotes the proliferation and activation of HSCs through the TGF- $\beta 1$ /Smads signalling pathway. | 2022[79] |
| | Mice | Diet-induced NASH in mice | Hepatocytes | Profibrotic: CREBZF/OPN signalling increases HSCs activation. | 2023[147] |
| Kidney | Mice | UUO | Tubular cells, Parietal epithelial cells of Bowman's capsules | Profibrotic: OPN is an essential mediator of macrophage accumulation and tubulointerstitial fibrosis in the UUO model. | 1999[82] |
| | Mice | Ischemia model | Distal tubules | Profibrotic: OPN favours macrophage recruitment, inhibits apoptosis, and stimulates the development of tubulointerstitial fibrosis. | 2003[83] |
| | Mice | Ang II-mediated renal injury | NA | Profibrotic: OPN enhances FN, TGF- $\beta 1$ and $\alpha$-SMA expression and inhibits PAI-1 expression. | 2009[86] |
| | Mice | Aldosterone-induced renal fibrosis | Proximal tubules | Profibrotic: OPN enhances macrophage recruitment and induces EMT. | 2011 [85] |
| | Mice | UUO | NA | Profibrotic: OPN promotes the infiltration of macrophages. | 2013[84] |
| | Rats | Cisplatin-induced renal fibrosis | Renal tubules | Profibrotic: OPN significantly correlate with the $\alpha$-SMA positive myofibroblast appearance, expression of TGF$\beta 1$ and the number of CD68 positive macrophages. | 2014[148] |
| | Rats | Cisplatin-induced renal fibrosis | Renal epithelial cells | Profibrotic: OPN participates in progressive renal fibrosis through the development of myofibroblasts. | 2015[149] |
| | Mice | UUO | Tubular cells | Profibrotic: OPN binding with CD44 promotes fibroblast proliferation and activation. | 2022[87] |
| | Human, Mice | ScRNA-seq dataset of CKD patients, Renal unilateral IRI mice model, CD11b ${ }^{+}$monocytes of mice | Monocytes, Macrophages | Profibrotic: CXCL4 drives Spp1 ${ }^{+}$macrophage activation and macrophage-fibroblast crosstalk in kidney fibrosis. | 2023[70] |
| Heart | Human, Rats | Rat model of ischemic cardiomyopathy, Cardiac fibroblasts | NA | Profibrotic: The SVVYGLR sequence of the OPN Nfragment induces the activation of the Smad signal, $\alpha$-SMA expression, and COL-III production in cardiac fibroblasts. | 2015[93] |
| | Human <br> Mice | Myocardial biopsies of myocardial fibrosis patients related to aortic stenosis, Ang II model of cardiac stress | Fibroblasts, Cardiomyocytes | Profibrotic: OPN activates the transcription factor AP-1 and the subsequent regulation of miR-21, ultimately resulting in fibroblast proliferation. | 2015[89] |
| | Rats | H9c2 rat cardiac myoblast cell line | H9c2 cardiac cells | Profibrotic: OPN impedes $\beta 2$ AR-induced, cAMP/Epac1dependent antifibrotic signalling in cardiac cells. | 2019[91] |
| | Human, | Left atrial appendage tissues of AF patients, Human atrial fibroblasts | NA | Profibrotic: OPN induces atrial fibrosis by activating Akt/ GSK-3 $\beta / \beta$-catenin pathway and suppressing autophagy. | 2020[90] |
| | Mice | Pressure overload model of mice | Cardiac fibroblasts | Profibrotic: Extracellular cleaved OPN promotes collagen expression by cardiac fibroblasts. | 2020[92] |
| | Human, Mice | Right atrial appendages and isolated right atrial fibroblasts from AF patients, Primary human right atrial fibroblasts, Isolated beating heart model from mice | Cardiac fibroblasts | Profibrotic: PLK2-OPN axis in atrial fibroblasts contributes to fibroblast dysfunction and the creation of AF -promoting atrial fibrosis. | 2021[133] |
| | Human, Mice | ScRNA-seq dataset of HF patients, <br> MI mice model, CD11b ${ }^{+}$monocytes of mice | Monocytes, Macrophages | Profibrotic: Chemokine CXCL4 drives Spp1+ macrophage activation and macrophage-fibroblast crosstalk in cardiac fibrosis. | 2023[70] |
Table 2 (continued) 表 2(续)
Organ 器官
Species 物种
Model/Samples 模型/示例
Expression by 表达者
Function & Mechanism 功能和机制
Publication year & Ref. 出版年份和参考文献
Skin 皮肤
Human, Mice 人类,老鼠
Dermal fibroblast cell lines , Primary cardiac fibroblasts from neonate and mice 皮肤成纤维细胞株,新生儿和小鼠原代心脏成纤维细胞
NA
Profibrotic: OPN is required for the differentiation and activity of myofibroblasts formed in response to TGF- beta1\beta 1. 促纤维化:OPN 是肌纤维细胞分化和活动所需的关键因素,这些肌纤维细胞是在 TGF-β 的反应中形成的。
Profibrotic: OPN is a key stimulator of fibroblast cells in the early stages of their differentiation into myofibroblasts. 促纤维化:OPN 是纤维细胞在向肌纤维细胞分化初期的关键刺激因子。
2014[99]
马, 人类
Horse,
Human
Horse,
Human| Horse, |
| :--- |
| Human |
马匹伤口愈合模型、马匹肉芽组织、人类瘢痕增生
Equine model of wound healing,
Equine granulation tissue, Human keloids
Equine model of wound healing,
Equine granulation tissue, Human keloids| Equine model of wound healing, |
| :--- |
| Equine granulation tissue, Human keloids |
Profibrotic: OPN is suggested associated with dermal fibroproliferative disorders in horses and humans. 促纤维化:在马和人类中,OPN 被认为与皮肤纤维增殖性疾病相关。
2016[103]
Human 人类
SSc lung and skin tissues, HFL-1, HFF-1, and HUVEC 硬皮病肺和皮肤组织、HFL-1、HFF-1 和 HUVEC
HFL-1, HFF-1, and HUVEC HFL-1、HFF-1 和 HUVEC
Profibrotic: MiR-27a-3p negatively regulates the expression of Spp1 and the level of ERK signal, thus exerting its antifibrosis effect in SSc skin. 纤维化促进物: MiR-27a-3p 负调控 Spp1 的表达和 ERK 信号水平,从而发挥其抗纤维化的作用于硬皮症皮肤。
2022[102]
Human 人类
Keloid samples 疤痕样本
Macrophages 巨噬细胞
Profibrotic: Spp1 produced by macrophages increases ECM expression from CTHRC1 ^(+){ }^{+}fibroblasts. 促纤维化:巨噬细胞产生的 Spp1 增加 CTHRC1 ^(+){ }^{+} 成纤维细胞的细胞外基质表达。
Profibrotic: OPN exacerbates inflammation and fibrosis in the prostate. 促纤维化的:OPN 加重前列腺的炎症和纤维化。
2020[105] 2020 年[105]
Mice 小鼠
E. coli-Instilled Mice 给小鼠注射大肠杆菌
Prostate cells 前列腺细胞
Profibrotic: OPN delays the resolution of fibrosis in bacteria-instilled mouse prostates, and deficiency of OPN leads to the substantial reduction of ECM-producing cells. 促纤维化: OPN 延迟了细菌感染小鼠前列腺纤维化的解决,OPN 缺乏导致细胞外基质产生细胞大幅减少。
2021[106]
Rats 老鼠
Castrated Sprague-Dawley rats 阉割斯普拉格-道利大鼠
Prostate tissue 前列腺组织
Profibrotic: OPN might be involved in the process of rat prostatic inflammation and fibrosis affected by the oestrogen/ androgen ratio. 促纤维化:OPN 可能参与雌激素/雄激素比例影响的大鼠前列腺炎症和纤维化过程。
2023[107]
Bone marrow 骨髓
Human 人类
PMF patients' plasma samples, Human CD34 ^(+){ }^{+}cells, Human Monocytes, Human MSCs, Human dermal fibroblasts PMF 患者的血浆样本、人 CD34 ^(+){ }^{+} 细胞、人单核细胞、人间充质干细胞、人皮肤纤维细胞
Monocytes, Megakaryocytes 单核细胞,巨核细胞
Profibrotic: Spp1 promotes fibroblasts and MSCs proliferation and collagen production in bone marrow fibrosis. 促纤维化:Spp1 促进成纤维细胞和间充质干细胞的增殖以及骨髓纤维化中的胶原蛋白产生。
Profibrotic: ERK1/2-driven OPN produces profibrotic function in myelofibrosis. 纤维化促进性:ERK1/2 驱动的 OPN 在骨髓纤维化中产生纤维化促进功能。
2023[109]
Organ Species Model/Samples Expression by Function & Mechanism Publication year & Ref.
Skin Human, Mice Dermal fibroblast cell lines , Primary cardiac fibroblasts from neonate and mice NA Profibrotic: OPN is required for the differentiation and activity of myofibroblasts formed in response to TGF- beta1. 2008[40]
Human, Mice SSc skin tissues, Dermal fibroblasts , BLM-induced dermal fibrosis mice Fibroblast-like and inflammatory cells Profibrotic: OPN regulates dermal inflammation, TGF- beta production, and fibroblast behaviour. 2012[101]
Human Healthy skin fibroblasts of human Fibroblasts Profibrotic: OPN is a key stimulator of fibroblast cells in the early stages of their differentiation into myofibroblasts. 2014[99]
"Horse,
Human" "Equine model of wound healing,
Equine granulation tissue, Human keloids" Epidermis, Neutrophils, Mononuclear cells, Endothelial cells, Fibroblasts Profibrotic: OPN is suggested associated with dermal fibroproliferative disorders in horses and humans. 2016[103]
Human SSc lung and skin tissues, HFL-1, HFF-1, and HUVEC HFL-1, HFF-1, and HUVEC Profibrotic: MiR-27a-3p negatively regulates the expression of Spp1 and the level of ERK signal, thus exerting its antifibrosis effect in SSc skin. 2022[102]
Human Keloid samples Macrophages Profibrotic: Spp1 produced by macrophages increases ECM expression from CTHRC1 ^(+)fibroblasts. 2022[104]
Prostate Human Prostate tissue, Stromal cells, Epithelial cells Stromal cells, Epithelial cells, Immune cells Profibrotic: OPN exacerbates inflammation and fibrosis in the prostate. 2020[105]
Mice E. coli-Instilled Mice Prostate cells Profibrotic: OPN delays the resolution of fibrosis in bacteria-instilled mouse prostates, and deficiency of OPN leads to the substantial reduction of ECM-producing cells. 2021[106]
Rats Castrated Sprague-Dawley rats Prostate tissue Profibrotic: OPN might be involved in the process of rat prostatic inflammation and fibrosis affected by the oestrogen/ androgen ratio. 2023[107]
Bone marrow Human PMF patients' plasma samples, Human CD34 ^(+)cells, Human Monocytes, Human MSCs, Human dermal fibroblasts Monocytes, Megakaryocytes Profibrotic: Spp1 promotes fibroblasts and MSCs proliferation and collagen production in bone marrow fibrosis. 2018[108]
Human, Mice Human CD14 ^(+)monocytes, Romiplostim-induced myelofibrosis mice Monocytes Profibrotic: ERK1/2-driven OPN produces profibrotic function in myelofibrosis. 2023[109]| Organ | Species | Model/Samples | Expression by | Function & Mechanism | Publication year & Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Skin | Human, Mice | Dermal fibroblast cell lines , Primary cardiac fibroblasts from neonate and mice | NA | Profibrotic: OPN is required for the differentiation and activity of myofibroblasts formed in response to TGF- $\beta 1$. | 2008[40] |
| | Human, Mice | SSc skin tissues, Dermal fibroblasts , BLM-induced dermal fibrosis mice | Fibroblast-like and inflammatory cells | Profibrotic: OPN regulates dermal inflammation, TGF- $\beta$ production, and fibroblast behaviour. | 2012[101] |
| | Human | Healthy skin fibroblasts of human | Fibroblasts | Profibrotic: OPN is a key stimulator of fibroblast cells in the early stages of their differentiation into myofibroblasts. | 2014[99] |
| | Horse, <br> Human | Equine model of wound healing, <br> Equine granulation tissue, Human keloids | Epidermis, Neutrophils, Mononuclear cells, Endothelial cells, Fibroblasts | Profibrotic: OPN is suggested associated with dermal fibroproliferative disorders in horses and humans. | 2016[103] |
| | Human | SSc lung and skin tissues, HFL-1, HFF-1, and HUVEC | HFL-1, HFF-1, and HUVEC | Profibrotic: MiR-27a-3p negatively regulates the expression of Spp1 and the level of ERK signal, thus exerting its antifibrosis effect in SSc skin. | 2022[102] |
| | Human | Keloid samples | Macrophages | Profibrotic: Spp1 produced by macrophages increases ECM expression from CTHRC1 ${ }^{+}$fibroblasts. | 2022[104] |
| Prostate | Human | Prostate tissue, Stromal cells, Epithelial cells | Stromal cells, Epithelial cells, Immune cells | Profibrotic: OPN exacerbates inflammation and fibrosis in the prostate. | 2020[105] |
| | Mice | E. coli-Instilled Mice | Prostate cells | Profibrotic: OPN delays the resolution of fibrosis in bacteria-instilled mouse prostates, and deficiency of OPN leads to the substantial reduction of ECM-producing cells. | 2021[106] |
| | Rats | Castrated Sprague-Dawley rats | Prostate tissue | Profibrotic: OPN might be involved in the process of rat prostatic inflammation and fibrosis affected by the oestrogen/ androgen ratio. | 2023[107] |
| Bone marrow | Human | PMF patients' plasma samples, Human CD34 ${ }^{+}$cells, Human Monocytes, Human MSCs, Human dermal fibroblasts | Monocytes, Megakaryocytes | Profibrotic: Spp1 promotes fibroblasts and MSCs proliferation and collagen production in bone marrow fibrosis. | 2018[108] |
| | Human, Mice | Human CD14 ${ }^{+}$monocytes, Romiplostim-induced myelofibrosis mice | Monocytes | Profibrotic: ERK1/2-driven OPN produces profibrotic function in myelofibrosis. | 2023[109] |
factor- beta\beta; TGF- beta1\beta 1, transforming growth factor- beta1\beta 1; UUO, unilateral ureteral obstruction; NA, not applicable. 因子- beta\beta ; TGF- beta1\beta 1 , 转化生长因子- beta1\beta 1 ; UUO, 单侧输尿管阻塞; NA, 不适用.
