这是用户在 2024-8-28 23:44 为 https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP284198 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Review-Symposium 回顾-研讨会
Open Access 开放获取

Sex differences in human performance
人类表现的性别差异

Sandra K. Hunter

Corresponding Author

Sandra K. Hunter

Movement Science Program, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA

Corresponding author Sandra K. Hunter: Movement Science Program, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA.  Email: sandrahu@umich.edu

Search for more papers by this author
Jonathon W. Senefeld

Jonathon W. Senefeld

Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, USA

Search for more papers by this author

桑德拉·K·亨特、乔纳森·W·塞内菲尔德
First published: 06 August 2024
首次发布: 2024 年 8 月 6 日
Citations: 1 引用次数: 1

Handling Editors: Laura Bennet & Lewan Parker
处理编辑:Laura Bennet 和 Lewan Parker

The peer review history is available in the Supporting Information section of this article (https://doi.org/10.1113/JP284198#support-information-section).
同行评审历史记录可在本文的支持信息部分 ( https://doi.org/10.1113/JP284198#support-information-section ) 中找到。

This review was presented at the ACSM's Integrated Physiology of Exercise conference held on 21-24 September 2022 in Baltimore, Maryland.
该综述于 2022 年 9 月 21 日至 24 日在马里兰州巴尔的摩举行的 ACSM 综合运动生理学会议上发表。

Abstract 抽象的

Sex as a biological variable is an underappreciated aspect of biomedical research, with its importance emerging in more recent years. This review assesses the current understanding of sex differences in human physical performance. Males outperform females in many physical capacities because they are faster, stronger and more powerful, particularly after male puberty. This review highlights key sex differences in physiological and anatomical systems (generally conferred via sex steroids and puberty) that contribute to these sex differences in human physical performance. Specifically, we address the effects of the primary sex steroids that affect human physical development, discuss insight gained from an observational study of ‘real-world data’ and elite athletes, and highlight the key physiological mechanisms that contribute to sex differences in several aspects of physical performance. Physiological mechanisms discussed include those for the varying magnitude of the sex differences in performance involving: (1) absolute muscular strength and power; (2) fatigability of limb muscles as a measure of relative performance; and (3) maximal aerobic power and endurance. The profound sex-based differences in human performance involving strength, power, speed and endurance, and that are largely attributable to the direct and indirect effects of sex-steroid hormones, sex chromosomes and epigenetics, provide a scientific rationale and framework for policy decisions on sex-based categories in sports during puberty and adulthood. Finally, we highlight the sex bias and problem in human performance research of insufficient studies and information on females across many areas of biology and physiology, creating knowledge gaps and opportunities for high-impact studies.
性别作为一种生物变量是生物医学研究中一个未被充分认识的方面,但近年来其重要性逐渐显现。本综述评估了目前对人类身体表现性别差异的理解。男性在许多身体能力上都优于女性,因为他们更快、更强、更有力,尤其是在男性青春期之后。这篇综述强调了生理和解剖系统中的关键性别差异(通常通过性类固醇和青春期赋予),这些差异导致了人类身体表现的性别差异。具体来说,我们讨论了影响人类身体发育的主要性类固醇的影响,讨论了从“真实世界数据”和精英运动员的观察性研究中获得的见解,并强调了导致性别差异的几个方面的关键生理机制。身体表现。讨论的生理机制包括表现中不同程度的性别差异的生理机制,包括:(1)绝对肌肉力量和爆发力; (2) 肢体肌肉的疲劳程度作为相对表现的衡量标准; (3)最大有氧功率和耐力。人类表现中基于性别的深刻差异涉及力量、力量、速度和耐力,这在很大程度上可归因于性类固醇激素、性染色体和表观遗传学的直接和间接影响,这为政策决策提供了科学依据和框架。青春期和成年期运动中基于性别的类别。最后,我们强调了人类表现研究中的性别偏见和问题,即生物学和生理学许多领域对女性的研究和信息不足,造成了知识差距和高影响力研究的机会。

Introduction 介绍

Sex as a biological variable is an underappreciated aspect of biomedical research, with its importance emerging in more recent years (Hunter et al., 2023; Joyner, 2017; Miller, 2012). Contemporary data demonstrate differences between male and female humans and animals in most, if not all, physiological systems, including cardiovascular, musculoskeletal, respiratory and neurological function (Miller, 2012, 2014; Schiebinger et al., 2016). These sex-related differences in physiological and anatomical systems contribute to sex differences in the physical limits of human motor performance (Hunter et al., 2023; Joyner, 2017; Petek et al., 2023; Senefeld et al., 2021), ranging from elite athletes to people with chronic disease. In relation to females, males can generally be characterized by the traditional Latin motto of the Olympic Games, citius – altius – fortius translating to faster, higher, stronger. Males, particularly elite athletes, are faster over both shorter and longer distances across all forms of human locomotion, produce more muscular power and thus can jump higher, and are stronger than females (Hunter et al., 2023). This review will discuss key physiological insights related to sex differences in human motor performance and other physiological factors that influence what is presently known about the differences and similarities in human performance between males and females.
性别作为一种生物变量是生物医学研究中一个未被充分认识的方面,其重要性近年来逐渐显现(Hunter et al., 2023 ; Joyner, 2017 ; Miller, 2012 )。当代数据表明,男性和女性人类和动物之间在大多数(如果不是全部)生理系统中存在差异,包括心血管、肌肉骨骼、呼吸和神经功能(Miller, 2012、2014 ;Schiebinger 等, 2016 )。这些与性别相关的生理和解剖系统差异导致了人类运动表现物理极限的性别差异(Hunter et al., 2023 ;Joyner, 2017 ;Petek et al., 2023 ;Senefeld et al., 2021 ),范围从精英运动员到慢性病患者。与女性相比,男性通常具有奥运会传统拉丁语座右铭的特征, citius – altius – fortius翻译为更快、更高、更强。男性,尤其是精英运动员,在所有形式的人类运动中,在短距离和长距离上都更快,产生更多的肌肉力量,因此可以跳得更高,并且比女性更强壮(Hunter et al., 2023 )。这篇综述将讨论与人类运动表现的性别差异相关的关键生理学见解,以及影响目前已知的男性和女性之间人类表现差异和相似性的其他生理因素。

