W.D. Gonzalez、1,2 J. A. Joselyn、 ^(3){ }^{3} Y. Kamide、 ^(4){ }^{4} H. W. Kroehl、 ^(5){ }^{5} G. Rostoker、 ^(6){ }^{6} B. T. Tsurutani、 ^(7){ }^{7} and V. M. Vasyliunas ^(8){ }^{8}
对电离层的早期研究表明,地磁场的干扰程度可以有效地代表其他地球空间现象的干扰程度。例如,Matsushita [1959] 通过根据 ApA p 指数(见下文)选择地磁扰动间隔来研究电离层风暴;如果 ApA p 为 50 或以上,则地磁风暴为 "强"。类似但非标准化的风暴识别规则一直沿用至今。地磁活动的大小通常是根据 KK 指数的各种摘要来划分的,KK 指数是一个介于 0 和 9 之间的数字,它是根据观测到的波动范围来缩放的,表示地磁活动的失调程度。
浊度[例如,Rostoker,1972 年;Menvielle 和 Berthelier,1991 年]。 AA 指数是经过转换的 KK 指数读数的 24 小时平均值,范围在 0-4000-400 之间。自 1932 年以来,德国哥廷根地球物理研究所一直在提供 KK 和 AA 指数的全球复合指数,即 KpK p 和 ApA p 指数,并广泛用于研究和业务目的。全球 KK 指数的其他合成指数,特别是法国国家科学研究中心环境物理研究中心编制的 aa,Ana a, A n 和 AsA s 指数也很有用。(有关各种地磁指数的描述,请参见 Mayaud [1980])。K 指数的变化很难用物理方法解释,因为它们可能是由任何地球物理电流系统引起的,包括磁极电流、场对准电流和极光电射流。尽管如此,用于评估活动的 KpK p 指数比Dst得到了更广泛的应用,因为它们通常在观测日期后几周才能得到最终形式。Dst 需要更多的分析才能生成,有时甚至会延迟数年。然而,这种时间延迟并不是该指数所固有的,现代磁强计观测和通信方法允许对 DstD s t 进行近乎实时的评估。
Kan 和 Lee [1979]
Gonzalez 和 Gonzalez [1981]
Reiff et al. [1981]
Wygant 等人 [1983]
Doyle and Burke [1983]
Kan and Lee [1979]
Gonzalez and Gonzalez [1981]
Reiff et al. [1981]
Wygant et al. [1983]
Doyle and Burke [1983]| Kan and Lee [1979] |
| :--- |
| Gonzalez and Gonzalez [1981] |
| Reiff et al. [1981] |
| Wygant et al. [1983] |
| Doyle and Burke [1983] |
(rhov^(2))^(1//6)vB_(T)sin^(4)(theta//2)\left(\rho v^{2}\right)^{1 / 6} v B_{T} \sin ^{4}(\theta / 2)
Vasyliunas 等人 [1982]
Bargatze 等人 [1986]
Gonzalez et al.
Vasyliunas et al. [1982]
Bargatze et al. [1986]
Gonzalez et al. [1989]| Vasyliunas et al. [1982] |
| :--- |
| Bargatze et al. [1986] |
| Gonzalez et al. [1989] |
理解磁层中的磁暴/次磁暴过程的另一个复杂因素在于存在准稳定的磁层条件。存在对流海湾[Pytte 等人,1978 年]和稳定的磁层对流事件[Sergeev 和 Lennartson,1988 年]就是这种行为的证据。磁层的这种行为已被证明是在相对恒定的大南向 IMF 长时间间歇期间发生的。此外,Tsurutani 和 Gonzalez [1987] 研究的 HILDCAA 事件表明,磁层对 IMF 中的准周期性扰动有某种独特的反应。
亚暴的存在当然不是磁暴发展的充分条件。有时,风暴期间的亚暴强度与 Dst 量化的风暴强度之间甚至可能存在反相关性[Akasofu, 1981b]。尽管如此,亚暴的 IMF 条件可能确实包含在风暴的 IMF 条件中。根据 Kamide 等人[1977]的研究,只要 1 小时平均 IMF B_(z)B_{z} 的值为 < -3nT<-3 \mathrm{nT} ,亚暴就会以 100%100 \% 的概率发生,如表 1 所示。根据该表,强烈磁暴(峰值 Dst <-100 nT)的一个必要条件是南向 IMF 必须较大( < -10nT<-10 \mathrm{nT} )和持续( > 3hrs>3 \mathrm{hrs} )。当携带大量南向 IMF 的太阳风包裹撞击磁层顶时,磁暴的主要阶段就开始了。至少,在一个工作模型中,可以方便地假定亚暴的发生是磁层对流增强的副产品,而磁层对流增强的结果是
来自磁层上增强的太阳风黎明到黄昏电场。这种观点与 Siscoe [1982] 的环流耦合模型的预测一致,后者认为 Dst 是直接从太阳风参数中推导出来的,而 AEA E 则不是。