modulates renal tissue fibrosis by regulating profibrotic cytokines [86]. 通过调节促纤维化细胞因子调节肾组织纤维化[86]。
OPN has also been implicated as an activator of (myo)fibroblasts in kidney fibrosis. In a recent study published in 2022, it was observed that OPN, particularly its N-terminal fragment ( N-OPN\mathrm{N}-\mathrm{OPN} ), was upregulated in various models of chronic kidney disease (CKD) and could be encapsulated by tubular exosomes [87]. Subsequently, OPN and N-OPN in tubular cell-derived exosomes were transferred to fibroblasts, where they bound with CD44 and promoted fibroblast proliferation and activation [87]. Moreover, OPN has been shown to promote EMT, which is involved in the differentiation and activation of (myo)fibroblasts [85, 88]. 骨粉蛋白(OPN)也被认为是肾脏纤维化过程中(肌纤维细胞)纤维细胞的激活剂。在 2022 年发表的一项最新研究中,观察到 OPN,特别是其 N 端片段( N-OPN\mathrm{N}-\mathrm{OPN} ),在各种慢性肾病(CKD)模型中呈上调表达,并可被肾小管外泌体所包裹[87]。随后,肾小管细胞来源的外泌体中的 OPN 和 N 端 OPN 被转移到纤维细胞中,它们与 CD44 结合,促进了纤维细胞的增殖和激活[87]。此外,OPN 还被证明可促进上皮间质转化(EMT),而这种转化过程参与了(肌纤维细胞)纤维细胞的分化和激活[85,88]。
4.2.3. Cardiac fibrosis 4.2.3. 心肌纤维化
In Cardiac fibrosis, OPN is mainly associated with the activation of cardiac fibroblasts. In 2015, Lorenzen’s group showed that OPN activated activator protein-1 (AP-1)-mediated miR-21 transcription, resulting in subsequent profibrotic effects by targeting phosphatase and tensin homologue (PTEN)/Smad7 and ultimately activating WT fibroblasts [89]. OPN could induce atrial fibrosis in a dose- and 在心肌纤维化中,OPN 主要与心肌成纤维细胞的激活有关。2015 年,Lorenzen 小组发现,OPN 激活激活蛋白-1(AP-1)介导的 miR-21 转录,进而通过靶向磷酸酶和张力同源物(PTEN)/Smad7 而产生顺向纤维化效应,最终激活成纤维细胞[89]。OPN 可以剂量和时间依赖性地引起房颤纤维化。
time-dependent manner. In vitro studies of cultured human atrial fibroblasts (hAFs), shown that OPN activated the protein kinase B (Akt)/glycogen synthase kinase-3 beta\beta (GSK-3 beta\beta )/ beta\beta-catenin signalling pathway and suppressed autophagy, which synergistically promoted the activation of hAFs [90]. 时间依赖性方式。体外培养的人心房成纤维细胞(hAFs)研究表明,OPN 激活了蛋白激酶 B(Akt)/糖原合成酶激酶-3(GSK-3)/β-catenin 信号通路,并抑制了自噬,这种协同促进了 hAFs 的激活[90]。
Additionally, in H9c2 cardiac cells treated with mineralocorticoids, OPN promoted cardiac fibrosis by directly inhibiting the effect of the antifibrotic cardiac beta2\beta 2-adrenergic receptor (AR) signalling via cyclic 3,5adenosine monophosphate (cAMP)/exchange protein directly activated by cAMP (Epac)-1 [91]. 此外,在经过矿物皮质激素处理的 H9c2 心肌细胞中,OPN 通过直接抑制抗纤维化心脏β-肾上腺素能受体(AR)信号通路中的环腺苷酸 3,5-单磷酸(cAMP)/直接通过 cAMP 激活的交换蛋白(Epac)-1 来促进心肌纤维化[91]。
Several studies have suggested that the profibrotic effects of OPN on the heart may be closely related to prothrombin-mediated cleavage of OPN. In pressure-overloaded mouse heart model, full-length OPN was increased in left ventricular tissue during the early phase after pressure overload; however, OPN did not induce COL-I expression unless it was cleaved by thrombin [92]. After being cleaved by thrombin, a specific peptide sequence on the N-terminal fragment of OPN (RGDSLAYGLR) is exposed, and treatment of cardiac fibroblasts with N-OPN or this specific peptide sequence induces COL-I expression [92]. In contrast, when the 几项研究已经表明,OPN 对心脏的促纤维化效应可能与凝血酶介导的 OPN 裂解密切相关。在压力过负荷的小鼠心脏模型中,全长 OPN 在压力过负荷后的早期阶段在左心室组织中增加;然而,除非被凝血酶裂解,否则 OPN 不会诱导 COL-I 表达[92]。经凝血酶裂解后,OPN N 端片段上特定的肽序列(RGDSLAYGLR)被暴露,用 N-OPN 或此特定肽序列处理心脏成纤维细胞可诱导 COL-I 表达[92]。相比之下,当 N 端片段被去除时,OPN 失去了诱导 COL-I 表达的能力。
N-terminal OPN fragment lacked the SVVYGLR sequence, the C-terminal fragment did not produce these effects [93]. Notably, a sustained-release gel containing an OPN fragment or SVVYGLR peptide was successfully transplanted into a rat model of ischaemic cardiomyopathy and significantly improved cardiac function [93]. This improvement can be attributed to the activation of fibroblasts, which promotes the production of collagen proteins, particularly collagen type III, providing elasticity to the fibrotic myocardium and consequently improving cardiac function [93]. This finding is consistent with previous results [94-98], which suggest that the role of OPN as a double-edged sword after cardiac injury events and its negative role in tissue remodelling may not be fully justified. Instead, preserving appropriate OPN expression rather than completely inhibiting it during cardiac remodelling might be more beneficial for patient prognosis. N 端 OPN 片段缺乏 SVVYGLR 序列,C 端片段未产生这些效果[93]。值得注意的是,包含 OPN 片段或 SVVYGLR 肽的缓释凝胶成功移植到大鼠缺血性心肌病模型中,显著改善了心脏功能[93]。这种改善可归因于成纤维细胞的激活,促进了胶原蛋白(尤其是 III 型胶原)的产生,为纤维化心肌提供弹性,从而改善心脏功能[93]。这一发现与之前的结果一致[94-98],表明 OPN 作为伤心事件之后的双刃剑作用以及其在组织重塑中的负面作用并非完全成立。相反,在心脏重塑期间保留适度的 OPN 表达而非完全抑制可能对患者预后更有益。
4.2.4. Skin fibrosis 4.2.4.皮肤纤维化
In skin fibrosis, OPN is thought to stimulate fibroblasts during the early stages of their differentiation into myofibroblasts [40,99]. OPN was upregulated in SSc skin in a study that used microarray analyses to compare SSc skin and healthy control skin [100]. A follow-up study demonstrated that OPN was localized to dermal fibroblasts and infiltrating inflammatory cells in the skin of patients with SSc. OPN ^(-//-){ }^{-/-}mice have decreased dermal thickness and dermal fibrosis compared with WT mice challenged with subcutaneous BLM, which may involve the modulation of TGF- beta\beta production [101]. Cheng et al. used R language and bioinformatics to show that miR-27a-3p was reduced in the skin tissues of patients with SSc [102]. MiR-27a-3p exerts antifibrotic effects by negatively regulating Spp1 and ERK signalling and is more prominent in fibroblasts than in other cells [102]. Furthermore, in human keloids, OPN immunoreactivity can be observed throughout the epidermis, mononuclear cells, and scattered fibroblasts [103]. Macrophage-secreted OPN stimulates collagen triple helix repeat containing 1 (CTHRC1) ^(+){ }^{+}fibroblasts to induce excessive collagen deposition in keloids [104]. 在皮肤纤维化中,认为 OPN 可刺激成纤维细胞在向肌成纤维细胞分化的早期阶段[40,99]。一项使用基因芯片分析比较硬皮病皮肤和健康对照皮肤的研究发现,OPN 在硬皮病皮肤中表达上调[100]。后续研究证明,OPN 定位于硬皮病患者皮肤中的真皮成纤维细胞和浸润性炎症细胞。OPN 敲除小鼠与野生型小鼠相比,在皮下 BLM 诱导的条件下,真皮厚度和真皮纤维化均降低,这可能涉及对 TGF-β生产的调节[101]。Cheng 等人使用 R 语言和生物信息学方法显示,miR-27a-3p 在硬皮病患者皮肤组织中表达降低[102]。miR-27a-3p 通过负调控 Spp1 和 ERK 信号传导发挥抗纤维化作用,在成纤维细胞中比其他细胞更为突出[102]。此外,在人类瘢痕中,OPN 免疫反应可观察到遍布表皮、单核细胞和散布的成纤维细胞[103]。来自巨噬细胞分泌的 OPN 刺激胶原三螺旋重复含 1(CTHRC1)阳性成纤维细胞诱导瘢痕中过度的胶原沉积[104]。
4.2.5. Prostatic hyperplasia 前列腺增生
During the early stage of prostatic hyperplasia, macrophages, prostatic stromal cells, and epithelial cells can serve as sources of OPN [105]. OPN drives the expression of multiple cytokines and chemokines within prostate stromal cells, thereby promoting fibrogenesis [105]. OPN deficiency decreases inflammation and fibrosis and prevents urinary dysfunction [106]. Moreover, it has been reported that OPN may be involved in prostatic inflammation and fibrosis induced by an oestrogen/androgen imbalance in rats [107]. 在前列腺增生的早期阶段,巨噬细胞、前列腺间质细胞和上皮细胞可以作为 OPN 的来源 [105]。OPN 推动前列腺间质细胞中多种细胞因子和趋化因子的表达,从而促进纤维化过程 [105]。OPN 缺乏降低了炎症和纤维化,并防止了尿液功能障碍 [106]。此外,有报道称 OPN 可能参与了大鼠由雌雄激素失衡引起的前列腺炎症和纤维化 [107]。
4.2.6. Primary myelofibrosis (PMF) 原发性骨髓纤维化(PMF)
PMF is a myeloproliferative neoplasm characterized by hyperplastic megakaryopoiesis and myelofibrosis. An earlier study by Rossella’s group revealed that overexpression of the transcription factor MAF contributes to PMF pathogenesis by driving the dysregulated production of OPN [108]. In vitro, OPN promoted proliferation and collagen production in fibroblasts and mesenchymal stromal cells [108]. Clinical relevance analyses showed increased plasma levels of OPN in PMF patients, and these levels were associated with more severe fibrosis and shorter overall survival [108]. Recently, Rossella’s group further elucidated the role of ERK1/2 signalling in supporting OPN production in myelofibrosis and demonstrated that OPN was a novel drug target in myelofibrosis based on inhibiting ERK1/2-driven OPN production or neutralizing OPN activity [109]. 原发性骨髓纤维化(PMF)是一种骨髓增殖性肿瘤,其特点是巨核细胞生成过度和骨髓纤维化。Rossella 的研究小组在之前的研究中发现,转录因子 MAF 的过度表达通过驱动 OPN 的失调生产,从而促进了 PMF 的发生[108]。体外实验表明,OPN 促进成纤维细胞和间充质干细胞的增殖和胶原生产[108]。临床相关性分析显示,PMF 患者的血浆 OPN 水平升高,且这些水平与更严重的纤维化和更短的总生存期相关[108]。最近,Rossella 的研究小组进一步阐明了 ERK1/2 信号通路在支持骨髓纤维化中 OPN 产生的作用,并证明 OPN 是一种基于抑制 ERK1/2 驱动的 OPN 产生或中和 OPN 活性的新型靶向药物[109]。
5. Diagnostic and therapeutic potential of OPN in fibrosis 5. OPN 在纤维化中的诊断和治疗潜力
5.1. OPN as a biomarker of fibrotic diseases 5.1. 开放性蛋白酶(OPN)作为纤维化疾病的生物标志物
Most patients with fibrosis are diagnosed at an advanced stage when the organ is severely damaged and has lost most of its physiological 大多数纤维化患者在器官严重受损、生理功能已大部分丧失的晚期才被诊断出来
function. The most trusted tool clinicians can use to assess the extent of organ fibrosis at any level is tissue biopsy, which, despite its overall safety, remains an invasive procedure that has some limitations. Therefore, identifying novel noninvasive biomarkers for early-stage organ fibrosis is critical. Furthermore, the assessment of fibrosis progression holds greater clinical value than the diagnosis of fibrosis itself. However, no sufficiently accurate biomarkers have been identified to date that reflect the activity/state of fibrosis. Another challenge lies in the lack of appropriate tools to efficiently and promptly evaluate the therapeutic efficacy of novel antifibrotic drugs. Thus, specific biomarkers are urgently needed for the timely diagnosis of fibrotic diseases, the prediction of disease progression, and the evaluation of clinical drug efficacy. 功能。临床医生用于评估任何级别器官纤维化程度的最可靠工具是组织活检,尽管总体上安全,但仍然是一种有一些局限性的侵入性操作。因此,找到新的非侵入性生物标志物以识别早期器官纤维化至关重要。此外,评估纤维化进展的临床价值大于纤维化本身的诊断。然而,迄今尚未发现足够准确的生物标志物能反映纤维化的活性/状态。另一个挑战在于缺乏有效和及时评估新型抗纤维化药物疗效的适当工具。因此,急需特定的生物标志物来及时诊断纤维化疾病、预测疾病进展和评估临床药物疗效。
The relatively increased levels of OPN in various fibrotic organs indicate that OPN is a potential biomarker of fibrosis. Several studies have consistently shown increased OPN levels in serum and body fluids during the early stages of organ fibrogenesis, establishing a positive correlation between OPN expression and organ fibrosis [52,87,108, 110-117]. These findings highlight the potential of OPN as a noninvasive early diagnostic tool for fibrotic diseases and for assessing fibrosis severity. 在各种纤维化器官中,相对较高的 OPN 水平表明 OPN 是潜在的纤维化生物标志物。几项研究一致显示,在器官纤维化的早期阶段,血清和体液中 OPN 水平增加,OPN 表达与器官纤维化呈正相关[52,87,108,110-117]。这些发现突出了 OPN 作为非侵入性早期诊断工具评估纤维化严重程度的潜能。
However, it is unlikely that a single biomarker can distinguish and predict the prognosis of fibrosis since numerous factors, which vary from patient-to-patient and disease-to-disease, are known to initiate and participate in the development of fibrosis. Therefore, a panel of multiple biomarkers is more likely to enhance the accuracy of fibrosis diagnosis and prognosis than a single biomarker, and the inclusion of OPN may provide crucial information in this regard. White E S and colleagues [118] reported that a combination of MMP-7, surfactant protein D (SP-D), and OPN concentrations demonstrated good performance in differentiating IPF from other forms of non-IPF interstitial lung disease (ILD). In IPF, a progression index based on four biomarkers (OPN, MMP-7, intercellular adhesion molecule-1, and periostin) was shown to be superior to the clinical GAP score (sex, age, and lung physiology) in predicting progression at 12 months [119]. Five genes, including Spp1, were shown to form an inflammation-hypoxia-related gene signature that accurately predicted the clinical outcome of patients with IPF [120]. To evaluate antifibrotic therapeutic efficacy, another study showed that cancer antigen 125 (CA-125), C-X-C motif chemokine 13 (CXCL13), MMP-7, SP-D, chitinase-3-like protein-1 (YKL-40), vascular cell adhesion protein-1 (VCAM-1), and OPN predicted differential transplant-free survival (TFS) in patients with IPF undergoing antifibrotic therapy, surpassing the thresholds observed in unexposed patients [121]. This finding suggests that composite clinical-molecular signatures, including OPN, can provide valuable information regarding outcome risk and treatment responses [121]. Further studies are required to validate these findings and definitively assess the utility of OPN as a biomarker of the treatment success of experimental antifibrotic therapies. 然而,由于已知许多从患者到患者、从疾病到疾病都不尽相同的因素参与并导致了肺纤维化的发生,单一的生物标志物很难明确区分和预测肺纤维化的预后。因此,使用多种生物标志物组合更可能提高肺纤维化诊断和预后的准确性,而包含骨桥素可能在这方面提供关键信息。White E S 等人[118]报告,MMP-7、肺表面活性物质 D(SP-D)和骨桥素浓度的组合在区分特发性肺纤维化和其他类型间质性肺病方面表现良好。在特发性肺纤维化中,基于四种生物标志物(骨桥素、MMP-7、细胞间黏附分子-1 和过氧蛋白)的进展指数被证明优于临床 GAP 评分(性别、年龄和肺功能)在预测 12 个月内的病情进展[119]。包括 Spp1 在内的五个基因被证明形成一个与炎症-缺氧相关的基因特征,能够准确预测特发性肺纤维化患者的临床结局[120]。为评估抗纤维化疗效,另一项研究显示,癌抗原 125(CA-125)、CXC 趋化因子 13(CXCL13)、MMP-7、SP-D、酷似白细胞 n-乙酰葫芦糖苷酶 3(YKL-40)、血管细胞粘附蛋白 1(VCAM-1)和骨桥素能够预测接受抗纤维化治疗的特发性肺纤维化患者的无移植生存期,优于未接受治疗患者的阈值[121]。这一发现表明,包括骨桥素在内的复合临床分子特征可以提供有关预后风险和治疗反应的有价值信息[121]。需要进一步研究来验证这些发现,并彻底评估骨桥素作为实验性抗纤维化疗法治疗成功的生物标志物的实用性。
As described previously, OPN may be a promising biomarker of various fibrotic diseases, as it is elevated in earlier stages of fibrosis and can help to identify high-risk individuals, assess fibrosis severity, closely monitor fibrosis progression, and evaluate the effectiveness and outcomes of disease treatment. 如前所述,OPN 可能是各种纤维化疾病的有希望的生物标志物,因为它在纤维化的早期阶段升高,可以帮助识别高危人群、评估纤维化的严重程度、密切监测纤维化的进展,以及评估疾病治疗的有效性和结果。
5.2. OPN as a therapeutic target in fibrotic diseases 5.2. 作为纤维化疾病治疗靶标的 OPN
In conclusion, persistent or excessive expression of OPN is associated with fibroproliferation in various organs in laboratory animals and humans, such that its downregulation is a logical therapeutic objective. To our knowledge, no drug targeting the expression of OPN has entered clinical trials. However, a growing number of preclinical studies are underway. 总之,OPN 的持续或过度表达与实验动物和人类各种器官的纤维增殖相关,因此抑制其表达是一个合理的治疗目标。据我们所知,尚未有针对 OPN 表达的药物进入临床试验。但正在进行越来越多的临床前研究。
OPN blockade with OPN-neutralizing monoclonal antibodies or aptamers represents a promising approach for treating human fibrotic diseases. Therapeutic antibodies targeting OPN have shown 使用 OPN 中和单克隆抗体或适配体阻断 OPN 是治疗人类纤维化疾病的一种有前景的方法。针对 OPN 的治疗性抗体已显示出
effectiveness in various animal models of fibrotic diseases [109, 122-125]. However, pharmacokinetic and pharmacodynamic modelling and the simulation of different theoretical scenarios indicate that achieving sufficient target coverage using antibodies can be highly challenging primarily due to the rapid turnover of OPN and its relatively high plasma concentrations in humans [126]. Therefore, therapeutic antibodies against OPN must be engineered with significantly extended pharmacokinetics compared to conventional antibodies and administered at high doses with frequent dosing intervals [126]. 在多种纤维化疾病动物模型中的有效性[109、122-125]。然而,药代动力学和药效动力学建模以及不同理论场景的模拟表明,主要由于 OPN 的快速转换和人体内相对较高的血浆浓度,使用抗体实现充分的靶点覆盖非常具有挑战性[126]。因此,针对 OPN 的治疗性抗体必须设计具有明显延长的药代动力学特性,相比于常规抗体,需要以较高剂量和频繁的给药间隔进行给药[126]。
OPN silencing holds promise as a therapeutic strategy for fibrotic diseases. In liver fibrosis, the delivery of siRNA-OPN via exosomes suppressed HSCs activation and ECM deposition, leading to improvements in liver function [127]. Similarly, OPN siRNA protected against BLM-induced pulmonary fibrosis in mice [62]. In terms of biotherapy, CD11b^(+)CD14^(+)\mathrm{CD} 11 \mathrm{~b}^{+} \mathrm{CD} 14^{+}monocyte transplantation could improve liver fibrosis by decreasing OPN levels [128]. 抑制 OPN 转录持有治疗纤维化疾病的前景。在肝纤维化中,利用外泌体递送 siRNA-OPN 能抑制 HSC 激活和 ECM 沉积,从而改善肝功能[127]。同样地,OPN siRNA 能保护小鼠免受 BLM 诱导的肺纤维化[62]。就生物疗法而言, CD11b^(+)CD14^(+)\mathrm{CD} 11 \mathrm{~b}^{+} \mathrm{CD} 14^{+} 单核细胞移植可通过降低 OPN 水平改善肝纤维化[128]。
Chemical compounds or drugs can also protect against organ fibrosis by downregulating OPN expression. Epigallocatechin-3-gallate (EGCG), a polyphenol found in high concentrations in green tea and green tea extract, can inhibit OPN-dependent liver fibrosis by upregulating miR221 [129,130]. Mangiferin, a major glucoside of xanthone found in Rhizoma Anemarrhena, a well-known Chinese Materia Medica, has been shown to prevent renal glomerulus fibrosis in diabetic rats by suppressing OPN overproduction [131]. Additionally, certain existing drugs used in other fields, such as mesalazine [132-134], praziquantel [135], acetaminophen [136], amitriptyline [137], ramipril [138], cilostazol [139], triptolide and mycophenolate mofetil [140], may have potential as new antifibrotic agents due to their ability to lower OPN levels. 化学化合物或药物也可以通过下调 OPN 表达来保护器官免受纤维化。表明在绿茶和绿茶提取物中高度浓缩的儿茶素没食子酸(EGCG)可通过上调 miR221 来抑制 OPN 依赖性肝纤维化[129,130]。甘梨花苷是一种广泛存在于知名中药阿尼麻根中的主要黄酮衍生物,已被证明通过抑制 OPN 过度表达来预防糖尿病大鼠肾小球纤维化[131]。此外,某些现有的用于其他领域的药物,如美沙拉嗪[132-134]、吡喹酮[135]、对乙酰氨基酚[136]、阿米替林[137]、美托洛尔[138]、西洛他唑[139]、三必利和霉酚酸酯[140]也可能具有抗纤维化的潜力,因为它们能降低 OPN 水平。
Additionally, targeting the upstream regulators and downstream effectors of OPN may represent promising strategies to prevent fibrogenesis and associated adverse events. For example, OPN is upregulated in renal and cardiac fibrosis due to activation of the renin-angiotensinaldosterone system. Blocking the relevant mediators of OPN, such as mineralocorticoid receptor antagonism and aldosterone synthase inhibition, may offer benefits for heart and kidney fibrosis. However, this possibility remains open for research due to its complexity, but elucidating these mechanisms could have significant therapeutic potential. 此外,针对 OPN 的上游调节因子和下游效应因子可能代表预防纤维化及其相关不良事件的有希望的策略。例如,由于肾素-血管紧张素-醛固酮系统的激活,OPN 在肾脏和心脏纤维化中表达上调。阻断 OPN 的相关介质,如矿物皮质激素受体拮抗和醛固酮合成酶抑制,可能为心脏和肾脏纤维化带来益处。然而,由于其复杂性,这种可能性仍有待研究,但阐明这些机制可能具有重大治疗潜力。
6. Concluding remarks and future perspectives 6. 总结和未来展望
Novel therapeutic strategies are urgently needed for fibrotic diseases. A growing number of studies have provided insights into the mechanisms and factors involved in regulating fibrosis associated with OPN. While OPN represents a potential target for fibrotic disease therapy, we still need to exercise caution for several reasons. First, the different forms of OPN may have distinct effects on fibrotic tissues (limited information is available), and fresh insights are needed to understand these variations and develop approaches to target specific OPN forms and activities in distinct organs and tissues. Second, some reports suggest that OPN improves organ function in some contexts (such as in cardiac fibrosis). Thus, it is essential to understand how and when the effects of OPN become beneficial or detrimental to the host by considering the various forms of OPN. Third, OPN is ubiquitous and has complex physiological functions, and it remains to be established whether suppressing OPN affects the physiological properties of the body. Finally, it has been shown that most of the biological activity of OPN resides in the N-terminal fragment. N-OPN may be an influential target in the fibrogenic mechanism of OPN compared to full-length OPN. Thus, preventing OPN cleavage may be more effective in treating fibrotic disease than inhibiting OPN production. More attention must be paid to this issue in future targeted studies. (Tables 1 and 2). 急需为纤维化疾病开发新的治疗策略。越来越多的研究提供了关于调节与 OPN 相关的纤维化的机理和因素的洞见。虽然 OPN 是纤维化疾病治疗的潜在靶标,但我们仍需谨慎考虑几方面问题。首先,不同形式的 OPN 可能对纤维化组织产生不同影响(目前信息有限),需要进一步深入理解这些差异,并制定方法靶向特定的 OPN 形式及其在不同器官和组织中的活性。其次,有报告称 OPN 在某些情况下(如心脏纤维化)可以改善器官功能。因此,需要理解 OPN 的作用何时有益,何时有害,需要全面考虑 OPN 的各种形式。第三,OPN 广泛存在且功能复杂,抑制 OPN 是否会影响机体的生理属性仍有待进一步确认。最后,已表明 OPN 的大部分生物活性在 N 端片段中,与全长 OPN 相比,N-OPN 可能是 OPN 纤维化机制的关键靶标。因此,阻止 OPN 裂解可能比抑制 OPN 生产更有效地治疗纤维化疾病。未来的靶向研究需要更多关注这一问题。
Ethics Statement 道德声明
The studies involving animal participants (Fig. 2) were reviewed and approved by Sichuan University West China Hospital Health Research 涉及动物参与者的研究(图 2)已由四川大学华西医院健康研究伦理委员会审查批准。
This work was supported by the 1*3.51 \cdot 3.5 project for disciplines of excellence, West China Hospital, Sichuan University [grant numbers ZYJC18003]; and the development program of Sichuan province funding provided by Sichuan Science and Technology Department [Preject NO. 2021YFS0166]. 该工作得到了 1*3.51 \cdot 3.5 学科卓越项目、四川大学华西医院[项目编号 ZYJC18003]以及四川省科技厅提供的四川省发展计划资金[项目编号 2021YFS0166]的支持。
CRediT authorship contribution statement 作者贡献声明
Ziyi Tang: Conceptualization, Methodology, Data curation, Writingoriginal draft preparation. Zijing Xia: Conceptualization, Methodology, Funding acquisition, Writing-review and editing. Xiangpeng Wang: Validation. Yi Liu: Funding acquisition, Supervision. All authors approved the submitted final version. 汤紫怡:概念化、方法论、数据管理、原始稿件撰写。夏子景:概念化、方法论、获取资金、审阅与修订。王湘鹏:验证。刘毅:获取资金、监督。所有作者批准了提交的最终版本。
Declaration of Competing Interest 利益冲突声明
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. 作者声明他们没有任何已知的竞争性的财务利益或可能影响本论文工作的个人关系。
Acknowledgements 致谢
We sincerely thank Servier Medical Art (http://www.servier.com) provides scientific material pictures. 我们衷心感谢 Servier 医学艺术(http://www.servier.com)提供科学材料图片。
References 参考文献
[1] J. Rosenbloom, E. Macarak, S. Piera-Velazquez, S.A. Jimenez, Human fibrotic diseases: current challenges in fibrosis research, Methods Mol. Biol. 2017 (1627) 1-23, https://doi.org/10.1007/978-1-4939-7113-8_1. [1] J. 罗森布鲁姆、E. 马卡拉克、S. 皮埃拉-维拉克斯、S.A. 希梅内斯,人类纤维化疾病:纤维化研究的当前挑战,分子生物学方法。2017 年(1627 卷) 1-23,https://doi.org/10.1007/978-1-4939-7113-8_1。
[2] T.A. Wynn, Cellular and molecular mechanisms of fibrosis, J. Pathol. 214 (2) (2008) 199-210, https://doi.org/10.1002/path.2277. [2] T.A. 温恩, 纤维化的细胞和分子机制, 病理杂志 214 (2) (2008) 199-210, https://doi.org/10.1002/path.2277.