Sex as a biological variable has received limited attention in past biomedical research, resulting in females being tested as experimental participants at demonstrably lower rates than males, both historically and currently at the time of writing (Antequera et al., 2022; Cowan et al., 2023; James, Klevenow et al., 2023; OʼHalloran, 2020; Smith et al., 2022; Vanden Noven et al., 2023). For many decades, the ‘70 kg male’ was the default human model for biomedical research (Clayton, 2016), and the majority of animal, tissue and cell models included in preclinical research comprised single-sex investigations (Beery & Zucker, 2011; James, Klevenow et al., 2023; Yoon et al., 2014). Representation of females in research studies has improved in more recent years, particularly since granting agencies (e.g. the European Commission, Canadian Institutes of Health Research, and the US National Institutes of Health (NIH)) explicitly called for analyses based on sex and gender in biomedical research (Arnegard et al., 2020; Clayton & Collins, 2014; Kantarci et al., 2020; Schiebinger et al., 2016; Vanden Noven et al., 2023). The development of policies by granting agencies requiring the consideration of sex as a biological variable and the increase in females as participants has paralleled an increase in both the number and proportion of sex-inclusive studies in biomedical research (James, Klevenow et al., 2023; Sugimoto et al., 2019; Vanden Noven et al., 2023; Woitowich et al., 2020). Nevertheless, there are continued sex-based disparities in both animal and human research, and a pressing need for a cultural shift in science (Shansky & Murphy, 2021). For example, multiple studies have shown that females are historically underrepresented as research participants in studies of exercise science, physiology and related fields, ranging between 20% and 40% of the study population (Costello et al., 2014; Cowley et al., 2021; Cowan et al., 2023; Hagstrom et al., 2021; James, Klevenow et al., 2023; Kuikman et al., 2022; Smith et al., 2022). The representation of females as research participants has improved in recent years but remains inequitable to that of males. As an illustration, the relative proportion of females per study increased from 22% in 1991 to 36% in 2021 (James, Klevenow et al., 2023).
性别作为一个生物变量在过去的生物医学研究中受到的关注有限,导致女性作为实验参与者进行测试的比率明显低于男性,无论是历史上还是目前在撰写本文时(Antequera 等人, 2022 年;Cowan 等人,2022 年)。 , 2023 ;James、Klevenow 等人, 2023 ;O'Halloran 等人,2022 Smith 等人, 2023 年)。几十年来,“70公斤男性”是生物医学研究的默认人体模型(Clayton, 2016 ),临床前研究中包含的大多数动物、组织和细胞模型都包含单性别研究(Beery&Zucker, 2011 ; James、Klevenow 等人, 2023 ;Yoon 等人, 2014 )。近年来,女性在研究中的代表性有所提高,特别是因为资助机构(例如欧盟委员会、加拿大卫生研究院和美国国立卫生研究院 (NIH))明确要求在性别和社会性别的基础上进行分析。生物医学研究(Arnegard 等人, 2020 ;Clayton & Collins, 2014 ;Kantarci 等人, 2020 ;Schiebinger 等人, 2016 ;Vanden Noven 等人, 2023 )。 通过资助机构制定政策,要求将性别视为生物变量,并且女性参与者的增加与生物医学研究中性别包容性研究的数量和比例的增加相平行(James,Klevenow 等, 2023 ) ;Sugimoto 等人, 2019 ;Vanden Noven 等人, 2023 ;Woitowich 等人, 2020 )。然而,动物和人类研究中仍然存在基于性别的差异,并且迫切需要科学文化转变(Shansky&Murphy, 2021 )。例如,多项研究表明,历史上,女性在运动科学、生理学及相关领域的研究参与者中所占比例不足,占研究人群的 20% 至 40%(Costello 等人, 2014 年;Cowley 等人, 2021 ;Cowan 等人, 2023 ;James、Klevenow 等人, 2022 ;Smith人,2022 近年来,女性作为研究参与者的代表性有所提高,但与男性相比仍然不平等。例如,每项研究中女性的相对比例从 1991 年的 22% 增加到 2021 年的 36%(James、Klevenow 等人, 2023 年)。