因此,我们应该重新关注这样一个问题:为什么一些大的亚暴与Dst的显著增加有关,而其他同样大的亚暴似乎对Dst没有什么影响。答案的一部分可能在于,环流强度可能反映了太阳风输入磁层的能量长期异常增强的累积效应,正如 Rostoker 和 Fälthammar [1967] 最初提出的那样。也就是说,如果行星际电场强度和强度维持时间的综合效应不足,我们可能会观察到显著的膨胀相活动,但环流增强却很小。另外,我们也可以认为,亚暴活动的水平(通过 ALA L 或 AEA E 指数量化)可能与 Dst 的增强没有关系,因为亚暴膨胀相活动反映了能量的分配方式,使其无法储存在环流中。第三种解释可能与测量 AEA E 和 ALA L 的方式有关(即亚暴活动水平的量化方式)。其测量结果用于评估 AEA E 和 ALA L 的台站,其位置靠近极光椭圆的平均位置。对于大风暴,极光椭圆会从其正常位置向赤道偏移很远,在这种情况下, AEA E 观测站无法在纬度峰值对电射流扰动进行采样[Feldstein,1992]。因此,当粒子注入[参见 McIlwain, 1974]发生在相对靠近地球的地方时,亚暴活动的强度可能会被严重低估。 正如我们将在下一节讨论的那样,当粒子注入异常接近地球时,环流很可能会显著增强。
在这种情况下,至少在很长一段时间内,注入的粒子可能会对流到日侧磁极,并在能够绕地球一圈之前再次消失。因此,当注入的粒子足够接近地球,对流电场终止时,大部分粒子仍被困在磁层中,注入的粒子将在地球磁层中形成完整的环流,这似乎很有可能形成对称环流。反过来,当造成注入的亚暴膨胀相活动开始时对流电场明显减弱时,也会出现这种情况。要实现这一系列条件,必须在亚暴扩张相活动开始时减少流入磁层的能量,而实现这一点的最可能方式是改变 IMF B_(S)B_{S} 分量,使其向北流动,或至少减少向南流动。值得对 Dst 显著增强时行星际条件的变化进行研究,以了解有关 DstD s t 和 AE//ALA E / A L 之间缺乏简单相关性的原因的建议是否得到了证实。
EDD'DAWN-dUSK ELECTRIC FIELD Es 'stOCMAStic ELECTRIC FIELOS IB INJECTION BOUNDARIES
RC PRE STORM RING CURRENT
RC' 'STORM - TIME RING CURRENT
EDD'DAWN-dUSK ELECTRIC FIELD Es 'stOCMAStic ELECTriC FIELOS IB INJECTION BOUNDARIES
RC PRE STORM RING CURRENT
RC' 'STORM - TIME RING CURRENT| EDD'DAWN-dUSK ELECTRIC FIELD Es 'stOCMAStic ELECTriC FIELOS IB INJECTION BOUNDARIES |
| :--- |
| RC PRE STORM RING CURRENT |
| RC' 'STORM - TIME RING CURRENT |
MECHANISMS THAT CONTRIBUTE TO STORM - TIME RING CURRENT FORMATION
https://cdn.mathpix.com/cropped/2024_12_24_277895a7a8627e88a05fg-14.jpg?height=543&width=275&top_left_y=501&top_left_x=271 https://cdn.mathpix.com/cropped/2024_12_24_277895a7a8627e88a05fg-14.jpg?height=543&width=331&top_left_y=501&top_left_x=611
"(1) dRIVEN OUTER CONVECTION
(2) driven INer convection
(3) suestorm Invections
(4) Stochastic radal Drfft" "EDD'DAWN-dUSK ELECTRIC FIELD Es 'stOCMAStic ELECTriC FIELOS IB INJECTION BOUNDARIES
RC PRE STORM RING CURRENT
RC' 'STORM - TIME RING CURRENT"| MECHANISMS THAT CONTRIBUTE TO STORM - TIME RING CURRENT FORMATION | |
| :---: | :---: |
|  |  |
| (1) dRIVEN OUTER CONVECTION <br> (2) driven INer convection <br> (3) suestorm Invections <br> (4) Stochastic radal Drfft | EDD'DAWN-dUSK ELECTRIC FIELD Es 'stOCMAStic ELECTriC FIELOS IB INJECTION BOUNDARIES <br> RC PRE STORM RING CURRENT <br> RC' 'STORM - TIME RING CURRENT |
这些有用的信息有助于更好地理解风暴/次风暴之间的关系。此外,通过确定 DstD s t 和 apa p (或 KpK p )之间的关系,我们可以推断出 Dst 值在没有这些值的时间段内(1957 年以前)的值。Saba 等人[1994]通过对 Dst,apD s t, a p 和 AEA E 之间的成对相关性研究,分别对太阳最大值前后和太阳最小值前后的时间间隔提出了这些关系的例子。这些作者还使用多重相关方法对作为 Dst 和 AEA E 函数的 ap 进行了相关研究,并发现相关值比 Dst 与 AEA E 和 Dst 与 ap 的简单成对相关值要大。这是因为中纬度磁强计记录既有亚暴流的贡献,也有环流的贡献。目前正在研究这些贡献的相对比例与风暴阶段和风暴振幅水平的函数关系。
