这是用户在 2024-5-29 13:53 为 http://www-ncbi-nlm-nih-gov-s.vpn1.hactcm.edu.cn/pmc/articles/PMC9151781/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Skip to main content
跳到主要内容
U.S. flag

An official website of the United States government

Access keys 访问密钥 NCBI Homepage NCBI主页 MyNCBI Homepage MyNCBI主页 Main Content 事由 Main Navigation 主导航
Nat Commun. 2022; 13: 3002.
国家公社。2022;13: 3002.
Published online 2022 May 30. doi: 10.1038/s41467-022-30712-x
2022 年 5 月 30 日在线发布。doi: 10.1038/s41467-022-30712-x
PMCID: PMC9151781 PMCID:PMC9151781
PMID: 35637254 PMID:35637254

The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases
肠道微生物群-胆汁酸轴将慢性失眠与心脏代谢疾病之间的正相关联系起来

Zengliang Jiang,#1 Lai-bao Zhuo,#2 Yan He,#3,4 Yuanqing Fu,1,5,6 Luqi Shen,1,5,6 Fengzhe Xu,1,5 Wanglong Gou,1,5 Zelei Miao,1,5 Menglei Shuai,1,5 Yuhui Liang,1,5 Congmei Xiao,1,5 Xinxiu Liang,1,5 Yunyi Tian,1,5 Jiali Wang,1,5 Jun Tang,1,5,6 Kui Deng,1,5,6 Hongwei Zhou,corresponding author3,4 Yu-ming Chen,corresponding author2 and Ju-Sheng Zhengcorresponding author1,5,6
江增良, # 1 卓来宝, # 2 何燕, # 3, 4 傅元庆, 1, 5, 6 沈璐琪, 1, 5, 6 徐凤哲, 1, 5 苟望龙, 1, 5 苗泽磊, 1, 5 帅梦磊, 1, 5 梁玉辉, 1, 5 肖丛梅, 1, 5 梁新秀, 1, 5 田云逸, 1, 5 王佳丽, 1, 5 唐俊, 1, 5, 6 邓奎, 1, 5, 6 周宏伟, corresponding author 3, 4 陈玉明, corresponding author 2corresponding author 1, 5, 6 菊生

Associated Data 相关数据

Supplementary Materials 补充材料
Data Availability Statement
数据可用性声明

Abstract 抽象

Evidence from human cohorts indicates that chronic insomnia is associated with higher risk of cardiometabolic diseases (CMD), yet whether gut microbiota plays a role is unclear. Here, in a longitudinal cohort (n = 1809), we find that the gut microbiota-bile acid axis may link the positive association between chronic insomnia and CMD. Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 are the main genera mediating the positive association between chronic insomnia and CMD. These results are also observed in an independent cross-sectional cohort (n = 6122). The inverse associations between those gut microbial biomarkers and CMD are mediated by certain bile acids (isolithocholic acid, muro cholic acid and nor cholic acid). Habitual tea consumption is prospectively associated with the identified gut microbiota and bile acids in an opposite direction compared with chronic insomnia. Our work suggests that microbiota-bile acid axis may be a potential intervention target for reducing the impact of chronic insomnia on cardiometabolic health.
来自人类队列的证据表明,慢性失眠与心脏代谢疾病 (CMD) 的风险增加有关,但肠道微生物群是否起作用尚不清楚。在这里,在纵向队列(n = 1809)中,我们发现肠道微生物群-胆汁酸轴可能与慢性失眠和CMD之间的正相关有关。 瘤胃球菌科UCG-002和瘤胃球菌科UCG-003是介导慢性失眠与CMD正相关的主要属。这些结果也在独立的横断面队列中观察到 (n = 6122)。这些肠道微生物生物标志物与 CMD 之间的负相关是由某些胆汁酸(异石胆酸、muro 胆酸和 NOR 胆酸)介导的。与慢性失眠相比,习惯性饮茶与已确定的肠道微生物群和胆汁酸呈相反方向的相关性。我们的研究表明,微生物群-胆汁酸轴可能是减少慢性失眠对心脏代谢健康影响的潜在干预靶点。

Subject terms: Cardiovascular diseases, Endocrine system and metabolic diseases, Sleep disorders
主题术语:心血管疾病、内分泌系统和代谢疾病、睡眠障碍

Chronic insomnia is associated with cardiometabolic diseases. Here, in two clinical cohorts (n = 7,931), authors show that gut microbiota-bile acid axis may be an intervention target to attenuate the impact of chronic insomnia on cardiometabolic health.
慢性失眠与心脏代谢疾病有关。在这里,在两个临床队列 (n = 7,931) 中,作者表明肠道微生物群-胆汁酸轴可能是减轻慢性失眠对心脏代谢健康影响的干预目标。

Introduction 介绍

Chronic insomnia is a common sleep disorder with a current estimated global prevalence rate of ~10–20% 13. Features of chronic insomnia include difficulty falling asleep, difficulty maintaining sleep, and awakening in the early morning, together with daytime fatigue, attention deficits and mood instability4. In the past decade, numerous observational studies have indicated that chronic insomnia is associated with higher risk of cardiometabolic diseases (CMD), such as type 2 diabetes (T2D) and cardiovascular diseases59. However, the mechanism that underlies the association between chronic insomnia and CMD has yet to be identified, so novel cost-effective therapeutic strategies have yet to be developed.
慢性失眠是一种常见的睡眠障碍,目前估计全球患病率为~10-20%。 13 慢性失眠的特征包括入睡困难、难以维持睡眠、清晨醒来,以及白天疲劳、注意力缺陷和情绪不稳定 4 。在过去的十年中,许多观察性研究表明,慢性失眠与心脏代谢疾病(CMD)的风险较高有关,例如2型糖尿病(T2D)和心血管疾病 59 。然而,慢性失眠与CMD之间关联的机制尚未确定,因此尚未开发出新的具有成本效益的治疗策略。

The gut microbiota is vital to human health10,11. Notably, the brain-gut axis has been intensively studied in the past few years1214. Prior studies have reported that the gut microbiota exhibits circadian rhythms, which interact with host circadian rhythms1517. Sleep disturbances, such as chronic insomnia, can in turn disrupt microbial circadian rhythms, thus influencing gut microbial composition and function1822. On the other hand, gut microbial dysbiosis is associated with the development of CMD, and has a substantial impact on the metabolic health2329. In addition, the dysregulation of bile acid metabolism and its interaction with the gut microbiota are also closely associated with host metabolic health3033. Repeated sleep disruption in mice has led to a persistent change in gut microbiota composition and changes in bile acid metabolism3436. Therefore, we hypothesize that the gut microbiota-bile acid axis may play a role in linking chronic insomnia and CMD. Notably, evidence from large-scale human cohorts is sparse.
肠道微生物群对人体健康 10,11 至关重要。值得注意的是,在过去的几年里,脑肠轴得到了深入研究 1214 。先前的研究报道说,肠道微生物群表现出昼夜节律,它与宿主昼夜节律相互作用 1517 。睡眠障碍,如慢性失眠,反过来会破坏微生物的昼夜节律,从而影响肠道微生物的组成和功能 1822 。另一方面,肠道微生物菌群失调与CMD的发展有关,对代谢健康 2329 有实质性影响。此外,胆汁酸代谢失调及其与肠道菌群的相互作用也与宿主代谢健康 3033 密切相关。小鼠反复的睡眠中断导致肠道微生物群组成的持续变化和胆汁酸代谢的变化 3436 。因此,我们假设肠道微生物群-胆汁酸轴可能在连接慢性失眠和CMD方面发挥作用。 值得注意的是,来自大规模人类队列的证据很少。

In the present study, we examined the longitudinal association of chronic insomnia status over ~6 years with gut microbiota and bile acid profiles in a Chinese prospective cohort study, including 1809 participants from the Guangzhou Nutrition and Health Study (GNHS)37. We further investigated whether these altered gut microbiota or bile acids could mediate the chronic insomnia-CMD association in the GNHS. Validation of the above associations was conducted in an independent large cross-sectional study involving 6122 participants from the Guangdong Gut Microbiome Project (GGMP)38.
在本研究中,我们在一项中国前瞻性队列研究中检查了 ~6 年慢性失眠状态与肠道微生物群和胆汁酸谱的纵向关联,其中包括来自广州营养与健康研究 (GNHS) 37 的 1809 名参与者。我们进一步研究了这些改变的肠道微生物群或胆汁酸是否可以介导GNHS中的慢性失眠-CMD关联。上述关联的验证是在一项独立的大型横断面研究中进行的,该研究涉及来自广东省肠道微生物组计划 (GGMP) 38 的 6122 名参与者。

Results 结果

Large gut microbiome cohorts with deep phenotyping data
具有深度表型数据的大型肠道微生物组队列

The present study was based on the GNHS, a community-based prospective cohort including 4048 participants of Han Chinese ethnicity, who were recruited between 2008 and 2013. Validation of the results from GNHS was based on data from the GGMP, a large community-based cross-sectional cohort conducted between 2015 and 2016 including 7,009 participants with high quality gut microbiome data. We profiled the gut microbiota (16S rRNA sequencing) in the GNHS (n = 1809) and GGMP (n = 6122) cohort participants, who provided detailed information on chronic insomnia status, CMD and related risk factors (Fig. 1a, and Tables 1 and and2).2). We also performed targeted fecal bile acid metabolome analyses among 954 participants from the GNHS cohort (Fig. 1a). In the GNHS, the participants were divided into four groups according to their chronic insomnia status over a period of 6 years prior to the collection of stool samples: (i) Long-term healthy group (i.e., without chronic insomnia at baseline or follow-up), (ii) Recovery group (i.e., from chronic insomnia at baseline to normal at follow-up), (iii) New-onset group (i.e., without chronic insomnia at baseline but with chronic insomnia at follow-up), and (iv) Long-term chronic insomnia group (i.e., with chronic insomnia at baseline and follow-up) (Fig. 1a and Methods). For the GGMP, given the cross-sectional study design, the participants were divided into two groups: (i) Non-chronic insomnia group, and (ii) Chronic insomnia group (Methods).
本研究基于GNHS,这是一个基于社区的前瞻性队列,包括4048名汉族参与者,他们在2008年至2013年间招募。GNHS结果的验证基于GGMP的数据,GGMP是一个在2015年至2016年间进行的大型社区横断面队列,包括7,009名具有高质量肠道微生物组数据的参与者。我们分析了GNHS(n = 1809)和GGMP(n = 6122)队列参与者的肠道微生物群(16S rRNA测序),他们提供了有关慢性失眠状态,CMD和相关危险因素的详细信息(图1a,表1和表2)。我们还对GNHS队列的954名参与者进行了靶向粪便胆汁酸代谢组分析(图1a)。在GNHS中,参与者根据他们在收集粪便样本前6年的慢性失眠状态分为四组:(i)长期健康组(即在基线或随访时没有慢性失眠),(ii)恢复组(即从基线的慢性失眠到随访时的正常),(iii)新发组(即 基线时没有慢性失眠,但随访时有慢性失眠),以及 (iv) 长期慢性失眠组(即基线和随访时有慢性失眠)(图 1a 和方法)。对于GGMP,根据横断面研究设计,参与者被分为两组:(i)非慢性失眠组和(ii)慢性失眠组(方法)。

An external file that holds a picture, illustration, etc.
Object name is 41467_2022_30712_Fig1_HTML.jpg
Study diagram and gut microbiota diversity by chronic insomnia status.
慢性失眠状态的研究图表和肠道微生物群多样性。

a Conceptual diagram of the present study. b The association of chronic insomnia with α-/β- microbial diversity among the four groups (n = 1809). The association of chronic insomnia with the overall microbial α-diversity parameter Observed species was evaluated using a multivariable linear regression, adjusted for potential confounding factors (three models in the text). Box plots indicate median and interquartile range (IQR). The upper and lower whiskers indicate 1.5 times the IQR from above the upper quartile and below the lower quartile. The results of Shannon index, Chao 1 index, ACE index and Simpson index are reported in Supplementary Fig. 1. β-diversity was evaluated using principal coordinate analysis (PCoA) plot based on Bray-Cutis distance at the genus level. Permutational ANOVA (PERMANOVA) (999 permutations) was used to identify the variation of β-diversity in the human gut microbiota structure comparing the four groups, adjusted for the same covariates. The Benjamini-Hochberg method was used to adjust p values for multiple testing. Value with symbol is significantly different (model 1: *p < 0.05, **p < 0.01, ***p < 0.001; model 2: +p < 0.05, ++p < 0.01, +++p < 0.001; model 3: #p < 0.05, ##p < 0.01, ###p < 0.001). All statistical tests were two-sided. Source data are provided as a Source Data file.
a 本研究的概念图。b 慢性失眠与四组α/β-微生物多样性的关联(n=1809)。慢性失眠与整体微生物α多样性参数的关联 使用多变量线性回归评估观察到的物种,并针对潜在的混杂因素进行调整(文中的三个模型)。箱形图表示中位数和四分位距 (IQR)。上部和下部胡须表示上四分位数上方和下四分位数下方的 IQR 的 1.5 倍。香农指数、Chao 1指数、ACE指数和Simpson指数的结果见补充图。 1 。采用主坐标分析(PCoA)图对β多样性进行评价,该图基于属水平的Bray-Cutis距离。排列方差分析(PERMANOVA)(999 种排列)用于识别人类肠道微生物群结构中β多样性的变化,比较四组,并针对相同的协变量进行调整。Benjamini-Hochberg 方法用于调整多次测试的 p 值。带符号的值显著不同(模型 1:*p < 0.05,**p < 0.01,***p < 0.001;模型 2: + p < 0.05,p ++ < 0.01,p +++ < 0.001;模型 3: # p < 0.05,p ## < 0.01,p ### < 0.001)。 所有统计检验都是双侧的。 源数据以 Source Data 文件形式提供。

Table 1 表1

Characteristics of the study participants in the Guangzhou Nutrition and Health Studya.
广州营养与健康研究 a 参与者的特征。