[3] J.H.W. Distler, A.H. Györfi, M. Ramanujam, M.L. Whitfield, M. Königshoff, R. Lafyatis, Shared and distinct mechanisms of fibrosis, Nat. Rev. Rheuma 15 (12) (2019) 705-730, https://doi.org/10.1038/s41584-019-0322-7. [3] J.H.W. Distler, A.H. Györfi, M. Ramanujam, M.L. Whitfield, M. Königshoff, R. Lafyatis, 纤维化的共同和不同机制, Nat. Rev. Rheuma 15 (12) (2019) 705-730, https://doi.org/10.1038/s41584-019-0322-7.
[4] R. Patarca, G.J. Freeman, R.P. Singh, F.Y. Wei, T. Durfee, F. Blattner, D. C. Regnier, C.A. Kozak, B.A. Mock, H.C. Morse 3rd, T.R. Jerrells, H. Cantor, Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection, J. Exp. Med 170 (1) (1989) 145-161, https:// doi.org/10.1084/jem.170.1.145. [4] R. Patarca, G.J. Freeman, R.P. Singh, F.Y. Wei, T. Durfee, F. Blattner, D. C. Regnier, C.A. Kozak, B.A. Mock, H.C. Morse 3rd, T.R. Jerrells, H. Cantor, 早期 T 细胞激活 1 (Eta-1) 基因的结构和功能研究. 定义与对细菌感染的遗传抗性相关的新型 T 细胞依赖性反应, J. Exp. Med 170 (1) (1989) 145-161, https:// doi.org/10.1084/jem.170.1.145.
[5] A. Oldberg, A. Franzén, D. Heinegård, Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence, Proc. Natl. Acad. Sci. USA 83 (23) (1986) 8819-8823, https://doi.org/10.1073/ pnas.83.23.8819. [5] A. Oldberg, A. Franzén, D. Heinegård, 克隆和序列分析大鼠骨硅蛋白(骨钙素)cDNA 揭示了 Arg-Gly-Asp 细胞结合序列, Proc. Natl. Acad. Sci. USA 83 (23) (1986) 8819-8823, https://doi.org/10.1073/ pnas.83.23.8819.
[6] N. Clemente, D. Raineri, G. Cappellano, E. Boggio, F. Favero, M.F. Soluri, C. Dianzani, C. Comi, U. Dianzani, A. Chiocchetti, Osteopontin bridging innate and adaptive immunity in autoimmune diseases, J. Immunol. Res 2016 (2016) 7675437, https://doi.org/10.1155/2016/7675437. [6]N.克莱门特、D.雷内里、G.卡佩拉诺、E.博基奥、F.法维罗、M.F.索卢里、C.迪安扎尼、C.科米、U.迪安扎尼、A.乔奇亚提,骨钙素在自身免疫性疾病中连接先天和适应性免疫,J.免疫学研究 2016(2016)7675437,https://doi.org/10.1155/2016/7675437。
[7] M.A. Icer, M. Gezmen-Karadag, The multiple functions and mechanisms of osteopontin, Clin. Biochem 59 (2018) 17-24, https://doi.org/10.1016/j. clinbiochem.2018.07.003. [7]马丁·A·伊泽尔,马利亚·格兹门-卡拉达格,骨桥蛋白的多重功能和机制,临床生化学 59 (2018) 17-24, https://doi.org/10.1016/j.clinbiochem.2018.07.003.
[8] L.W. Fisher, D.A. Torchia, B. Fohr, M.F. Young, N.S. Fedarko, Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin, Biochem Biophys. Res Commun. 280 (2) (2001) 460-465, https://doi.org/10.1006/bbrc.2000.4146. [8] L.W. Fisher, D.A. Torchia, B. Fohr, M.F. Young, N.S. Fedarko, SIBLING 蛋白、骨垢蛋白和骨桥蛋白的柔性结构, Biochem Biophys. Res Commun. 280 (2) (2001) 460-465, https://doi.org/10.1006/bbrc.2000.4146.
[9] M.A. Briones-Orta, S.E. Avendaño-Vázquez, D.I. Aparicio-Bautista, J.D. Coombes, G.F. Weber, W.K. Syn, Osteopontin splice variants and polymorphisms in cancer progression and prognosis, Biochim Biophys. Acta Rev. Cancer 1868 (1) (2017) 93-108.A, https://doi.org/10.1016/j.bbcan.2017.02.005. [9] M.A. Briones-Orta, S.E. Avendaño-Vázquez, D.I. Aparicio-Bautista, J.D. Coombes, G.F. Weber, W.K. Syn, 骨桥蛋白剪接异构体和多态性在癌症进展和预后中的作用,生物化学和生物物理学研究进展杂志 1868(1)(2017)93-108.A,https://doi.org/10.1016/j.bbcan.2017.02.005.
[10] E.Y. Lin, W. Xi, N. Aggarwal, M.L. Shinohara, Osteopontin (OPN)/SPP1: From its biochemistry to biological functions in the innate immune system and the central nervous system (CNS, Int Immunol. (2022), https://doi.org/10.1093/intimm/ dxac060. [10] E.Y. 林、W. 西、N. 阿加瓦尔、M.L. 东方,骨桥蛋白(OPN)/SPP1:从其生化到在先天免疫系统和中枢神经系统(CNS)的生物功能,Int Immunol.(2022),https://doi.org/10.1093/intimm/ dxac060.
[11] Z. Song, W. Chen, D. Athavale, X. Ge, R. Desert, S. Das, H. Han, N. Nieto, Osteopontin takes center stage in chronic liver disease, Hepatology 73 (4) (2021) 1594-1608, https://doi.org/10.1002/hep.31582. [11] 松 Z.、陈 W.、阿瓦莱 D.、戈 X.、沙漠 R.、达斯 S.、韩 H.、涅托 N. 。骨桥蛋白在慢性肝病中扮演核心角色。肝脏学 73 (4) (2021) 1594-1608, https://doi.org/10.1002/hep.31582.
[12] E.S. Sørensen, L.K. Rasmussen, L. Møller, P.H. Jensen, P. Højrup, T.E. Petersen, Localization of transglutaminase-reactive glutamine residues in bovine osteopontin, Pt 1, Biochem J. 304 (Pt 1) (1994) 13-16, https://doi.org/10.1042/ bj3040013. [12]索伦森,拉斯穆森,默勒,詹森,霍克鲁普,彼得森。牛骨连蛋白中谷氨酰基转移酶反应性谷氨酰基残基的定位。第一部分。生化学杂志。304(第 1 部分)(1994 年)13-16。https://doi.org/10.1042/bj3040013。
[13] N. Barizzone, M. Marchini, F. Cappiello, A. Chiocchetti, E. Orilieri, D. Ferrante, L. Corrado, S. Mellone, R. Scorza, U. Dianzani, S. D’Alfonso, Association of [13] 巴里佐内,马尔奇尼,卡皮耶罗,基奥凯蒂,奥里利尔里,费兰特,科拉多,梅洛内,斯科尔扎,迪安扎尼,阿尔方索之间的关联
osteopontin regulatory polymorphisms with systemic sclerosis, Hum. Immunol. 72 (10) (2011) 930-934, https://doi.org/10.1016/j.humimm.2011.06.009. 骨桥蛋白调节多态性与系统性硬化症, Hum. Immunol. 72 (10) (2011) 930-934, https://doi.org/10.1016/j.humimm.2011.06.009.
[14] K.X. Wang, D.T. Denhardt, Osteopontin: role in immune regulation and stress responses, Cytokine Growth Factor Rev. 19 (5-6) (2008) 333-345, https://doi. org/10.1016/j.cytogfr.2008.08.001. [14] 王凯欣, 丹尼尔·丁霍特, 骨桥蛋白: 在免疫调节和应激反应中的作用, 细胞因子和生长因子评论, 19 (5-6) (2008) 333-345, https://doi.org/10.1016/j.cytogfr.2008.08.001.
[15] G.F. Weber, The phylogeny of osteopontin-analysis of the protein sequence, Int J. Mol. Sci. 19 (9) (2018), https://doi.org/10.3390/ijms19092557. [15] G.F. Weber, 骨连蛋白的系统进化分析,《国际分子科学杂志》19 (9) (2018), https://doi.org/10.3390/ijms19092557.
[16] C.C. Kazanecki, D.J. Uzwiak, D.T. Denhardt, Control of osteopontin signaling and function by post-translational phosphorylation and protein folding, J. Cell Biochem 102 (4) (2007) 912-924, https://doi.org/10.1002/jcb.21558. [16] C.C. Kazanecki, D.J. Uzwiak, D.T. Denhardt,通过翻译后磷酸化和蛋白质折叠控制骨桥蛋白信号传导和功能,J. Cell Biochem 102 (4) (2007) 912-924, https://doi.org/10.1002/jcb.21558.
[17] D. Kurzbach, G. Platzer, T.C. Schwarz, M.A. Henen, R. Konrat, D. Hinderberger, Cooperative unfolding of compact conformations of the intrinsically disordered protein osteopontin, Biochemistry 52 (31) (2013) 5167-5175, https://doi.org/ 10.1021/bi400502c. [17] D. Kurzbach, G. Platzer, T.C. Schwarz, M.A. Henen, R. Konrat, D. Hinderberger,内源性无序蛋白骨桥蛋白的协同解折叠, 生物化学 52(31)(2013)5167-5175, https://doi.org/10.1021/bi400502c.
[18] M.L. Shinohara, L. Lu, J. Bu, M.B. Werneck, K.S. Kobayashi, L.H. Glimcher, H. Cantor, Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells, Nat. Immunol. 7 (5) (2006) 498-506, https://doi. org/10.1038/ni1327. [18] M.L. Shinohara, L. Lu, J. Bu, M.B. Werneck, K.S. Kobayashi, L.H. Glimcher, H. Cantor, 骨桥蛋白的表达对浆细胞样树突细胞产生干扰素-α至关重要,Nat. Immunol. 7 (5) (2006) 498-506, https://doi.org/10.1038/ni1327.
[19] H.R. Moorman, D. Poschel, J.D. Klement, C. Lu, P.S. Redd, K. Liu, Osteopontin: a key regulator of tumor progression and immunomodulation, Cancers (Basel) 12 (11) (2020), https://doi.org/10.3390/cancers12113379. [19] H.R. Moorman, D. Poschel, J.D. Klement, C. Lu, P.S. Redd, K. Liu,骨桥蛋白:肿瘤进展和免疫调节的关键调节因子, Cancers (Basel) 12 (11) (2020), https://doi.org/10.3390/cancers12113379.
[20] Y. Yokosaki, K. Tanaka, F. Higashikawa, K. Yamashita, A. Eboshida, Distinct structural requirements for binding of the integrins alphavbeta6, alphavbeta3, alphavbeta5, alpha5beta1 and alpha9beta1 to osteopontin, Matrix Biol. 24 (6) (2005) 418-427, https://doi.org/10.1016/j.matbio.2005.05.005. [20] 横锡勇,田中刚,东川富夫,山下绚,海老岛明,α腺亚基 6、α腺亚基 3、α腺亚基 5、α5β1 和α9β1 与骨桥蛋白结合的不同结构要求,Matrix Biol. 24 (6) (2005) 418-427, https://doi.org/10.1016/j.matbio.2005.05.005.
[21] Y. Yokosaki, N. Matsuura, T. Sasaki, I. Murakami, H. Schneider, S. Higashiyama, Y. Saitoh, M. Yamakido, Y. Taooka, D. Sheppard, The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin, J. Biol. Chem. 274 (51) (1999) 36328-36334, https://doi.org/10.1074/jbc.274.51.36328. [21] 横咲,松浦,佐々木,村上,施耐德,东山,齐藤,山木户,涛冈,舒帕德。整合素 α9β1 与通过凝血酶切割而产生的骨桥蛋白 N 端片段中的新的识别序列 (SVVYGLR) 相结合, J. Biol. Chem. 274 (51) (1999) 36328-36334, https://doi.org/10.1074/jbc.274.51.36328。
[22] S.T. Barry, S.B. Ludbrook, E. Murrison, C.M. Horgan, Analysis of the alpha4beta1 integrin-osteopontin interaction, Exp. Cell Res 258 (2) (2000) 342-351, https:// doi.org/10.1006/excr.2000.4941. [22] S.T. 巴里, S.B. 卢德布鲁克, E. 默里森, C.M. 何根, alpha4beta1 整合素-骨桥蛋白相互作用分析, Exp. Cell Res 258 (2) (2000) 342-351, https:// doi.org/10.1006/excr.2000.4941.
[23] P.M. Green, S.B. Ludbrook, D.D. Miller, C.M. Horgan, S.T. Barry, Structural elements of the osteopontin SVVYGLR motif important for the interaction with alpha(4) integrins, FEBS Lett. 503 (1) (2001) 75-79, https://doi.org/10.1016/ s0014-5793(01)02690-4. [23]P.M. Green、S.B. Ludbrook、D.D. Miller、C.M. Horgan、S.T. Barry,《骨桥蛋白 SVVYGLR 序列中与α4 整合素相互作用的重要结构元件》,FEBS Lett. 503 (1) (2001) 75-79, https://doi.org/10.1016/ s0014-5793(01)02690-4.
[24] R. Agnihotri, H.C. Crawford, H. Haro, L.M. Matrisian, M.C. Havrda, L. Liaw, Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin, J. Biol. Chem. 276 (30) (2001) 28261-28267, https://doi.org/10.1074/jbc.M103608200. [24] R. 阿格尼霍特里, H.C. 克劳福德, H. 哈罗, L.M. 马特里西安, M.C. 哈弗达, L. 里亚, 骨茎素是基质金属蛋白酶-3(间质溶菌酶-1)和基质金属蛋白酶-7(溶菌酶)的新底物, J. 生物化学. 276 (30) (2001) 28261-28267, https://doi.org/10.1074/jbc.M103608200.
[25] J. Hu, G. Li, P. Zhang, X. Zhuang, G. Hu, A CD44v(+) subpopulation of breast cancer stem-like cells with enhanced lung metastasis capacity, Cell Death Dis. 8 (3) (2017), e2679, https://doi.org/10.1038/cddis.2017.72. [25] J. 胡, G. 李, P. 张, X. 庄, G. 胡, CD44v(+)乳腺癌干细胞亚群具有增强的肺转移能力, Cell Death Dis. 8 (3) (2017), e2679, https://doi.org/10.1038/cddis.2017.72.
[26] D.T. Denhardt, X. Guo, Osteopontin: a protein with diverse functions, Faseb J. 7 (15) (1993) 1475-1482. [26] D.T. Denhardt, X. Guo, 骨桥蛋白:一种具有多种功能的蛋白质, Faseb J. 7 (15) (1993) 1475-1482.
[27] F.P. Ross, J. Chappel, J.I. Alvarez, D. Sander, W.T. Butler, M.C. Farach-Carson, K. A. Mintz, P.G. Robey, S.L. Teitelbaum, D.A. Cheresh, Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption, J. Biol. Chem. 268 (13) (1993) 9901-9907. [27] F.P. Ross, J. Chappel, J.I. Alvarez, D. Sander, W.T. Butler, M.C. Farach-Carson, K. A. Mintz, P.G. Robey, S.L. Teitelbaum, D.A. Cheresh, 骨基质蛋白骨质钙化磷蛋白和骨钙磷糖蛋白与破骨细胞整合素α V β 3 之间的相互作用增强了骨吸收, 生物化学杂志, 268 (13) (1993) 9901-9907.
[28] M.A. Chellaiah, K.A. Hruska, The integrin alpha(v)beta(3) and CD44 regulate the actions of osteopontin on osteoclast motility, Calcif. Tissue Int 72 (3) (2003) 197-205, https://doi.org/10.1007/s00223-002-1025-6. [28]M.A. Chellaiah、K.A. Hruska,整合素α(v)β(3)和 CD44 调节骨钙素在骨细胞运动中的作用,Calcif. Tissue Int 72 (3) (2003) 197-205, https://doi.org/10.1007/s00223-002-1025-6.
[29] C.E. Pedraza, L.G. Nikolcheva, M.T. Kaartinen, J.E. Barralet, M.D. McKee, Osteopontin functions as an opsonin and facilitates phagocytosis by macrophages of hydroxyapatite-coated microspheres: implications for bone wound healing, Bone 43 (4) (2008) 708-716, https://doi.org/10.1016/j.bone.2008.06.010. [29] C.E. Pedraza, L.G. Nikolcheva, M.T. Kaartinen, J.E. Barralet, M.D. McKee, 骨骼蛋白可以作为启动蛋白,促进巨噬细胞吞噬覆盖羟基磷灰石的微球,对骨伤愈合有重要意义, Bone 43 (4) (2008) 708-716, https://doi.org/10.1016/j.bone.2008.06.010.
[30] A.L. Boskey, L. Spevak, E. Paschalis, S.B. Doty, M.D. McKee, Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone, Calcif. Tissue Int 71 (2) (2002) 145-154, https://doi.org/10.1007/s00223-001-1121-z. [30] A.L. 博斯基, L. 斯佩维克, E. 帕斯卡利斯, S.B. 多蒂, M.D. 麦基, 骨钙化素缺乏增加小鼠骨骼的矿物质含量和矿物质结晶性, Calcif. Tissue Int 71 (2) (2002) 145-154, https://doi.org/10.1007/s00223-001-1121-z.