1979 年,Davis 和 Parthasarathy 发现了相同的结果,即峰值 Dst 值与峰值 DstD s t 起前 10 小时内 AEA E 的时间积分相关性最好(相关系数为 0.87)。 AEA E 时间积分也适用于每场暴风雨的主要阶段持续时间间隔,但相关系数要低得多(0.65)。
与风暴的-Dst 峰值相比, AEA E 的 10 小时积分背后的原因尚不清楚。一些初步建议涉及:(1) 在强风暴期间存在大约 10 小时的 AEA E "包",它是由三到四个连续的强亚暴形成的;(2) 在磁云类型的行星际结构中 B_(S)B_{S} 场的典型持续时间;(3) 风暴/亚暴联合消散机制的临界时间尺度。
另一方面,Akasofu [1981b] 研究了几个强风暴期间的 Dst AEA E 关系,以检验 AEA E 在风暴主阶段的线性增长。他认为,在中等风暴级别, AEA E 和 |Dst||D s t| 实际上呈线性增长。然而,他发现,对于更强烈的风暴, AEA E 在大约 1000 nT 的水平上趋于饱和,这表明存在某种风暴/次风暴解耦。
目前为 DstD s t 指定一个较低的阈值,低于该阈值风暴一词就不适用,这种做法没有任何物理依据。然而,指定一个较低的阈值是为了满足一种业务需要,即确定在太阳风能量强烈渗透到磁层-电离层系统期间所拍摄的数据集,因为磁层-电离层系统很容易受到日地相互作用产生的影响。因此,风暴可以被理解为这种相互作用的一个特例,在这种相互作用中,环流不断增长,直到超过量化指数 Dst 的某个关键阈值。
如果要确定风暴和亚暴活动之间的关系,最好是改进极光电喷指数( AL,AUA L, A U 和 AEA E ),以便最准确地估计极光电离层中流动的东西向电流。这些指数是根据分布在世界各地的 12 个站点的扰动磁场 N-S 分量得出的。这些指数实际上代表了各观测站数值时间序列的包络,因此可能与扰动磁场的实际变化并不相似。
在任何特定台站的极光磁场。在确定极光电喷强度时,最重要的误差来源可能是参与观测站的固定位置。这些台站的经度分布相对较好,位于磁午夜附近极光椭圆的平均位置附近。在相对平静的时期,极光椭圆的平均位置在 AEA E 台站的极向外,因此,虽然电喷中可能有电流流动,但 AEA E 台站无法监测到该电流,因为扰动磁场的 N-S\mathrm{N}-\mathrm{S} 分量从电喷的边缘迅速下降。此外,当极光电喷非常活跃时,极光电喷会被驱动到 AEA E 站平均位置明显偏赤道的纬度。在这种情况下,电离层电流强度的实际水平也会被严重低估。可以通过以下建议尽量减少这一特殊问题。
将现有 AEA E 台站稍偏北和稍偏南的台站的数据包括进来,从而扩大对 AEA E 有贡献的台站的覆盖范围。在经度上相距约 180^(@)180^{\circ} 的两个 AEA E 观测站的极地和赤道偏北几度处,使用四个观测站的数据,将大大改进指数。
利用电射流的前向模型,计算离模型电射流中心不同距离的 H//ZH / Z 比值,并利用这些比值与 AEA E 观测站观测到的 H//ZH / Z 比值进行比较。这样就可以预测任何观测站的 N-S 磁扰动场的最大值(会出现在极光电喷中心的正下方)。虽然在哈朗不连续区域(在亚暴扩张相活动期间,西向喷流可能会在东向电射流的极边缘流动)实施这一程序较为复杂,但仍比观测站点位于东向电射流和西向电射流交界处的情况要好。在这种情况下,扰动的 N-S 分量将为零,该局部时区的电射流强度将被严重低估。
致谢。W.D.G. 感谢巴西国家空间研究所 (INPE) 和圣保罗州研究基金 (FAPESP) 以及拉丁美洲科学中心 (CLAF) 对 1991 年 11 月 5-8 日在圣保罗州圣若泽多斯坎波斯举办的 "风暴/次风暴 "研讨会的支持。这次研讨会为本文的讨论提供了基本框架。作者对 S.-I. Akasofu 的重要贡献表示感谢,并对与 S.-I.作者感谢 S.-I. Akasofu 的重要贡献,并感谢与 W. Baumjohann、G. L. Siscoe、M. Sugiura 和 A. L. Clúa de Gonzalez 的讨论。他们还要感谢 R. M. MacMahon 对手稿的帮助。
编者感谢 R. L. McPherron 和 S. I. Akasofu 在评估本文时提供的帮助。
参考资料
Akasofu, S.-I., Polar and Magnetospheric Substorms, D. Reidel, Norwell, Mass., 1968.
Akasofu, S.-I., Energy coupling between the solar wind and the magnetosphere, Space Sci. Rev., 28, 111, 1981a.
Akasofu, S.-I., Relationship between the AEA E and DstD s t indices during geomagnetic storms, J. Geophys.Res., 86, 4820, 1981b.
Akasofu, S.-I., and S. Chapman, Solar Terrestrial Physics, Clarendon, Oxford, 1972.
Arnoldy, R.L., Signature in interplanetary medium for substorms, J. Geophys.Res., 76, 5189, 1971.