CharacteristicsTotalGroups
Long-term healthy 长期健康RecoveryNew-onsetLong-term chronic insomnia
长期慢性失眠
p value p 值
n180914439019878
Age, y 年龄,y58.5 (6.1)58.5 (6.1)58.2 (6.2)58.1 (5.7)59.6 (5.8)0.33
Sex, n (% of women)
性别,n (女性百分比)
1219 (67.4)927 (64.2)71 (78.9)155 (78.3)66 (84.6)<0.001
BMI, kg/m2 BMI,kg/m 2 23.2 (3.0)23.4 (3.0)22.8 (3.4)22.9 (3.0)22.2 (2.8)0.002
Total energy intake, kcal/d
总能量摄入,kcal/d
1748 (489)1738 (546)1724 (477)1638 (374)1748 (489)0.260
Physical activity, MET h/d
体力活动,MET h/d
40.6 (13.9)41.8 (15.1)40.8 (15.1)40.5 (14.2)40.6 (13.9)0.870
Vegetable intake, g/d 蔬菜摄入量,g/d370 (177)336 (162)381 (161)380 (183)370 (177)0.220
Fruit intake, g/d 水果摄入量,g/d146 (109)148 (111)134 (91)139 (96)142 (135)0.490
Red and processed meat intake, g/d
红肉和加工肉类摄入量,g/d
82 (52)83 (53)87 (52)78 (43.0)78 (46)0.430
Fish intake, g/d 鱼摄入量,g/d50 (52)50.8 (55.0)51.3 (38.4)47.5 (33.7)43.9 (33.3)0.580
Dairy products intake, g/d
乳制品摄入量,g/d
17.2 (14.4)17.3 (14.6)17.1 (12.6)16.6 (14.7)17.0 (12.0)0.940
Coffee intake, g/d 咖啡摄入量,g/d8.5 (34.1)8.5 (34.5)7.0 (20.4)9.5 (31.4)7.1 (45.5)0.920
Current tea drinker, n (%)
当前饮茶者,n (%)
967 (53.6)791 (54.8)39 (43.3)98 (49.5)39 (50.0)0.094
Current alcohol drinker, n (%)
当前饮酒者,n (%)
129 (7.1)106 (7.3)5 (5.6)16 (8.1)2 (2.6)0.370
Current smoker, n (%) 当前吸烟者,n (%)282 (15.6)245 (17.0)10 (11.1)20 (10.1)7 (9.0)0.014
Income level, n (%) 收入水平,n (%)0.350
≤500 ¥/mo ≤500 ¥/月26 (1.4)19 (1.3)1 (1.1)4 (2.0)2 (2.6)
501–1500 ¥/mo 501–1500 ¥/月391 (21.6)301 (20.9)26 (28.9)49 (24.7)15 (19.2)
1501–3000 ¥/mo 1501–3000 ¥/月1156 (63.9)930 (64.4)55 (61.1)116 (58.6)55 (70.5)
>3000 ¥/mo >3000 ¥/月236 (13.0)193 (13.4)8 (8.9)29 (14.6)6 (7.7)
Education, n (%) 教育, n (%)0.400
Middle school or lower 初中或以下395 (27.4)19 (21.1)51 (25.8)27 (34.6)395 (27.4)
High school or professional college
高中或专业学院
664 (46.0)40 (44.4)92 (46.5)35 (44.9)664 (46.0)
University384 (26.6)31 (34.4)55 (27.8)16 (20.5)384 (26.6)
SBP121 (17)122 (17)118 (15)119 (16)116 (16)0.005
DBP74 (12)74 (13)73 (10)74 (10)72 (9)0.540
TG1.6 (1.3)1.6 (1.2)1.4 (0.6)1.5 (0.7)1.6 (0.9)0.350
TC5.5 (1.1)5.5 (1.1)5.3 (1.1)5.6 (1.1)5.7 (1.2)0.031
LDL3.6 (1.0)3.6 (1.0)3.5 (1.0)3.7 (1.0)3.8 (1.1)0.220
HDL1.5 (0.4)1.5 (0.4)1.5 (0.4)1.5 (0.4)1.5 (0.4)0.370
Glucose, mmol/L 葡萄糖,mmol/L5.5 (1.3)5.5 (1.3)5.4 (1.0)5.4 (1.4)5.4 (1.4)0.500
Insulin, μU/mL 胰岛素,μU/mL9.1 (6.6)9.2 (6.9)8.6 (4.3)8.4 (5.1)8.8 (4.6)0.510
HbA1c, % 血红蛋白A1c,%5.8 (0.8)5.8 (0.8)5.8 (0.8)5.8 (0.9)5.8 (0.6)0.810
Medication use, n (%) 药物使用,n (%)
Hypertension96 (5.3)45 (3.1)2 (2.2)4 (2.0)5 (6.4)0.280
Hyperlipidaemia108 (6.0)91 (6.3)4 (4.4)10 (5.1)3 (3.8)0.660
T2D56 (3.1)45 (3.1)2 (2.2)4 (2.0)5 (6.4)0.280

HbA1c glycated hemoglobin, T2D type 2 diabetes, SBP systolic blood pressure, DBP diastolic blood pressure, TG triglycerides, TC total cholesterol, HDL high-density lipoprotein cholesterol, LDL low-density lipoprotein cholesterol.
HbA1c糖化血红蛋白、T2D2型糖尿病、SBP收缩压、DBP舒张压、TG甘油三酯、TC总胆固醇、HDL高密度脂蛋白胆固醇、LDL低密度脂蛋白胆固醇。

aData are expressed as mean with standard deviation (SD) for continuous variables and n (%) for categorical variables; p value represents the comparison among groups using analysis of variance (ANOVA) or Pearson’s chi-squared; All statistical tests were two-sided.
a 连续变量的数据表示为标准差 (SD) 的平均值,分类变量的 n (%);p 值表示使用方差分析 (ANOVA) 或 Pearson 卡方的组间比较;所有统计检验都是双侧的。

Table 2 表2

Characteristics of study participants from the Guangdong Gut Microbiome Projecta.
广东省肠道微生物组项目 a 研究参与者的特征 .

CharacteristicsTotal population 总人口Groups
Non-chronic insomnia 非慢性失眠Chronic insomnia 慢性失眠p value p 值
n612229633159
Age, y 年龄,y52.9 (14.7)49.8 (14.6)55.8 (14.2)<0.001
Sex, n (% of women)
性别,n (女性百分比)
3399 (55.5)1505 (50.8)1894 (60.0)<0.001
BMI, kg/m2 BMI,kg/m 2 23.3 (3.5)23.4 (3.6)23.2 (3.5)0.011
Vegetable intake, g/d 蔬菜摄入量,g/d335 (231)337 (216)333 (243)0.560
Fruit intake, g/d 水果摄入量,g/d80 (117)81 (111)78 (122)0.190
Red and processed meat intake, g/d
红肉和加工肉类摄入量,g/d
129 (121)134 (122)125 (119)0.007
Current alcohol drinker, n (%)
当前饮酒者,n (%)
2384 (38.9)1182 (39.9)1202 (38.1)0.140
Current smoker, n (%) 当前吸烟者,n (%)1563 (25.5)851 (28.7)712 (22.5)<0.001
Education, n (%) 教育, n (%)<0.001
Middle school or lower 初中或以下4649 (75.9)2134 (72.0)2515 (79.6)
High school or professional college
高中或专业学院
1215 (19.8)674 (22.7)541 (17.1)
University258 (4.2)155 (5.2)103 (3.3)
SBP132 (22)130 (21)134 (23)<0.001
DBP78 (12)78 (12)78 (12)0.370
TG1.4 (1.5)1.4 (1.6)1.4 (1.3)0.640
TC5.3 (0.9)5.2 (0.8)5.3 (0.9)0.002
LDL3.3 (0.9)3.2 (0.9)3.3 (1.0)<0.001
HDL1.3 (0.5)1.3 (0.5)1.3 (0.5)0.021
FBG5.6 (1.6)5.5 (1.6)5.7 (1.7)<0.001

SBP systolic blood pressure, DBP diastolic blood pressure, TG triglycerides, TC total cholesterol, HDL high-density lipoprotein cholesterol, LDL low-density lipoprotein cholesterol, FBG Fasting blood glucose.
SBP收缩压、DBP舒张压、TG甘油三酯、TC总胆固醇、HDL高密度脂蛋白胆固醇、LDL低密度脂蛋白胆固醇、FBG空腹血糖。

aData are expressed as mean with standard deviation (SD) for continuous variables and n (%) for categorical variables; p value represents the comparison among groups using analysis of variance (ANOVA) or Pearson’s chi-square test. All statistical tests were two-sided.
a 连续变量的数据表示为标准差 (SD) 的平均值,分类变量的 n (%);p 值表示使用方差分析 (ANOVA) 或 Pearson 卡方检验的组间比较。所有统计检验都是双侧的。

Chronic insomnia was associated with the diversity of the gut microbiota
慢性失眠与肠道微生物群的多样性有关

We first investigated the longitudinal association of chronic insomnia status of the GNHS participants with microbioal α-/β- diversity. We found that there were significant differences in the microbial β- diversity of the New-onset group and Long-term chronic insomnia group, compared to the Long-term healthy group (Fig. 1b). The α-diversity parameters (Observed species, Chao 1 index and ACE index) of the New-onset group and Long-term chronic insomnia group were significantly lower than those of the Long-term healthy group (Fig. 1b and Supplementary Fig. 1). The α-diversity parameter the Shannon index of the Long-term chronic insomnia group was significantly lower than that of the Long-term healthy group (Supplementary Fig. 1). The α-diversity parameter the Simpson index was not significantly different among the four chronic insomnia status groups (Supplementary Fig. 1). Consistent results were observed by using three different statistical models (Fig. 1b and Supplementary Fig. 1), suggesting that chronic insomnia was robustly associated with the gut microbiota structure.
我们首先研究了GNHS参与者的慢性失眠状态与微生物α/β多样性的纵向关联。我们发现,与长期健康组相比,新发组和长期慢性失眠组的微β生物多样性差异有统计学意义(图1b)。新发组和长期慢性失眠组的α多样性参数(观察到的物种、Chao 1指数和ACE指数)显著低于长期健康组(图1b和补充图1b)。 1 )。长期慢性失眠组的α多样性参数Shannon指数显著低于长期健康组(补充图1)。 1 )。α多样性参数辛普森指数在4个慢性失眠状态组中差异无统计学意义(补充图1)。 1 )。使用三种不同的统计模型观察到一致的结果(图1b和补充图1b)。 1 ),表明慢性失眠与肠道微生物群结构密切相关。

We combined the New-onset group and Long-term chronic insomnia group into one Chronic insomnia group to increase the sample size, given that there was no significant difference in the microbiota structure between the two groups. Chronic insomnia in the GNHS participants was associated with lower levels of Observed species (p < 0.01), Shannon index (p < 0.05), Chao 1 index (p < 0.001) and ACE index (p < 0.001), respectively (Fig. 2a and Supplementary Fig. 2). Principal coordinate analysis of the gut microbial profiles in the GNHS showed a significant shift in the gut microbiota composition of the Chronic insomnia group compared to the Long-term healthy group (p < 0.01; PERMANOVA test with 999 permutations) (Fig. 2b). A similar pattern was observed for the shift in the structure of the gut microbiota in the GGMP (Fig. 2a, b and Supplementary Fig. 3).
鉴于两组之间的微生物群结构没有显著差异,我们将新发病组和长期慢性失眠组合并为一个慢性失眠组以增加样本量。GNHS参与者的慢性失眠分别与观察到的物种(p < 0.01)、Shannon指数(p < 0.05)、Chao 1指数(p < 0.001)和ACE指数(p < 0.001)水平较低有关(图2a和补充图)。 2 GNHS中肠道微生物谱的主坐标分析显示,与长期健康组相比,慢性失眠组的肠道微生物群组成发生了显着变化(p < 0.01; 具有 999 种排列的 PERMANOVA 检验)(图 2b)。 在GGMP中观察到肠道微生物群结构的变化也存在类似的模式(图2a,b和补充图2a,b)。 3

An external file that holds a picture, illustration, etc.
Object name is 41467_2022_30712_Fig2_HTML.jpg
Association of chronic insomnia with gut microbiota and bile acids.
慢性失眠与肠道微生物群和胆汁酸的关联。

a Observed species in the discovery cohort (n = 1809) and validation cohort (n = 6122). The results of Shannon index, Chao 1 index, ACE index and Simpson index are reported in Supplementary Fig. 2 (discovery cohort) and Supplementary Fig. 3 (validation cohort). p value was calculated from multivariable-adjusted linear regression with three different models (Methods; model 1: *, model 2: +, model 3: #). Box plots indicate median and interquartile range (IQR). The upper and lower whiskers indicate 1.5 times the IQR from above the upper quartile and below the lower quartile. b β-diversity: principal coordinate analysis (PCoA) of genus-level Bray-Cutis distance in the discovery and validation cohorts. Permutational ANOVA (999 permutations) was used to identify the variation of β-diversity, adjusted for the same covariates as α-diversity. c Multivariate Analysis by Linear Models (MaAsLin) was used to identify the gut microbial biomarkers for chronic insomnia comparing Chronic insomnia group with Long-term healthy group. The q values (false discovery rate adjusted p value) were calculated using the Benjamini-Hochberg method (*q < 0.25, **q < 0.05). d Multivariable linear regression was used to assess the association of chronic insomnia with the gut microbial biomarkers in the discovery and validation cohorts, adjusted for the same covariates as α-diversity. Error bars are beta coefficient with 95% confidence intervals. e, Bile acid biomarkers of chronic insomnia in the GNHS (n = 954). Box plots indicate median and interquartile range. Orthogonal partial least squares discrimination analysis (OPLS-DA) (Supplementary Fig. 5) and multivariable-adjusted linear regression were used to identify potential bile acids associated with chronic insomnia (*p < 0.05, **p < 0.01, ***p < 0.001). f Partial correlation analysis was used to assess the interrelationships between the identified gut microbiota and bile acid biomarkers, adjusted for age, sex and BMI. Orange/sky blue circles indicate chronic insomnia-positive/negative biomarkers. Orange/sky blue lines indicate positive/negative associations. The Benjamini-Hochberg method was used to correct for multiple testing. All statistical tests were two-sided. Source data are provided as a Source Data file. α-MCA α-muricholic acid; β-HDCA β-hyodeoxycholic acid; HDCA hyodeoxycholic acid; HCA hyocholic acid; IsoLCA isolithocholic acid; LCA lithocholic acid; MCA Muro cholic acid; NorCA Nor cholic acid; NorDCA Nor deoxycholic acid; UDCA ursodeoxycholic acid.
a 在发现队列(n = 1809)和验证队列(n = 6122)中观察到的物种。香农指数、Chao 1指数、ACE指数和Simpson指数的结果见补充图。 2 (发现队列)和补充图。 3 (验证队列)。p值是用三种不同的模型(方法;模型1:*,模型2:+,模型3:#)的多变量调整线性回归计算的。箱形图表示中位数和四分位距 (IQR)。上部和下部胡须表示上四分位数上方和下四分位数下方的 IQR 的 1.5 倍。b β多样性:发现和验证队列中属级Bray-Cutis距离的主坐标分析(PCoA)。使用排列方差分析(999 个排列)来识别β多样性的变化,并针对与α多样性相同的协变量进行调整。c 采用线性模型多变量分析(MaAsLin)鉴定慢性失眠的肠道微生物生物标志物,比较慢性失眠组和长期健康组。q值(错误发现率调整后的p值)使用Benjamini-Hochberg方法计算(*q < 0.25,**q < 0.05)。d 使用多变量线性回归评估慢性失眠与发现和验证队列中肠道微生物生物标志物的关联,并针对与α多样性相同的协变量进行调整。误差线是具有 95% 置信区间的 beta 系数。e, GNHS中慢性失眠的胆汁酸生物标志物(n = 954)。箱形图表示中位数和四分位距。正交偏最小二乘判别分析(OPLS-DA)(补充图1)。 5 )和多变量校正线性回归用于识别与慢性失眠相关的潜在胆汁酸(*p < 0。05, **p < 0.01, ***p < 0.001)。f 部分相关性分析用于评估已鉴定的肠道微生物群与胆汁酸生物标志物之间的相互关系,并根据年龄、性别和 BMI 进行调整。橙色/天蓝色圆圈表示慢性失眠阳性/阴性生物标志物。橙色/天蓝色线表示正/负关联。Benjamini-Hochberg 方法用于校正多重测试。所有统计检验都是双侧的。源数据以 Source Data 文件形式提供。α-MCA α-muricholic acid;β-HDCA β-玺脱氧胆酸;HDCA玖脱氧胆酸;HCA猪胆酸;异LCA异石胆酸;LCA石胆酸;MCA Muro胆酸;NorCA 也不是胆酸;NorDCA 也不是脱氧胆酸;UDCA熊去氧胆酸。