Human biomedical research enrols and studies only individuals who volunteer to participate, so the factors contributing to sex differences in representation primarily reflect sex differences in volunteerism. Contemporary evidence suggests several leading factors associated with disproportionately lower representation and volunteerism among females, including: (1) sex differences in interest and willingness to participate in research studies specific to various methods and interventions (‘volunteer bias’) (Nuzzo & Deaner, 2023); (2) sex- and gender-based representation of the research team, particularly leaders on research teams (first and senior authors) (‘investigator bias’) (James, Klevenow et al., 2023; James et al., 2024); and (3) single-sex research studies enrolling and studying humans representing one sex or gender (James, Klevenow et al., 2023; Plevkova et al., 2020) (‘inclusion bias’). Clearly, a collective focus is still required to mitigate these contrived sources of biases and enhance the number of females represented in sport, exercise and applied science research studies, among many other fields in biomedical sciences.
人类生物医学研究仅招募和研究自愿参与的个体,因此造成代表性性别差异的因素主要反映了志愿服务的性别差异。当代证据表明,与女性代表性和志愿服务比例偏低相关的几个主要因素包括:(1) 在参与针对各种方法和干预措施的研究的兴趣和意愿方面存在性别差异(“志愿者偏见”)(Nuzzo & Deaner, 2023 ) ); (2) 研究团队的性别代表性,特别是研究团队的领导者(第一作者和资深作者)(“研究者偏见”)(James, Klevenow et al., 2023 ;James et al., 2024 ); (3) 招募和研究代表一种性别的人类的单性别研究(James, Klevenow et al., 2023 ;Plevkova et al., 2020 )(“包容性偏见”)。显然,仍然需要集体关注,以减轻这些人为的偏见来源,并增加在体育、锻炼和应用科学研究以及生物医学科学的许多其他领域中的女性人数。

Although scientific policy changes from granting agencies and scientific journals have been associated with increased representation of females in research, the rise is slow (Devries & Jakobi, 2021; James, Klevenow et al., 2023) and lags behind the more dramatic increased representation of females in response to policy changes in other areas, such as athletics and Title IX of the Education Amendments Act in the United States (Fig. 1). There remain many journals and unfunded research that are not under a mandate that sex be considered as a biological variable (Devries & Jakobi, 2021).
尽管资助机构和科学期刊的科学政策变化与女性在研究中的代表性增加有关,但增长缓慢(Devries & Jakobi, 2021 ;James, Klevenow et al., 2023 ),并且落后于女性参与度的大幅增加。女性因应其他领域的政策变化,例如体育和美国教育修正案第九条(图1 )。仍有许多期刊和未受资助的研究没有将性别视为生物变量(Devries & Jakobi, 2021 )。

Details are in the caption following the image
Figure 1. Increases in the representation of females in both sport and physiological research over 70 years
图 1. 70 年来女性在运动和生理研究中的代表性有所增加

This historical and continued (albeit lessened) sex bias in the scientific literature examining human performance and the exercise response of females and males contributes to an underappreciation of sex differences in performance. In particular, less is known about the benefits of exercise for females that may differ from males and the underlying physiological mechanisms contributing to these sex differences. Regular physical activity and exercise can confer profound physiological benefits for both males and females, including a broad promotion of health, prevention of chronic disease and prolongation of both the health span and lifespan (Harridge & Lazarus, 2017; Lazarus & Harridge, 2017). Although the concept that physical activity and exercise are good for human health dates to antiquity (MacAuley, 1994; Paffenbarger et al., 2001), females (particularly of ‘childbearing potential’) were previously excluded or banned from clinical research studies, in part due to systemic sex discrimination and misguided ideas about potential harm to females (NIH Office of Research on Women's Health, 2024). As one notable example, the National Institute on Aging's Baltimore Longitudinal Study excluded female subjects from its inception in 1958 until 1978, despite the fact that females accounted for about two-thirds of the population over 65 years of age (Schiebinger, 2003). The broader implications of these sex biases in biomedical research include health disparities in the treatment of females (Schiebinger, 2003). Males and females may present differently in rates of several major diseases and have different responses to many therapeutics, which synergistically contribute to sex differences in health outcomes and mortality (Kim et al., 2010; Shannon et al., 2019). Inadequate inclusion of females in clinical trials has contributed to inappropriate treatment options and poor health outcomes for females and even exacerbated cardiovascular mortality rates (Kim et al., 2010; Melloni et al., 2010; Shannon et al., 2019; Virani et al., 2021; Zucker & Prendergast, 2023). In this context, this review will assess the current understanding of sex differences in human performance and highlight knowledge gaps to frame future research questions for the field.
在研究人类表现以及女性和男性的运动反应的科学文献中,这种历史性的、持续的(尽管有所减轻)性别偏见导致了对表现中性别差异的低估。特别是,人们对运动对女性的益处(可能与男性不同)以及导致这些性别差异的潜在生理机制知之甚少。定期的身体活动和锻炼可以为男性和女性带来深远的生理益处,包括广泛促进健康、预防慢性疾病以及延长健康寿命和寿命(Harridge & Lazarus, 2017 ;Lazarus & Harridge, 2017 )。尽管身体活动和锻炼有益于人类健康的概念可以追溯到古代(MacAuley, 1994 ;Paffenbarger 等, 2001 ),但女性(尤其是具有“生育潜力”的女性)之前被排除或禁止参与临床研究,部分原因是由于系统性性别歧视和对女性潜在伤害的误导性观念(NIH 妇女健康研究办公室, 2024 )。一个值得注意的例子是,国家老龄化研究所的巴尔的摩纵向研究从 1958 年开始到 1978 年一直排除女性受试者,尽管事实上女性约占 65 岁以上人口的三分之二(Schiebinger, 2003 )。这些性别偏见在生物医学研究中的更广泛影响包括女性治疗方面的健康差异(Schiebinger, 2003 )。 男性和女性在几种主要疾病的发病率上可能存在差异,并且对许多治疗方法有不同的反应,这协同导致了健康结果和死亡率的性别差异(Kim 等, 2010 ;Shannon 等, 2019 )。临床试验中女性参与不足导致了治疗选择不当和女性健康状况不佳,甚至加剧了心血管死亡率(Kim 等人, 2010 年;Melloni 等人, 2010 年;Shannon 等人, 2019 年;Virani 等人) ., 2021 ;扎克和普伦德加斯特, 2023 )。在此背景下,本综述将评估当前对人类表现性别差异的理解,并强调知识差距,以框架该领域未来的研究问题。