[31] Y. Matsui, S.R. Rittling, H. Okamoto, M. Inobe, N. Jia, T. Shimizu, M. Akino, T. Sugawara, J. Morimoto, C. Kimura, S. Kon, D. Denhardt, A. Kitabatake, T. Uede, Osteopontin deficiency attenuates atherosclerosis in female apolipoprotein E-deficient mice, Arterioscler. Thromb. Vasc. Biol. 23 (6) (2003) 1029-1034, https://doi.org/10.1161/01.Atv.0000074878.29805.D0. [31] 松井润一,S.R. Rittling,冈本宏,祢扉,贾宁,清水郁,明野真一,菅原健,盛本敏郎,木村千枝子,昆成治,D. Denhardt,北坂晃,上出利光, 阿波蛋白 E 缺乏型雌性小鼠骨孢蛋白缺乏可减弱动脉粥样硬化,动脉硬化、血栓和血管生物学杂志, 23 (6) (2003) 1029-1034, https://doi.org/10.1161/01.Atv.0000074878.29805.D0.
[32] J.A. Wesson, R.J. Johnson, M. Mazzali, A.M. Beshensky, S. Stietz, C. Giachelli, L. Liaw, C.E. Alpers, W.G. Couser, J.G. Kleinman, J. Hughes, Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules, J. Am. Soc. Nephrol. 14 (1) (2003) 139-147, https://doi.org/10.1097/ 01.asn.0000040593.93815.9d. [32] J.A. 韦森,R.J. 约翰逊,M. 马扎利,A.M. 贝申斯基,S. 斯蒂茨,C. 贾切利,L. 利奥,C.E. 阿尔珀斯,W.G. 考瑟,J.G. 克莱恩曼,J. 休斯,骨钙素是钙氧酸盐结晶形成和滞留肾小管的关键抑制剂,J. Am. Soc. Nephrol. 14 (1) (2003) 139-147, https://doi.org/10.1097/01.asn.0000040593.93815.9d.
[33] B. Kaleta, The role of osteopontin in kidney diseases, Inflamm. Res 68 (2) (2019) 93-102, https://doi.org/10.1007/s00011-018-1200-5. [33] B. 卡莱塔,骨粘蛋白在肾脏疾病中的作用,炎症研究 68 (2) (2019) 93-102,https://doi.org/10.1007/s00011-018-1200-5.
[34] S. Ashkar, G.F. Weber, V. Panoutsakopoulou, M.E. Sanchirico, M. Jansson, S. Zawaideh, S.R. Rittling, D.T. Denhardt, M.J. Glimcher, H. Cantor, Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity, Science 287 (5454) (2000) 860-864, https://doi.org/10.1126/science.287.5454.860. [34] S. 阿什卡尔, G.F. 韦伯, V. 帕诺乌萨科普洛斯, M.E. 桑基里科, M. 扬松, S. 扎瓦伊德, S.R. 里特林, D.T. 登哈特, M.J. 格利默, H. 坎特, Eta-1(骨桥蛋白): I 型(细胞介导)免疫的早期组成部分, Science 287 (5454) (2000) 860-864, https://doi.org/10.1126/science.287.5454.860.
[35] A. Nagasaka, H. Matsue, H. Matsushima, R. Aoki, Y. Nakamura, N. Kambe, S. Kon, T. Uede, S. Shimada, Osteopontin is produced by mast cells and affects IgEmediated degranulation and migration of mast cells, Eur. J. Immunol. 38 (2) (2008) 489-499, https://doi.org/10.1002/eji.200737057. [35] A. 长坂、H. 松江、H. 松岛、R. 青木、Y. 中村、N. 神部、S. 近、T. 上出、S. 岛田, 骨粥蛋白由肥大细胞产生,并影响 IgE 介导的肥大细胞脱颗粒和迁移, Eur. J. Immunol. 38 (2) (2008) 489-499, https://doi.org/10.1002/eji.200737057.
[36] H. Cantor, M.L. Shinohara, Regulation of T-helper-cell lineage development by osteopontin: the inside story, Nat. Rev. Immunol. 9 (2) (2009) 137-141, https:// doi.org/10.1038/nri2460. [36] H. 坎特尔, M.L. 篠原, 骨桥蛋白调节 T 辅助细胞系谱发育的内部故事, 免疫学评论. 9 (2) (2009) 137-141, https:// doi.org/10.1038/nri2460.
[37] L. Liaw, D.E. Birk, C.B. Ballas, J.S. Whitsitt, J.M. Davidson, B.L. Hogan, Altered wound healing in mice lacking a functional osteopontin gene (spp1), J. Clin. Invest 101 (7) (1998) 1468-1478, https://doi.org/10.1172/jci2131. [37] L. 廖, D.E. 伯克, C.B. 巴莱斯, J.S. 惠特西特, J.M. 戴维森, B.L. 霍根, 缺乏功能性骨桥蛋白基因(spp1)的小鼠伤口愈合受到影响, J. 临床调查 101 (7) (1998) 1468-1478, https://doi.org/10.1172/jci2131.
[38] K. Miyazaki, Y. Okada, O. Yamanaka, A. Kitano, K. Ikeda, S. Kon, T. Uede, S. R. Rittling, D.T. Denhardt, W.W. Kao, S. Saika, Corneal wound healing in an osteopontin-deficient mouse, Invest Ophthalmol. Vis. Sci. 49 (4) (2008) 1367-1375, https://doi.org/10.1167/iovs.07-1007. 宫崎凯,冈田养、山中修、北野晃、池田笠雄、近藤实、植出俊、罗迪林格、丁迪恩博士、加藤宽次郎、酒井昭子,缺乏骨连蛋白的小鼠角膜创伤愈合,眼科视觉研究学报,49(4)(2008)1367-1375,https://doi.org/10.1167/iovs.07-1007.
[39] W. Wang, P. Li, W. Li, J. Jiang, Y. Cui, S. Li, Z. Wang, Osteopontin activates mesenchymal stem cells to repair skin wound, PLoS One 12 (9) (2017), e0185346, https://doi.org/10.1371/journal.pone.0185346. [39] W. 王, P. 李, W. 李, J. 蒋, Y. 崔, S. 李, Z. 王, 骨粒素激活间充质干细胞修复皮肤创伤, PLoS One 12 (9) (2017), e0185346, https://doi.org/10.1371/journal.pone.0185346.
[40] Y. Lenga, A. Koh, A.S. Perera, C.A. McCulloch, J. Sodek, R. Zohar, Osteopontin expression is required for myofibroblast differentiation, Circ. Res 102 (3) (2008) 319-327, https://doi.org/10.1161/circresaha.107.160408. [40]雷嫚语、柯安娜、珀拉阿思、麦克库洛克卡尔、苏台克、祖哈。骨桥蛋白表达是肌成纤维细胞分化所需要的。循环研究 102(3)(2008)319-327,https://doi.org/10.1161/circresaha.107.160408.
[41] R. Jiang, B. Lönnerdal, Effects of milk osteopontin on intestine, neurodevelopment, and immunity, Nestle Nutr. Inst. Workshop Ser. 94 (2020) 152-157, https://doi.org/10.1159/000505067. [41] R. 姜,B. 隆内达尔,牛奶骨茎蛋白对肠道、神经发育和免疫的影响,雀巢营养学院研讨会文集 94 (2020) 152-157, https://doi.org/10.1159/000505067.
[42] A. Aksan, I. Erdal, S.S. Yalcin, J. Stein, G. Samur, Osteopontin levels in human milk are related to maternal nutrition and infant health and growth, Nutrients 13 (8) (2021), https://doi.org/10.3390/nu13082670. [42] A. 阿克桑, I. 埃尔达尔, S.S. 亚尔钦, J. 斯坦, G. 萨穆尔, 人乳中骨粉蛋白水平与母亲营养和婴儿健康和生长有关, Nutrients 13 (8) (2021), https://doi.org/10.3390/nu13082670.
[43] K. Aasmul-Olsen, N.L. Henriksen, D.N. Nguyen, A.B. Heckmann, T. Thymann, P. T. Sangild, S.B. Bering, Milk Osteopontin for Gut, Immunity and Brain Development in Preterm Pigs, Nutrients 13 (8) (2021), https://doi.org/10.3390/ nu13082675. [43] K. 阿斯穆尔-奥尔森, N.L. 亨里克森, D.N. 阮, A.B. 赫克曼, T. 泰曼, P. T. 桑吉耳, S.B. 柏林, 母乳骨桥蛋白对早产猪肠道、免疫和大脑发育的作用, Nutrients 13 (8) (2021), https://doi.org/10.3390/ nu13082675.
[44] V.J. Thannickal, G.B. Toews, E.S. White, J.P. Lynch 3rd, F.J. Martinez, Mechanisms of pulmonary fibrosis, Annu Rev. Med 55 (2004) 395-417, https:// doi.org/10.1146/annurev.med.55.091902.103810. [44] V.J. 萨尼克卡尔, G.B. 图弗斯, E.S. 怀特, J.P. 林奇三世, F.J. 马丁内斯, 肺纤维化的机制, 年度医学评论 55 (2004) 395-417, https://doi.org/10.1146/annurev.med.55.091902.103810.
[45] Q. Mei, Z. Liu, H. Zuo, Z. Yang, J. Qu, Idiopathic pulmonary fibrosis: an update on pathogenesis, Front Pharm. 12 (2021), 797292, https://doi.org/10.3389/ fphar.2021.797292. [45] 梅泉, 刘镇, 左宏, 杨智, 屈嘉. 特发性肺纤维化:致病机理的最新进展, 药学前沿. 12 (2021), 797292, https://doi.org/10.3389/fphar.2021.797292.
[46] T. Parimon, C. Yao, B.R. Stripp, P.W. Noble, P. Chen, Alveolar epithelial type ii cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis, Int J. Mol. Sci. 21 (7) (2020), https://doi.org/10.3390/ijms21072269. [46]T. Parimon,C. Yao,B.R. Stripp,P.W. Noble,P. Chen,间质性肺纤维化中的肺泡上皮 II 型细胞作为驱动因子,Int J. Mol. Sci.21 (7) (2020),https://doi.org/10.3390/ijms21072269.
[47] T. Parimon, M.S. Hohmann, C. Yao, Cellular senescence: pathogenic mechanisms in lung fibrosis, Int J. Mol. Sci. 22 (12) (2021), https://doi.org/10.3390/ ijms22126214. [47] T. 帕里蒙,M.S. 霍曼,C. 姚,细胞衰老:肺纤维化的致病机理,《国际分子科学杂志》22(12)(2021),https://doi.org/10.3390/ijms22126214.
[48] K. Shenderov, S.L. Collins, J.D. Powell, M.R. Horton, Immune dysregulation as a driver of idiopathic pulmonary fibrosis, J. Clin. Invest 131 (2) (2021), https://doi. org/10.1172/jci143226. [48]K. Shenderov, S.L. Collins, J.D. Powell, M.R. Horton, 免疫失调作为特发性肺纤维化的驱动因素, J. Clin. Invest 131 (2) (2021), https://doi.org/10.1172/jci143226.
[49] D.M. Serlin, P.P. Kuang, M. Subramanian, A. O’Regan, X. Li, J.S. Berman, R. H. Goldstein, Interleukin-1beta induces osteopontin expression in pulmonary fibroblasts, J. Cell Biochem 97 (3) (2006) 519-529, https://doi.org/10.1002/ jcb. 20661. [49] D.M. Serlin, P.P. Kuang, M. Subramanian, A. O'Regan, X. Li, J.S. Berman, R. H. Goldstein, 白介素-1β诱导肺成纤维细胞表达骨桥蛋白, J. Cell Biochem 97 (3) (2006) 519-529, https://doi.org/10.1002/ jcb. 20661.
[50] Y. Morimoto, K. Hirahara, M. Kiuchi, T. Wada, T. Ichikawa, T. Kanno, M. Okano, K. Kokubo, A. Onodera, D. Sakurai, Y. Okamoto, T. Nakayama, Amphiregulinproducing pathogenic memory T helper 2 cells instruct eosinophils to secrete osteopontin and facilitate airway fibrosis, e6, Immunity 49 (1) (2018) 134-150, https://doi.org/10.1016/j.immuni.2018.04.023. [50] 森本 善彦, 平原 憲夫, 木内 晶子, 和田 剛正, 市川 貴弘, 菅野 智之, 岡野 勝之, 国保 清, 小野寺 彰, 桜井 大輔, 岡本 義治, 中山 敏英, 分泌アンフィレグリンを産生する病原性記憶 T ヘルパー2 細胞は好酸球にオステオポンチンの分泌を指示し、気道線維症を促進する, e6, Immunity 49(1)(2018)134-150, https://doi.org/10.1016/j.immuni.2018.04.023.
[51] T. Shimodaira, K. Matsuda, T. Uchibori, M. Sugano, T. Uehara, T. Honda, Upregulation of osteopontin expression via the interaction of macrophages and fibroblasts under IL-1b stimulation, Cytokine 110 (2018) 63-69, https://doi.org/ 10.1016/j.cyto.2018.04.025. [51] 下岛孝树、松田浩、内堀丰、菅野光宏、上原崇、本田孝之,在白细胞介素-1β刺激下,巨噬细胞与成纤维细胞相互作用引起骨桥蛋白表达上调,细胞因子,110(2018)63-69,https://doi.org/10.1016/j.cyto.2018.04.025.
[52] X. Gao, G. Jia, A. Guttman, D.J. DePianto, K.B. Morshead, K.H. Sun, N. Ramamoorthi, J.A. Vander Heiden, Z. Modrusan, P.J. Wolters, A. Jahreis, J. R. Arron, D. Khanna, T.R. Ramalingam, Osteopontin Links Myeloid Activation and Disease Progression in Systemic Sclerosis, Cell Rep. Med 1 (8) (2020), 100140, https://doi.org/10.1016/j.xcrm.2020.100140. [52] X. 高, G. 贾, A. 古特曼, D.J. DePianto, K.B. 莫斯黑德, K.H. 孙, N. 拉马莫尔蒂, J.A. 范德海登, Z. 莫纳森, P.J. 沃尔特斯, A. 贾斯, J. R. 阿龙, D. 卡纳, T.R. 拉马林根, 骨桥蛋白链接骨髓激活和系统性硬化的疾病进展, Cell Rep. Med 1 (8) (2020), 100140, https://doi.org/10.1016/j.xcrm.2020.100140.
[53] T. Tsukui, S. Ueha, J. Abe, S. Hashimoto, S. Shichino, T. Shimaoka, F.H. Shand, Y. Arakawa, K. Oshima, M. Hattori, Y. Inagaki, M. Tomura, K. Matsushima, Qualitative rather than quantitative changes are hallmarks of fibroblasts in bleomycin-induced pulmonary fibrosis, Am. J. Pathol. 183 (3) (2013) 758-773, https://doi.org/10.1016/j.ajpath.2013.06.005. [53]T. Tsukui, S. Ueha, J. Abe, S. Hashimoto, S. Shichino, T. Shimaoka, F.H. Shand, Y. Arakawa, K. Oshima, M. Hattori, Y. Inagaki, M. Tomura, K. Matsushima,在致密素诱导的肺纤维化中,纤维细胞的特征是质的变化而非量的变化,《美国病理学杂志》183(3)(2013)758-773,https://doi.org/10.1016/j.ajpath.2013.06.005。
[54] A. Kato, T. Okura, C. Hamada, S. Miyoshi, H. Katayama, J. Higaki, R. Ito, Cell stress induces upregulation of osteopontin via the ERK pathway in type II alveolar epithelial cells, PLoS One 9 (6) (2014), e100106, https://doi.org/10.1371/ journal.pone.0100106. [54] 加藤 A.、奥良 T.、浜田 C.、三好 S.、片山 H.、飯高 J.、伊藤 R.。II 型肺胞上皮細胞中的细胞应激通过 ERK 通路诱导骨髓蛋白的上调,PLoS One 9 (6) (2014),e100106,https://doi.org/10.1371/journal.pone.0100106。
[55] H. Wang, M. Wang, K. Xiao, X. Zhang, P. Wang, S. Xiao, H. Qi, L. Meng, X. Zhang, F. Shen, Bioinformatics analysis on differentially expressed genes of alveolar macrophage in IPF, Exp. Lung Res 45 (9-10) (2019) 288-296, https://doi.org/ 10.1080/01902148.2019.1680765. [55] 王浩, 王梦雅, 肖凯, 张晓, 王鹏, 肖舒, 齐慧, 孟璐, 张欣, 沈峰, 肺间质纤维化患者肺泡巨噬细胞差异表达基因的生物信息学分析, 实验性肺病研究 45 (9-10) (2019) 288-296, https://doi.org/10.1080/01902148.2019.1680765.
[56] M.W. Foster, L.D. Morrison, J.L. Todd, L.D. Snyder, J.W. Thompson, E. J. Soderblom, K. Plonk, K.J. Weinhold, R. Townsend, A. Minnich, M.A. Moseley, Quantitative proteomics of bronchoalveolar lavage fluid in idiopathic pulmonary fibrosis, J. Proteome Res 14 (2) (2015) 1238-1249, https://doi.org/10.1021/ pr501149m. [56] M.W. Foster, L.D. Morrison, J.L. Todd, L.D. Snyder, J.W. Thompson, E. J. Soderblom, K. Plonk, K.J. Weinhold, R. Townsend, A. Minnich, M.A. Moseley, 特发性肺纤维化支气管肺泡灌洗液的定量蛋白质学, J. Proteome Res 14 (2) (2015) 1238-1249, https://doi.org/10.1021/ pr501149m.
[57] Y. Cui, J. Ji, J. Hou, Y. Tan, X. Han, Identification of key candidate genes involved in the progression of idiopathic pulmonary fibrosis, Molecules 26 (4) (2021), https://doi.org/10.3390/molecules26041123. [57] 崔勇、季佳、侯煜、谭羿、韩欣. 特发性肺纤维化进展过程中关键候选基因的鉴定. 分子, 26(4)(2021), https://doi.org/10.3390/molecules26041123.
[58] E. Tsitoura, A. Trachalaki, E. Vasarmidi, S. Mastrodemou, G.A. Margaritopoulos, M. Kokosi, D. Fanidis, A. Galaris, V. Aidinis, E. Renzoni, N. Tzanakis, A.U. Wells, K.M. Antoniou, Collagen 1a1 expression by airway macrophages increases in fibrotic ILDs and is associated with FVC Decline and increased mortality, Front Immunol. 12 (2021), 645548, https://doi.org/10.3389/fimmu.2021.645548. [58]E. Tsitoura, A. Trachalaki, E. Vasarmidi, S. Mastrodemou, G.A. Margaritopoulos, M. Kokosi, D. Fanidis, A. Galaris, V. Aidinis, E. Renzoni, N. Tzanakis, A.U. Wells, K.M. Antoniou, 肺间质性肺病中肺泡巨噬细胞 1a1 型胶原蛋白表达增加,与肺功能下降和死亡率升高相关,Front Immunol. 12 (2021), 645548, https://doi.org/10.3389/fimmu.2021.645548.
[59] J.S. Berman, D. Serlin, X. Li, G. Whitley, J. Hayes, D.C. Rishikof, D.A. Ricupero, L. Liaw, M. Goetschkes, A.W. O’Regan, Altered bleomycin-induced lung fibrosis in osteopontin-deficient mice, Am. J. Physiol. Lung Cell Mol. Physiol. 286 (6) (2004) L1311-L1318, https://doi.org/10.1152/ajplung.00394.2003. [59] J.S. Berman, D. Serlin, X. Li, G. Whitley, J. Hayes, D.C. Rishikof, D.A. Ricupero, L. Liaw, M. Goetschkes, A.W. O'Regan, 骨桥蛋白缺乏对慢性布鲁霉素诱导肺纤维化的影响, 美国生理学会杂志.肺细胞分子生理学, 286 (6) (2004) L1311-L1318, https://doi.org/10.1152/ajplung.00394.2003.
[60] J. Dong, Q. Ma, Osteopontin enhances multi-walled carbon nanotube-triggered lung fibrosis by promoting TGF- beta1\beta 1 activation and myofibroblast differentiation, Part Fibre Toxicol. 14 (1) (2017) 18, https://doi.org/10.1186/s12989-017-0198 0. [60] J. 董敏, Q. 马, 骨桥蛋白增强多壁碳纳米管引发的肺纤维化,通过促进 TGF- beta1\beta 1 激活和肌纤维细胞分化,Part Fibre Toxicol. 14 (1) (2017) 18, https://doi.org/10.1186/s12989-017-0198 0.