Baker, D.N., E.W. Hones, Jr., J.B. Payne, and W.C. Feldman, A high-time resolution study of interplanetary parameter correlations with AEA E , Geophys.Res.Lett., 8, 179, 1981.
Baker, D.N., R.D. Zwickl, S.J. Bame, E.W. Hones, Jr., B.T. Tsurutani, E.J. Smith, and S.-I. Akasofu, An ISEE-3 high time resolution study interplanetary parameter correlations with magnetospheric activity, J. Geophys.S.J. Bame, E.W. Hones, Jr. B.T. Tsurutani, E.J. Smith, and S.-I. Akasofu, An ISEE-3 high time resolution study of interplanetary parameter correlations with magnetospheric activity, J. Geophys.88, 6230, 1983.
Baker, D.N., A.J. Klimas, and D.A. Roberts, Examination of time variable input effects in a nonlinear analogue magnetospheric model, Geophys.Res.18, 1631, 1991.
Bargatze, L.F., D.N. Baker, R.L. McPherron, and E.W. Hones Jr., Magnetospheric impulse response for many levels of geomagnetic activity, J. Geophys.90, 6387, 1985.
Bargatze, L.F., D.N. Baker, R.L. McPherron, Solar windmagnetosphere energy input functions, in Solar WindMagnetosphere Coupling, edited by Y. Kamide and J.A. Slavin, pp.
Baumjohann, W., Merits and Limitations on the use of geomagnetic indices, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide and J.A. Slavin, pp.
Burton, R.K., R.L. McPherron, and C.T. Russell, An empirical relationship between interplanetary conditions and Dst, J. Geophys.Res., 80, 4204, 1975.
Campbell, W.H., Occurrence of AEA E and Dst geomagnetic index levels and the selection of the quietest days in a year, J. Geophys.Res., 84, 875, 1979.
Carovillano, R.L, and G.L. Siscoe, Energy and momentum theorems in magnetospheric processes, Rev. Geophys., 11, 289, 1973.
Chappell, C.R., Measurement of the morphology and dynamics of the plasmasphere, Rev. Geophys., 10, 951, 1972.
Chapman, S., Earth storms: retrospect and prospect, J. Phys. Soc. Jpn.
Chapman, S. and J. Bartels, Geomagnetism, vol. 1 chap.IX, Clarendon, Oxford, 1940.
Chen, M.W., M. Schulz, L.R. Lyons, and D.J. Gorney, Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation, Geophys.Res.19 621, 1992.
Choe, G. S., N. La Belle Hammer, B. T. Tsurutani, and L. C. Lee, Identification of a driver gas boundary layer, Eos, Trans. AGU,73,485,1992A G U, 73,485,1992 .
Clauer, C.R., The technique of linear prediction filters applied to studies of solar wind-magnetosphere coupling, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide and J.A. Slavin, pp.
Clauer, C.R. and R.L. McPherron, On the relationship of the partial ring current to substorms and the interplanetary magnetic field, J. Geomagn.Geoelectr., 30, 195, 1978.
Clauer, C.R., R.L. McPherron, and C. Searls, Solar wind control of the low-latitude asymmetric magnetic field disturbance, J. Geophys.Res., 88, 2123, 1983.
Clúa de Gonzalez, A. L., W. D. Gonzalez, and B. T. Tsurutani, Periodic variation in the geomagnetic activity:A study based on the ApA p index, J. Geophys.Res., 98, 9215, 1993.
Cornwall, J.M., On the role of charge exchange in generating unstable waves in the ring current, J. Geophys.Res., 87, 1188, 1977.
Cornwall, J.M., F.V. Coroniti, and R.M. Thorne, Turbulent loss ring current protons, J. Geophys.75, 4699, 1970.
Cortie, A. L., The efficiency of sun-spots in relation to terrestrial magnetic disturbances, Mon.Not.R. Astron.Soc., 76, 15, 1915.
Cowley, S.W.H., Solar wind control of magnetospheric convection, in Proceedings of the Conference Achievements of the IMS, European Space Agency, ESA-SP-217, Paris, p. 483, 1984.
Crooker, N.U., E.W. Cliver, and B.T. Tsurutani, The semiannual variation of great geomagnetic storms and the postshock Russell -McPherron effect preceding coronal mass ejecta, Geophys.Res.19, 429, 1992.
Davis, T.N., Temporal behavior of energy injection into the geomagnetic ring current, J. Geophys.Res., 74, 6266, 1969.
Davis, T.N., and R. Parthasarathy, The relationship between polar magnetic activity DP and the growth of the geomagnetic ring current, J. Geophys.Res., 72, 5825, 1967.
Dessler, A. J., and E. N. Parker, Hydromagnetic theory of magnetic storms, J. Geophys.Res., 64, 2239, 1959.
Detman, T. R., T. Yeh, S. M. Han, S. T. Wu, and D. J. McComas, A time-dependent, three-dimensional MHD numerical study of interplanetary magnetic draping ground plasmoids in the solar wind, J. Geophys.96, 9531, 1991.
Doyle, M.A., and W.J. Burke, S3-2 measurements of the polar cap potential, J. Geophys.Res., 88, 9125, 1983.