Chronic insomnia was associated with specific gut microbes and bile acids
慢性失眠与特定的肠道微生物和胆汁酸有关

We used Multivariate Analysis by Linear Models (MaAsLin) adjusted for potential confounders to identify potential microbial biomarkers (as outcome variables) of chronic insomnia (as a predictor in the model). Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 were identified as the microbial biomarkers of chronic insomnia (Fig. 2c and Supplementary Table 1). In the GNHS, Chronic insomnia group was associated with lower levels of Ruminococcaceae UCG-002 (β: −0.19, 95% CI: −0.32 to −0.06) and Ruminococcaceae UCG-003 (β: −0.20, 95% CI: −0.33 to −0.07), compared with the Long-term healthy group (Fig. 2d). These results were also observed in the GGMP (Fig. 2d). The results of the sensitivity analysis suggested that different covariate adjustments did not substantially affect the results in the GGMP (Supplementary Fig. 4). In addition, chronic insomnia had no interactions with age or sex for Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 (Supplementary Table 2). To assess the potential influence of the number of insomnia symptoms, we conducted a secondary analysis of the GGMP participants, for whom the data were available, and found that the per unit change in the chronic insomnia symptom score was inversely associated with a per 1-SD change in Ruminococcaceae UCG-002 (β: −0.04, 95% CI: −0.06 to −0.02, p < 0.001) and Ruminococcaceae UCG-003 (β: −0.04, 95% CI: −0.07 to −0.01, p = 0.002) (Supplementary Table 3).
我们使用线性模型多变量分析(MaAsLin)对潜在的混杂因素进行了调整,以确定慢性失眠的潜在微生物生物标志物(作为结果变量)(作为模型中的预测因子)。瘤胃球菌科UCG-002和瘤胃球菌科UCG-003被鉴定为慢性失眠的微生物生物标志物(图2c和补充表 1 )。在GNHS中,与长期健康组相比,慢性失眠组与瘤胃球菌科UCG-002(β:-0.19,95%CI:-0.32至-0.06)和瘤胃球菌科UCG-003(β:-0.20,95%CI:-0.33至-0.07)的水平较低相关(图2d)。在GGMP中也观察到了这些结果(图2d)。敏感性分析的结果表明,不同的协变量调整对GGMP的结果没有实质性影响(补充图1)。 4 )。此外,瘤胃球菌科UCG-002和瘤胃球菌科UCG-003的慢性失眠与年龄或性别没有相互作用(补充表 2 )。为了评估失眠症状数量的潜在影响,我们对GGMP参与者进行了二次分析,发现慢性失眠症状评分的单位变化与瘤胃球菌科UCG-002的每1-SD变化呈负相关(β:-0.04,95%CI:-0.06至-0.02, p < 0.001) 和瘤胃球菌科 UCG-003 (β: -0.04, 95% CI: -0.07 至 -0.01, p = 0.002) (补充表 3 )。

We next used orthogonal partial least squares discrimination analysis (OPLS-DA) to identify potential fecal bile acids associated with chronic insomnia (Supplementary Fig. 5) and then used linear regression to confirm the chronic insomnia-bile acid associations in the GNHS (Fig. 2e). Chronic insomnia was associated with higher levels of muro cholic acid (MCA, p = 0.046) and nor cholic acid (NorCA, p = 0.046) and with lower levels of isolithocholic acid (IsoLCA, p = 0.029), lithocholic acid (LCA, p = 0.035) and ursodeoxycholic acid (UDCA, p = 0.039) (Fig. 2e). The results of the sensitivity analysis showed that adding dietary cholesterol intake and fiber intake as additional covariates did not substantially affect the association of chronic insomnia with bile acids (Supplementary Table 4). Co-occurrence network analysis based on the partial correlation coefficient showed that Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 were positively associated with secondary bile acids (IsoLCA, LCA, and UDCA), and inversely associated with primary bile acids (MCA and NorCA) (p < 0.001) (Fig. 2f). In addition, chronic insomnia was not associated with short-chain fatty acids, aromatic amino acids, or their derivatives (Supplementary Table 5). These results indicated that chronic insomnia might have a significant impact on the gut microbiota-bile acid axis.
接下来,我们使用正交偏最小二乘判别分析(OPLS-DA)来识别与慢性失眠相关的潜在粪便胆汁酸(补充图)。 5 ),然后使用线性回归来确认GNHS中的慢性失眠-胆汁酸关联(图2e)。慢性失眠与较高的壁胆酸(MCA,p = 0.046)和胆酸(NorCA,p = 0.046)以及较低的异溶胆酸(IsoLCA,p = 0.029),石胆酸(LCA,p = 0.035)和熊去氧胆酸(UDCA,p = 0.039)水平有关(图2e)。敏感性分析的结果表明,添加膳食胆固醇摄入量和纤维摄入量作为额外的协变量,并没有显著影响慢性失眠与胆汁酸的关联(补充表 4 )。基于偏相关系数的共现网络分析表明,瘤胃球菌科UCG-002和瘤胃球菌科UCG-003与次生胆汁酸(IsoLCA、LCA和UDCA)呈正相关,与初级胆汁酸(MCA和NorCA)呈负相关(p < 0.001)(图2f)。 此外,慢性失眠与短链脂肪酸、芳香族氨基酸或其衍生物无关(补充表 5 ).这些结果表明,慢性失眠可能对肠道微生物群-胆汁酸轴产生显着影响。

Chronic insomnia-related gut microbial features and bile acids were associated with CMD and risk factors
慢性失眠相关肠道微生物特征和胆汁酸与CMD和危险因素相关

To further investigate whether the chronic insomnia-related gut microbiota or bile acids play a role in CMD, we used multivariable logistic regression to examine the association of the chronic insomnia-related gut microbiota or bile acids with CMD. In the cross-sectional analysis of the GNHS participants, a per standard deviation (SD)-unit increment in Ruminococcaceae UCG-002 was associated with a 24% lower risk of metabolic syndrome (MetS) (OR: 0.76, 95% CI: 0.66–0.86), a 22% lower risk of T2D (OR: 0.78, 95% CI: 0.67–0.91), and 13% lower risk of dyslipidemia (OR: 0.87, 95% CI: 0.79–0.97) (Fig. 3a). Each per SD-unit increment in Ruminococcaceae UCG-003 was associated with a 23% lower risk of MetS (OR: 0.77, 95% CI: 0.67–0.88) (Fig. 3b). IsoLCA was inversely associated with T2D (OR: 0.74, 95% CI: 0.61–0.90) (Fig. 3c). MCA and NorCA were positively associated with MetS (OR: 1.33, 95% CI: 1.13–1.58; OR: 1.36, 95% CI: 1.15–1.61), respectively (Fig. 3c).
为了进一步研究慢性失眠相关肠道菌群或胆汁酸是否在CMD中起作用,我们使用多变量logistic回归来检查慢性失眠相关肠道微生物群或胆汁酸与CMD的关联。在GNHS参与者的横断面分析中,瘤胃球菌科UCG-002的每标准差(SD)单位增加与代谢综合征(MetS)风险降低24%相关(OR:0.76,95%CI:0.66-0.86),T2D风险降低22%(OR:0.78,95%CI:0.67-0.91),血脂异常风险降低13%(OR:0.87,95%CI: 0.79–0.97)(图3a)。瘤胃球菌科 UCG-003 中每 SD 单位的增加与 MetS 风险降低 23% 相关(OR:0.77,95% CI:0.67–0.88)(图 3b)。IsoLCA与T2D呈负相关(OR:0.74,95%CI:0.61–0.90)(图3c)。MCA和NorCA与MetS呈正相关(OR:1.33,95%CI:1.13–1.58;OR:1.36,95% CI:1.15–1.61),分别(图 3c)。

An external file that holds a picture, illustration, etc.
Object name is 41467_2022_30712_Fig3_HTML.jpg
Association of the chronic insomnia-related gut microbiota-bile acid axis with cardiometabolic diseases.
慢性失眠相关肠道微生物群-胆汁酸轴与心脏代谢疾病的关联。

Multivariable logistic regression was used to estimate the association of the chronic insomnia inverse-related microbial biomarkers Ruminococcaceae UCG-002 (a) and Ruminococcaceae UCG-003 (b) with different CMD in the discovery and validation cohorts, respectively. The effect estimates from the discovery and validation cohorts were pooled using random effects meta-analysis. c Multivariable logistic regression was used to estimate the association of the chronic insomnia-related bile acid biomarkers with CMD in the discovery cohort. d The prospective associations of the above identified gut microbiota biomarkers (measurement of gut microbiota data at the second follow-up) with the incidence of CMD (dyslipidemia) at the third follow-up using multivariable logistic regression, adjusted for potential confounders. Error bars in ad are odds ratios with 95% confidence intervals. e Associations of the identified gut microbiota and bile acid biomarkers with CMD-related risk factors (BMI, DBP, SBP, waist circumference, fasting serum TG, TC, HDL, LDL, glucose, insulin, and HbA1c) using multivariable linear regression model in the GNHS, adjusted for potential confounders. f Parallel coordinate chart showing the association among gut microbes, bile acid biomarkers and CMD outcomes. The left panel shows the microbial biomarkers, the middle panel shows the bile acid biomarkers, and the right panel shows the CMD outcomes. The red lines across panels indicate the positive association. The green lines across panels indicate the inverse association. g The chronic insomnia inverse-related microbial biomarker Ruminococcaceae UCG-002 affects risk of MetS and T2D though specific bile acid biomarkers, respectively. h The chronic insomnia inverse-related microbial biomarker Ruminococcaceae UCG-003 affects the risk of MetS and T2D through specific bile acid biomarkers, respectively. The gray lines indicate the associations, with corresponding normalized beta values and p values. The red arrowed lines indicate the microbial effects on CMD mediated by specific bile acid biomarkers, with the corresponding mediation p values. p value < 0.05 is considered significantly different. Throughout the above analyses, FDR from multiple testing was controlled by the Benjamini-Hochberg method. All statistical tests were two-sided. Source data are provided as a Source Data file. CMD cardiometabolic disease; T2D type 2 diabetes; MetS metabolic syndrome; SBP systolic blood pressure; DBP diastolic blood pressure; TG triglycerides; TC total cholesterol; HDL high-density lipoprotein cholesterol; LDL low-density lipoprotein cholesterol; HbAlc glycated hemoglobin.
采用多变量logistic回归法估计慢性失眠反向相关微生物生物标志物瘤胃球菌科UCG-002(a)和瘤胃球菌科UCG-003(b)与发现队列和验证队列中不同CMD的相关性。使用随机效应荟萃分析合并发现和验证队列的效应估计值。c 使用多变量logistic回归来估计发现队列中慢性失眠相关胆汁酸生物标志物与CMD的关联。d 使用多变量逻辑回归,对上述确定的肠道微生物群生物标志物(第二次随访时肠道微生物群数据的测量)与第三次随访时 CMD(血脂异常)发生率的前瞻性关联,并针对潜在的混杂因素进行调整。a–d 中的误差线是具有 95% 置信区间的比值比。e 使用 GNHS 中的多变量线性回归模型将已鉴定的肠道微生物群和胆汁酸生物标志物与 CMD 相关危险因素(BMI、DBP、SBP、腰围、空腹血清 TG、TC、HDL、LDL、葡萄糖、胰岛素和 HbA1c)关联,并针对潜在的混杂因素进行调整。f 显示肠道微生物、胆汁酸生物标志物和 CMD 结果之间关联的平行坐标图。左图显示微生物生物标志物,中图显示胆汁酸生物标志物,右图显示 CMD 结果。面板上的红线表示正相关。面板上的绿线表示反向关联。g 慢性失眠逆相关微生物生物标志物瘤胃球菌科 UCG-002 分别通过特异性胆汁酸生物标志物影响 MetS 和 T2D 的风险。 h 慢性失眠逆相关微生物生物标志物瘤胃球菌科 UCG-003 分别通过特异性胆汁酸生物标志物影响 MetS 和 T2D 的风险。灰线表示关联,并具有相应的归一化 beta 值和 p 值。红色箭头线表示由特定胆汁酸生物标志物介导的微生物对 CMD 的影响,以及相应的介导 p 值。p 值< 0.05 被认为存在显著差异。 在上述分析中,来自多个测试的 FDR 由 Benjamini-Hochberg 方法控制。 所有统计检验都是双侧的。 源数据以 Source Data 文件形式提供。CMD心脏代谢疾病;T2D 2 型糖尿病;MetS代谢综合征;SBP收缩压;DBP舒张压;TG甘油三酯;TC总胆固醇;高密度脂蛋白胆固醇;低密度脂蛋白低密度脂蛋白胆固醇;HbAlc糖化血红蛋白。