The general strategy of presentation for this review has five sections, beginning with this introduction followed by definitions and conceptual foundations. In the next two sections, we describe the magnitude of the sex differences in performance of elite athletes through the lens of real-world data, followed by the key physiological mechanisms contributing to sex-related differences in human performance involving muscular strength and power, performance fatigability and aerobic power and endurance performance. Finally, in our conclusion, we briefly summarize this review and encourage the scientific community to account for sex as a biological variable.
本次审查的总体介绍策略分为五个部分,首先是介绍,然后是定义和概念基础。在接下来的两节中,我们通过现实世界数据的视角描述了精英运动员表现中性别差异的程度,然后介绍了导致人类表现中性别相关差异的关键生理机制,包括肌肉力量和爆发力、表现疲劳性、有氧能力和耐力表现。最后,在我们的结论中,我们简要总结了这篇综述,并鼓励科学界将性别视为一个生物学变量。

Definitions and conceptual foundations
定义和概念基础

Sex and gender 性别与性别

Sex 性别

‘Sex’ is sometimes erroneously used interchangeably with ‘gender’, but these terms describe two different and interrelated concepts (Stefanick & Schiebinger, 2020). Sex refers to an amalgam of biological attributes, including chromosomes, genes, hormone concentrations, gamete size and reproductive anatomy (National Academies of Sciences & Medicine, 2022; National Institutes of Health, 2024; Short et al., 2013). Every human, every animal, every tissue and every cell has a sex (Miller, 2012). Sex is determined by the presence of XX (female) or XY (male) chromosomal complements (Miller, 2012). While sex is dichotomized as male or female, there are other less common variations of sex chromosomes considered disorders of sexual development (DSD) or intersex conditions (Grimstad et al., 2021). Because there is limited research on human performance in people with DSD and intersex conditions (Nokoff et al., 2023), this review focuses on assessing differences between males and females. Better understanding the impact of DSD and intersex conditions on human performance presents an opportunity for future investigations.
“性别”有时会被错误地与“性别”互换使用,但这些术语描述了两个不同且相互关联的概念(Stefanick & Schiebinger, 2020 )。性别是指生物属性的混合体,包括染色体、基因、激素浓度、配子大小和生殖解剖学(美国国家科学院和医学院, 2022 ;美国国立卫生研究院, 2024 ;Short 等, 2013 )。每个人、每个动物、每个组织和每个细胞都有性别(Miller, 2012 )。性别由 XX(女性)或 XY(男性)染色体互补体的存在决定(Miller, 2012 )。虽然性别分为男性或女性,但性染色体还有其他不太常见的变异,被认为是性发育障碍 (DSD) 或双性病症 (Grimstad et al., 2021 )。由于对 DSD 和双性人的人类表现的研究有限(Nokoff 等人, 2023 ),本综述侧重于评估男性和女性之间的差异。更好地了解 DSD 和双性条件对人类表现的影响为未来的研究提供了机会。