Dryer, M. S., S. T. Wu, C. C. Wu, and S. M. Han, Heliospheric current sheet effects on the propagation of solargenerated shock-waves, in Proceedings of the 26th ESLAB Symposium-Study of the Solar-Terrestrial System, European Space Agency, ESA-SP-346, Paris, p. 77, 1992.
Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett.
Fälthammar, C.-G., Effects of time-dependent electric fields on geomagnetically trapped radiation, J. Geophys.Res., 70, 2503, 1965.
Fay, R.A., C.R. Garrity, R.L. McPherron, and L.F. Bargatze, Prediction filters for the Dst index and the po-st.
在《太阳风-磁层耦合》(Solar Wind-Magnetosphere Coupling)一书中,由 Y. Kamide 和 J.A. Slavin 编辑,第 111-117 页,Terra Scientific 出版社,东京,1986 年。
Feldstein, Y.I., Modeling of the magnetic field of magnetospheric ring current as a function of interplanetary medium parameters, Space Sci. Rev., 59, 83, 1992.
Feldstein, Y.I., V.Y. Pisarsky, N.M. Rudneva, and A. Grafe, Ring current simulation in connection with interplanetary space conditions, Planet.Space Sci.,32,975,1984.
Fok, M.C., J.U. Kozyra, A.F. Nagy, and T.E. Cravens, Lifetime of ring current particles due to the Coulomb collisions in the plasphere, J. Geophys.96, 7861, 1991.
Goertz, C. K., L. -H. Shan, and R. A. Smith, Prediction of geomagnetic activity, J. Geophys.Shan, and R. A. Smith, Prediction of geomagnetic activity, J. Geophys.Res., 98, 7673, 1993.
Gold, T., Magnetic storms, Space Sci. Rev., 1, 100, 1962.
Gonzalez, W.D., A unified view of solar wind-magnetosphere coupling functions, Planet.38, 627, 1990.
Gonzalez, W.D., Flux transfer events and reconnection at the magnetopause, Eos, Trans. AGU,72,431,1991A G U, 72,431,1991 .
Gonzalez, W.D., and F.S. Mozer, A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field, J. Geophys.Res., 79, 4186, 1974.
Gonzalez, W.D., and A.L.C. Gonzalez, Solar wind energy transfer to the Earth's magnetosphere via magnetopause reconnection, Geophys.Res.Lett., 8, 265, 1981.
Gonzalez, W.D., and B.T. Tsurutani, Criteria of interplanetary parameters causing intense magnetic storms (Dst < -100 nT), Planet.35, 1101, 1987.
Gonzalez, W.D., and B.T. Tsurutani, Terrestrial response to eruptive solar flares:Geomagnetic storms, in Eruptive Solar Flares, edited by Z. Svestka, B.V. Jackson, and M.E. Machado, pp.Jackson, and M.E. Machado, pp.
Gonzalez, W.D., B.T. Tsurutani, A.L.C. Gonzalez, E.J. Smith, F. Tang and S.-I. Akasofu, Solar wind-magnetosphere coupling during the intense magnetic storms (19781979, J. Geophys.Akasofu, Solar wind-magnetosphere coupling during intense magnetic storms (19781979), J. Geophys.94, 8835, 1989.
Gonzalez, W.D., A.L.C. Gonzalez, and B.T. Tsurutani, Dual-peak solar cycle distribution of intense geomagnetic storms, Planet.Space Sci.
Gonzalez, W.D., A.L. Clúa de Gonzalez, O. Mendes Jr, and B.T. Tsurutani, Difficulties defining storm sudden commence, Eos, Trans.Tsurutani, Difficulties defining storm sudden commencements, Eos, Trans.agu, 73, 180, 1992.
Gonzalez, W.D., A.L. Clúa de Gonzalez, and B.T. Tsurutani, Comment on "The semiannual variation of great geomagnetic storms and the postshock Russell-McPherron effect preceding coronal mass ejecta" by N.U. Crooker, E.W. Cliver and B.T. Tsurutani, Geophys.Res.Lett., 20, 1659, 1993.
Gosling, J.T., D.N. Baker, S.J. Bame, W.C. Feldman, R.D. Zwickl, and E.J. Smith, Bidirectional solar wind electron heat flux events, J. Geophys.92, 8519, 1987.
Gosling, J. T., D. J. McComas, J. L. Phillips, and S.J. Bame, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys.96, 7831, 1991.
Hamilton, D.C., G. Gloeckner, F.M. Ipavich, W. Studemann, B. Wilkey, and G. Kremser, Ring current development during the great geomagnetic storm of February 1986, J. Geophys.93, 14,343, 1988.
Haerendel, G., G. Paschmann, N. Sckopke, H. Rosenbauer, and P.C. Hedgecock, The frontside boundary layer on the magnetosphere and the problem of reconnection, JJ .Geophys.Res., 83, 3195, 1978.
Holzer, R.E., and J.A. Slavin, An evaluation of three predictors of geomagnetic activity, J. Geophys.Res., 87, 2558, 1982.
Iyemori, T., H. Maeda, and T. Kamei, Impulse response of geomagnetic indices to interplanetary magnetic field, JJ .Geomagn.Geoelectr., 6, 577, 1979.