The majority of the results from the GNHS could be also observed in the GGMP. Meta-analysis of results from the two cohorts consistently showed that Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 were significantly inversely associated with MetS (Pooled OR: 0.82, 95% CI: 0.72–0.93; Pooled OR: 0.82, 95% CI: 0.77–0.88), T2D (Pooled OR: 0.84, 95% CI: 0.75–0.95; Pooled OR: 0.87, 95% CI: 0.81–0.95), dyslipidemia (Pooled OR: 0.91, 95% CI: 0.87–0.95; Pooled OR: 0.88, 95% CI: 0.84–0.92) and coronary heart disease (CHD) (Pooled OR: 0.88, 95% CI: 0.82–0.94; Pooled OR: 0.93, 95% CI: 0.87–0.99), respectively (Fig. 3a, b). Consistent results were observed in the sensitivity analyses (Supplementary Fig. 6). Ruminococcaceae UCG-002 was interacted with sex in the risk of dyslipidaemia (pinteraction = 0.003) (Supplementary Table 6). The stratified analyses by sex showed that the inverse association of Ruminococcaceae UCG-002 with dyslipidaemia was significant among the men participants (Pooled OR: 0.87, 95% CI: 0.81–0.93, p < 0.001), but not among the women participants (Pooled OR: 0.96, 95% CI: 0.88–1.05, p = 0.394) (Supplementary Table 6).
GNHS的大部分结果也可以在GGMP中观察到。对两个队列结果的荟萃分析一致表明,瘤胃球菌科 UCG-002 和瘤胃球菌科 UCG-003 与 MetS 呈显著负相关(合并 OR:0.82,95% CI:0.72–0.93;合并 OR:0.82,95% CI:0.77–0.88)、T2D(合并 OR:0.84,95% CI:0.75–0.95;合并OR:0.87,95% CI:0.81-0.95)、血脂异常(合并OR:0.91,95% CI:0.87-0.95;合并OR:0.88,95%CI:0.84-0.92)和冠心病(CHD)(合并OR:0.88,95%CI:0.82-0.94;合并OR:0.93,95%CI:0.87–0.99),分别(图3a,b)。在敏感性分析中观察到一致的结果(补充图1)。 6 )。瘤胃球菌科 UCG-002 在血脂异常的风险中与性别相互作用 (p interaction = 0.003)(补充表 6 )。按性别分层分析显示,瘤胃球菌科UCG-002与血脂异常的负相关在男性参与者中显著(合并OR:0.87,95%CI:0.81-0.93,p < 0.001),但在女性参与者中则不显著(合并OR:0.96,95%CI:0.88-1.05,p = 0.394)(补充表 6 )。

In the longitudinal analysis among GNHS, we found that Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 were inversely associated with the incidence of dyslipidemia (OR: 0.72, 95% CI: 0.57–0.90; OR: 0.74, 95% CI: 0.60–0.91), respectively (Fig. 3d). In addition, Ruminococcaceae UCG-002 was significantly inversely associated with BMI (β: −0.28, 95% CI: −0.43 to −0.12) (Fig. 3e).
在GNHS的纵向分析中,我们发现瘤胃球菌科UCG-002和瘤胃球菌科UCG-003与血脂异常的发生率呈负相关(OR:0.72,95%CI:0.57–0.90;OR:0.74,95% CI:0.60–0.91),分别为 (Fig. 3d)。此外,瘤胃球菌科UCG-002与BMI呈显著负相关(β:-0.28,95%CI:-0.43至-0.12)(图3e)。

To evaluate whether bile acids can mediate the relationship between the gut microbiota and CMD (Fig. 3f), we applied mediation analysis, which showed that the inverse association of the chronic insomnia-related gut microbial biomarkers with MetS and T2D were mediated by some specific bile acids (Fig. 3g, h). MCA mediated the association of Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 with the risk of MetS (50.8%, pmediation < 0.001; 39.5%, pmediation < 0.001, respectively, Fig. 3g, h). NorCA mediated the association of Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 with the MetS risk (32.9%, pmediation < 0.001; 31.9%, pmediation < 0.001, respectively, Fig. 3g, h). In addition, IsoLCA mediated the association of Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 with the risk of T2D (41.7%, pmediation = 0.040; 53.2%, pmediation < 0.001, respectively, Fig. 3g, h). Sensitivity analysis for mediation effects indicated that the results of the above mediation analysis were relatively robust to the possible existence of an unmeasured confounder (Supplementary Table 7).
为了评估胆汁酸是否可以介导肠道微生物群与CMD之间的关系(图3f),我们应用了中介分析,结果表明慢性失眠相关肠道微生物生物标志物与MetS和T2D的负相关是由一些特定的胆汁酸介导的(图3g,h)。MCA介导瘤胃球菌科UCG-002和瘤胃球菌科UCG-003与MetS风险的关联(分别为50.8%,p mediation <0.001;39.5%,p mediation <0.001,图3g,h)。 NorCA介导瘤胃球菌科UCG-002和瘤胃球菌科UCG-003与MetS风险的关联(分别为32.9%,p mediation < 0.001;31.9%,p mediation < 0.001,图3g,h)。此外,IsoLCA介导瘤胃球菌科UCG-002和瘤胃球菌科UCG-003与T2D风险的关联(分别为41.7%,p mediation = 0.040;53.2%,p mediation <0.001,图3g,h)。 对中介效应的敏感性分析表明,上述中介分析的结果对可能存在未测量的混杂因素相对可靠(补充表 7 )。

Habitual dietary intakes and gut microbiota-bile acid axis
习惯性饮食摄入量和肠道微生物群-胆汁酸轴

We used multivariable linear regression models to investigate the longitudinal association of dietary factors with chronic insomnia-related microbial and bile acid biomarkers in the GNHS participants without chronic insomnia or CMD at baseline. Among different food groups, we found that only tea consumption was positively significantly associated with Ruminococcaceae UCG-002 (β: 0.28, 95% CI: 0.13–0.43; p = 0.002), and inversely associated with bile acid NorCA (β: −0.22, 95% CI: −0.42 to −0.02; p = 0.029, which was positively associated with chronic insomnia) (Fig. 4a, b and Supplementary Fig. 7). The tea consumption-Ruminococcaceae UCG-002 association was also observed in the GGMP (β: 0.27, 95% CI: 0.08–0.47; p = 0.002) (Fig. 4a). Furthermore, a stratified analysis by tea consumption (yes versus no) among the GNHS participants showed that the inverse association between Ruminococcaceae UCG-002 and CMD risk factors (especially for T2D (OR: 0.73, 95% CI: 0.60–0.89, p = 0.002) and dyslipidemia (OR: 0.85, 95% CI: 0.74–0.98, p = 0.024)) were generally stronger among those with habitual tea consumption (Table 3). In addition, meta-analysis of the results of the tea consumption-chronic insomnia association from the two cohorts showed that tea consumption (yes versus no) was inversely associated with the risk of chronic insomnia (Pooled OR: 0.72, 95% CI: 0.55–0.95, p = 0.020) (Supplementary Table 8). The results indicated that habitual tea consumption was associated with the gut microbiota-bile acid axis, which may potentially underlie the association between chronic insomnia and CMD (Fig. 4c).
我们使用多变量线性回归模型来研究基线时没有慢性失眠或CMD的GNHS参与者的饮食因素与慢性失眠相关微生物和胆汁酸生物标志物的纵向关联。在不同的食物组中,我们发现只有茶的消费量与瘤胃球菌科UCG-002呈正相关(β:0.28,95%CI:0.13-0.43;p = 0.002),与胆汁酸NorCA呈负相关(β:-0.22,95%CI:-0.42至-0.02;p=0.029,与慢性失眠呈正相关)(图4a,b和补充图4a,b和补充图4a。 7 )。在GGMP中也观察到茶消费-瘤胃球菌科UCG-002的关联(β:0.27,95%CI:0.08-0.47;p = 0.002)(图4a)。此外,GNHS参与者的茶饮量分层分析(是与否)表明,瘤胃球菌科UCG-002与CMD危险因素(特别是T2D(OR:0.73,95%CI:0.60-0.89,p = 0.002))和血脂异常(OR:0.85,95%CI:0.74-0.98,p = 0.024))之间的负相关在习惯饮茶的人中普遍更强(表3)。此外,对两个队列的茶饮-慢性失眠关联结果的荟萃分析表明,饮茶(是与否)与慢性失眠的风险呈负相关(合并 OR:0.72,95% CI:0.55–0.95,p = 0.020)(补充表 8 )。结果表明,习惯性饮茶与肠道微生物群-胆汁酸轴有关,这可能是慢性失眠与CMD之间关联的基础(图4c)。

An external file that holds a picture, illustration, etc.
Object name is 41467_2022_30712_Fig4_HTML.jpg
Habitual dietary intake and gut microbiota-bile acid axis.
习惯性饮食摄入量和肠道微生物群-胆汁酸轴。

a Prospective association of dietary factors with the identified microbial biomarker Ruminococcaceae UCG-002 in the discovery and validation cohorts. The results of Ruminococcaceae UCG-003 are reported in the Supplementary Fig. 7. Values presented are beta coefficients (95% confidence intervals) with corresponding p-values. b Prospective association of dietary factors with the identified bile acid biomarkers linking chronic insomnia and cardiometabolic diseases (CMD) in the GNHS. Multivariable linear regression was used to examine the prospective association of dietary factors with microbial and bile acid biomarkers, adjusted for the potential confounders. p value < 0.05 is considered significantly different. Value presented are beta coefficients (95% confidence intervals) with corresponding p-values. c Diagram of the link between habitual tea consumption, the gut microbiota-bile acid axis, and CMD. Habitual tea consumption was associated with higher abundance of Ruminococcaceae UCG-002 and lower abundance of the Nor cholic acid (NorCA). Value with asterisk is significantly different. (*p < 0.05, **p < 0.01, ***p < 0.001). Throughout the above analyses, FDR was controlled by the Benjamini-Hochberg method. All statistical tests were two-sided. Source data are provided as a Source Data file.
a 在发现和验证队列中,饮食因素与已确定的微生物生物标志物瘤胃球菌科 UCG-002 的前瞻性关联。瘤胃球菌科UCG-003的结果报告在补充图中。 7 。显示的值是具有相应 p 值的 beta 系数(95% 置信区间)。b 膳食因素与GNHS中已确定的胆汁酸生物标志物的前瞻性关联,这些生物标志物将慢性失眠和心脏代谢疾病(CMD)联系起来。采用多变量线性回归检验膳食因素与微生物和胆汁酸生物标志物的前瞻性关联,并针对潜在混杂因素进行调整。p 值< 0.05 被认为存在显著差异。显示的值是具有相应 p 值的 beta 系数(95% 置信区间)。c 习惯性饮茶、肠道微生物群-胆汁酸轴和 CMD 之间的联系图。 习惯性饮茶与瘤胃球菌科 UCG-002 丰度较高且 Nor 胆酸 (NorCA) 丰度较低相关。带星号的值有显著差异。(*p < 0.05,**p < 0.01,***p < 0.001)。 在上述分析中,FDR由Benjamini-Hochberg方法控制。 所有统计检验都是双侧的。 源数据以 Source Data 文件形式提供。

Table 3 表3

The stratified analysis of the association of Ruminococcaceae UCG-002 with CMD risk by tea consumption (yes versus no) in the Guangzhou Nutrition and Health Studya.
广州营养与健康研究中 a 瘤胃球菌科UCG-002与饮茶CMD风险的分层分析(是与否)。

CMDOdds ratio (OR) 比值比 (OR)95% CIp value p 值
Tea consumption group (n = 928)
茶叶消费组 (n = 928)
 dyslipidemia0.85[0.74, 0.98]0.024
 T2D0.73[0.60, 0.89]0.002
 MetS0.79[0.67, 0.93]0.006
Non-tea consumption group (n = 791)
非茶叶消费组 (n = 791)
 dyslipidemia0.90[0.78, 1.04]0.168
 T2D0.84[0.65, 1.07]0.162
 MetS0.70[0.55, 0.86]0.001

T2D type 2 diabetes, MetS metabolic syndrome.
T2D 2 型糖尿病,MetS 代谢综合征。

aMultivariable logistic regression (odds ratio) was used to estimate the association of tea consumption with cardiometabolic disease (CMD) risk, adjusted for the potential covariates. The Benjamini-Hochberg method was used to control the false discovery rate (FDR) for multiple testing. All statistical tests were two-sided.
a 使用多变量logistic回归(比值比)来估计茶叶消费与心脏代谢疾病(CMD)风险的关联,并针对潜在的协变量进行调整。Benjamini-Hochberg方法用于控制多重检测的错误发现率(FDR)。所有统计检验都是双侧的。

Discussion 讨论

In the present study, we demonstrated that chronic insomnia was significantly associated with the structure and composition of the gut microbiota and specific bile acids. The chronic insomnia inverse-related gut microbiota Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 were significantly inversely associated with CMD and related traits. The gut microbial features of chronic insomnia and their relationships with CMD traits were also observed in an independent cohort (GGMP). Furthermore, we found that chronic insomnia-related bile acids (MCA, NorCA, and IsoLCA) may mediate the association of the identified microbial features with CMD traits. Finally, habitual tea consumption was associated with higher levels of Ruminococcaceae UCG-002 and lower levels of the bile acid NorCA, and the tea drinking-Ruminococcaceae UCG-002 association was also observed in the GGMP.
在本研究中,我们证明了慢性失眠与肠道微生物群和特定胆汁酸的结构和组成显着相关。慢性失眠反向相关肠道菌群瘤胃球菌科UCG-002和瘤胃球菌科UCG-003与CMD及相关性状呈显著负相关。慢性失眠的肠道微生物特征及其与CMD性状的关系也在独立队列(GGMP)中观察到。此外,我们发现慢性失眠相关胆汁酸(MCA、NorCA 和 IsoLCA)可能介导已鉴定的微生物特征与 CMD 性状的关联。最后,习惯性饮茶与瘤胃球菌科UCG-002水平较高和胆汁酸NorCA水平较低有关,并且在GGMP中也观察到饮茶-瘤胃球菌科UCG-002的关联。

Recent human studies have shown that sleep duration and rhythm are associated with variations in the gut microbiota18,39. However, to date, evidence from large cohort studies on the associations between chronic insomnia and the gut microbiota is particularly lacking. Our results from two large cohort studies provided timely evidence supporting that chronic insomnia was associated with variations in the gut microbiota. Specifically, Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 were identified as the two potential genera inversely associated with chronic insomnia, and those microbes may be associated with host glucose homeostasis and lipid metabolism40,41. In addition to the gut microbiota, our study provided new insight into the relationship between chronic insomnia and bile acids. Bile acids are recognized as potent signaling molecules that impact glucose and lipid homeostasis through activation of Farnesoid-X receptor (FXR)4244 and Takeda-G-protein-receptor-5 (TGR5)45. As alterations in the gut microbiota would alter many other metabolites, we performed a secondary analysis of the association of chronic insomnia with short-chain fatty acids, aromatic amino acids and their derivatives46,47. Although we did not find any significant association for these two classes of metabolites, we could not rule out the possibility that chronic insomnia may be associated with other metabolites, which needs further investigation.
最近的人类研究表明,睡眠持续时间和节律与肠道微生物群 18,39 的变化有关。然而,迄今为止,关于慢性失眠与肠道微生物群之间关联的大型队列研究的证据尤其缺乏。我们来自两项大型队列研究的结果提供了及时的证据,支持慢性失眠与肠道微生物群的变化有关。具体而言,瘤胃球菌科UCG-002和瘤胃球菌科UCG-003被鉴定为与慢性失眠呈负相关的两个潜在属,这些微生物可能与宿主葡萄糖稳态和脂质代谢有关 40,41 。除了肠道微生物群,我们的研究还为慢性失眠与胆汁酸之间的关系提供了新的见解。胆汁酸被认为是有效的信号分子,通过激活法尼醇-X 受体 (FXR) 4244 和武田-G 蛋白受体-5 (TGR5) 45 来影响葡萄糖和脂质稳态。由于肠道微生物群的改变会改变许多其他代谢物,我们对慢性失眠与短链脂肪酸、芳香族氨基酸及其衍生物 46,47 的关联进行了二次分析。虽然我们没有发现这两类代谢物有任何显着关联,但我们不能排除慢性失眠可能与其他代谢物有关的可能性,这需要进一步研究。