[61] T.O. Khaliullin, E.R. Kisin, A.R. Murray, N. Yanamala, M.R. Shurin, D.W. Gutkin, L.M. Fatkhutdinova, V.E. Kagan, A.A. Shvedova, Mediation of the single-walled carbon nanotubes induced pulmonary fibrogenic response by osteopontin and TGF- beta1\beta 1, Exp. Lung Res 43 (8) (2017) 311-326, https://doi.org/10.1080/ 01902148.2017.1377783. [61] T.O. 哈利乌林, E.R. 基辛, A.R. 默里, N. 亚纳马拉, M.R. 舒林, D.W. 古特金, L.M. 法特赫特丁诺娃, V.E. 卡根, A.A. 施韦多瓦, 单壁碳纳米管诱导的肺纤维化反应由骨桥蛋白和 TGF- beta1\beta 1 介导, Exp. Lung Res 43 (8) (2017) 311-326, https://doi.org/10.1080/ 01902148.2017.1377783.
[62] O.F. Hatipoglu, E. Uctepe, G. Opoku, H. Wake, K. Ikemura, T. Ohtsuki, J. Inagaki, M. Gunduz, E. Gunduz, S. Watanabe, T. Nishinaka, H. Takahashi, S. Hirohata, Osteopontin silencing attenuates bleomycin-induced murine pulmonary fibrosis by regulating epithelial-mesenchymal transition, Biomed. Pharm. 139 (2021), 111633, https://doi.org/10.1016/j.biopha.2021.111633. [62] O.F. Hatipoglu, E. Uctepe, G. Opoku, H. Wake, K. Ikemura, T. Ohtsuki, J. Inagaki, M. Gunduz, E. Gunduz, S. Watanabe, T. Nishinaka, H. Takahashi, S. Hirohata, 涂抹霉素诱导的小鼠肺纤维化通过调节上皮间质转化而减弱, 生物医学与药物治疗, 139 (2021), 111633, https://doi.org/10.1016/j.biopha.2021.111633.
[63] A. Kumar, E. Elko, S.R. Bruno, Z.F. Mark, N. Chamberlain, B.K. Mihavics, R. Chandrasekaran, J. Walzer, M. Ruban, C. Gold, Y.W. Lam, S. Ghandikota, A. G. Jegga, J.L. Gomez, Y.M. Janssen-Heininger, V. Anathy, Inhibition of PDIA3 in club cells attenuates osteopontin production and lung fibrosis, Thorax 77 (7) (2022) 669-678, https://doi.org/10.1136/thoraxjnl-2021-216882. [63] A. 库马尔, E. 埃尔科, S.R. 布鲁诺, Z.F. 马克, N. 钱伯伦, B.K. 米哈维奇斯, R. 昌德拉塞卡兰, J. 瓦尔泽, M. 鲁班, C. 戈德, Y.W. 郎, S. 冈迪科塔, A. G. 杰格, J.L. 戈麦斯, Y.M. 詹森-海因塔, V. 阿那西, 抑制俱乐部细胞中的 PDIA3 可减弱骨骼鞘蛋白生产和肺纤维化, 胸腔 77 (7) (2022) 669-678, https://doi.org/10.1136/thoraxjnl-2021-216882.
[64] W.L. Zuo, M.R. Rostami, M. LeBlanc, R.J. Kaner, S.L. O’Beirne, J.G. Mezey, P. L. Leopold, K. Quast, S. Visvanathan, J.S. Fine, M.J. Thomas, R.G. Crystal, Dysregulation of club cell biology in idiopathic pulmonary fibrosis, PLoS One 15 (9) (2020), e0237529, https://doi.org/10.1371/journal.pone.0237529. [64] 左卫列、罗斯塔米、勒布朗、卡纳、奥贝恩、梅泽、利奥波德、奎斯特、维斯瓦纳森、法因、托马斯、水晶,特发性肺纤维化中俱乐部细胞生物学的失调,PLoS One 15 (9) (2020), e0237529, https://doi.org/10.1371/journal.pone.0237529.
[65] S.Y. Park, J.Y. Hong, S.Y. Lee, S.H. Lee, M.J. Kim, S.Y. Kim, K.W. Kim, H.S. Shim, M.S. Park, C.G. Lee, J.A. Elias, M.H. Sohn, H.G. Yoon, Club cell-specific role of programmed cell death 5 in pulmonary fibrosis, Nat. Commun. 12 (1) (2021) 2923, https://doi.org/10.1038/s41467-021-23277-8. 朴世润, 洪正烨, 李世妍, 李承焕, 金玉姬, 金世妍, 金光浣, 沈亨秀, 朴美珠, 李成奎, J.A. Elias, 孙明熙, 尹海根。肺纤维化中俱乐部细胞特异性死亡 5 的作用。Nat. Commun. 12 (1) (2021) 2923, https://doi.org/10.1038/s41467-021-23277-8。
[66] J.J. Kathiriya, A.N. Brumwell, J.R. Jackson, X. Tang, H.A. Chapman, Distinct airway epithelial stem cells hide among club cells but mobilize to promote alveolar regeneration, e4, Cell Stem Cell 26 (3) (2020) 346-358, https://doi.org/ 10.1016/j.stem.2019.12.014. [66] 卡西尔亚 JJ、布鲁韦尔 AN、杰克逊 JR、唐克 SI、查普曼 HA。不同的气道上皮干细胞隐藏在俱乐部细胞中,但能动员以促进肺泡再生,《细胞干细胞》26(3)(2020)346-358,https://doi.org/10.1016/j.stem.2019.12.014.
[67] K. Oh, M.W. Seo, Y.W. Kim, D.S. Lee, Osteopontin potentiates pulmonary inflammation and fibrosis by modulating il-17/ifn- gamma\gamma-secreting t-cell ratios in bleomycin-treated mice, Immune Netw. 15 (3) (2015) 142-149, https://doi.org/ 10.4110/in.2015.15.3.142. [67] K. 欧,M.W. 徐,Y.W. 金,D.S. 李,骨牵连蛋白通过调节白喉霉素处理小鼠中 IL-17/IFN-γ 分泌 T 细胞比率来增强肺部炎症和纤维化,免疫网络. 15 (3) (2015) 142-149, https://doi.org/ 10.4110/in.2015.15.3.142.
[68] C. Morse, T. Tabib, J. Sembrat, K.L. Buschur, H.T. Bittar, E. Valenzi, Y. Jiang, D. J. Kass, K. Gibson, W. Chen, A. Mora, P.V. Benos, M. Rojas, R. Lafyatis, Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis, Eur. Respir. J. 54 (2) (2019), https://doi.org/10.1183/13993003.024412018. 68] C. Morse, T. Tabib, J. Sembrat, K.L. Buschur, H.T. Bittar, E. Valenzi, Y. Jiang, D. J. Kass, K. Gibson, W. Chen, A. Mora, P.V. Benos, M. Rojas, R. Lafyatis, 特发性肺纤维化中增殖的 SPP1/MERTK 表达巨噬细胞, Eur. Respir. J. 54 (2) (2019), https://doi.org/10.1183/13993003.024412018.
[69] P. Ramachandran, R. Dobie, J.R. Wilson-Kanamori, E.F. Dora, B.E.P. Henderson, N.T. Luu, J.R. Portman, K.P. Matchett, M. Brice, J.A. Marwick, R.S. Taylor, M. Efremova, R. Vento-Tormo, N.O. Carragher, T.J. Kendall, J.A. Fallowfield, E. M. Harrison, D.J. Mole, S.J. Wigmore, P.N. Newsome, C.J. Weston, J.P. Iredale, F. Tacke, J.W. Pollard, C.P. Ponting, J.C. Marioni, S.A. Teichmann, N. C. Henderson, Resolving the fibrotic niche of human liver cirrhosis at single-cell level, Nature 575 (7783) (2019) 512-518, https://doi.org/10.1038/s41586-019-1631-3. [69] P. 拉马钦德兰, R. 多比, J.R. 威尔逊-卡纳摩尔, E.F. 多拉, B.E.P. 亨德森, N.T. 卢, J.R. 波特曼, K.P. 马彻特, M. 布赖斯, J.A. 马尔维克, R.S. 泰勒, M. 埃弗雷夫, R. 文托-托罗, N.O. 卡拉格尔, T.J. 肯德尔, J.A. 法洛菲尔德, E. M. 哈里森, D.J. 莫尔, S.J. 威格摩尔, P.N. 纽森, C.J. 韦斯顿, J.P. 艾雷德尔, F. 塔克, J.W. 波拉德, C.P. 庞汀, J.C. 马里奥尼, S.A. 泰希曼, N. C. 亨德森, 在单细胞水平上揭示人类肝硬化的纤维化的聚居地, Nature 575 (7783) (2019) 512-518, https://doi.org/10.1038/s41586-019-1631-3.
[70] K. Hoeft, G.J.L. Schaefer, H. Kim, D. Schumacher, T. Bleckwehl, Q. Long, B. M. Klinkhammer, F. Peisker, L. Koch, J. Nagai, M. Halder, S. Ziegler, E. Liehn, C. Kuppe, J. Kranz, S. Menzel, I. Costa, A. Wahida, P. Boor, R.K. Schneider, S. Hayat, R. Kramann, Platelet-instructed SPP1(+) macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner, Cell Rep. 42 (2) (2023), 112131, https://doi.org/10.1016/j.celrep.2023.112131. [70] K. Hoeft, G.J.L. Schaefer, H. Kim, D. Schumacher, T. Bleckwehl, Q. Long, B. M. Klinkhammer, F. Peisker, L. Koch, J. Nagai, M. Halder, S. Ziegler, E. Liehn, C. Kuppe, J. Kranz, S. Menzel, I. Costa, A. Wahida, P. Boor, R.K. Schneider, S. Hayat, R. Kramann, 血小板指导的 SPP1(+)巨噬细胞在纤维化中依赖于 CXCL4 促进肌纤维细胞激活, Cell Rep. 42 (2) (2023), 112131, https://doi.org/10.1016/j.celrep.2023.112131.
[71] J. Hou, J. Ji, X. Chen, H. Cao, Y. Tan, Y. Cui, Z. Xiang, X. Han, Alveolar epithelial cell-derived Sonic hedgehog promotes pulmonary fibrosis through OPNdependent alternative macrophage activation, Febs J. 288 (11) (2021) 3530-3546, https://doi.org/10.1111/febs.15669. [71] 侯佳,季健,陈希,曹慧,谭燕,崔怡,向政,韩晓. 肺泡上皮细胞衍生的 Sonic hedgehog 通过 OPN 依赖性的另类巨噬细胞活化促进肺纤维化. Febs J. 288 (11) (2021) 3530-3546, https://doi.org/10.1111/febs.15669.
[72] Y. Fujisawa, K. Matsuda, T. Uehara, Osteopontin enhances the migration of lung fibroblasts via upregulation of interleukin-6 through the extracellular signalregulated kinase (ERK) pathway, Biol. Chem. 401 (9) (2020) 1071-1080, https:// doi.org/10.1515/hsz-2020-0125. 藤泽 Y., 松田 K., 上原 T., 骨桥蛋白通过细胞外信号调节激酶(ERK)通路上调白介素-6,从而促进肺成纤维细胞的迁移, Biol. Chem. 401 (9) (2020) 1071-1080, https://doi.org/10.1515/hsz-2020-0125.
[73] R. Huang, C. Hao, D. Wang, Q. Zhao, C. Li, C. Wang, W. Yao, SPP1 derived from silica-exposed macrophage exosomes triggers fibroblast transdifferentiation, Toxicol. Appl. Pharm. 422 (2021), 115559, https://doi.org/10.1016/j. taap.2021.115559. [73] R. Huang, C. Hao, D. Wang, Q. Zhao, C. Li, C. Wang, W. Yao, 来自二氧化硅暴露巨噬细胞外泌体的 SPP1 引发纤维细胞转分化, 毒理学应用与药理学, 422 (2021), 115559, https://doi.org/10.1016/j. taap.2021.115559.
[74] X.M. Meng, S. Wang, X.R. Huang, C. Yang, J. Xiao, Y. Zhang, K.F. To, D.J. NikolicPaterson, H.Y. Lan, Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis, Cell Death Dis. 7 (12) (2016), e2495, https://doi.org/10.1038/cddis.2016.402. 孟小明, 王思, 黄小荣, 杨超, 肖杰, 张勇, 杜广峰, 尼古拉克-帕特森, 蓝海英, 炎症性巨噬细胞可能在肾脏纤维化过程中转分化为肌纤维细胞, 细胞死亡与疾病. 7 (12) (2016), e2495, https://doi.org/10.1038/cddis.2016.402.
[75] D. Ezhilarasan, Hepatic stellate cells in the injured liver: perspectives beyond hepatic fibrosis, J. Cell Physiol. 237 (1) (2022) 436-449, https://doi.org/ 10.1002/jcp. 30582. [75] D. 埃兹拉森,受损肝脏中的肝星状细胞:超越肝纤维化的视角,《细胞生理学杂志》237 卷(1 期)(2022 年)436-449 页,https://doi.org/10.1002/jcp.30582.
[76] R. Urtasun, A. Lopategi, J. George, T.M. Leung, Y. Lu, X. Wang, X. Ge, M.I. Fiel, N. Nieto, Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagenI via integrin alpha(V)beta(3)\alpha(\mathrm{V}) \beta(3) engagement and PI3K/pAkt/NFкB signaling, Hepatology 55 (2) (2012) 594-608, https://doi.org/10.1002/hep.24701. [76]贾润贤,阿尔阿普塔吉,乔治,T.M. Leung,卢洋,王霞,葛雪梅,迈克尔·菲尔,N. Nieto,骨桥蛋白, 一种对氧化应激敏感的细胞因子,通过整合素 alpha(V)beta(3)\alpha(\mathrm{V}) \beta(3) 的参与和 PI3K/pAkt/NFкB 信号通路上调Ⅰ型胶原,肝脏学,55(2)(2012) 594-608,https://doi.org/10.1002/hep.24701.
[77] E. Arriazu, X. Ge, T.M. Leung, F. Magdaleno, A. Lopategi, Y. Lu, N. Kitamura, R. Urtasun, N. Theise, D.J. Antoine, N. Nieto, Signalling via the osteopontin and high mobility group box-1 axis drives the fibrogenic response to liver injury, Gut 66 (6) (2017) 1123-1137, https://doi.org/10.1136/gutjnl-2015-310752. 77] E. Arriazu, X. Ge, T.M. Leung, F. Magdaleno, A. Lopategi, Y. Lu, N. Kitamura, R. Urtasun, N. Theise, D.J. Antoine, N. Nieto, 通过骨桥蛋白和高迁移率族群盒-1 轴的信号传递推动肝损伤的纤维化反应, Gut 66 (6) (2017) 1123-1137, https://doi.org/10.1136/gutjnl-2015-310752.
[78] X. Wang, A. Lopategi, X. Ge, Y. Lu, N. Kitamura, R. Urtasun, T.M. Leung, M.I. Fiel, N. Nieto, Osteopontin induces ductular reaction contributing to liver fibrosis, Gut 63 (11) (2014) 1805-1818, https://doi.org/10.1136/gutjnl-2013-306373. [78] X. 王, A. Lopategi, X. 葛, Y. 卢, N. Kitamura, R. Urtasun, T.M. Leung, M.I. Fiel, N. Nieto, 骨膜蛋白诱导导管性反应导致肝纤维化, 肠胃 63 (11) (2014) 1805-1818, https://doi.org/10.1136/gutjnl-2013-306373.
[79] R. Zhang, M. Wang, H. Lu, J. Wang, X. Han, Z. Liu, L. Li, M. Li, X. Tian, S. Chen, G. Zhang, Y. Xiong, J. Li, A miR-340/SPP1 axis inhibits the activation and [79] 张瑞, 王梅, 卢海, 王佳, 韩歆, 刘智, 李丽, 李美, 田雪, 陈舜, 张刚, 熊昱, 李军, miR-340/SPP1 轴抑制肌肉卫星细胞的活化和分化。
proliferation of hepatic stellate cells by inhibiting the TGF- beta1//\beta 1 / Smads pathway, Adv. Clin. Exp. Med (2022), https://doi.org/10.17219/acem/154996. 抑制 TGF- beta1//\beta 1 / Smad 通路来抑制肝星状细胞的增殖,Adv. Clin. Exp. Med (2022), https://doi.org/10.17219/acem/154996.
[80] Y. Chen, Y. Ou, J. Dong, G. Yang, Z. Zeng, Y. Liu, B. Liu, W. Li, X. He, T. Lan, Osteopontin promotes collagen I synthesis in hepatic stellate cells by miRNA-1295p inhibition, Exp. Cell Res 362 (2) (2018) 343-348, https://doi.org/10.1016/j. yexcr.2017.11.035. 陈耀, 欧阳, 董军, 杨刚, 曾志, 刘瑛, 刘斌, 李伟, 何雄, 蓝田. 骨连蛋白通过抑制 miRNA-129-5p 促进肝星细胞胶原 I 的合成, 细胞实验 362 (2) (2018) 343-348, https://doi.org/10.1016/j. yexcr.2017.11.035.
[81] G. Cui, J. Chen, Z. Wu, H. Huang, L. Wang, Y. Liang, P. Zeng, J. Yang, T. Uede, H. Diao, Thrombin cleavage of osteopontin controls activation of hepatic stellate cells and is essential for liver fibrogenesis, J. Cell Physiol. 234 (6) (2019) 8988-8997, https://doi.org/10.1002/jcp.27571. [81] G. 崔, J. 陈, Z. 吴, H. 黄, L. 王, Y. 梁, P. 曾, J. 杨, T. 上江田, H. 刁, 凝血酶切断骨桥蛋白控制肝星状细胞的活化,这对肝纤维化至关重要,J. Cell Physiol. 234 (6) (2019) 8988-8997, https://doi.org/10.1002/jcp.27571.
[82] V. Ophascharoensuk, C.M. Giachelli, K. Gordon, J. Hughes, R. Pichler, P. Brown, L. Liaw, R. Schmidt, S.J. Shankland, C.E. Alpers, W.G. Couser, R.J. Johnson, Obstructive uropathy in the mouse: role of osteopontin in interstitial fibrosis and apoptosis, Kidney Int 56 (2) (1999) 571-580, https://doi.org/10.1046/j.15231755.1999.00580.x. [82] V. 奥法查鲁森普,C.M. 吉雅切利,K. 戈登,J. 休斯,R. 皮克勒,P. 布朗,L. 利亚,R. 施密特,S.J. 尚克兰德,C.E. 阿尔珀斯,W.G. 库瑟,R.J. 约翰逊,小鼠梗阻性肾病:骨桥蛋白在肾间质纤维化和凋亡中的作用,肾脏国际 56 (2) (1999) 571-580, https://doi.org/10.1046/j.15231755.1999.00580.x.
[83] V.P. Persy, A. Verhulst, D.K. Ysebaert, K.E. De Greef, M.E.De Broe, Reduced postischemic macrophage infiltration and interstitial fibrosis in osteopontin knockout mice, Kidney Int 63 (2) (2003) 543-553, https://doi.org/10.1046/ j.1523-1755.2003.00767.x. [83] V.P. Persy, A. Verhulst, D.K. Ysebaert, K.E. De Greef, M.E.De Broe, 缺血后巨噬细胞浸润和肾间质纤维化减少于骨粘蛋白敲除小鼠,Kidney Int 63(2)(2003)543-553, https://doi.org/10.1046/j.1523-1755.2003.00767.x.