Joselyn, J.A., and B.T. Tsurutani, Geomagnetic sudden impulses and storm sudden commencements, Eos, Trans. AGU,71,1808,1990A G U, 71,1808,1990 .
Kamide, Y., Is substorm occurrence a necessary condition for a magnetic storm?Geoelectr., 44, 109, 1992.
Kamide, Y., and N. Fukushima, Positive geomagnetic bays in evening high-latitudes and their possible connection with partial ring current, Rep. Ionos.Space Res.25, 125, 1971.
Kamide, Y. and N. Fukushima, Analysis of magnetic storms with DR-indices for equatorial ring current field, Rep. Ionos.Space Res.26, 79, 1972.
Kamide, Y., and J.A. Joselyn, Toward a standardized definition of geomagnetic sudden commencements, Eos, Trans. AGU,72,300,1991A G U, 72,300,1991 .
Kamide, Y., P.D. Perrault, S.-I.Akasofu, and J.D. Winningham, Dependence of substorm occurrence probability on the interplanetary magnetic field and on the size of the auroral oval, J. Geophys.82, 5521, 1977.
Kan, J.R., and L.C. Lee, Energy coupling functions and solar wind-magnetosphere dynamo, Geophys.Res.Lett.
Kauffman, R.L., Substorms currents: growth phase and onset, J. Geophys.Res., 92, 7471, 1987.
King, J. H., Solar wind parameters and magnetosphere coupling studies, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide and J.A. Slavin, pp.
Kisabeth, J.L., The dynamical development of the polar electrojets, Ph.D. Thesis, University of Alberta, Edmonton, Canada, 1972.
Klein, L.W., and L.F. Burlaga, Magnetic clouds at 1AU,J1 \mathrm{AU}, \mathrm{J} .Geophys.Res., 87, 613, 1982.
Klimas, A.J., D.N. Baker, D.A. Roberts, and D.H. Fairfield, A. nonlinear dynamical analogue model of geomagnetic activity, J. Geophys.Res., 97, 12,253, 1992.
Kokubun, S., Relationship of interplanetary field structure with development of substorm and storm main phase, Planet.20, 1033, 1972.
Langel, R.A. and R.H. Estes, Large-scale, near-earth magnetic fields from external sources and the corresponding induced internal sources, NASA, Tech.Memo.TM85012, 1983.
Legrand, J.P., and P.A. Simon, A two-component solar cycle, Solar Physics, 131, 187, 1991.
Lui, A.T.Y., R.W. McEntire, and S.M. Krimigis, Evolution of the ring current during two magnetic storms, JJ .Geophys.Res., 92, 7459, 1987.
Lui, A.T.Y., C.-L. Chang, A. Mankofsky, H.-K. Wong, and D. Winske, A cross-field current instability for substorm expansions, J. Geophys.Wong, and D. Winske, A cross-field current instability for substorm expansions, J. Geophys.96, 11,389, 1991a.
Lui, A.T.Y., R.E... Lopez, B.J. Anderson, K. Takahashi, L.J. Zanetti, R.W. McEntire, T.A. Potemra, D.M. Klumpar, E.M. Greene, and R. Strangeway, Current disruptions in the near-Earth neutral sheet region, J. Geophys.97, 1461, 1991b.
Lyons, L.R., and D.S. Evans, The inconsistency between proton charge exchange and the observed ring current decay, J. Geophys.Res., 81, 6197, 1976.
Lyons, L.R., and D.J. Williams, A source for the geomagnetic storm main phase ring current, J. Geophys.Res., 85, 523, 1980.
Lyons L.R., and M. Schulz, Access of energetic particles to storm-time ring current through enhanced radial "diffusion, "J. Geophys.Res., 94, 5491, 1989.
Marubashi, K., Structure of the interplanetary magnetic clouds and their solar origins, Adv. Space Res., 6(6), 335, 1986.
Matsushita, S., A study of the morphology of ionospheric storms, J. Geophys.Res., 64, 305, 1959.
Mauk, B.H., and C.-I. Meng, Plasma injection during substorms, Phys.Meng, Plasma injection during substorms, Phys. Scripta, T18, 128, 1987.
Mayaud, P.N., Derivation, Meaning, and Use of Geomagnetic Indices, Geophys.Monogr.Ser., vol. 22, AGU, Washington D. C., 1980.
McComas, D.J., J.T. Gosling, S.J. Bame, E.J. Smith, and H.V. Cane, A test of magnetic field draping induced B_(z)B_{z} perturbations ahead of fast coronal mass ejecta, J. Geophys.Res., 94, 1465, 1989.
Mcllwain, C.E., Substorm injection boundaries, in Magnetospheric Physics, edited by McCormac, p. 143, D. Reidel, Norwell, Mass.
Mendes, O. Jr., W.D. Gonzalez, A.L.C. Gonzalez, O. Pinto Jr., and B.T. Tsurutani, Solar wind-magnetosphere coupling during moderate geomagnetic storms (1978-1979), Adv. Space Res., in press 1994.
Menvielle, M., and A. Berthelier, The K-derived planetary indices:Rev. Geophys., 29, 415, 1991.
Murayama, T., Coupling between solar wind and the Dst index, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide and J.A. Slavin, pp.