As indicated in previous studies48,49, the gut microbiota-bile acid axis is vital to human health. In the past decade, evidence from human cohort studies has indicated that chronic insomnia is associated with higher risk of CMD59,50,51, yet whether the gut microbiota-bile acid axis plays a role in the above association is unknown. Our study demonstrated that chronic insomnia-related gut microbial features were closely associated with CMD endpoints, which may be mediated by specific bile acids. The results were consistent with several recent studies41,5255. One study indicated that secondary bile acid metabolites (i.e., glycoursodeoxycholate) might link poor habitual sleep quality and coronary heart disease risk52. Another study showed that Ruminococcaceae UCG-002 was positively associated with insulin sensitivity in patients with polycystic ovary syndrome41. In addition, another recent study demonstrated that Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 were positively associated with several plasma HDL subclasses, and were inversely associated with several plasma LDL subclasses, which had direct beneficial implications for cardiovascular health53. Several other studies have suggested that treatment with specific microbial derived secondary bile acids (obeticholic acid, deoxycholic acid, and glycodeoxycholic acid) in patients with T2D could improve insulin sensitivity and HbA1c levels54,55.
正如先前的研究表明 48,49 ,肠道微生物群-胆汁酸轴对人体健康至关重要。在过去的十年中,来自人类队列研究的证据表明,慢性失眠与CMD 59,50,51 的风险较高有关,但肠道微生物群-胆汁酸轴是否在上述关联中起作用尚不清楚。我们的研究表明,慢性失眠相关的肠道微生物特征与CMD终点密切相关,CMD终点可能由特定的胆汁酸介导。结果与最近的几项研究 41,5255 一致。一项研究表明,次级胆汁酸代谢物(即糖尿素脱氧胆酸盐)可能与习惯性睡眠质量差和冠心病风险 52 有关。另一项研究表明,瘤胃球菌科UCG-002与多囊卵巢综合征患者的胰岛素敏感性呈正相关 41 。此外,最近的另一项研究表明,瘤胃球菌科UCG-002和瘤胃球菌科UCG-003与几个血浆高密度脂蛋白亚类呈正相关,与几个血浆低密度脂蛋白亚类呈负相关,这对心血管健康 53 有直接的有益影响。其他几项研究表明,在 T2D 患者中,使用特定微生物来源的次级胆汁酸(奥贝胆酸、脱氧胆酸和糖码氧胆酸)治疗可以改善胰岛素敏感性和 HbA1c 水平 54,55

The perturbations of the gut microbiota strongly affect bile acid metabolism, especially a failure to metabolize some primary bile acids leading to primary bile acid accumulation and secondary bile acid reduction56,57. Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 may have the ability to convert some primary bile acids into secondary bile acids as they belong to the bile salt hydrolase (BSH) and 7α-dehydroxylase-active family Ruminococcaceae, which harbors many secondary bile acid-producing genera such as Faecalibacterium and Ruminniclostridium58,59. Given the hormone-like functions of bile acids through activation of FXR and TGR5, a dysregulated bile acid pool can lead to perturbations in multiple pathological processes underlying CMD, such as immune regulation and lipid and glucose homeostasis60,61.
肠道菌群的扰动强烈影响胆汁酸代谢,特别是一些初级胆汁酸代谢失败,导致初级胆汁酸积累和次级胆汁酸减少 56,57 。瘤胃球菌科 UCG-002 和瘤胃球菌科 UCG-003 可能具有将一些伯胆汁酸转化为次生胆汁酸的能力,因为它们属于胆汁盐水解酶 (BSH) 和 7α-脱羟化酶活性家族,该家族拥有许多次生胆汁酸产生属,例如粪杆菌属和瘤胃魚杆菌 58,59 属。鉴于胆汁酸通过激活 FXR 和 TGR5 具有激素样功能,失调的胆汁酸池可导致 CMD 的多种病理过程的扰动,例如免疫调节以及脂质和葡萄糖稳态 60,61

We found a prospective association of habitual tea consumption with the identified gut microbiota and bile acids that was opposite to that of chronic insomnia. The major tea types consumed by the cohort participants were oolong tea, green tea, pu-erh tea, and black tea, which are beneficial to host metabolic health62,63. The mechanism underlying the association of habitual tea consumption with the gut microbiota-bile acid axis may be attributed to the rich content of tea polyphenols, flavonoids, alkaloids, and various antioxidant compounds, which are reported to modulate the gut microbiota composition and bile acid metabolism6466 and improve the circadian rhythm systems of the brain and gut67,68. Nevertheless, we cannot establish a causal relationship between tea consumption and CMD-related gut microbiota at this stage, and these above speculations should be considered with caution, especially given that caffeine in tea may exacerbate insomnia69. Randomized controlled trials are further needed to examine the effectiveness of habitual tea consumption on the gut microbiome.
我们发现习惯性饮茶与已确定的肠道微生物群和胆汁酸之间存在潜在的关联,这与慢性失眠相反。队列参与者消费的主要茶叶类型是乌龙茶、绿茶、普洱茶和红茶,这些茶对宿主代谢健康 62,63 有益。习惯性饮茶与肠道菌群-胆汁酸轴关联的机制可能归因于茶多酚、类黄酮、生物碱和各种抗氧化化合物的丰富含量,据报道,这些物质可以调节肠道菌群组成和胆汁酸代谢 6466 ,改善大脑和肠道 67,68 的昼夜节律系统.然而,在现阶段,我们无法建立茶饮与CMD相关肠道菌群之间的因果关系,上述推测应谨慎考虑,特别是考虑到茶中的咖啡因可能会加剧失眠 69 。还需要进行随机对照试验来检查习惯性饮茶对肠道微生物组的有效性。

The present study has several strengths. First, it is based on a large longitudinal cohort, given that evidence from the prospective relationship of chronic insomnia status with the gut microbiota is particularly lacking. Second, we used the gut microbiota-bile axis to interpret the connection between chronic insomnia and CMD, which provides novel mechanistic insight into the above epidemiological association. Third, our main findings were also observed in another large cohort study. The present study also contains several limitations. First, this study is based on an observational study design, and residual confounders could not be avoided. Second, although we demonstrate that the gut microbiota-bile acid axis may link the association between chronic insomnia and CMD, the underlying causality remains unelucidated. Third, the replication cohort (GGMP) is a cross-sectional study, and the potential impact of the two slightly different definitions of chronic insomnia between the GNHS and GGMP is still unclear, although our results were also observed in the GGMP. Fourth, we did not collect information on sleep-disordered breathing, which is closely associated with chronic insomnia and may have an impact on the gut microbiota and bile acid metabolism7072. Fifth, we conducted the mediation analysis for multiple bile acids using separate single mediator models; however, it is possible that these bile acids are highly correlated with each other or even have a causal association with each other, which needs further investigation. Finally, our two cohorts are both based on individuals of Chinese ethnicity, which may not be generalizable to other populations and ethnicities.
本研究有几个优点。首先,它基于一个大型纵向队列,因为特别缺乏慢性失眠状态与肠道微生物群的预期关系的证据。其次,我们利用肠道菌群-胆汁轴来解释慢性失眠与CMD之间的联系,这为上述流行病学关联提供了新的机制见解。第三,我们的主要发现也在另一项大型队列研究中观察到。本研究还存在一些局限性。首先,本研究基于观察性研究设计,无法避免残余混杂因素。其次,尽管我们证明了肠道微生物群-胆汁酸轴可能将慢性失眠与CMD之间的关联联系起来,但潜在的因果关系仍未阐明。第三,复制队列(GGMP)是一项横断面研究,尽管在GGMP中也观察到了我们的结果,但GNHS和GGMP之间两种略有不同的慢性失眠定义的潜在影响尚不清楚。第四,我们没有收集到睡眠呼吸障碍的信息,睡眠呼吸障碍与慢性失眠密切相关,可能对肠道菌群和胆汁酸代谢产生影响 7072 。第五,我们使用单独的单一介质模型对多种胆汁酸进行中介分析;然而,这些胆汁酸可能彼此高度相关,甚至彼此之间存在因果关系,这需要进一步研究。最后,我们的两个队列都是基于华裔个体,可能无法推广到其他人群和种族。

In summary, the present study indicates that chronic insomnia is associated with the structure and composition of the gut microbiota and specific bile acids. The gut microbiota-bile acid axis may play an essential role in linking chronic insomnia and CMD outcomes. Habitual tea consumption has an inverse association with chronic insomnia-disrupted gut microbiota and bile acids. Our results suggest that the gut microbiota-bile acid axis may be an important preventive target for mitigating the detrimental impact of chronic insomnia on cardiometabolic health.
综上所述,本研究表明,慢性失眠与肠道微生物群和特定胆汁酸的结构和组成有关。肠道微生物群-胆汁酸轴可能在慢性失眠和 CMD 结果之间起着至关重要的作用。习惯性饮茶与慢性失眠破坏的肠道微生物群和胆汁酸呈负相关。我们的研究结果表明,肠道菌群-胆汁酸轴可能是减轻慢性失眠对心脏代谢健康有害影响的重要预防靶点。

Methods 方法

Description of study design and populations
研究设计和人群的描述

We used two human cohorts in the present study: GNHS, as a discovery cohort37 and GGMP, as a validation cohort38. We integrated multi-omics data from the GNHS to investigate whether the gut microbiota-bile acid axis contributed to the positive association between chronic insomnia and CMD, and to explore dietary approaches that could alleviate the association between chronic insomnia and CMD. We then validated these associations in an independent large cross-sectional cohort study: GGMP. The study protocol for the GNHS was approved by the Ethics Committee of the School of Public Health at Sun Yat-sen University and Ethics Committee of Westlake University, and all participants provided written informed consent. The study protocol for the GGMP was approved by the Ethical Review Committee of Chinese Center for Disease Control and Prevention (Beijing, China), and all the participants provided written informed consent.
在本研究中,我们使用了两个人类队列:GNHS作为发现队列 37 ,GGMP作为验证队列 38 。我们整合了来自GNHS的多组学数据,以研究肠道微生物群-胆汁酸轴是否有助于慢性失眠与CMD之间的正相关,并探索可以缓解慢性失眠与CMD之间关联的饮食方法。然后,我们在一项独立的大型横断面队列研究中验证了这些关联:GGMP。GNHS的研究方案得到了中山大学公共卫生学院伦理委员会和西湖大学伦理委员会的批准,所有参与者都提供了书面知情同意书。GGMP的研究方案已获得中国疾病预防控制中心伦理审查委员会(中国北京)的批准,所有参与者都提供了书面知情同意书。

The GNHS was a community-based prospective cohort including 4048 participants of Han Chinese ethnicity37. Briefly, a total of 4048 participants, 40–75 years old and living in southern China, Guangzhou City, were recruited into the GNHS between 2008 and 2013. Fecal samples of the participants were collected at the second follow-up at the study site up to Apr 30, 2019 (median follow-up of 6.2 years from entry into the cohort). We excluded participants who were (1) without measurement of gut microbiota data (n = 2125); (2) without valid questionnaire information on chronic insomnia (n = 4); (3) with self-reported baseline cancers, chronic renal dysfunction, or cirrhosis (n = 71); (4) with missing covariates (age, sex, BMI, education, income, smoking status, alcohol status, total energy intake, and physical activity) (n = 24); and (5) with extreme levels of dietary total energy intake (men: <800 kcal or >4000 kcal; women: <500 kcal or >3500 kcal) (n = 15). Finally, 1809 participants were included in the present analysis.
GNHS 是一个基于社区的前瞻性队列,包括 4048 名汉族参与者 37 。简而言之,在2008年至2013年期间,共有4048名年龄在40-75岁之间居住在中国南方广州市的参与者被招募到GNHS中。截至 2019 年 4 月 30 日,在研究地点的第二次随访中收集了参与者的粪便样本(进入队列后的中位随访时间为 6.2 年)。我们排除了以下受试者:(1)没有测量肠道微生物群数据(n = 2125);(2)没有关于慢性失眠的有效问卷信息(n=4);(3) 自我报告的基线癌症、慢性肾功能不全或肝硬化 (n = 71);(4) 缺少协变量(年龄、性别、BMI、教育程度、收入、吸烟状况、酒精状况、总能量摄入和身体活动)(n = 24);(5)膳食总能量摄入量极端(男性:<800千卡或>4000千卡;女性:<500千卡或>3500千卡)(n = 15)。最后,本分析纳入了1809名受试者。

Chronic insomnia was defined as meeting one of the five following criteria for at least three days a week for at least 6 months: (i) taking >30 min to fall asleep, (ii) experiencing nocturnal awakening ≥2 times or early morning awakening, (iii) having light sleep and dreaminess, (iv) experiencing total sleep time <6 h and (v) having daytime symptoms such as fatigue, attention deficits or mood instability, according to the Chinese Clinical Expert Consensus on the definition, diagnosis and medical treatment of insomnia73.
慢性失眠被定义为每周至少三天满足以下五个标准之一,持续至少 6 个月:(i) 需要 >30 分钟入睡,(ii) 经历夜间觉醒≥2 次或清晨醒来,(iii) 有浅睡眠和做梦,(iv) 经历总睡眠时间<6 小时和 (v) 有白天症状,如疲劳、注意力缺陷或情绪不稳定,根据中国临床专家对失眠的定义、诊断和药物治疗的共识 73 .