[84] T.K. Tan, G. Zheng, T.T. Hsu, S.R. Lee, J. Zhang, Y. Zhao, X. Tian, Y. Wang, Y. M. Wang, Q. Cao, Y. Wang, V.W. Lee, C. Wang, D. Zheng, S.I. Alexander, E. Thompson, D.C. Harris, Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage, Lab Invest 93 (4) (2013) 434-449, https://doi.org/10.1038/labinvest.2013.3. [84] T.K. 陈, G. 郑, T.T. 许, S.R. 李, J. 张, Y. 赵, X. 田, Y. 王, Y. M. 王, Q. 曹, Y. 王, V.W. 李, C. 王, D. 郑, S.I. 亚历山大, E. 汤普森, D.C. 哈里斯,基质金属蛋白酶-9 来自肾小管和巨噬细胞的来源有助于通过骨粉蛋白裂解引起巨噬细胞的迁移而参与肾脏纤维化的发病机制,实验研究 93 (4) (2013) 434-449, https://doi.org/10.1038/labinvest.2013.3.
[85] J. Irita, T. Okura, M. Jotoku, T. Nagao, D. Enomoto, M. Kurata, V.R. Desilva, K. Miyoshi, Y. Matsui, T. Uede, D.T. Denhardt, S.R. Rittiling, J. Higaki, Osteopontin deficiency protects against aldosterone-induced inflammation, oxidative stress, and interstitial fibrosis in the kidney, Am. J. Physiol. Ren. Physiol. 301 (4) (2011) F833-F844, https://doi.org/10.1152/ ajprenal.00557.2010. [85] J. Irita, T. Okura, M. Jotoku, T. Nagao, D. Enomoto, M. Kurata, V.R. Desilva, K. Miyoshi, Y. Matsui, T. Uede, D.T. Denhardt, S.R. Rittiling, J. Higaki,骨桥蛋白缺乏可以保护肾脏免受醛固酮诱导的炎症、氧化应激和肾小管间质纤维化,Am. J. Physiol. Ren. Physiol. 301 (4) (2011) F833-F844, https://doi.org/10.1152/ajprenal.00557.2010.
[86] T. Wolak, H. Kim, Y. Ren, J. Kim, N.D. Vaziri, S.B. Nicholas, Osteopontin modulates angiotensin II-induced inflammation, oxidative stress, and fibrosis of the kidney, Kidney Int 76 (1) (2009) 32-43, https://doi.org/10.1038/ki.2009.90. [86] T. 沃拉克,H. 金,Y. 任,J. 金,N.D. 瓦兹里,S.B. 尼古拉斯,骨钙素调节血管紧张素 II 诱导的肾脏炎症、氧化应激和纤维化,肾脏国际 76 (1) (2009) 32-43, https://doi.org/10.1038/ki.2009.90.
[87] S. Chen, M. Zhang, J. Li, J. Huang, S. Zhou, X. Hou, H. Ye, X. Liu, S. Xiang, W. Shen, J. Miao, F.F. Hou, Y. Liu, L. Zhou, beta\beta-catenin-controlled tubular cellderived exosomes play a key role in fibroblast activation via the OPN-CD44 axis, J. Extra Vesicles 11 (3) (2022), e12203, https://doi.org/10.1002/jev2.12203. [87] 陈松, 张梅, 李家, 黄娟, 周盛, 侯晓, 叶红, 刘祥, 向胜, 沈伟, 缪军, 侯福金, 刘洋, 周丽, beta\beta -catenin-controlled tubular cell-derived exosomes play a key role in fibroblast activation via the OPN-CD44 axis, J. Extra Vesicles 11 (3) (2022), e12203, https://doi.org/10.1002/jev2.12203.
[88] C.H. Chen, C.Y. Cheng, Y.C. Chen, Y.M. Sue, C.T. Liu, T.H. Cheng, Y.H. Hsu, T. H. Chen, MicroRNA-328 inhibits renal tubular cell epithelial-to-mesenchymal transition by targeting the CD44 in pressure-induced renal fibrosis, PLoS One 9 (6) (2014), e99802, https://doi.org/10.1371/journal.pone.0099802. [88]陈春红,程英菊,陈咏城,徐月明,刘春田,程天辉,徐扬晖,陈天辉。MicroRNA-328 抑制因压力引起的肾纤维化过程中的肾小管上皮细胞向间质细胞的转化,其靶点为 CD44。PLoS One 9 (6) (2014), e99802, https://doi.org/10.1371/journal.pone.0099802.
[89] J.M. Lorenzen, C. Schauerte, A. Hübner, M. Kölling, F. Martino, K. Scherf, S. Batkai, K. Zimmer, A. Foinquinos, T. Kaucsar, J. Fiedler, R. Kumarswamy, C. Bang, D. Hartmann, S.K. Gupta, J. Kielstein, A. Jungmann, H.A. Katus, F. Weidemann, O.J. Müller, H. Haller, T. Thum, Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis, Eur. Heart J. 36 (32) (2015) 2184-2196, https://doi.org/10.1093/eurheartj/ ehv109. [89] J.M. 罗伦泽,C. 沙维特,A. 休布纳,M. 克林,F. 马蒂诺,K. 谢尔夫,S. 巴塔基,K. 齐默,A. 方尼奎诺斯,T. 考斯卡尔,J. 菲德勒,R. 库马尔斯瓦米,C. 邦,D. 哈特曼,S.K. 古普塔,J. 基尔斯坦,A. 荣姆,H.A. 凯图斯,F. 维德曼,O.J. 穆勒,H. 哈勒,T. 特谬,骨桥蛋白对 AP1 介导的血管收缩素 II 相关 miR-21 转录在心脏纤维化中是不可或缺的,欧洲心脏杂志 36 (32) (2015) 2184-2196, https://doi.org/10.1093/eurheartj/ ehv109.
[90] R. Lin, S. Wu, D. Zhu, M. Qin, X. Liu, Osteopontin induces atrial fibrosis by activating Akt/GSK-3 beta//beta\beta / \beta-catenin pathway and suppressing autophagy, Life Sci. 245 (2020), 117328, https://doi.org/10.1016/j.lfs.2020.117328. [90] 林睿, 吴思, 朱丹, 秦明, 刘旭. 骨桥蛋白通过激活 Akt/GSK-3β-catenin 通路并抑制自噬从而诱导心房纤维化. 生命科学. 245 (2020), 117328, https://doi.org/10.1016/j.lfs.2020.117328.
[91] C.M. Pollard, V.L. Desimine, S.L. Wertz, A. Perez, B.M. Parker, J. Maning, K. A. McCrink, L.A. Shehadeh, A. Lymperopoulos, Deletion of Osteopontin Enhances beta_(2)\beta_{2}-Adrenergic Receptor-Dependent Anti-Fibrotic Signaling in Cardiomyocytes, Int J. Mol. Sci. 20 (6) (2019), https://doi.org/10.3390/ijms20061396. [91] C.M. 波拉德, V.L. 德斯米尼, S.L. 沃茨, A. 佩雷斯, B.M. 帕克, J. 马宁, K. A. 麦克林克, L.A. 谢哈代, A. 林佩罗普洛斯, 删除骨连蛋白可增强心肌细胞中β-肾上腺素受体依赖的抗纤维化信号传导, Int J. Mol. Sci. 20 (6) (2019), https://doi.org/10.3390/ijms20061396.
[92] K.M. Herum, A. Romaine, A. Wang, A.O. Melleby, M.E. Strand, J. Pacheco, B. Braathen, P. Dunér, T. Tønnessen, I.G. Lunde, I. Sjaastad, C. Brakebusch, A. D. McCulloch, M.F. Gomez, C.R. Carlson, G. Christensen, Syndecan-4 Protects the Heart From the Profibrotic Effects of Thrombin-Cleaved Osteopontin, J. Am. Heart Assoc. 9 (3) (2020), e013518, https://doi.org/10.1161/jaha.119.013518. [92] K.M. Herum, A. Romaine, A. Wang, A.O. Melleby, M.E. Strand, J. Pacheco, B. Braathen, P. Dunér, T. Tønnessen, I.G. Lunde, I. Sjaastad, C. Brakebusch, A. D. McCulloch, M.F. Gomez, C.R. Carlson, G. Christensen, 蒙脱石素-4 保护心脏免受血栓切割骨桥蛋白的致纤维化影响, J. Am. Heart Assoc. 9 (3) (2020), e013518, https://doi.org/10.1161/jaha.119.013518.
[93] A. Uchinaka, Y. Hamada, S. Mori, S. Miyagawa, A. Saito, Y. Sawa, N. Matsuura, H. Yamamoto, N. Kawaguchi, SVVYGLR motif of the thrombin-cleaved Nterminal osteopontin fragment enhances the synthesis of collagen type III in myocardial fibrosis, Mol. Cell Biochem 408 (1-2) (2015) 191-203, https://doi. org/10.1007/s11010-015-2495-y. [93]尤奇纳卡 A.、浜田 Y.、森 S.、宫川 S.、斋藤 A.、澤 Y.、松浦 N.、山本 H.、川口 N.,血凝素切割的 N 端骨桥蛋白片段的 SVVYGLR 序列增强心肌纤维化中 3 型胶原的合成,分子细胞生化学 408(1-2)(2015)191-203,https://doi.org/10.1007/s11010-015-2495-y.
[94] K. Shirakawa, J. Endo, M. Kataoka, Y. Katsumata, N. Yoshida, T. Yamamoto, S. Isobe, H. Moriyama, S. Goto, H. Kitakata, T. Hiraide, K. Fukuda, M. Sano, IL (Interleukin)-10-STAT3-galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction, Circulation 138 (18) (2018) 2021-2035, https://doi.org/10.1161/circulationaha.118.035047. [94] K. 白川、J. 遠藤、M. 片冈、Y. 桂川、N. 吉田、T. 山本、S. 磯部、H. 森山、S. 藤、H. 北方、T. 平出、K. 福田、M. 佐野, IL(白细胞介素)-10-STAT3-镓铁蛋白-3 轴对于心肌梗死后修复性巨噬细胞极化至关重要, 循环 138 (18) (2018) 2021-2035, https://doi.org/10.1161/circulationaha.118.035047.
[95] N.A. Trueblood, Z. Xie, C. Communal, F. Sam, S. Ngoy, L. Liaw, A.W. Jenkins, J. Wang, D.B. Sawyer, O.H. Bing, C.S. Apstein, W.S. Colucci, K. Singh, Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin, Circ. Res 88 (10) (2001) 1080-1087, https://doi.org/10.1161/hh1001.090842. [95] N.A. Trueblood, Z. Xie, C. Communal, F. Sam, S. Ngoy, L. Liaw, A.W. Jenkins, J. Wang, D.B. Sawyer, O.H. Bing, C.S. Apstein, W.S. Colucci, K. Singh, 缺乏骨连蛋白的小鼠心肌梗死后左室扩张过度和胶原沉积减少, Circ. Res 88 (10) (2001) 1080-1087, https://doi.org/10.1161/hh1001.090842.
[96] Y. Matsui, N. Jia, H. Okamoto, S. Kon, H. Onozuka, M. Akino, L. Liu, J. Morimoto, S.R. Rittling, D. Denhardt, A. Kitabatake, T. Uede, Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy, Hypertension 43 (6) (2004) 1195-1201, https://doi.org/10.1161/01. HYP.0000128621.68160.dd. [96] 松井誉、贾宁、冈本晴、崔顺斌、小野塚宏、秋野美月、刘莉、森本淳、Susan R. Rittling、Donald Denhardt、北畠亨、上出寿之,骨粥样蛋白在血管紧张素 II 诱导的心脏肥厚中的作用及其纤维化和重塑,高血压,43 (6) (2004) 1195-1201, https://doi.org/10.1161/01. HYP.0000128621.68160.dd.
[97] M. Singh, C.R. Foster, S. Dalal, K. Singh, Osteopontin: role in extracellular matrix deposition and myocardial remodeling post-MI, J. Mol. Cell Cardiol. 48 (3) (2010) 538-543, https://doi.org/10.1016/j.yjmcc.2009.06.015. [97] M. Singh, C.R. Foster, S. Dalal, K. Singh, 骨桥蛋白:在细胞外基质沉积和心肌重塑后心肌梗死中的作用, J. Mol. Cell Cardiol. 48 (3) (2010) 538-543, https://doi.org/10.1016/j.yjmcc.2009.06.015.
[98] I. Rotem, T. Konfino, T. Caller, Y. Schary, O. Shaihov-Teper, D. Palevski, N. Lewis, D. Lendengolts, N. Naftali-Shani, J. Leor, Osteopontin promotes infarct repair, 骨桥蛋白促进梗死修复
Basic Res Cardiol. 117 (1) (2022) 51, https://doi.org/10.1007/s00395-022 00957-0. 基础心血管研究. 117 (1) (2022) 51, https://doi.org/10.1007/s00395-022-00957-0.
[99] C. Corallo, N. Volpi, D. Franci, A. Montella, M. Biagioli, G. Mariotti, F. D’Onofrio, S. Gonnelli, R. Nuti, N. Giordano, Is osteopontin involved in cutaneous fibroblast activation? Its hypothetical role in scleroderma pathogenesis, Int J. Immunopathol. Pharm. 27 (1) (2014) 97-102, https://doi.org/10.1177/ 039463201402700112. [99] C. Corallo, N. Volpi, D. Franci, A. Osteopontin 是否参与了皮肤成纤维细胞的激活?它在硬皮病发病机制中的假设性作用,Int J. Immunopathol. Pharm. 27 (1) (2014) 97-102, https://doi.org/10.1177/039463201402700112.
[100] H. Gardner, J.R. Shearstone, R. Bandaru, T. Crowell, M. Lynes, M. Trojanowska, J. Pannu, E. Smith, S. Jablonska, M. Blaszczyk, F.K. Tan, M.D. Mayes, Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts, Arthritis Rheum. 54 (6) (2006) 1961-1973, https://doi.org/10.1002/art.21894. [100] H. Gardner、J.R. Shearstone、R. Bandaru、T. Crowell、M. Lynes、M. Trojanowska、J. Pannu、E. Smith、S. Jablonska、M. Blaszczyk、F.K. Tan、M.D. Mayes,皮肤硬化病的基因分析揭示了疾病的强烈特征,这些特征在培养成纤维细胞转录谱中并未完全反映出来,风湿病学。54(6)(2006)1961-1973,https://doi.org/10.1002/art.21894。
[101] M. Wu, D.J. Schneider, M.D. Mayes, S. Assassi, F.C. Arnett, F.K. Tan, M. R. Blackburn, S.K. Agarwal, Osteopontin in systemic sclerosis and its role in dermal fibrosis, J. Invest Dermatol. 132 (6) (2012) 1605-1614, https://doi.org/ 10.1038/jid.2012.32. [101] 吴铭, 施奈德, 梅耶斯, 刺伤症, 阿内特, 谭福康, 布莱克本, 阿加瓦尔, 系统性硬化症中的骨粘蛋白及其在皮肤纤维化中的作用, J. Invest Dermatol. 132 (6) (2012) 1605-1614, https://doi.org/ 10.1038/jid.2012.32.
[102] Q. Cheng, M. Chen, H. Wang, X. Chen, H. Wu, Y. Du, J. Xue, MicroRNA-27a-3p inhibits lung and skin fibrosis of systemic sclerosis by negatively regulating SPP1, Genomics 114 (4) (2022), 110391, https://doi.org/10.1016/j. ygeno.2022.110391. [102]程启、陈铭、王会、陈兴、吴浩、杜禹、薛静。微 RNA-27a-3p 通过负调控 SPP1 抑制全身性硬化症的肺和皮肤纤维化。《基因组学》第 114 卷第 4 期(2022 年),页码 110391,https://doi.org/10.1016/j. ygeno.2022.110391。
[103] V. Miragliotta, A. Pirone, E. Donadio, F. Abramo, M.P. Ricciardi, C.L. Theoret, Osteopontin expression in healing wounds of horses and in human keloids, Equine Vet. J. 48 (1) (2016) 72-77, https://doi.org/10.1111/evj. 12372. [103] V. Miragliotta, A. Pirone, E. Donadio, F. Abramo, M.P. Ricciardi, C.L. Theoret, 马的愈合创口和人类瘢痕组织中骨骼素的表达, 《马兽医学杂志》48 (1) (2016) 72-77, https://doi.org/10.1111/evj.12372.
[104] J. Liu, Y. Huang, Y. Gong, Q. Liu, J. Lin, J. Liu, M. Liu, J. Huang, W. Pu, Y. Ma, Y. Zhang, H. Li, X. Shi, Y. Zhang, J. Wang, Y. Zhu, Q. Wang, K. Wei, J. Wang, Y. Sha, J. Wang, W. Wu, CTHRC1+ fibroblasts are stimulated by macrophagesecreted SPP1 to induce excessive collagen deposition in keloids, Clin. Transl. Med 12 (12) (2022), e1115, https://doi.org/10.1002/ctm2.1115. [104] 刘吉, 黄颖, 龚珍, 刘倩, 林瑾, 刘静, 刘梦, 黄晶, 蒲文, 马彦, 张昱, 李怀, 石翔, 张扬, 王俊, 朱亚, 王庆, 韦凯, 王佳, 沙艺, 王静, 吴炜, CTHRC1+成纤维细胞被巨噬细胞分泌的 SPP1 刺激,从而诱导过度胶原沉积导致疤痕疙瘩的形成,Clin. Transl. Med 12 (12) (2022), e1115, https://doi.org/10.1002/ctm2.1115.
[105] P. Popovics, W.N. Awadallah, S.E. Kohrt, T.C. Case, N.L. Miller, E.A. Ricke, W. Huang, M. Ramirez-Solano, Q. Liu, C.M. Vezina, R.J. Matusik, W.A. Ricke, M. M. Grabowska, Prostatic osteopontin expression is associated with symptomatic benign prostatic hyperplasia, Prostate 80 (10) (2020) 731-741, https://doi.org/ 10.1002/pros. 23986. [105] P. Popovics, W.N. Awadallah, S.E. Kohrt, T.C. Case, N.L. Miller, E.A. Ricke, W. Huang, M. Ramirez-Solano, Q. Liu, C.M. Vezina, R.J. Matusik, W.A. Ricke, M. M. Grabowska, 前列腺骨连蛋白表达与症状性良性前列腺增生相关, Prostate 80 (10) (2020) 731-741, https://doi.org/ 10.1002/pros. 23986.
[106] P. Popovics, A. Jain, K.O. Skalitzky, E. Schroeder, H. Ruetten, M. Cadena, K. S. Uchtmann, C.M. Vezina, W.A. Ricke, Osteopontin Deficiency Ameliorates Prostatic Fibrosis and Inflammation, Int J. Mol. Sci. 22 (22) (2021), https://doi. org/10.3390/ijms222212461. [106] P. Popovics, A. Jain, K.O. Skalitzky, E. Schroeder, H. Ruetten, M. Cadena, K. S. Uchtmann, C.M. Vezina, W.A. Ricke, 骨连蛋白缺乏可改善前列腺纤维化和炎症, Int J. Mol. Sci. 22 (22) (2021), https://doi. org/10.3390/ijms222212461.
[107] Y. Cao, H. Zhang, X.H. Tang, G.L. Tu, Y. Tian, G.H. Luo, Y.D. Wang, Z. Wang, L. Y. An, M.X. Luo, L. Tang, Alterations in the balance of sex hormones may affect rat prostatic inflammation and fibrosis, and osteopontin might be involved in this process, Int Urol. Nephrol. (2023), https://doi.org/10.1007/s11255-023-03544x . [107] 曹燕, 张虎, 唐小红, 涂国龙, 田毅, 罗国红, 王跃德, 王征, 安蕾英, 罗明星, 唐莉, 性激素平衡的变化可能会影响大鼠前列腺炎症和纤维化,而骨桥蛋白可能参与这一过程,Int Urol. Nephrol. (2023), https://doi.org/10.1007/s11255-023-03544x .