The Y chromosome is among the smallest human chromosomes and associated with less than 50 protein-coding genes (Rhie et al., 2023). Among these genes, expression of the sex-determining region Y (SRY) gene induces testis, male testosterone production and male puberty, and represents the primary, deterministic gene contributing to robust and large sex differences in physiology, anatomy and human performance, most notably in events and tasks involving muscle power, strength, speed and aerobic endurance (Handelsman et al., 2018). Confirmatory evidence of the importance of the SRY gene may be observed in the phenotype of 46, XX humans who are SRY-positive due to SRY translocation onto one or both X chromosomes and inevitably develop a male phenotype with elevated endogenous testosterone and often both male internal and external genitalia (Délot & Vilain, 1993). Notably, there was a previous theory that uncharacterized gene(s) on the Y chromosome contribute to sex differences in human development (Ferguson-Smith & Bavington, 2014), but this theory has been discredited (Handelsman, 2024; Handelsman et al., 2018).
Y 染色体是最小的人类染色体之一,与不到 50 个蛋白质编码基因相关(Rhie 等人, 2023 )。在这些基因中,性别决定区 Y (SRY) 基因的表达可诱导睾丸、男性睾酮生成和男性青春期,并且是导致生理学、解剖学和人类表现方面强烈和巨大性别差异的主要决定性基因,最显着的是在涉及肌肉力量、力量、速度和有氧耐力的事件和任务中(Handelsman et al., 2018 )。 SRY 基因重要性的确凿证据可以在 46, XX 人的表型中观察到,这些人由于 SRY 易位到一条或两条 X 染色体上而呈 SRY 阳性,并且不可避免地会形成内源性睾酮升高的男性表型,并且通常都是男性内源性睾酮。和外生殖器(Délot & Vilain, 1993 )。值得注意的是,之前有一种理论认为 Y 染色体上的未表征基因会导致人类发育中的性别差异(Ferguson-Smith & Bavington, 2014 ),但该理论已被质疑(Handelsman, 2024 ;Handelsman 等人, 2018 )。

Gender 性别

Gender is a multidimensional construct that encompasses gender identity and expression, and a constellation of social and cultural expectations (Reale et al., 2023; Short et al., 2013). A person's gender is self-identified, may change throughout their life, and may or may not correspond to society's cultural expectations based on their biological sex traits (Reale et al., 2023; Short et al., 2013). Research to understand the impact of gender on human performance is more limited and reviewed elsewhere (Gooren & Bunck, 2004; Harper et al., 2021; Nokoff et al., 2023; Roberts et al., 2021) with recent data indicating that the ‘sex’ of an athlete is more predictive of running performances than ‘gender’ (Armstrong et al., 2023). While gender is less amenable to investigation in preclinical models (Clayton, 2016), the impact of gender on human health and performance is understudied with many opportunities for future studies (Nokoff et al., 2023). This review, however, focuses on sex-based differences in human performance.
性别是一个多维结构,包含性别认同和表达,以及一系列社会和文化期望(Reale et al., 2023 ;Short et al., 2013 )。一个人的性别是自我认定的,可能会在一生中发生变化,并且可能符合也可能不符合基于其生物性别特征的社会文化期望(Reale等人, 2023 ;Short等人, 2013 )。了解性别对人类表现影响的研究更加有限,并在其他地方进行了审查(Gooren & Bunck, 2004 ;Harper 等人, 2021 ;Nokoff 等人, 2023 ;Roberts 等人, 2021 ),最近的数据表明,运动员的“性别”比“性别”更能预测跑步表现(Armstrong 等人, 2023 )。虽然性别不太适合在临床前模型中进行调查(Clayton, 2016 ),但性别对人类健康和表现的影响尚未得到充分研究,未来有很多研究机会(Nokoff 等, 2023 )。然而,这篇评论的重点是人类表现中基于性别的差异。

Sex-steroid hormones 性类固醇激素

Testosterone 睾酮

Testosterone is the primary sex hormone and anabolic steroid in males, and a key determinant of sex differences in human motor performance from puberty into adulthood. Demonstrative evidence supports the performance-enhancing effects associated with testosterone (and other anabolic androgenic steroids) (Franke & Berendonk, 1997; Handelsman et al., 2018; Saudan et al., 2006; Wood & Stanton, 2012) and provides a clear scientific rationale for including testosterone as a banned substance in competitive sports since the 1970s for both males and females (Saudan et al., 2006; Wood & Stanton, 2012). In this framework, higher concentrations of endogenous testosterone among postpubescent males (15 times higher than females of any age) and the physiological and anatomical consequences of chronic exposure, lead to an athletic advantage among males compared with females (Handelsman, 2017; Hunter et al., 2023; Senefeld et al., 2019, 2020).
睾酮是男性的主要性激素和合成代谢类固醇,也是从青春期到成年期人类运动表现性别差异的关键决定因素。证据支持与睾酮(和其他合成代谢雄激素类固醇)相关的性能增强作用(Franke & Berendonk, 1997 ;Handelsman 等, 2018 ;Saudan 等, 2006 ;Wood & Stanton, 2012 ),并提供了明确的科学依据自 20 世纪 70 年代以来,将睾酮列为竞技体育中男性和女性禁用物质的理由(Saudan 等人, 2006 年;Wood 和 Stanton, 2012 年)。在这个框架中,青春期后男性的内源性睾酮浓度较高(比任何年龄的女性高 15 倍)以及长期暴露的生理和解剖学后果,导致男性与女性相比具有运动优势(Handelsman, 2017 ;Hunter 等人) ., 2023 ;Senefeld 等人, 2019、2020 )。