The GGMP participants were divided into the following two groups according to the criteria for chronic insomnia for at least 3 days a week for at least 1 month: (i) Non-chronic insomnia group, and (ii) Chronic insomnia group.
根据慢性失眠的标准,GGMP参与者被分为以下两组,每周至少3天,持续至少1个月:(i)非慢性失眠组,(ii)慢性失眠组。

For both cohorts, T2D was defined as fasting blood glucose ≥ 7.0 mmol/L, HbA1c ≥ 6.5% or diabetic medication74. Hypertension was defined as systolic blood pressure (SBP)/diastolic blood pressure (DBP) ≥ 140/90 mmHg or medical history75. Dyslipidemia was defined as total cholesterol (TC) ≥ 6.2 mmol/L or triglycerides (TG) ≥ 2.3 mmol/L or low density lipoprotein cholesterol (LDL) ≥ 4.1 mmol/L or high density lipoprotein cholesterol (HDL) < 1.0 mmol/L or medical history76. MetS was defined as meeting three of the five following criteria: (i) waist > 90 cm (male) or waist  >85 cm (female), (ii) fasting blood glucose (FBG) ≥ 6.1 mmol/L (110 mg/dl) or previously diagnosed with T2D, (iii) TG  ≥ 1.7 mmol/L (150 mg/dl), (iv) HDL < 1.04 mmol/L (40 mg/dl) and (v) SBP/DBP ≥ 130/85 mmHg or previously diagnosed with hypertension76. CHD and stroke were determined by self-report (conformed with previous diagnosis).
对于两个队列,T2D 被定义为空腹血糖≥ 7.0 mmol/L、HbA1c ≥ 6.5% 或糖尿病药物 74 。高血压定义为收缩压 (SBP)/舒张压 (DBP) ≥ 140/90 mmHg 或病史 75 。血脂异常定义为总胆固醇 (TC) ≥ 6.2 mmol/L 或甘油三酯 (TG) ≥ 2.3 mmol/L 或低密度脂蛋白胆固醇 (LDL) ≥ 4.1 mmol/L 或高密度脂蛋白胆固醇 (HDL) < 1.0 mmol/L 或病史 76 。MetS 被定义为满足以下五个标准中的三个:(i) 腰围> 90 厘米(男性)或腰围>85 厘米(女性),(ii) 空腹血糖 (FBG) ≥ 6.1 mmol/L (110 mg/dl) 或既往诊断为 T2D,(iii) TG ≥ 1.7 mmol/L (150 mg/dl),(iv) 高密度脂蛋白< 1.04 mmol/L (40 mg/dl) 和 (v) SBP/DBP ≥ 130/85 mmHg 或既往诊断为高血压 76 。冠心病和卒中通过自我报告确定(符合先前的诊断)。

Metadata collection in the GNHS
GNHS 中的元数据收集

For the GNHS, during the on-site face-to-face questionnaire interviews, we collected information on sociodemographic, lifestyle, dietary factors, and medical history. Anthropometric parameters, including weight, height, waist circumference, and hip circumference, were measured by trained staff. Total energy intake was calculated according to the Chinese Food Consumption Table, 200277. Physical activity was assessed as the total metabolic equivalent for task hours per day based on a questionnaire for physical activity78.
对于GNHS,在现场面对面问卷访谈中,我们收集了有关社会人口学、生活方式、饮食因素和病史的信息。人体测量参数,包括体重、身高、腰围和臀围,由训练有素的工作人员测量。总能量摄入量是根据2002年中国食品消费量表计算 77 的。根据身体活动 78 问卷,将身体活动评估为每天任务小时数的总代谢当量。

Fasting venous blood samples were taken at the recruitment and follow-up visits and were aliquoted and stored in a −80 °C freezer prior to analysis. FBG, TG, TC, HDL, and LDL were measured by colorimetric methods using a Roche Cobas 8000 c702 automated analyzer (Roche Diagnostics GmbH, Shanghai, China). Insulin was measured by electrochemiluminescence immunoassay methods using a Roche Cobas 8000 e602 automated analyzer (Roche Diagnostics GmbH, Shanghai, China). High-performance liquid chromatography was used to measure the HbA1c level using the Bole D-10 Hemoglobin A1c Program on a Bole D-10 Hemoglobin Testing System.
在招募和随访时采集空腹静脉血样,并在分析前等分并储存在-80°C冰箱中。FBG、TG、TC、HDL 和 LDL 使用罗氏 Cobas 8000 c702 自动分析仪(Roche Diagnostics GmbH,中国上海)通过比色法测量。使用罗氏 Cobas 8000 e602 自动分析仪(罗氏诊断有限公司,中国上海)通过电化学发光免疫测定法测量胰岛素。使用高效液相色谱法在 Bole D-10 血红蛋白测试系统上使用 Bole D-10 血红蛋白 A1c 程序测量 HbA1c 水平。

Fecal sample collection, DNA extraction, and 16S rRNA gene sequencing in the GNHS
GNHS中的粪便样本采集、DNA提取和16S rRNA基因测序

During a follow-up visit to the study center, the participants were given a stool sampler and provided detailed instructions for stool sample collection. Briefly, each participant collected their stool sample after defecation and gave the sample to the staff immediately. The stool samples with ice bags were transported to the research laboratory and stored in a −80 °C freezer within 4 h. Detailed information regarding DNA extraction and gut microbiota 16S rRNA gene sequencing in the GNHS is provided in the Supplementary methods.
在对研究中心的后续访问中,参与者获得了粪便采样器,并提供了粪便样本采集的详细说明。简而言之,每个参与者在排便后收集粪便样本,并立即将样本交给工作人员。将带有冰袋的粪便样品运送到研究实验室,并在4小时内储存在-80°C冰箱中。有关 GNHS 中 DNA 提取和肠道微生物群 16S rRNA 基因测序的详细信息,请参见 Supplementary methods .

Targeted fecal bile acid profiling in the GNHS
GNHS中的靶向粪便胆汁酸分析

Targeted bile acid profiling of fecal samples (n = 954) was performed with an ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) system (ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford, MA, USA) at Metabo-Profile Biotechnology Co., Ltd. (Shanghai, China) (Supplementary methods).
在Metabo-Profile Biotechnology Co., Ltd.(中国上海)( )使用超高效液相色谱联用串联质谱(UPLC-MS/MS)系统(ACQUITY UPLC-Xevo TQ-S,Waters Corp.,Milford,MA,USA)对粪便样品(n = 954)进行靶向胆汁酸分析 Supplementary methods

Description of the GGMP GGMP的说明

The GGMP is a large community-based cross-sectional cohort conducted between 2015 and 2016 including 7009 participants with high quality gut microbiome data38. The GGMP participants were from 14 randomly selected districts or counties in Guangdong Province, China. In face-to-face questionnaire interviews, the host metadata, including socio-demographic features, disease status, lifestyle and dietary information, were collected. We excluded participants (1) without chronic insomnia information (n = 633); and (2) with missing covariates (age, sex, BMI, education, smoking status, alcohol status) (n = 254). Finally, we included 6122 participants (52.8 ± 14.7 y, 55.2% of women) from the GGMP in our analysis as an independent validation cohort. The characteristics of the included participants in the GGMP are presented in Table 2. Detailed information regarding the host metadata and stool sample collection and the 16S rRNA gene sequencing process in the GGMP have been reported previously38.
GGMP 是 2015 年至 2016 年间进行的基于社区的大型横断面队列,包括 7009 名具有高质量肠道微生物组数据 38 的参与者。GGMP参与者来自中国广东省14个随机选择的区或县。在面对面的问卷访谈中,收集了宿主元数据,包括社会人口学特征、疾病状况、生活方式和饮食信息。我们排除了(1)没有慢性失眠信息的受试者(n = 633);(2)缺少协变量(年龄、性别、BMI、教育程度、吸烟状况、酒精状况)(n = 254)。最后,我们将来自GGMP的6122名参与者(52.8名±14.7岁,55.2%的女性)作为独立验证队列纳入我们的分析。表2列出了GGMP中纳入的参与者的特征。关于GGMP中宿主元数据和粪便样本采集以及16S rRNA基因测序过程的详细信息之前 38 已经报道过。

Statistical analysis 统计分析

We compared differences between four groups using the chi-square test for categorical variables and ANOVA for continuous variables. In the GNHS, we examined the association of chronic insomnia with gut microbial α-diversity indices (Observed species, Shannon index, Chao 1 index, ACE index and Simpson index) among the four groups using a multivariable linear regression with three different statistical models. Model 1 was adjusted for age, sex, BMI, smoking status, alcohol status, physical activity, education, income and total energy intake at baseline. Model 2 was additionally controlled for hypertension, hyperlipidemia, MetS, T2D, CHD, stroke, and medication for T2D. Model 3 was further adjusted for dietary intake of vegetables, fruits, red and processed meat, fish, dairy products, coffee and tea. The association between chronic insomnia and β-diversity dissimilarity based on genus-level Bray-Curtis distance was examined using permutational ANOVA (PERMANOVA) (999 permutations).
我们使用分类变量的卡方检验和连续变量的方差分析比较了四组之间的差异。在GNHS中,我们使用三种不同统计模型的多变量线性回归检查了四组慢性失眠与肠道微生物α多样性指数(观察到的物种、香农指数、Chao 1指数、ACE指数和Simpson指数)的关联。模型 1 根据年龄、性别、BMI、吸烟状况、酒精状况、身体活动、教育程度、收入和基线时的总能量摄入进行了调整。模型 2 还控制了高血压、高脂血症、MetS、T2D、CHD、中风和 T2D 药物。Model 3进一步调整了蔬菜、水果、红肉和加工肉类、鱼类、乳制品、咖啡和茶的膳食摄入量。使用排列方差分析(PERMANOVA)(999 次排列)检查了基于属级 Bray-Curtis 距离的慢性失眠与β多样性差异之间的关联。

In the GNHS, there was a significant difference in the gut microbial structure for the New-onset group or Long-term chronic insomnia group, compared with the Long-term healthy group (Fig. 1b and Supplementary Fig. 1). To identify robust microbial biomarkers of chronic insomnia and increase the sample size, we combined the New-onset group and Long-term chronic insomnia group into Chronic insomnia group. We used MaAsLin to identify potential chronic insomnia associated gut microbiota (q value < 0.25 was used as the threshold of significance in the exploratory analyses, as commonly used previously26,79) using the above three different statistical models by comparing the Chronic insomnia group with the Long-term healthy group. The Benjamini-Hochberg method was used to control the false discovery rate (FDR).
在GNHS中,与长期健康组相比,新发组或长期慢性失眠组的肠道微生物结构存在显著差异(图1b和补充图1b)。 1 )。为了确定慢性失眠的可靠微生物生物标志物并增加样本量,我们将新发组和长期慢性失眠组合并为慢性失眠组。我们使用MaAsLin通过比较慢性失眠组和长期健康组,使用上述三种不同的统计模型来识别潜在的慢性失眠相关肠道菌群(q值<0.25用作探索性分析中的显着性阈值,如前所述 26,79 )。Benjamini-Hochberg方法用于控制错误发现率(FDR)。

Next, we used OPLS-DA to identify potential bile acids associated with chronic insomnia. We further used linear regression, adjusted for the same covariates as above model 3, to confirm the association of chronic insomnia with the OPLS-DA selected bile acids. Given that dietary cholesterol intake and fiber intake might be potential confounders affecting the relationship between chronic insomnia and the bile acid pool, we further performed a sensitivity analysis by including dietary cholesterol intake and fiber intake as additional covariates in the above model 3. We examined the association of the above identified gut microbiota biomarkers with bile acid biomarkers using partial correlation analysis, adjusted for age, sex and BMI. In addition, we tested the association of chronic insomnia with another two important classes of gut microbial metabolites (short-chain fatty acids, aromatic amino acids and their derivatives) by using multivariable linear regression, adjusted for the same covariates as above in model 3. The Benjamini-Hochberg method was used to control FDR.
接下来,我们使用OPLS-DA来鉴定与慢性失眠相关的潜在胆汁酸。我们进一步使用线性回归,针对与上述模型 3 相同的协变量进行调整,以确认慢性失眠与 OPLS-DA 选择的胆汁酸的关联。鉴于膳食胆固醇摄入量和纤维摄入量可能是影响慢性失眠与胆汁酸库之间关系的潜在混杂因素,我们进一步进行了敏感性分析,将膳食胆固醇摄入量和纤维摄入量作为上述模型 3 中的额外协变量。我们使用部分相关性分析检查了上述已鉴定的肠道微生物群生物标志物与胆汁酸生物标志物的关联,并根据年龄、性别和 BMI 进行了调整。此外,我们通过使用多变量线性回归测试了慢性失眠与另外两类重要肠道微生物代谢物(短链脂肪酸、芳香族氨基酸及其衍生物)的关联,并针对上述模型 3 中的相同协变量进行了调整。Benjamini-Hochberg方法用于控制FDR。

To gain further mechanistic insight into the connection between the chronic insomnia and CMD, we investigated the correlation of the chronic insomnia-related microbial and bile acid biomarkers with different CMD and risk factors (BMI, DBP, SBP, waist circumference, and fasting serum levels of TG, TC, HDL, LDL, glucose, insulin, and HbA1c) using multivariable logistic regression and linear regression model in the GNHS, adjusted for age, sex, smoking status, alcohol status, physical activity, education, income, and total energy intake. We further examined the prospective association of the above identified gut microbiota biomarkers with the incidence of CMD outcomes at the third follow-up using multivariable logistic regression, adjusting for age, sex, smoking status, alcohol status, physical activity, education, income, and total energy intake. Throughout the above analyses, correction of multiple testing was conducted by using the Benjamini-Hochberg method.
为了进一步了解慢性失眠与CMD之间的联系,我们使用GNHS中的多变量logistic回归和线性回归模型研究了慢性失眠相关微生物和胆汁酸生物标志物与不同CMD和危险因素(BMI、DBP、SBP、腰围和空腹血清TG、TC、HDL、LDL、葡萄糖、胰岛素和HbA1c水平)的相关性。 根据年龄、性别、吸烟状况、酒精状况、身体活动、教育程度、收入和总能量摄入进行调整。我们使用多变量逻辑回归,调整年龄、性别、吸烟状况、酒精状况、身体活动、教育、收入和总能量摄入,进一步检查了上述确定的肠道微生物群生物标志物与第三次随访时 CMD 结果发生率的前瞻性关联。在上述分析中,使用Benjamini-Hochberg方法对多重检验进行校正。

Based on the biological plausibility of the associations among the gut microbiota, bile acids and CMD54,59,80,81, and our above findings, we performed mediation analysis to evaluate whether bile acids could mediate the association of the chronic insomnia related-gut microbiota with CMD outcomes (gut microbiota → bile acids → CMD). The mediation analysis was performed to examine the mediating effect of bile acids on the association of the chronic insomnia-related gut microbiota with CMD outcomes82,83. We defined three pathways in the mediation analysis: (1) exposure to mediator; (2) mediator to outcome; and (3) exposure to outcome. In the mediation analysis, the covariates included age, sex, BMI, smoking status, alcohol status, physical activity, education, income, and total energy intake. The mediation analysis was performed using the R package “mediation” with the same parameter settings (boot = “TRUE”, boot.ci.type = “perc”, conf.level = 0.95, sims = 1000). The total effect was obtained through the sum of a direct effect and a mediated (indirect) effect. The percentage of the mediated effect was calculated using the formula: (mediated effect/total effect) × 100. Sensitivity analysis was performed to test the robustness of the mediation effect and violation of the assumption (sequential ignorability) using the R package “medsens” with default parameters84,85. The reporting of the mediation results followed the Guideline for Reporting Mediation Analyses (AGReMA) statement86.
基于肠道微生物群、胆汁酸和 CMD 54,59,80,81 之间关联的生物学合理性,以及我们的上述发现,我们进行了中介分析,以评估胆汁酸是否可以介导慢性失眠相关肠道微生物群与 CMD 结果(肠道微生物群→胆汁酸→ CMD)的关联。通过中介分析来检验胆汁酸对慢性失眠相关肠道菌群与CMD结局 82,83 关联的中介作用。我们在中介分析中定义了三种途径:(1)暴露于中介;(2)结果的中介;(3)暴露于结果。在中介分析中,协变量包括年龄、性别、BMI、吸烟状况、酒精状况、身体活动、教育程度、收入和总能量摄入。使用具有相同参数设置(boot = “TRUE”, boot.ci.type = “perc”, conf.level = 0.95, sims = 1000) 的 R 包“中介”执行中介分析。总效应是通过直接效应和介导(间接)效应的总和获得的。使用以下公式计算介导效应的百分比:(介导效应/总效应)× 100。使用具有默认参数 84,85 的 R 包“medsens”进行敏感性分析以测试中介效果的鲁棒性和违反假设(顺序可忽略性)。调解结果的报告遵循了《报告调解分析指南》(AGReMA)声明 86