Murayama, T., and K. Hakamada, Effects of solar wind parameters on the development of magnetospheric substorms, Planet.Space Sci.
Perreault, P., and S.-I.Akasofu, A study of geomagnetic storms, Geophys.J. R. Astron.54, 547, 1978.
Petschek, H.E., Magnetic field annihilation, in AAS-MASA Symposium on Physics of Solar Flares, NASA Spec.50, 425, 1964.
Pisarskij, V. Yu, Ya.I. Feldstein, N.M. Rudenova, and A. Prigancova, Ring current and interplanetary medium parameters, Studia Geophys.33, 61, 1989.
Prigancova A., and Ya. I. Feldstein, Magnetospheric storm dynamics in terms of energy output rate, Planet.I. Feldstein, Magnetospheric storm dynamics in terms of energy output rate, Planet.Space Sci., 40, 581, 1992.
Pytte, T., R.L. McPherron, E.W. Hones, Jr., and H.I. West, Multiple-satellite studies of magnetospheric substorms: distinction between polar magnetic substorm and convection driven negative bay, Planet.Space Sci.
Reiff, P.H., R.W. Spiro, and T.W. Hill, Dependence of polar cap potential drop on interplanetary electric field, JJ .Geophys.Res., 86, 7639, 1981.
Roelof, E.C., and D.J. Williams, The terrestrial ring current: from in sit measurement to global images using energetic neutral atoms, in Johns Hopkins APL Tech.Dig., 9, (2), 144-163, 1988.
Rostoker, G., Geomagnetic indices, Rev. Geophys., 10, 935, 1972.
Rostoker, G., and C.-G.Rostoker, G, and C.-G. Fälthammar, Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth's surface, J. Geophys.72, 5853, 1967.
Rostoker, G., L. Lam, and W.D. Hume, Response time of the magnetosphere to the interplanetary electric field, Can.J. Phys., 50, 544, 1972.
Rostoker, G., S.-I.Akasofu, J. Foster, R.A. Greenwald, Y. Kamide, K. Kawasaki, A.T.Y. Lui, R.L. McPherron and C.T. Russell, Magnetospheric substorms:Definition and signatures, J. Geophys.85, 1663, 1980.
Rostoker, G., S.-I.Akasofu, W. Baumjohann, Y. Kamide, and R.L. McPherron, The roles of direct input of energy from ine sular wind and unlualiung of stüícu energy in driving magnetospheric substorms, Space Sci.
Russell, C.T., and R.L. McPherron, Semiannual variation of geomagnetic activity.J. Geophys.Res., 78, 92, 1973.
Russell, C.T., R.L. McPherron and R.K. Burton, On the cause of geomagnetic storms, J. Geophys.Res., 79, 1105, 1974.
Russell, C.T., and R.C. Elphic, ISEE observations of flux transfer events at the dayside magnetopause, Geophys.Res.Lett.
Saba, M., W.D. Gonzalez, and A.L.C. Gonzalez, Relationships between the Dst, ap and AEA E indices, Adv. Space Res., in press 1994.
Sckopke, N., A general relation between the energy of trapped particles and the disturbance field near the Earth, J. Geophys.71, 3125, 1966.
Sergeev, V., and W. Lennartsson, Plasma sheet at X~~X \approx -20 Re during steady magnetospheric convection, Planet.Space Sci.
Siscoe, G.L., Energy coupling between region 1 and 2 Birkeland current systems, J. Geophys.Res., 87, 5124, 1982.
Smith, E.J., J.A. Slavin, R.D. Zwickl, and S.J. Bame, Shocks and storm sudden commencements, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide and J.A. Slavin, pp.
Smith, P.H., R.A. Hoffman, and T.A. Fritz, Ring current proton decay by charge exchange, J. Geophys.Res., 81, 2701, 1976.
Solomon, J., and O. Picon, Charge exchange and wave particle interaction in the proton ring current, J. Geophys.Res., 86, 3375, 1981.
Sonnerup, B.U.O., Magnetic Field Reconnection at the magnetopause:An overview, in Magnetic Reconnection in Space and Laboratory Plasmas, Geophys.Monogr.Ser.,vol.30,edited by E.W. Hones,Jr.,pp.92-103,AGU,Washington,D.C.,1984.
Spjeldvik, W.N., Transport, charge exchange and loss of energetic heavy ion in the Earth's radiation belts:Applicability and limitations to theory, Planet.Space Sci.,29,1215,1981。
Stern, D.P., Energetics of the magnetosphere, Space Sci. Rev., 39, 193, 1984.
Sugiura, M., Hourly values of equatorial Dst for the IGY, Annual International Geophysical Year, vol. 35, p. 9, Pergamon, New York, 1964.
Sugiura, M., Equatorial current sheet in the magnetosphere, J. Geophys.Res., 77, 6093, 1972.
Sugiura, M., What do we expect in magnetic activity in the current solar cycle?AGU,61,673,1980。
Sugiura, M., and S. Chapman, The average morphology of geomagnetic storms with sudden commencement, Abandl.Akad.Wiss., Gottingen Math.K1 (4), 1960.
Sugiura, M., and T. Kamei, Equatorial Dst index 19571986, IAGA Bulletin, 40, edited by A. Berthelier and M. Menvielle, ISGI Publ.Off.Maur-des-Fosses, France, 1991.