Testosterone and its more potent metabolite dihydrotestosterone (DHT) contribute to the development and maintenance of androgen-dependent characteristics. Androgens are common therapeutics used to regulate skeletal muscle mass (Alemany, 2022), and synthetic anabolic androgenic steroids promote augmented skeletal muscle mass and performance in both males and females (Bhasin et al., 2021; Franke & Berendonk, 1997; Hirschberg et al., 2020). In this context, it is well accepted that exogenous testosterone will likely induce performance-enhancing effects (Franke & Berendonk, 1997) and drugs that block the action of endogenous testosterone will impair athletic performance (Harper et al., 2021; Nokoff et al., 2023; Senefeld et al., 2023). However, whether there is a within-sex association between endogenous (non-pharmacologically manipulated) testosterone and athletic performance or key determinants of performance of males and females, remains contentious. The controversy and confusion about the anabolic effects of testosterone arises from several key observations. First, among elite adult athletes, endogenous free testosterone (and not total testosterone) has been associated with athletic performance in only a subset of track and field events (5 of 21 events) among females, but no such relationship was observed for the other events among females or any event among males (Bermon & Garnier, 2017, 2021). Second, transient and modest increases in endogenous testosterone after resistance exercise training are not associated with increases in muscle protein synthesis or hypertrophic adaptations among males or females (Mitchell et al., 2013; Morton et al., 2016; West et al., 2009, 2010, 2012; Wilkinson et al., 2006). As recently and comprehensively reviewed (Roberts et al., 2023), an integrated amalgam of physiological factors is likely required for skeletal muscle adaptations to exercise, and there is no clear reductionist link between transient elevations of endogenous testosterone and skeletal muscle adaptations to exercise training. Third, cross-sectional studies show that among postmenopausal or premenopausal females, endogenous total testosterone, which is low in these populations, is not associated with skeletal muscle mass or strength, with considerably less data available among premenopausal females (Alexander et al., 2021, 2022; Carcaillon et al., 2012; Gower & Nyman, 2000; Pollanen et al., 2011; Rariy et al., 2011; Sipilä et al., 2006; Taylor et al., 2023). Endogenous free testosterone, however, is associated with skeletal muscle mass (e.g. Rariy et al., 2011; van Geel et al., 2009), and this relationship is likely mediated by insulin, oestrogen or sex hormone-binding globulin (Alexander et al., 2022). The evidence base examining this potential association between total or free testosterone with skeletal muscle mass, lean body mass and strength among males is heterogenous – many studies show such a relationship and some studies do not find this relationship (Araujo et al., 2008; Brown, 2008; Ma et al., 2024; Morton et al., 2018; Mouser et al., 2016; van den Beld et al., 2000). These studies in males typically concentrate on older adults who have waning levels of sex-steroid hormones.
睾酮及其更有效的代谢物二氢睾酮 (DHT) 有助于雄激素依赖性特征的发展和维持。雄激素是用于调节骨骼肌质量的常见疗法(Alemany, 2022 ),合成代谢雄激素类固醇可促进男性和女性的骨骼肌质量和性能增强(Bhasin 等, 2021 ;Franke 和 Berendonk, 1997 ;Hirschberg 等) ., 2020 ).在这种情况下,人们普遍认为外源性睾酮可能会产生增强成绩的效果(Franke & Berendonk, 1997 ),而阻断内源性睾酮作用的药物会损害运动表现(Harper 等, 2021 ;Nokoff 等,2021)。 , 2023 ;塞内菲尔德等人, 2023 )。然而,内源性(非药物操纵的)睾酮与运动表现或男性和女性表现的关键决定因素之间是否存在性别内关联,仍然存在争议。关于睾酮合成代谢作用的争议和困惑源于几个关键的观察结果。首先,在成年精英运动员中,内源性游离睾酮(而非总睾酮)仅在女性田径比赛的一部分(21 项赛事中的 5 项)中与运动表现相关,但在其他赛事中没有观察到这种关系。女性之间或男性之间的任何事件(Bermon&Garnier, 2017,2021 )。 其次,抗阻运动训练后内源性睾酮的短暂和适度增加与男性或女性肌肉蛋白质合成或肥大适应的增加无关(Mitchell 等, 2013 ;Morton 等, 2016 ;West 等, 2009) ,2010 年2012 年;威尔金森等人, 2006 年)。正如最近的全面综述(Roberts 等, 2023 ),骨骼肌适应运动可能需要综合生理因素,并且内源性睾酮短暂升高与骨骼肌对运动训练的适应之间不存在明显的还原论联系。第三,横断面研究表明,在绝经后或绝经前女性中,内源性总睾酮在这些人群中较低,与骨骼肌质量或强度无关,绝经前女性中可用的数据要少得多(Alexander et al., 2021) ,2022 Gower 和 Nyman, 2000 ;Rariy,2006 Taylor 等, 2023 。然而,内源性游离睾酮与骨骼肌质量相关(例如 Rariy 等人, 2011 年;van Geel 等人,2011 年)。, 2009 ),并且这种关系可能是由胰岛素、雌激素或性激素结合球蛋白介导的(Alexander 等, 2022 )。检验男性总睾酮或游离睾酮与骨骼肌质量、去脂体重和力量之间潜在关联的证据基础是异质的——许多研究显示了这种关系,而一些研究没有发现这种关系(Araujo 等人, 2008 年;Brown) , 2008 ;Morton 等2018 ;Mouser 等人, 2016 ;van den Beld 等人, 2000 )。这些针对男性的研究通常集中于性类固醇激素水平下降的老年人。