Finally, we used a linear regression model to determine the prospective association of dietary factors with the gut microbial and bile acid mediators of chronic insomnia and CMD, adjusted for age, sex, BMI, smoking status, alcohol status, physical activity, education, income, dietary intake of vegetables/fruits/red and processed meat/fish/dairy products/coffee/tea) (mutual adjustment for each other) and total energy intake. The analyses were conducted among the GNHS participants without chronic insomnia or CMD at baseline.
最后,我们使用线性回归模型来确定饮食因素与慢性失眠和 CMD 的肠道微生物和胆汁酸介质的前瞻性关联,调整年龄、性别、BMI、吸烟状况、酒精状况、身体活动、教育、收入、蔬菜/水果/红肉和加工肉类/鱼类/乳制品/咖啡/茶的膳食摄入量(相互调整)和总能量摄入。这些分析是在基线时没有慢性失眠或CMD的GNHS参与者中进行的。

In the GGMP participants, we used a multivariable linear regression model to examine the association of chronic insomnia with the gut microbiota structure and the identified gut microbiota biomarkers, adjusting for age, sex, BMI, smoking status, alcohol status, education, dietary intake of vegetables, fruits, and red and processed meat. We conducted a secondary analysis to evaluate the association of the insomnia symptoms score (per unit change) with the identified gut microbiota biomarkers by using linear regression, adjusted for the same covariates. We also used logistic regression and linear regression to examine the association between the gut microbiota biomarkers and different CMD outcomes, adjusted for age, sex, smoking status, alcohol status, and education. For the GGMP participants, we did not include income in the statistical models due to a large number of missing values (income data were available among 3774 out of 6122 participants). We therefore performed a sensitivity analysis with further adjustment for income in the above analyses to examine the robustness of the models. Then, for each of the above linear regressions or logistic regressions, the effect estimates from the GNHS and the GGMP were pooled by random effects meta-analysis. In addition, we further performed additional interaction analysis and stratified analyses by age and sex to explore potential heterogeneity for the chronic insomnia-gut microbiota association and the gut microbiota-CMD association, and used random effects meta-analysis to pool the effect estimates from the GNHS and GGMP.
在GGMP参与者中,我们使用多变量线性回归模型来检查慢性失眠与肠道微生物群结构和已识别的肠道微生物群生物标志物的关联,调整年龄,性别,BMI,吸烟状况,酒精状况,教育,蔬菜,水果,红肉和加工肉类的饮食摄入量。我们进行了二次分析,通过使用线性回归评估失眠症状评分(单位变化)与已识别的肠道微生物群生物标志物的关联,并针对相同的协变量进行调整。我们还使用logistic回归和线性回归来检查肠道微生物群生物标志物与不同CMD结局之间的关联,并根据年龄、性别、吸烟状况、酒精状况和教育程度进行调整。对于GGMP参与者,由于大量缺失值,我们没有将收入纳入统计模型(6122名参与者中有3774名参与者的收入数据)。因此,我们进行了敏感性分析,并在上述分析中对收入进行了进一步调整,以检查模型的稳健性。然后,对于上述每个线性回归或逻辑回归,通过随机效应meta分析合并GNHS和GGMP的效应估计值。此外,我们进一步进行了额外的交互分析,并按年龄和性别进行了分层分析,以探索慢性失眠-肠道微生物群关联和肠道微生物群-CMD关联的潜在异质性,并使用随机效应meta分析来汇总GNHS和GGMP的效应估计。

In the GGMP, we also used multivariable linear regression to examine the association of dietary factors with gut microbial features of chronic insomnia and CMD, adjusted for age, sex, BMI, smoking status, alcohol status, education, dietary intake of vegetables/fruits/red and processed meat/tea/coffee (mutual adjustment for each other). The analyses were conducted among the GGMP participants without chronic insomnia or CMD. We also performed additional stratified analyses by tea consumption (yes versus no) using logistic regression in the GNHS to explore whether the associations between the chronic insomnia-related gut microbiota and CMD risk factors could be affected by tea consumption. We further investigated the association of tea consumption with the risk of chronic insomnia using logistic regression in the GNHS and GGMP and used random effects meta-analysis to pool the effect estimates from the GNHS and GGMP.
在GGMP中,我们还使用多变量线性回归来检查饮食因素与慢性失眠和CMD的肠道微生物特征的关联,并根据年龄,性别,BMI,吸烟状况,酒精状况,教育程度,蔬菜/水果/红肉和加工肉类/茶/咖啡的饮食摄入量进行调整(相互调整)。分析是在没有慢性失眠或CMD的GGMP参与者中进行的。我们还在GNHS中使用逻辑回归对茶饮量(是与否)进行了额外的分层分析,以探讨慢性失眠相关肠道微生物群与CMD危险因素之间的关联是否会受到茶叶消费的影响。我们进一步研究了茶叶消费与慢性失眠风险的关联,使用GNHS和GGMP的逻辑回归,并使用随机效应meta分析来汇总GNHS和GGMP的效应估计。

In the GNHS, we used the co-occurrence network analysis based on the above partial correlation coefficient to demonstrate the interaction of the above gut microbiota and bile acid biomarkers, and only the significant correlations (larger than 0.1 or smaller than −0.1) were used for network construction. The networks were further visualized in Cytoscape software version 3.7.2. We used R version 3.6.3 for statistical analysis unless otherwise specified, and p value < 0.05 was considered statistically significant.
在GNHS中,我们采用基于上述偏相关系数的共现网络分析来证明上述肠道菌群与胆汁酸生物标志物的相互作用,仅使用显著相关性(大于0.1或小于-0.1)进行网络构建。这些网络在 Cytoscape 软件版本 3.7.2 中进一步可视化。除非另有说明,否则我们使用 R 版本 3.6.3 进行统计分析,并且 p 值< 0.05 被认为具有统计学意义。

Reporting summary 报告摘要

Further information on research design is available in the Nature Research Reporting Summary linked to this article.
有关研究设计的更多信息,请参阅本文 Nature Research Reporting Summary 的链接。

Supplementary information
补充资料

Supplementary Information(899K, pdf)
补充资料 (899K, pdf)

Peer Review File(4.4M, pdf)
同行评审文件 (4.4M, pdf)

Reporting Summary(312K, pdf)
报告摘要 (312K, pdf)

Acknowledgements 确认

We thank the Westlake University Supercomputer Center for computational resources and related assistance and all the participants involved in the Guangzhou Nutrition and Health Study and the Guangdong Gut Microbiome Project. This study was funded by the National Natural Science Foundation of China (82073529, 81903316, 81773416), Zhejiang Ten-thousand Talents Program (2019R52039), Zhejiang Provincial Natural Science Foundation of China (LQ19C200005, LQ21H260002), Westlake Education Foundation and the 5010 Program for Clinical Research (2007032) of Sun Yat-sen University (Guangzhou, China).
我们感谢西湖大学超级计算机中心的计算资源和相关帮助,以及所有参与广州营养与健康研究和广东肠道微生物组项目的参与者。本研究由国家自然科学基金(82073529,81903316,81773416),浙江省万人计划(2019R52039),中国浙江省自然科学基金(LQ19C200005,LQ21H260002),西湖教育基金会和中山大学(中国广州)5010临床研究计划(2007032)资助。

Source data 源数据

Source Data(22M, xlsx) 源数据 (22M, xlsx)

Author contributions 作者贡献

J.S.Z. and Y.M.C. designed the study and developed the concept; F.Z.X., W.L.G., Z.L.M., and M.L.S. collected the data; Y.H.L., C.M.X., X.X.L., Y.Y.T., and J.L.W. processed the samples; Z.L.J., L.B.Z., Y.H., Y.Q.F., L.Q.S., J.T., and K.D. analyzed the data; Z.L.J., L.B.Z., Y.H., J.S.Z., Y.M.C., and H.W.Z. drafted the manuscript; J.S.Z., Y.M.C., and H.W.Z. obtained the funding; and all authors reviewed and revised the final manuscript.
J.S.Z. 和 Y.M.C. 设计了这项研究并发展了这个概念;F.Z.X.、W.L.G.、Z.L.M. 和 M.L.S. 收集了数据;Y.H.L.、C.M.X.、X.X.L.、Y.Y.T. 和 J.L.W. 处理了样品;Z.L.J.、L.B.Z.、Y.H.、Y.Q.F.、L.Q.S.、J.T.和K.D.分析了数据;Z.L.J.、L.B.Z.、Y.H.、J.S.Z.、Y.M.C. 和 H.W.Z. 起草了手稿;J.S.Z.、Y.M.C. 和 H.W.Z. 获得了资金;所有作者都对最终稿件进行了审阅和修改。

Peer review 同行审查

Peer review information 同行评议信息

Nature Communications thanks Tianyi Huang, Matthew Valente, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Nature Communications 感谢 Tianyi Huang、Matthew Valente 和其他匿名审稿人对这项工作的同行评审所做的贡献。 Peer reviewer reports 可用。

Data availability 数据可用性

16S rRNA gene sequencing data of the Guangzhou Nutrition and Health Study (GNHS) are available in the Genome Sequence Archive (GSA) (https://ngdc.cncb.ac.cn/gsa/) at accession number CRA006769. 16S rRNA gene sequencing data of the Guangdong Gut Microbiome Project (GGMP) are available from the European Nucleotide Archive (https://www.ebi.ac.uk/ena/) at accession number PRJEB18535. The Sliva reference database version 138 was used to annotate taxonomic information. The metadata of the GGMP are available in a previous publication (https://pubmed.ncbi.nlm.nih.gov/30250144/)38. The data associated with this study are presented in the paper, supplementary information and Source Data file. Source data are provided with this paper.
广州营养与健康研究(GNHS)的16S rRNA基因测序数据可在基因组序列档案(GSA)(https://ngdc.cncb.ac.cn/gsa/)中找到,登录号为CRA006769。广东省肠道微生物组计划(GGMP)的16S rRNA基因测序数据可从欧洲核苷酸档案馆(https://www.ebi.ac.uk/ena/)获得,登录号为PRJEB18535。Sliva 参考数据库版本 138 用于注释生物分类信息。GGMP的元数据可在以前的出版物(https://pubmed.ncbi.nlm.nih.gov/30250144/) 38 中找到。与本研究相关的数据在论文 supplementary informationSource Data 文件中呈现。本文提供了源数据。

Code availability 代码可用性

Codes used for this study are available at: https://github.com/nutrition-westlake/Chronic-insomnia-Gut-microbiota-bile-acid-axis-and-Cardiometabolic-diseases-Project/blob/main/Code%20available.
用于本研究的代码可在以下网址获得:https://github.com/nutrition-westlake/Chronic-insomnia-Gut-microbiota-bile-acid-axis-and-Cardiometabolic-diseases-Project/blob/main/Code%20available。

Competing interests 利益争夺

All authors declare that they have no competing interests.
所有作者都声明他们没有竞争利益。

Footnotes 脚注

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
出版商注:施普林格·自然(Springer Nature)对已出版地图和机构隶属关系中的管辖权主张保持中立。

These authors contributed equally: Zengliang Jiang, Lai-bao Zhuo, Yan He.
这些作者的贡献相同:江增良,卓来宝,何燕。

Contributor Information 贡献者信息

Hongwei Zhou, nc.ude.ums@uohzh.
洪伟周,邮箱:nc.ude.ums@uohzh。

Yu-ming Chen, nc.ude.usys.liam@muynehc.
Yu-ming Chen, 电子邮件: nc.ude.usys.liam@muynehc.

Ju-Sheng Zheng, nc.ude.ekaltsew@gnehsujgnehz.
Ju-Sheng Zheng, 电子邮件: nc.ude.ekaltsew@gnehsujgnehz.