[108] S. Ruberti, E. Bianchi, P. Guglielmelli, S. Rontauroli, G. Barbieri, L. Tavernari, T. Fanelli, R. Norfo, V. Pennucci, G.C. Fattori, C. Mannarelli, N. Bartalucci, B. Mora, L. Elli, M.A. Avanzini, C. Rossi, S. Salmoiraghi, R. Zini, S. Salati, Z. Prudente, V. Rosti, F. Passamonti, A. Rambaldi, S. Ferrari, E. Tagliafico, A. M. Vannucchi, R. Manfredini, Involvement of MAF/SPP1 axis in the development of bone marrow fibrosis in PMF patients, Leukemia 32 (2) (2018) 438-449, https://doi.org/10.1038/leu.2017.220. [108] 卢贝蒂 S.、比安奇 E.、古利埃尔梅利 P.、伦陶罗利 S.、巴尔比里 G.、塔弗纳里 L.、法内利 T.、诺尔福 R.、佩努奇 V.、法托里 G.C.、马纳雷利 C.、巴尔塔卢奇 N.、摩拉 B.、埃利 L.、阿万西尼 M.A.、罗西 C.、萨尔莫伊拉吉 S.、津尼 R.、萨拉蒂 S.、普鲁丹特 Z.、罗斯蒂 V.、帕萨蒙提 F.、拉姆巴尔迪 A.、费拉里 S.、塔利亚科 E.、范努奇 A.M.、曼弗雷迪尼 R.,MAF/SPP1 轴在 PMF 患者骨髓纤维化发展中的参与,白血病 32(2) (2018) 438-449, https://doi.org/10.1038/leu.2017.220.
[109] E. Bianchi, S. Rontauroli, L. Tavernari, M. Mirabile, F. Pedrazzi, E. Genovese, S. Sartini, M. Dall’Ora, G. Grisendi, L. Fabbiani, M. Maccaferri, C. Carretta, S. Parenti, S. Fantini, N. Bartalucci, L. Calabresi, M. Balliu, P. Guglielmelli, L. Potenza, E. Tagliafico, L. Losi, M. Dominici, M. Luppi, A.M. Vannucchi, R. Manfredini, Inhibition of ERK1/2 signaling prevents bone marrow fibrosis by reducing osteopontin plasma levels in a myelofibrosis mouse model, Leukemia (2023), https://doi.org/10.1038/s41375-023-01867-3. [109] E. 比安奇,S. 朗塔乌罗利,L. 塔韦纳里,M. 米拉比勒,F. 佩德拉齐,E. 基诺维塞,S. 萨尔蒂尼,M. 达尔奥拉,G. 格里森迪,L. 法比亚尼,M. 马卡费里,C. 卡雷塔,S. 帕伦蒂,S. 范蒂尼,N. 巴尔塔鲁奇,L. 卡拉布雷西,M. 巴利,P. 古利尔梅利,L. 波滕察,E. 塔利亚费科,L. 罗西,M. 多米尼奇,M. 卢皮,A.M. 范努奇,R. 曼弗雷迪尼,抑制 ERK1/2 信号通路可通过降低骨髓纤维化小鼠模型中的骨水磷蛋白血浆水平来预防骨髓纤维化,白血病(2023),https://doi.org/10.1038/s41375-023-01867-3。
[110] X. Gui, X. Qiu, M. Xie, Y. Tian, C. Min, M. Huang, W. Hongyan, T. Chen, X. Zhang, J. Chen, M. Cao, H. Cai, Prognostic Value of Serum Osteopontin in Acute Exacerbation of Idiopathic Pulmonary Fibrosis, Biomed. Res Int 2020 (2020) 3424208, https://doi.org/10.1155/2020/3424208. [110] 桂选娴, 邱修群, 谢明亮, 田应军, 闵翠红, 黄敏, 王虹雁, 陈婷, 张小翔, 陈静, 曹梅, 蔡宏艳, 特发性肺间质纤维化急性加重期血清骨桥蛋白的预后价值, 生物医学研究国际 2020 (2020) 3424208, https://doi.org/10.1155/2020/3424208.
[111] Y. Liao, R. Wang, F. Wen, Diagnostic and prognostic value of secreted phosphoprotein 1 for idiopathic pulmonary fibrosis: a systematic review and meta-analysis, Biomarkers 28 (1) (2023) 87-96, https://doi.org/10.1080/ 1354750x.2022.2148744. [111] 辛胜原, 王睿, 温方. 秘书腺磷蛋白 1 对特发性肺纤维化的诊断和预后价值:系统评价和 meta 分析[J]. 生物标记, 2023, 28(1): 87-96. https://doi.org/10.1080/1354750x.2022.2148744.
[112] Y. Matsue, M. Tsutsumi, N. Hayashi, T. Saito, M. Tsuchishima, N. Toshikuni, T. Arisawa, J. George, Serum osteopontin predicts degree of hepatic fibrosis and serves as a biomarker in patients with hepatitis C virus infection, PLoS One 10 (3) (2015), e0118744, https://doi.org/10.1371/journal.pone.0118744. [112] 松枝由美子、堤正法、林直樹、齋藤勉、土島基、利邦典子、有澤淳、乔治, 血清骨粒素能預測肝纖維化程度,並作為乙型肝炎病毒感染患者的生物標誌物, PLoS One 10 (3) (2015), e0118744, https://doi.org/10.1371/journal.pone.0118744.
[113] R. Bruha, L. Vitek, V. Smid, Osteopontin - a potential biomarker of advanced liver disease, Ann. Hepatol. 19 (4) (2020) 344-352, https://doi.org/10.1016/j. aohep.2020.01.001. [113] R. Bruha, L. Vitek, V. Smid, 骨桥蛋白 - 一种潜在的晚期肝病生物标志物, Ann. Hepatol. 19 (4) (2020) 344-352, https://doi.org/10.1016/j. aohep.2020.01.001.
[114] P. Rubiś, S. Wiśniowska-Śmiałek, E. Dziewięcka, L. Rudnicka-Sosin, A. Kozanecki, P. Podolec, Prognostic value of fibrosis-related markers in dilated cardiomyopathy: a link between osteopontin and cardiovascular events, Adv. Med Sci. 63 (1) (2018) 160-166, https://doi.org/10.1016/j.advms.2017.10.004. [114] P. 鲁比斯, S. 维斯尼奥夫斯卡-斯米阿雷克, E. 泽维埃克卡, L. 鲁德尼茨卡-索辛, A. 科扎内茨基, P. 波多雷茨, 纤维化标记物在扩张性心肌病中的预后价值:骨钙素与心血管事件的联系,先进医学科学 63 (1) (2018) 160-166, https://doi.org/10.1016/j.advms.2017.10.004.
[115] I. Steinbrenner, P. Sekula, F. Kotsis, M. von Cube, Y. Cheng, J. Nadal, M. Schmid, M.P. Schneider, V. Krane, M. Nauck, K.U. Eckardt, U.T. Schultheiss, Association of osteopontin with kidney function and kidney failure in chronic kidney disease patients: the GCKD study, Nephrol. Dial. Transpl. (2022), https://doi.org/ 10.1093/ndt/gfac173. [115] I. Steinbrenner, P. Sekula, F. Kotsis, M. von Cube, Y. Cheng, J. Nadal, M. Schmid, M.P. Schneider, V. Krane, M. Nauck, K.U. Eckardt, U.T. Schultheiss, 慢性肾脏病患者中骨桥蛋白与肾脏功能和肾功能衰竭的关联:GCKD 研究, Nephrol. Dial. Transpl. (2022), https://doi.org/ 10.1093/ndt/gfac173.
[116] G. Szalay, M. Sauter, M. Haberland, U. Zuegel, A. Steinmeyer, R. Kandolf, K. Klingel, Osteopontin: a fibrosis-related marker molecule in cardiac remodeling of enterovirus myocarditis in the susceptible host, Circ. Res 104 (7) (2009) 851-859, https://doi.org/10.1161/circresaha.109.193805. [116]G. Szalay、M. Sauter、M. Haberland、U. Zuegel、A. Steinmeyer、R. Kandolf、K. Klingel,在易感宿主的肠道病毒性心肌炎的心脏重塑中,骨粘蛋白:一种与纤维化相关的标记分子,Circ. Res 104 (7) (2009) 851-859, https://doi.org/10.1161/circresaha.109.193805.
[117] T.A. Pereira, W.K. Syn, F.E. Pereira, J.R. Lambertucci, W.E. Secor, A.M. Diehl, Serum osteopontin is a biomarker of severe fibrosis and portal hypertension in [117] 塔·佩雷拉, 王·辛, 费·佩雷拉, J.R. 兰伯图奇, 沃·塞科, A.M. 迪尔, 血清骨桥蛋白是严重肝纤维化和门静脉高压的生物标志物
human and murine schistosomiasis mansoni, Int J. Parasitol. 46 (13-14) (2016) 829-832, https://doi.org/10.1016/j.ijpara.2016.08.004. 人类和小鼠血吸虫病曼宁,Int J. 寄生虫学. 46 (13-14) (2016) 829-832, https://doi.org/10.1016/j.ijpara.2016.08.004.
[118] E.S. White, M. Xia, S. Murray, R. Dyal, C.M. Flaherty, K.R. Flaherty, B.B. Moore, L. Cheng, T.J. Doyle, J. Villalba, P.F. Dellaripa, I.O. Rosas, J.D. Kurtis, F. [118] 怀特、夏、默里、戴尔、弗拉赫蒂、弗拉赫蒂、摩尔、成、多尔、维拉尔巴、德拉里帕、罗萨斯、库尔蒂斯、F.
J. Martinez, Plasma surfactant protein-D, matrix metalloproteinase-7, and osteopontin index distinguishes idiopathic pulmonary fibrosis from other idiopathic interstitial pneumonias, Am. J. Respir. Crit. Care Med 194 (10) (2016) 1242-1251, https://doi.org/10.1164/rccm.201505-0862OC. 胡泳,肺表面活性蛋白-D、基质金属蛋白酶-7 和骨姻蛋白指数区分特发性肺纤维化与其他特发性间质性肺炎,Am. J. Respir. Crit. Care Med 194 (10) (2016) 1242-1251, https://doi.org/10.1164/rccm.201505-0862OC.
[119] B. Clynick, T.J. Corte, H.E. Jo, I. Stewart, I.N. Glaspole, C. Grainge, T.M. Maher, V. Navaratnam, R. Hubbard, P.M.A. Hopkins, P.N. Reynolds, S. Chapman, C. Zappala, G.J. Keir, W.A. Cooper, A.M. Mahar, S. Ellis, N.S. Goh, E. De Jong, L. Cha, D.B.A. Tan, L. Leigh, C. Oldmeadow, E.H. Walters, R.G. Jenkins, Y. Moodley, Biomarker signatures for progressive idiopathic pulmonary fibrosis, Eur. Respir. J. 59 (3) (2022), https://doi.org/10.1183/13993003.01181-2021. [119] B. Clynick, T.J. Corte, H.E. Jo, I. Stewart, I.N. Glaspole, C. Grainge, T.M. Maher, V. Navaratnam, R. Hubbard, P.M.A. Hopkins, P.N. Reynolds, S. Chapman, C. Zappala, G.J. Keir, W.A. Cooper, A.M. Mahar, S. Ellis, N.S. Goh, E. De Jong, L. Cha, D.B.A. Tan, L. Leigh, C. Oldmeadow, E.H. Walters, R.G. Jenkins, Y. Moodley, 特发性肺纤维化进展的生物标志物特征, 欧洲呼吸杂志 59 (3) (2022), https://doi.org/10.1183/13993003.01181-2021.
[120] J. Liu, L. Gu, W. Li, The prognostic value of integrated analysis of inflammation and hypoxia-related genes in idiopathic pulmonary fibrosis, Front Immunol. 13 (2022), 730186, https://doi.org/10.3389/fimmu.2022.730186. [120]刘俊、顾莉、李伟,特发性肺纤维化中炎症和缺氧相关基因整合分析的预后价值,免疫学前沿,13(2022),730186,https://doi.org/10.3389/fimmu.2022.730186。
[121] A. Adegunsoye, S. Alqalyoobi, A. Linderholm, W.S. Bowman, C.T. Lee, J. V. Pugashetti, N. Sarma, S.F. Ma, A. Haczku, A. Sperling, M.E. Strek, I. Noth, J. M. Oldham, Circulating plasma biomarkers of survival in antifibrotic-treated patients with idiopathic pulmonary fibrosis, Chest 158 (4) (2020) 1526-1534, https://doi.org/10.1016/j.chest.2020.04.066. [121] A. 阿德甘索耶, S. 阿尔卡利尤比, A. 林德霍姆, W.S. 鲍曼, C.T. 李, J. V. 普加舍蒂, N. 萨尔马, S.F. 马, A. 哈茨库, A. 斯珀林, M.E. 斯特雷克, I. 诺思, J. M. 奥尔德汉姆, 抗纤维化治疗特发性肺纤维化患者的循环血浆生物标志物与生存的关系, 胸部 158 (4) (2020) 1526-1534, https://doi.org/10.1016/j.chest.2020.04.066.
[122] J.D. Coombes, M. Swiderska-Syn, L. Dollé, D. Reid, B. Eksteen, L. Claridge, M. A. Briones-Orta, S. Shetty, Y.H. Oo, A. Riva, S. Chokshi, S. Papa, Z. Mi, P.C. Kuo, R. Williams, A. Canbay, D.H. Adams, A.M. Diehl, L.A. van Grunsven, S.S. Choi, W. K. Syn, Osteopontin neutralisation abrogates the liver progenitor cell response and fibrogenesis in mice, Gut 64 (7) (2015) 1120-1131, https://doi.org/10.1136/ gutjnl-2013-306484. [122]J.D. Coombes、M. Swiderska-Syn、L. Dollé、D. Reid、B. Eksteen、L. Claridge、M. A. Briones-Orea、S. Shetty、Y.H. Oo、A. Riva、S. Chokshi、S. Papa、Z. Mi、P.C. Kuo、R. Williams、A. Canbay、D.H. Adams、A.M. Diehl、L.A. van Grunsven、S.S. Choi、W. K. Syn, 骨连蛋白中和抑制小鼠肝祖细胞反应和纤维化,Gut 64 (7) (2015) 1120-1131, https://doi.org/10.1136/gutjnl-2013-306484.
[123] J. Dai, T. Matsui, E.D. Abel, S. Dedhar, R.E. Gerszten, C.E. Seidman, J.G. Seidman, A. Rosenzweig, Deep sequence analysis of gene expression identifies osteopontin as a downstream effector of integrin-linked kinase (ILK) in cardiac-specific ILK knockout mice, Circ. Heart Fail 7 (1) (2014) 184-193, https://doi.org/10.1161/ circheartfailure.113.000649. [123] 戴建明, 松井孝, E.D. Abel, S. Dedhar, R.E. Gerszten, C.E. Seidman, J.G. Seidman, A. Rosenzweig, 基因表达深度分析发现骨桥蛋白是心脏特异性 ILK 敲除小鼠中整合素连锁激酶 (ILK) 的下游效应物, 循环心衰 7 (1) (2014) 184-193, https://doi.org/10.1161/circheartfailure.113.000649.
[124] J. Li, K. Yousefi, W. Ding, J. Singh, L.A. Shehadeh, Osteopontin RNA aptamer can prevent and reverse pressure overload-induced heart failure, Cardiovasc Res 113 (6) (2017) 633-643, https://doi.org/10.1093/cvr/cvx016. [124] 李佳、尤西菲、丁威、辛格、谢哈迪。骨粥素 RNA 适配体可以预防和逆转压力过载引起的心力衰竭,心血管研究 113 (6) (2017) 633-643, https://doi.org/10.1093/cvr/cvx016。
[125] M. Honda, C. Kimura, T. Uede, S. Kon, Neutralizing antibody against osteopontin attenuates non-alcoholic steatohepatitis in mice, J. Cell Commun. Signal 14 (2) (2020) 223-232, https://doi.org/10.1007/s12079-020-00554-7. [125] 本田正, 木村知子, 上出俊, 今村祥史, 抑制骨桥蛋白中和抗体可改善小鼠非酒精性脂肪性肝病, J. Cell Commun. Signal 14 (2) (2020) 223-232, https://doi.org/10.1007/s12079-020-00554-7.
[126] V. Farrokhi, J.R. Chabot, H. Neubert, Z. Yang, Assessing the feasibility of neutralizing osteopontin with various therapeutic antibody modalities, Sci. Rep. 8 (1) (2018) 7781, https://doi.org/10.1038/s41598-018-26187-w. [126] V. 法罗基,J.R. 沙博,H. 纽伯特,Z. 杨,研究用不同治疗性抗体手段中和骨桥蛋白的可行性,科学报告 8(1)(2018)7781,https://doi.org/10.1038/s41598-018-26187-w.
[127] M. Tang, C. Guo, M. Sun, H. Zhou, X. Peng, J. Dai, Q. Ding, Y. Wang, C. Yang, Effective delivery of osteopontin small interference RNA using exosomes suppresses liver fibrosis via TGF- beta1\beta 1 signaling, Front Pharm. 13 (2022), 882243, https://doi.org/10.3389/fphar.2022.882243. [127] 汤明, 郭晨, 孙鸣, 周慧, 彭晓, 戴娟, 丁清, 王义, 杨超, 通过使用外囊体有效传递骨钙素小干扰 RNA 抑制肝纤维化通过 TGF- beta1\beta 1 信号通路, 药学前沿. 13 (2022), 882243, https://doi.org/10.3389/fphar.2022.882243.
[128] V.C.A. de Souza, T.A. Pereira, V.W. Teixeira, H. Carvalho, M. de Castro, G. D’Assunção C, A.F. de Barros, C.L. Carvalho, V.M.B. de Lorena, V.M.A. Costa, A.C. Teixeira Á, R. Figueiredo, S.A. de Oliveira, Bone marrow-derived monocyte infusion improves hepatic fibrosis by decreasing osteopontin, TGF- beta1,IL-13\beta 1, \mathrm{IL}-13 and oxidative stress, World J. Gastroenterol. 23 (28) (2017) 5146-5157, https://doi. org/10.3748/wjg.v23.i28.5146. [128] V.C.A. 德索萨,T.A. 佩雷拉,V.W. 泰克塞拉,H. 卡瓦略,M. 德卡斯特罗,G. D'阿松申 C,A.F. 德巴罗斯,C.L. 卡瓦略,V.M.B. 德洛雷纳,V.M.A. 科斯塔,A.C. 泰克塞拉Á,R. 菲格雷多,S.A. 德奥利韦拉,骨髓源性单核细胞输注能够通过降低骨钙素、TGF-β和氧化应激改善肝纤维化,世界胃肠病学杂志。23 (28) (2017) 5146-5157, https://doi. org/10.3748/wjg.v23.i28.5146.
[129] J. George, M. Tsuchishima, M. Tsutsumi, Epigallocatechin-3-gallate inhibits osteopontin expression and prevents experimentally induced hepatic fibrosis, Biomed. Pharm. 151 (2022), 113111, https://doi.org/10.1016/j. biopha.2022.113111. [129] J. George, M. Tsuchishima, M. Tsutsumi, 表胶原三醇酯-3-没食子酸抑制骨桥蛋白的表达并预防实验诱导的肝纤维化, Biomed. Pharm. 151 (2022), 113111, https://doi.org/10.1016/j. biopha.2022.113111.
[130] M.L. Arffa, M.A. Zapf, A.N. Kothari, V. Chang, G.N. Gupta, X. Ding, M.M. AlGayyar, W. Syn, N.M. Elsherbiny, P.C. Kuo, Z. Mi, Epigallocatechin-3-gallate upregulates miR-221 to inhibit osteopontin-dependent hepatic fibrosis, PLoS One 11 (12) (2016), e0167435, https://doi.org/10.1371/journal.pone. 0167435. 130] M.L. Arffa, M.A. Zapf, A.N. Kothari, V. Chang, G.N. Gupta, X. Ding, M.M. AlGayyar, W. Syn, N.M. Elsherbiny, P.C. Kuo, Z. Mi, 表皮绿原酸-3-没食子酸上调 miR-221 以抑制骨粉蛋白依赖的肝纤维化, PLoS One 11 (12) (2016), e0167435, https://doi.org/10.1371/journal.pone. 0167435.
[131] X. Zhu, Y.Q. Cheng, L. Du, Y. Li, F. Zhang, H. Guo, Y.W. Liu, X.X. Yin, Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats, Phytother. Res 29 (2) (2015) 295-302, https://doi.org/10.1002/ptr. 5254. [131]朱 X., 郑 Y.Q., 杜 L., 李 Y., 张 F., 郭 H., 刘 Y.W., 殷 X.X.,芒果糖苷通过下调糖尿病大鼠中的骨钙素抑制肾纤维化,植物治疗研究 29 (2) (2015) 295-302, https://doi.org/10.1002/ptr.5254.