Importantly, the interindividual variability in the relationship between testosterone levels and physiological adaptations are influenced by two important confounding factors: (1) the sigmoidal dose–response relationship for testosterone, and (2) androgen receptor content. Elite female athletes (who have lower endogenous testosterone concentrations than males) have greater performance-enhancing effects from exogenous testosterone than elite male athletes (Franke & Berendonk, 1997). These findings suggest that, generally, females represent the low-to-middle region of the sigmoidal dose–response relationship such that relatively small increases in testosterone may have a profound physiological response. In contrast, although males also display a dose–response relationship with exogenous testosterone (Bhasin et al., 2001; Storer et al., 2008), this relationship appears to be blunted compared with that of females. Accordingly, the blunted performance-enhancing effects of exogenous testosterone in males relative to females suggests that males represent an upper plateau of the dose–response relationship. The different androgen-dependent processes in males and females likely have varying testosterone dose–response relationships (Bhasin et al., 2001). Also, there is evidence of sex differences in response to testosterone, particularly in the context of exercise training, such that males and females have different responses in two key factors regulating skeletal muscle hypertrophy – muscle transcriptome (Pataky et al., 2023; Yoshioka et al., 2007) and androgen receptor content (Hatt et al., 2024).
重要的是,睾酮水平和生理适应之间关系的个体差异受到两个重要混杂因素的影响:(1)睾酮的S形剂量反应关系,(2)雄激素受体含量。优秀的女性运动员(其内源性睾酮浓度低于男性)比优秀的男性运动员具有更大的外源性睾酮提高成绩的效果(Franke & Berendonk, 1997 )。这些发现表明,一般来说,女性代表乙状剂量反应关系的中低区域,因此睾酮相对较小的增加可能会产生深远的生理反应。相比之下,尽管男性也表现出与外源睾酮的剂量反应关系(Bhasin 等, 2001 ;Storer 等, 2008 ),但与女性相比,这种关系似乎较弱。因此,相对于女性,外源性睾酮对男性的性能增强作用减弱,这表明男性代表了剂量反应关系的上部平台。男性和女性不同的雄激素依赖性过程可能具有不同的睾酮剂量反应关系(Bhasin 等, 2001 )。此外,有证据表明对睾酮的反应存在性别差异,特别是在运动训练的背景下,男性和女性对调节骨骼肌肥大的两个关键因素——肌肉转录组有不同的反应(Pataky 等, 2023 ;Yoshioka 等)等人。, 2007 )和雄激素受体含量(Hatt 等, 2024 )。

Additionally, among a group of young healthy males with homogeneously high endogenous testosterone concentrations, there is evidence that muscle androgen receptor content is more closely associated with skeletal muscle hypertrophy after resistance exercise training than hormone concentrations (Morton et al., 2018). Thus, there are conflicting findings in the literature examining the (within-sex) relationship between endogenous testosterone and skeletal muscle mass, as an example, likely due to an amalgamation of factors including: (1) studying a narrow physiological range of testosterone concentrations by examining only one biological sex (males), (2) heterogeneity in dose–response relationships, and (3) heterogeneity in androgen receptor content (Alexander et al., 2021, 2022; Morton et al., 2018; Mouser et al., 2016). Thus, there is substantial between-individual and between-sex variability in the relationship between endogenous testosterone and skeletal muscle mass and strength. There is, however, a clear, direct and causal relationship between pharmacological manipulation of testosterone and both athletic performance and key determinants of performance (such as skeletal muscle morphology and function) among males and females across the lifespan.
此外,在一组内源性睾酮浓度均一的年轻健康男性中,有证据表明,与激素浓度相比,肌肉雄激素受体含量与阻力运动训练后骨骼肌肥大的关系更为密切(Morton et al., 2018 )。因此,在研究内源性睾酮和骨骼肌质量之间(性别内)关系的文献中存在相互矛盾的发现,例如,可能是由于多种因素的综合作用,包括:(1)通过研究睾酮浓度的狭窄生理范围仅检查一种生物性别(男性),(2) 剂量反应关系的异质性,以及 (3) 雄激素受体含量的异质性(Alexander 等人, 2021、2022 ;Morton 等人, 2018 ;Mouser 等人, 2016 )。因此,内源性睾酮与骨骼肌质量和强度之间的关系存在显着的个体间和性别间差异。然而,在男性和女性的整个生命周期中,睾酮的药理学操作与运动表现和表现的关键决定因素(例如骨骼肌形态和功能)之间存在明确、直接和因果关系。