Supplementary information
补充资料

The online version contains supplementary material available at 10.1038/s41467-022-30712-x.
在线版本包含补充材料,网址为 10.1038/s41467-022-30712-x。

References 引用

1. Buysse DJ. Insomnia. JAMA. 2013;309:706–716. doi: 10.1001/jama.2013.193. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
1. 购买 DJ。失眠。贾马。2013;309:706–716.doi: 10.1001/jama.2013.193.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
2. Morin CM, et al. Insomnia disorder. Nat. Rev. Dis. Prim. 2015;1:15026. doi: 10.1038/nrdp.2015.26. [PubMed] [CrossRef] [Google Scholar]
2. Morin CM, et al. 失眠症。Nat. Rev. Dis.参见 2015;1:15026。 doi: 10.1038/nrdp.2015.26.[ 出版][ 交叉引用][ 谷歌学术搜索]
3. Wittchen HU, et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 2011;21:655–679. doi: 10.1016/j.euroneuro.2011.07.018. [PubMed] [CrossRef] [Google Scholar]
4. Riemann D, et al. The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol. 2015;14:547–558. doi: 10.1016/S1474-4422(15)00021-6. [PubMed] [CrossRef] [Google Scholar]
5. Jarrin DC, et al. Insomnia and hypertension: a systematic review. Sleep. Med. Rev. 2018;41:3–38. doi: 10.1016/j.smrv.2018.02.003. [PubMed] [CrossRef] [Google Scholar]
6. Tan X, van Egmond L, Chapman CD, Cedernaes J, Benedict C. Aiding sleep in type 2 diabetes: therapeutic considerations. Lancet Diabetes Endocrinol. 2018;6:60–68. doi: 10.1016/S2213-8587(17)30233-4. [PubMed] [CrossRef] [Google Scholar]
7. Brouwer A, et al. Sleep and HbA(1c) in patients with type 2 diabetes: which sleep characteristics matter most? Diabetes Care. 2020;43:235–243. doi: 10.2337/dc19-0550. [PubMed] [CrossRef] [Google Scholar]
8. Ge L, et al. Insomnia and risk of mortality from all-cause, cardiovascular disease, and cancer: systematic review and meta-analysis of prospective cohort studies. Sleep. Med. Rev. 2019;48:101215. doi: 10.1016/j.smrv.2019.101215. [PubMed] [CrossRef] [Google Scholar]
9. Li, X. et al. Associations of sleep disordered breathing and insomnia with incident hypertension and diabetes: the Hispanic Community Health Study/Study of Latinos. Am. J. Respir. Crit. Care Med.203, 356–365 (2021). [PMC free article] [PubMed]
10. Gilbert JA, et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature. 2016;535:94–103. doi: 10.1038/nature18850. [PubMed] [CrossRef] [Google Scholar]
11. Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535:56–64. doi: 10.1038/nature18846. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
12. Jacobs JP, et al. Cognitive behavioral therapy for irritable bowel syndrome induces bidirectional alterations in the brain-gut-microbiome axis associated with gastrointestinal symptom improvement. Microbiome. 2021;9:236. doi: 10.1186/s40168-021-01188-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
13. Hanscom, M., Loane, D. J. & Shea-Donohue, T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J. Clin. Investig.131, e143777 (2021). [PMC free article] [PubMed]
14. Xu, K. et al. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut70, 1486–1494 (2021). [PubMed]
15. Choi H, Rao MC, Chang EB. Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism. Nat. Rev. Gastro Hepat. 2021;18:679–689. doi: 10.1038/s41575-021-00452-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16. Segers A, Depoortere I. Circadian clocks in the digestive system. Nat. Rev. Gastroenterol. Hepatol. 2021;18:239–251. doi: 10.1038/s41575-020-00401-5. [PubMed] [CrossRef] [Google Scholar]
17. Reitmeier S, et al. Arrhythmic gut microbiome signatures predict risk of type 2 diabetes. Cell Host Microbe. 2020;28:258–272 e256. doi: 10.1016/j.chom.2020.06.004. [PubMed] [CrossRef] [Google Scholar]
18. Liu, Z. et al. Acute sleep-wake cycle shift results in community alteration of human gut microbiome. Msphere5, e00914–19 (2020). [PMC free article] [PubMed]
19. Triplett, J. et al. Temporal and region-specific effects of sleep fragmentation on gut microbiota and intestinal morphology in Sprague Dawley rats. Gut Microbes11, 706–720 (2020). [PMC free article] [PubMed]
20. Wang, Z. et al. Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation. Mol. Psychiatry26, 6277–6292 (2021). [PubMed]
21. Li YY, et al. Gut microbiota changes and their relationship with inflammation in patients with acute and chronic insomnia. Nat. Sci. Sleep. 2020;12:895–905. doi: 10.2147/NSS.S271927. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
22. Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep. Med. Rev. 2020;53:101340. doi: 10.1016/j.smrv.2020.101340. [PubMed] [CrossRef] [Google Scholar]
23. Qin J, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60. doi: 10.1038/nature11450. [PubMed] [CrossRef] [Google Scholar]
24. Le Chatelier E, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546. doi: 10.1038/nature12506. [PubMed] [CrossRef] [Google Scholar]
25. Karlsson FH, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103. doi: 10.1038/nature12198. [PubMed] [CrossRef] [Google Scholar]
26. Wang DD, et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 2021;27:333–343. doi: 10.1038/s41591-020-01223-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
27. Asnicar F, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 2021;27:321–332. doi: 10.1038/s41591-020-01183-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
28. Kurilshikov A, et al. Gut microbial associations to plasma metabolites linked to cardiovascular phenotypes and risk a cross-sectional study. Circ. Res. 2019;124:1808–1820. doi: 10.1161/CIRCRESAHA.118.314642. [PubMed] [CrossRef] [Google Scholar]
29. Wu H, et al. The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab. 2020;32:379–390 e373. doi: 10.1016/j.cmet.2020.06.011. [PubMed] [CrossRef] [Google Scholar]
30. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 2008;7:678–693. doi: 10.1038/nrd2619. [PubMed] [CrossRef] [Google Scholar]
31. Lu JL, et al. Association of serum bile acids profile and pathway dysregulation with the risk of developing diabetes among normoglycemic chinese adults: findings from the 4C study. Diabetes Care. 2021;44:499–510. doi: 10.2337/dc20-0884. [PubMed] [CrossRef] [Google Scholar]
32. Wei, M. L. et al. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. eBioMedicine55, 102766 (2020). [PMC free article] [PubMed]
33. Wu JY, Wang K, Wang XM, Pang YL, Jiang CT. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell. 2021;12:360–373. doi: 10.1007/s13238-020-00814-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
34. Bowers, S. J. et al. Repeated sleep disruption in mice leads to persistent shifts in the fecal microbiome and metabolome. Plos One15, e0229001 (2020). [PMC free article] [PubMed]
35. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 2008;7:678–693. doi: 10.1038/nrd2619. [PubMed] [CrossRef] [Google Scholar]
36. Godinho-Silva C, et al. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature. 2019;574:254–258. doi: 10.1038/s41586-019-1579-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
37. Gou W, et al. Interpretable machine learning framework reveals robust gut microbiome features associated with type 2 diabetes. Diabetes Care. 2021;44:358–366. doi: 10.2337/dc20-1536. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
38. He Y, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. 2018;24:1532–1535. doi: 10.1038/s41591-018-0164-x. [PubMed] [CrossRef] [Google Scholar]
39. Reitmeier S, et al. Arrhythmic gut microbiome signatures predict risk of type 2 diabetes. Cell Host Microbe. 2020;28:258–272. doi: 10.1016/j.chom.2020.06.004. [PubMed] [CrossRef] [Google Scholar]
40. Eetemadi, A. & Tagkopoulos, I. Methane and fatty acid metabolism pathways are predictive of Low-FODMAP diet efficacy for patients with irritable bowel syndrome. Clin. Nutr.40, 4414–4421 (2021). [PubMed]
41. Lull K, et al. The gut microbiome in polycystic ovary syndrome and its association with metabolic traits. J. Clin. Endocrinol. Metab. 2021;106:858–871. doi: 10.1210/clinem/dgaa848. [PubMed] [CrossRef] [Google Scholar]
42. Makishima M, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–1365. doi: 10.1126/science.284.5418.1362. [PubMed] [CrossRef] [Google Scholar]
43. Parks DJ, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–1368. doi: 10.1126/science.284.5418.1365. [PubMed] [CrossRef] [Google Scholar]
44. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell. 1999;3:543–553. doi: 10.1016/S1097-2765(00)80348-2. [PubMed] [CrossRef] [Google Scholar]
45. Kawamata Y, et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 2003;278:9435–9440. doi: 10.1074/jbc.M209706200. [PubMed] [CrossRef] [Google Scholar]
46. Zhao L, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151–1156. doi: 10.1126/science.aao5774. [PubMed] [CrossRef] [Google Scholar]
47. Dodd D, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551:648–652. doi: 10.1038/nature24661. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
48. Qi X, et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat. Med. 2019;25:1225–1233. doi: 10.1038/s41591-019-0509-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
49. Agus, A., Clement, K. & Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut70, 1174–1182 (2020). [PMC free article] [PubMed]
50. Jansen PR, et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 2019;51:394–403. doi: 10.1038/s41588-018-0333-3. [PubMed] [CrossRef] [Google Scholar]
51. Larsson SC, Markus HS. Genetic liability to insomnia and cardiovascular disease risk. Circulation. 2019;140:796–798. doi: 10.1161/CIRCULATIONAHA.119.041830. [PubMed] [CrossRef] [Google Scholar]
52. Huang T, et al. Habitual sleep quality, plasma metabolites and risk of coronary heart disease in post-menopausal women. Int. J. Epidemiol. 2019;48:1262–1274. doi: 10.1093/ije/dyy234. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
53. Vojinovic, D. et al. Relationship between gut microbiota and circulating metabolites in population-based cohorts. Nat. Commun.10, 5813 (2019). [PMC free article] [PubMed]
54. Mudaliar S, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology. 2013;145:574–582 e571. doi: 10.1053/j.gastro.2013.05.042. [PubMed] [CrossRef] [Google Scholar]
55. Li W, et al. Saxagliptin alters bile acid profiles and yields metabolic benefits in drug-naive overweight or obese type 2 diabetes patient. J. Diabetes. 2019;11:982–992. doi: 10.1111/1753-0407.12956. [PubMed] [CrossRef] [Google Scholar]
56. Ma H, Patti ME. Bile acids, obesity, and the metabolic syndrome. Best. Pract. Res. Clin. Gastroenterol. 2014;28:573–583. doi: 10.1016/j.bpg.2014.07.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
57. Zhang, T. et al. Disrupted spermatogenesis in a metabolic syndrome model: the role of vitamin A metabolism in the gut-testis axis. Gut71, 78–87 (2021). [PMC free article] [PubMed]
58. Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7:22–39. doi: 10.1080/19490976.2015.1127483. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
59. Song Z, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome. 2019;7:9. doi: 10.1186/s40168-019-0628-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
60. de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17:657–669. doi: 10.1016/j.cmet.2013.03.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
61. Guo CS, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity. 2016;45:802–816. doi: 10.1016/j.immuni.2016.09.008. [PubMed] [CrossRef] [Google Scholar]
62. Abe SK, Inoue M. Green tea and cancer and cardiometabolic diseases: a review of the current epidemiological evidence. Eur. J. Clin. Nutr. 2021;75:865–876. doi: 10.1038/s41430-020-00710-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
63. Yi D, et al. Reduced risk of dyslipidaemia with oolong tea consumption: a population-based study in southern China. Br. J. Nutr. 2014;111:1421–1429. doi: 10.1017/S0007114513003644. [PubMed] [CrossRef] [Google Scholar]
64. Li J, Chen C, Yang H, Yang X. Tea polyphenols regulate gut microbiota dysbiosis induced by antibiotic in mice. Food Res. Int. 2021;141:110153. doi: 10.1016/j.foodres.2021.110153. [PubMed] [CrossRef] [Google Scholar]
65. Zhou J, Tang L, Shen CL, Wang JS. Green tea polyphenols modify gut-microbiota dependent metabolisms of energy, bile constituents and micronutrients in female Sprague-Dawley rats. J. Nutr. Biochem. 2018;61:68–81. doi: 10.1016/j.jnutbio.2018.07.018. [PubMed] [CrossRef] [Google Scholar]
66. Xu J, et al. Huangjinya black tea alleviates obesity and insulin resistance via modulating fecal metabolome in high-fat diet-fed mice. Mol. Nutr. Food Res. 2020;64:e2000353. doi: 10.1002/mnfr.202000353. [PubMed] [CrossRef] [Google Scholar]
67. Song D, Yang CS, Zhang X, Wang Y. The relationship between host circadian rhythms and intestinal microbiota: a new cue to improve health by tea polyphenols. Crit. Rev. Food Sci. 2021;61:139–148. doi: 10.1080/10408398.2020.1719473. [PubMed] [CrossRef] [Google Scholar]
68. Guo TT, et al. Oolong tea polyphenols ameliorate circadian rhythm of intestinal microbiome and liver clock genes in mouse model. J. Agr. Food Chem. 2019;67:11969–11976. doi: 10.1021/acs.jafc.9b04869. [PubMed] [CrossRef] [Google Scholar]
69. Clark I, Landolt HP. Coffee, caffeine, and sleep: a systematic review of epidemiological studies and randomized controlled trials. Sleep. Med. Rev. 2017;31:70–78. doi: 10.1016/j.smrv.2016.01.006. [PubMed] [CrossRef] [Google Scholar]
70. Cai, Y., Juszczak, H. M., Cope, E. K. & Goldberg, A. N. The microbiome in obstructive sleep apnea. Sleep44, zsab061 (2021). [PubMed]
71. Tripathi, A. et al. Intermittent hypoxia and hypercapnia, a hallmark of obstructive sleep apnea, alters the gut microbiome and metabolome. mSystems3, e00020–18 (2018). [PMC free article] [PubMed]
72. Durgan DJ, et al. Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension. 2016;67:469–474. doi: 10.1161/HYPERTENSIONAHA.115.06672. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
73. Expert consensus on the definition, diagnosis and medical treatment of insomnia. Chin. J. Neurol.39, 141–143 (2006).
74. Assoc, A. D. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36:S67–S74. doi: 10.2337/dc13-S067. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
75. League., W.G.o.C.G.f.t.M.o.H.C.H., Cardiology., C.S.o., Committee., C.M.D.A.H., Care., H.B.o.C.I.E.a.P.A.f.M.a.H.Association., H.B.o.C.G.M. Chinese guidelines for the management of hypertension. Chin. J. Cardiovasc. Med. 2018;24:24–56. [Google Scholar]
76. Adults, T.J.C.f.D.C.G.o.t.P.a.T.o.D.i. The Chinese guidelines on the prevention and treatment of dyslipidemia in adults. Chin. Circ. J. 2016;31:937–953. [Google Scholar]
77. Yang Y. X., Guang W., Pan X. C. China Food Composition Table. Beijing: Peking University Medical Press (2002).
78. Liu B, et al. Assessment of total energy expenditure in a Chinese population by a physical activity questionnaire: examination of validity. Int. J. Food Sci. Nutr. 2001;52:269–282. doi: 10.1080/09637480120044138. [PubMed] [CrossRef] [Google Scholar]
79. Jones HE, Ohlssen DI, Spiegelhalter DJ. Use of the false discovery rate when comparing multiple health care providers. J. Clin. Epidemiol. 2008;61:232–240. doi: 10.1016/j.jclinepi.2007.04.017. [PubMed] [CrossRef] [Google Scholar]
80. Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ. Res. 2020;127:553–570. doi: 10.1161/CIRCRESAHA.120.316242. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
81. Zheng X, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 2021;33:791–803 e797. doi: 10.1016/j.cmet.2020.11.017. [PubMed] [CrossRef] [Google Scholar]
82. Valente MJ, Rijnhart JJM, Smyth HL, Muniz FB, MacKinnon DP. Causal mediation programs in R, Mplus, SAS, SPSS, and Stata. Struct. Equ. Model. 2020;27:975–984. doi: 10.1080/10705511.2020.1777133. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
83. Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R package for causal mediation analysis. J. Stat. Softw.59, 1–38 (2014).
84. Imai K, Keele L, Yamamoto T. Identification, inference and sensitivity analysis for causal mediation effects. Stat. Sci. 2010;25:51–71. doi: 10.1214/10-STS321. [CrossRef] [Google Scholar]
85. Smith LH, VanderWeele TJ. Mediational E-values approximate sensitivity analysis for unmeasured mediator-outcome confounding. Epidemiology. 2019;30:835–837. doi: 10.1097/EDE.0000000000001064. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
86. Lee H, et al. A guideline for reporting mediation analyses of randomized trials and observational studies: the AGReMA statement. JAMA. 2021;326:1045–1056. doi: 10.1001/jama.2021.14075. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Articles from Nature Communications are provided here courtesy of Nature Publishing Group