Takahashi, S., T. Iyemori, and M. Takeda, A simulation of the storm-time ring current, Planet.Space Sci.
Takahashi, S., M. Takeda, and Y. Yamada, Simulation of storm-time partial ring current system and the dawn-dusk asymmetry of geomagnetic variation, Planet.Space Sci.
Tinsley, B.A., Evidence that the recovery ring current consists of Helium ions, J. Geophys.Res., 81, 6193, 1976.
Tsurutani, B.T., and C.I. Meng, Interplanetary magnetic field variations and substorm activity, J. Geophys.Res., 77, 2964, 1972.
Tsurutani, B.T., and W.D. Gonzalez, The cause of highintersity long-duiation continuous AEA E activity (HILDCAAs): interplanetary Alfvén wave trains, Planet.35, 405, 1987.
Tsurutani, B.T., C.T. Russell, J.H. King, R.D. Zwickl, and R.P. Lin, A kinky heliospheric current sheet:A kinky heliospheric current sheet: Cause of CDAW 6 substorms, Geophys.Res.11, 339, 1984.
Tsurutani, B.T., W.D. Gonzalez, F. Tang, S.-I.Akasofu, and E.J. Smith, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978-1979), J. Geophys.93, 8519, 1988.
Tsurutani, B.T., W.D. Gonzalez, F. Tang, Y.T. Lee and M. Okada, Reply to L. J. Lanzerotti: Solar wind ram pressure corrections and an estimation of the efficiency of viscous interaction, Geophys.Res.19, 1993, 1992a.
Tsurutani, B.T., W.D. Gonzalez, F. Tang, and Y. Te Lee, Great magnetic storms, Geophys.Res.19, 73, 1992b.
Vassiliadis, D., A. S. Sharma, and K. Papadopoulos, An empirical model relating the auroral geomagnetic activity to the interplanetary magnetic field, Geophys.Res.Lett., 20, 1731, 1993.
Vasyliunas, V.M., Theoretical models of magnetic field line merging, 1, Rev. Geophys., 13, 303, 1975.
Vasyliunas, V.M., Contribution to Dialog on the relative roles of reconnection and the "viscous" interaction in providing solar-wind energy to the magnetosphere, in Magnetotail Physics, edited by A.T.Y. Lui, pp.
Vasyliunas, V.M., J.R. Kan, G.L. Siscoe, and S.-I.Akasofu, Scaling relations governing magnetosphere energy transfer, Planet.Space Sci.
Wang, X., A. Bhattacharjee, and A.T.Y. Lui, Collisionless tearing instability in magnetotail plasmas, J. Geophys.95, 15,047, 1990.
Weiss, L.A., P.H. Reiff, J.J. Moses, and B.D. Moore, Energy dissipation in substorms, Eur.Space Agency Spec.Publ.esa-sp-335, 309-319, 1992.
Williams, D.J., Dynamics of the Earth's ring current: theory and observation, Space Sci. Rev., 42, 375, 1985.
Wodnicka, E.B., What does the magnetic storm development depend on?, Planet.空间科学》,39,1163,1991 年。
Wygant, J.R., R.B. Tobert, and F.S. Mozer, Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection, J. Geophys.85, 5727, 1983.
Zhao, X., Interaction of fast steady flow with slow transient flow:星际 B_(z)B_{z} 事件的新成因, JJ .Geophys.Res., 97, 15,051, 1992.
Zwan, B.J., and R.A. Wolf, Depletion of solar wind plasma near a planetary boundary, J. Geophys.Res., 81, 1636, 1976.
Zwickl, R.D., J.R. Asbridge, S.J. Bame, W.C. Feldman, J.T. Gosling, and E.J. Smith, Plasma properties of driver gas following interplanetary shocks observed by ISEE-3, in Solar Wind Five, NASA Conf.Publ., CP-2280, 711, 1983.
W.W. D. Gonzalez and J. A. Joselyn, National Oceanic.and Atmospheric Administration, Environmental Research Laboratory, 325 Broadway, Boulder, CO 80303-33280.(电子邮件:selvax::wgonzalez 和 selvax::jjoselyn)
Y.Kamide, Solar Terrestrial Environmental Laboratory, Nagoya University, Honohara, 3-13, Toyokawa, 442 Japan.(电子邮件:41945::kamide)
H.W. Kroehl, NGDC E/GC2, NOAA, 325 Broadway, Boulder, CO 80303.(电子邮件:kryos::kroehl)
G Rostoker,阿尔伯塔大学物理系,加拿大阿尔伯塔省埃德蒙顿,T6G 2G1。(电子邮件:18642::rostoker)
B.T. Tsurutani, Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109.(电子邮件:jplsp::btsurutani)
V.M. Vasyliunas, Max Planck Institute für Aeronomie, Katlenburg-Lindau, D-3411 Germany.(电子邮件:ecd1::linmpi::vasyliunas)
(1993年5月24日收到;1993年10月1日修订;1993年10月1日接受)。
^(1){ }^{1} Instituto de Pesquisas Espaciais, S. J. dos Campos, Sāo Paulo, Brazil.