[132] A. Ramadan, N. Afifi, N.Z. Yassin, R.F. Abdel-Rahman, S.S. Abd El-Rahman, H. M. Fayed, Mesalazine, an osteopontin inhibitor: the potential prophylactic and remedial roles in induced liver fibrosis in rats, Chem. Biol. Inter. 289 (2018) 109-118, https://doi.org/10.1016/j.cbi.2018.05.002. [132] A. 拉马丹, N. 阿菲尼, N.Z. 亚辛, R.F. 阿卜杜勒-拉赫曼, S.S. 阿卜杜勒-拉赫曼, H. M. 费耶德, 间充质甲氨嘧啶, 一种骨粘蛋白抑制剂: 在诱导大鼠肝纤维化中的潜在预防和治疗作用, 化学生物学相互作用, 289 (2018) 109-118, https://doi.org/10.1016/j.cbi.2018.05.002.
[133] S.R. Künzel, M. Hoffmann, S. Weber, K. Künzel, S. Kämmerer, M. Günscht, E. Klapproth, J.S.E. Rausch, M.S. Sadek, T. Kolanowski, S. Meyer-Roxlau, C. Piorkowski, S.M. Tugtekin, S. Rose-John, X. Yin, M. Mayr, J.D. Kuhlmann, P. Wimberger, K. Grützmann, N. Herzog, J.H. Küpper, M. O’Reilly, S.N. Kabir, L. C. Sommerfeld, K. Guan, B. Wielockx, L. Fabritz, S. Nattel, U. Ravens, D. Dobrev, M. Wagner, A. El-Armouche, Diminished PLK2 Induces Cardiac Fibrosis and Promotes Atrial Fibrillation, Circ. Res 129 (8) (2021) 804-820, https://doi.org/ 10.1161/circresaha.121.319425. [133]孙尚荣, 马嘿夫, 韦柏, 孙硕, 卡梅尔, 关故, 克拉普洛, 劳许, 萨德克, 科兰夫斯基, 梅耶-柔克斯洛, 彼尔科斯基, 图特金, 罗斯-约翰, 尹旭, 梅尔, 库尔曼, 维伯格, 格汝曼, 赫尔佐格, 柯柏, 奥瑞立, 卡比尔, 索默菲尔德, 关健, 韦洛克斯, 法卜瑞茨, 纳特尔, 拉文斯, 多布列夫, 华格纳, 阿木夏,降低 PLK2 诱发心脏纤维化并促进心房颤动,循环研究 129 (8) (2021) 804-820, https://doi.org/ 10.1161/circresaha.121.319425.
[134] M. Newe, T.A. Kant, M. Hoffmann, J.S.E. Rausch, L. Winter, K. Künzel, E. Klapproth, C. Günther, S.R. Künzel, Systemic mesalazine treatment prevents spontaneous skin fibrosis in PLK2-deficient mice, Naunyn Schmiede Arch. Pharm. 394 (11) (2021) 2233-2244, https://doi.org/10.1007/s00210-021-02135-w. [134] M. Newe、T.A. Kant、M. Hoffmann、J.S.E. Rausch、L. Winter、K. Künzel、E. Klapproth、C. Günther、S.R. Künzel, 系统性美沙拉嗪治疗预防了 PLK2 缺失小鼠中自发性皮肤纤维化, Naunyn Schmiede Arch. Pharm. 394 (11) (2021) 2233-2244, https://doi.org/10.1007/s00210-021-02135-w.
[135] T.A. Pereira, G. Vaz de Melo Trindade, E. Trindade Santos, F.E.L. Pereira, M. M. Souza, Praziquantel pharmacotherapy reduces systemic osteopontin levels and liver collagen content in murine schistosomiasis mansoni, Int J. Parasitol. 51 (6) (2021) 437-440, https://doi.org/10.1016/j.ijpara.2020.11.002. [135] T.A. 佩雷拉, G. 瓦茨-梅洛-特林达德, E. 特林达德-桑托斯, F.E.L. 佩雷拉, M. M. 苏萨, 曲美布汀治疗降低了小鼠血清骨钙素水平和肝脏胶原含量,《国际寄生虫学杂志》51 (6) (2021) 437-440, https://doi.org/10.1016/j.ijpara.2020.11.002.
[136] K.J. Schunke, L. Coyle, G.F. Merrill, D.T. Denhardt, Acetaminophen attenuates doxorubicin-induced cardiac fibrosis via osteopontin and GATA4 regulation: [136] 乙酰氨基酚通过调节骨粥素和 GATA4 来减弱多柔比星诱导的心脏纤维化。
reduction of oxidant levels, J. Cell Physiol. 228 (10) (2013) 2006-2014, https:// doi.org/10.1002/jcp. 24367. 氧化剂水平的降低, J. Cell Physiol. 228 (10) (2013) 2006-2014, https:// doi.org/10.1002/jcp. 24367.
[137] E. Achar, T.T. Maciel, C.F. Collares, V.P. Teixeira, N. Schor, Amitriptyline attenuates interstitial inflammation and ameliorates the progression of renal fibrosis, Kidney Int 75 (6) (2009) 596-604, https://doi.org/10.1038/ ki. 2008.578. [137]艾查尔、马西耶尔、科拉雷斯、泰克塞拉和斯科尔发现,阿米替林可减轻肾间质发炎,并改善肾纤维化的进展,Kidney Int 75 (6) (2009) 596-604, https://doi.org/10.1038/ki.2008.578.
[138] C. Li, C.W. Yang, C.W. Park, H.J. Ahn, W.Y. Kim, K.H. Yoon, S.H. Suh, S.W. Lim, J. H. Cha, Y.S. Kim, J. Kim, Y.S. Chang, B.K. Bang, Long-term treatment with ramipril attenuates renal osteopontin expression in diabetic rats, Kidney Int 63 (2) (2003) 454-463, https://doi.org/10.1046/j.1523-1755.2003.00751.x. [138] 李志、杨明、朴春元、安河珍、金吴赢、尹庆浩、徐世焕、林世旺、车济恩、金英舜、金柱美、张英述、方吉旺,长期应用依那普利可降低糖尿病大鼠肾脏骨桥蛋白表达,肾脏国际杂志 63(2)(2003)454-463,https://doi.org/10.1046/j.1523-1755.2003.00751.x。
[139] Y. Hada, H.A. Uchida, R. Umebayashi, M. Yoshida, J. Wada, Cilostazol Attenuates AngII-Induced Cardiac Fibrosis in apoE Deficient Mice, Int J. Mol. Sci. 23 (16) (2022), https://doi.org/10.3390/ijms23169065. [139] 羽田洋,内田裕文,梅林里愛,吉田萌,和田惇,环索洛尔可减轻 ApoE 缺失小鼠心肌纤维化, Int J. Mol. Sci. 23 (16) (2022), https://doi.org/10.3390/ijms23169065.
[140] X.P. Yuan, X.S. He, C.X. Wang, L.S. Liu, Q. Fu, Triptolide attenuates renal interstitial fibrosis in rats with unilateral ureteral obstruction, Nephrol. (Carlton) 16 (2) (2011) 200-210, https://doi.org/10.1111/j.1440-1797.2010.01359.x. [140] 袁晓平、何晓松、王成祥、刘立生、傅强, 三七酚减轻单侧输尿管梗阻大鼠肾间质纤维化, 肾脏病学 (卡尔顿) 16 (2) (2011) 200-210, https://doi.org/10.1111/j.1440-1797.2010.01359.x.
[141] F. Takahashi, K. Takahashi, T. Okazaki, K. Maeda, H. Ienaga, M. Maeda, S. Kon, T. Uede, Y. Fukuchi, Role of osteopontin in the pathogenesis of bleomycininduced pulmonary fibrosis, Am. J. Respir. Cell Mol. Biol. 24 (3) (2001) 264-271, https://doi.org/10.1165/ajrcmb.24.3.4293. [141]高桥芙美、高桥健二、冈崎顺一、前田克己、柳长隆、前田实、今泉敏章、上出尚弘、福地庸介, 骨桥蛋白在药物性肺纤维化发病过程中的作用, 美国呼吸细胞与分子生物学杂志, 24(3), 264-271, 2001, https://doi.org/10.1165/ajrcmb.24.3.4293.
[142] J. Kadota, S. Mizunoe, K. Mito, H. Mukae, S. Yoshioka, K. Kawakami, Y. Koguchi, K. Fukushima, S. Kon, S. Kohno, A. Saito, T. Uede, M. Nasu, High plasma concentrations of osteopontin in patients with interstitial pneumonia, Respir. Med 99 (1) (2005) 111-117, https://doi.org/10.1016/j.rmed.2004.04.018. [142] J. 角田, S. 水之江, K. 三藤, H. 向江, S. 吉岡, K. 川上, Y. 小口, K. 福岛, S. 昆, S. 河野, A. 齐藤, T. 上手, M. 那须, 间质性肺炎患者血浆骨桥蛋白浓度较高, Respir. Med 99 (1) (2005) 111-117, https://doi.org/10.1016/j.rmed.2004.04.018.
[143] A. Pardo, K. Gibson, J. Cisneros, T.J. Richards, Y. Yang, C. Becerril, S. Yousem, I. Herrera, V. Ruiz, M. Selman, N. Kaminski, Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis, PLoS Med 2 (9) (2005), e251, https://doi.org/10.1371/journal.pmed.0020251. [143] A. 帕多, K. 吉布森, J. 西斯尼罗斯, T.J. 理查兹, Y. 杨, C. 贝塞里尔, S. 约塞姆, I. 埃雷拉, V. 鲁伊兹, M. 塞尔曼, N. 卡明斯基, 在人类特发性肺纤维化中,骨连蛋白的上调和促纤维化作用, PLoS Med 2 (9) (2005), e251, https://doi.org/10.1371/journal.pmed.0020251.
[144] W.K. Syn, S.S. Choi, E. Liaskou, G.F. Karaca, K.M. Agboola, Y.H. Oo, Z. Mi, T. A. Pereira, M. Zdanowicz, P. Malladi, Y. Chen, C. Moylan, Y. Jung, S. D. Bhattacharya, V. Teaberry, A. Omenetti, M.F. Abdelmalek, C.D. Guy, D. H. Adams, P.C. Kuo, G.A. Michelotti, P.F. Whitington, A.M. Diehl, Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis, Hepatology 53 (1) (2011) 106-115, https://doi.org/ 10.1002/hep. 23998. [144] 辛伟康、蔡善善、E. Liaskou、G.F. Karaca、K.M. Agboola、吴越、Z. Mi、T. A. Pereira、M. Zdanowicz、P. Malladi、陈毅、C. Moylan、Jung Y.、S. D. Bhattacharya、V. Teaberry、A. Omenetti、M.F. Abdelmalek、C.D. Guy、D. H. Adams、郭宝华、G.A. Michelotti、P.F. Whitington、A.M. Diehl,骨钙素蛋白被柄突路径激活诱导,并促进非酒精性脂肪肝炎的纤维化进展,肝脏学 53 (1) (2011) 106-115, https://doi.org/10.1002/hep.23998.
[145] Y. Li, W. Xiu, J. Xu, X. Chen, G. Wang, J. Duan, L. Sun, B. Liu, W. Xie, G. Pu, Q. Wang, C. Wang, Increased CHCHD2 expression promotes liver fibrosis in nonalcoholic steatohepatitis via Notch/osteopontin signaling, JCI Insight 7 (23) (2022), https://doi.org/10.1172/jci.insight. 162402. [145] 李毅, 修五, 徐佳, 陈祥, 王冠, 段洁, 孙丽, 刘波, 谢旺, 濮国, 王强, 王超, 在非酒精性脂肪肝炎中,CHCHD2 表达增加通过 Notch/骨连蛋白信号通路促进肝纤维化, JCI 洞见 7 (23) (2022), https://doi.org/10.1172/jci.insight.162402.
[146] G. Wang, J. Duan, G. Pu, C. Ye, Y. Li, W. Xiu, J. Xu, B. Liu, Y. Zhu, C. Wang, The Annexin A2-Notch regulatory loop in hepatocytes promotes liver fibrosis in NAFLD by increasing osteopontin expression, Biochim Biophys. Acta Mol. Basis Dis. 1868 (8) (2022), 166413, https://doi.org/10.1016/j.bbadis.2022.166413. [146]王冠军、段佳骏、蒲光、叶成、李洋、修维、许佳、刘彬、朱琨、王畅。NAFLD 中肝细胞的 Annexin A2-Notch 调节环路通过增加骨连蛋白表达,促进肝纤维化。生物化学与生物物理学报告分子疾病基础。1868(8)(2022),166413,https://doi.org/10.1016/j.bbadis.2022.166413。
[147] F. Ma, Y. Liu, Z. Hu, Y. Xue, Z. Liu, G. Cai, W. Su, Z. Zheng, X. Fang, X. Yan, D. Ding, X. Sun, Y. Jiang, S. Wei, W. Li, J. Zhao, H. Zhang, H. Li, D. Xiao, C. Zhang, H. Ying, J. Qin, X. Gao, X. Dai, W. Fu, Y. Xu, Y. Li, A. Cui, Intrahepatic osteopontin signaling by CREBZF defines a checkpoint for steatosis-to-NASH progression, Hepatology (2023), https://doi.org/10.1097/ hep. 0000000000000042. [147] 马飞,刘洋,胡竹,薛云,刘志,蔡国华,苏武,郑舟,方小平,严旭,丁东,孙熙,蒋禹,魏森,李维,赵佳,张辉,李惠,肖丁,张春,应华,秦建,高晓,戴新,傅玮,徐永,李芗,崔安, CREBZF 肝内骨原有机磷定义脂肪肝向非酒精性脂肪性肝炎转化的检查点.肝脏病学(2023), https://doi.org/10.1097/ hep. 0000000000000042.
[148] E. Kashiwagi, Y. Tonomura, C. Kondo, K. Masuno, K. Fujisawa, N. Tsuchiya, S. Matsushima, M. Torii, N. Takasu, T. Izawa, M. Kuwamura, J. Yamate, Involvement of neutrophil gelatinase-associated lipocalin and osteopontin in renal tubular regeneration and interstitial fibrosis after cisplatin-induced renal failure, Exp. Toxicol. Pathol. 66 (7) (2014) 301-311, https://doi.org/10.1016/j. etp.2014.04.007. [148] 柏木恵,田野村庸,近藤 千枝,増野謙二,藤沢香織,土屋伸吉,松島成宏,鳥居政也,高須直子,井澤知巳,桑村美和,山手丈至,环磷酰胺诱导肾功能衰竭后肾小管再生和间质纤维化中中性粒细胞明胶酶相关脂质运载蛋白和骨钙素的参与,实验毒理病理学,66(7)(2014)301-311,https://doi.org/10.1016/j. etp.2014.04.007.
[149] R. Yano, H.M. Golbar, T. Izawa, O. Sawamoto, M. Kuwamura, J. Yamate, Participation of bone morphogenetic protein (BMP)-6 and osteopontin in cisplatin (CDDP)-induced rat renal fibrosis, Exp. Toxicol. Pathol. 67 (2) (2015) 99-107, https://doi.org/10.1016/j.etp.2014.10.002. [149] R. 矢野, H.M. 戈尔巴, T. 伊澤, O. 澤本, M. 桑村, J. 亚马特, 骨形态发生蛋白(BMP)-6 和骨桥蛋白在顺铂(CDDP)诱导大鼠肾纤维化中的参与, Exp.毒理病理学.67(2)(2015)99-107, https://doi.org/10.1016/j.etp.2014.10.002.
Dr Ziyi Tang is a postdoctoral fellow at the Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University since 2022. She obtained her MD in Rheumatology and Immunology from the same institution in 2022. Her current research involves investigating the molecular and cellular mechanisms of pulmonary fibrosis, with a focus on identifying potential therapeutic targets for alleviating lung fibrosis progress and effectively reversing pulmonary fibrosis. 汤子怡博士自 2022 年起任职于四川大学华西医院风湿免疫实验室的博士后研究员。她于 2022 年获得同一机构的风湿免疫学医学博士学位。她当前的研究工作集中于探究肺纤维化的分子细胞机制,重点在于发现治疗肺纤维化进程的潜在靶点,有效逆转肺纤维化。
Zijing Xia is a doctor at West China Hospital, Sichuan University, She received her MD degree in 2019 from the West China Hospital, Sichuan University, and conducted her postdoc research Major in organ fibrosis since 2019 at the Laboratory of Rheumatology and Immunology in the same institution. Her current research involves the Molecular mechanism of fibrosis disease and small molecular treatment of rheumatoid and autoimmune disease 夏子婧是四川大学西部医院的一名医生。她于 2019 年从四川大学西部医院获得医学博士学位,并于 2019 年至今在同一机构的风湿免疫实验室从事器官纤维化的博士后研究。她目前的研究工作涉及纤维化疾病的分子机制以及风湿性和自身免疫性疾病的小分子治疗。
Xiangpeng Wang is a doctoral candidate at Peking Union Medical College, Chinese Academy of Medical Sciences. He obtained his master’s degree in Rheumatology and Immunology from the West China School of Clinical Medicine, Sichuan University in 2023. His research focuses on elucidating the molecular mechanisms underlying rheumatoid arthritis and ankylosing spondylitis, as well as optimizing long-term management strategies for these diseases. 王湘鹏是中国医学科学院北京协和医学院的博士研究生。他于 2023 年从四川大学华西临床医学院获得风湿病学和免疫学硕士学位。他的研究重点是阐明类风湿性关节炎和强直性脊柱炎的分子机制,并优化这些疾病的长期管理策略。
Yi Liu is a professor at West China Hospital, Sichuan University. He serves as the director of the Rheumatology and Immunology Department and the deputy director of the Rare Diseases Center at West China Hospital. Additionally, he is one of the leaders at the Institute of Immuno-inflammation, Frontier Science Center, Sichuan University. He obtained his PhD in Rheumatology from the Chinese People’s Liberation Army (PLA) General Hospital in 1993. Between 1998 and 2006, he pursued postdoctoral work at the University of Turku in Finland, the University of Tennessee Health Science Center, and Cornell University in the USA, focusing on studying molecular and cellular mechanisms of rheumatic diseases. Throughout his more than 30-year research career in Rheumatology, Prof. Liu has authored or corresponding authored over 60 high-quality international articles and has edited or contributed to seven textbooks and monographs. He has also undertaken more than 20 research projects. Currently, at the Institute of Immunology and Inflammation, Prof. Liu’s research focuses on investigating regulatory mechanisms in stem cell therapy for pulmonary fibrosis. His lab is also interested in understanding the molecular and cellular mechanisms underlying organ fibrosis, including systemic sclerosis, connective tissue disease-related interstitial lung disease, and IgG4-related disease 刘毅教授是四川大学华西医院的教授。他担任华西医院风湿免疫科主任和罕见疾病中心副主任。此外,他还是四川大学前沿科学中心免疫炎症研究所的领导之一。他于 1993 年在中国人民解放军总医院获得风湿病学博士学位。1998 年至 2006 年间,他先后在芬兰图尔库大学、美国田纳西大学健康科学中心和康奈尔大学从事博士后研究,主要研究风湿性疾病的分子和细胞机制。在 30 多年的风湿病学研究生涯中,刘教授发表或担任通讯作者的高质量国际论文超过 60 篇,编辑或撰写了 7 本教科书和专著。他还承担了 20 多个研究项目。目前,在免疫炎症研究所,刘教授的研究重点是探索干细胞治疗肺纤维化的调控机制。他的实验室也致力于研究系统性硬化症、结缔组织病相关间质性肺病和 IgG4 相关疾病等器官纤维化的分子和细胞机制。
Correspondence to: No. 37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, China. 成都市武侯区国学巷 37 号
E-mail address: yiliu8999@wchscu.cn (Y. Liu). 电子邮件地址:yiliu8999@wchscu.cn (刘毅). ^(1){ }^{1} These authors have contributed equally to this work. ^(1){ }^{1} 这些作者对这项工作做出了同等的贡献。