The notion that male puberty positively influences skeletal muscle function dates to antiquity, modern knowledge has provided foundational, mechanistic insights into human androgens. The cascade of anabolic effects on skeletal muscle are initiated by androgens (testosterone) binding to androgen receptors localized within the sarcoplasm (Roberts et al., 2023). The androgen receptor then releases chaperone proteins, dimerizes and translocates into the nucleus to bind within the promoter region of the DNA of androgen-sensitive genes, acting as a transcription factor and altering the mRNA expression of thousands of genes (Roberts et al., 2023). Importantly, the human androgen receptor gene contains a polymorphic CAG (glutamine) repeat sequence that has been associated with androgen-related conditions (Giovannucci et al., 1997; Mitsumori et al., 1999), fat-free mass (an estimate of muscle mass) (Walsh et al., 2005) and endogenous testosterone concentrations in some but not all studies among males (Krithivas et al., 1999; Van Pottelbergh et al., 2001), such that longer CAG repeat sequences may be predictive of better outcomes – reduced risk of androgen conditions, more skeletal muscle mass and higher testosterone concentrations. The downstream physiological effects of these changes in gene expression include increases in: (1) skeletal muscle fibre numbers and size (hypertrophy), (2) the number of skeletal muscle satellite cells, (3) myonuclei number, and (4) the size of motor neurons (Herbst & Bhasin, 2004). There is experimental evidence supporting other physiological changes which may enhance energetic and power generation of skeletal muscle including increases in skeletal muscle, mitochondrial biogenesis in male mice (Usui et al., 2014), myoglobin expression in male mice (Mänttäri et al., 2008) and insulin-like growth factor 1 (IGF-1) content among male humans (Ferrando et al., 2002). Although this review often refers to the effects of sex-steroid hormones to be simplistic, there are many contributing factors from epigenetics to small molecules to regulation of larger organ systems such as skeletal and cardiac muscle.
男性青春期对骨骼肌功能产生积极影响的观念可以追溯到古代,现代知识为人类雄激素提供了基础的、机械的见解。对骨骼肌的合成代谢效应级联是由雄激素(睾酮)与肌浆内的雄激素受体结合引发的(Roberts 等人, 2023 )。然后,雄激素受体释放伴侣蛋白,二聚化并易位到细胞核中,与雄激素敏感基因的 DNA 启动子区域结合,充当转录因子并改变数千个基因的 mRNA 表达(Roberts 等, 2023 ) )。重要的是,人类雄激素受体基因含有多态性 CAG(谷氨酰胺)重复序列,该序列与雄激素相关病症相关(Giovannucci 等, 1997 ;Mitsumori 等, 1999 )、去脂质量(肌肉的估计值)质量)(Walsh 等, 2005 )和一些但不是所有男性研究中的内源性睾酮浓度(Krithivas 等, 1999 ;Van Pottelbergh 等, 2001 ),因此较长的 CAG 重复序列可能更好地预测结果 – 降低雄激素状况的风险、增加骨骼肌质量和提高睾酮浓度。这些基因表达变化的下游生理效应包括增加:(1) 骨骼肌纤维数量和大小(肥大),(2) 骨骼肌卫星细胞数量,(3) 肌核数量,以及 (4) 大小运动神经元(Herbst & Bhasin, 2004 )。 有实验证据支持其他生理变化可能增强骨骼肌的能量和发电,包括骨骼肌的增加、雄性小鼠的线粒体生物发生(Usui 等人, 2014 )、雄性小鼠的肌红蛋白表达(Mänttäri 等人, 2008 ) )和男性人类中胰岛素样生长因子 1 (IGF-1) 含量(Ferrando 等, 2002 )。尽管这篇评论经常将性类固醇激素的影响过于简单化,但有许多影响因素,从表观遗传学到小分子,再到骨骼和心肌等较大器官系统的调节。

Consequently, the pronounced differences between males and females in endogenous testosterone concentrations beginning at puberty (Handelsman et al., 2018; Senefeld et al., 2020) correspond to sex-specific divergence such that compared with females, males develop greater muscle mass that contracts faster; higher oxygen-carrying capacity in the blood (via haematocrit and haemoglobin); a larger cardiac output; lower percentage body fat, and consequently better sports performance involving strength, speed, power and aerobic endurance (Handelsman et al., 2018; Hilton & Lundberg, 2021; Hunter et al., 2023; Nokoff et al., 2023; Petek et al., 2023; Senefeld et al., 2019). Also, throughout puberty, immutable sex differences in anatomical structure develop, such that, on average, males are taller; have longer limbs; have larger lungs and greater cross-sectional areas of conducting airways; possess more muscle mass, and have larger hearts than females (Dominelli et al., 2019; Hilton & Lundberg, 2021; Hunter et al., 2023). Due to the profound performance-enhancing effects associated with testosterone and related adaptations in physiological and anatomical systems, competitive sports are generally dichotomized between males and females during and after puberty. The divergence in athletic performance between males and females, which is very large at puberty, may also be attributed, in part, to the action of the oestrogens (Khosla et al., 1998; Ober et al., 2008).
因此,从青春期开始,男性和女性之间的内源睾酮浓度存在显着差异(Handelsman et al., 2018 ;Senefeld et al., 2020 ),这与性别特异性差异相对应,因此与女性相比,男性会发展出更大的收缩肌肉质量。快点;血液中更高的携氧能力(通过血细胞比容和血红蛋白);较大的心输出量;体脂百分比较低,从而提高力量、速度、爆发力和有氧耐力等方面的运动表现(Handelsman 等人, 2018 ;Hilton & Lundberg, 2021 ;Hunter 等人, 2023 ;Nokoff 等人, 2023 ;Petek 等人., 2023 ;Senefeld 等人, 2019 )。此外,在整个青春期,解剖结构中不可改变的性别差异逐渐形成,因此,平均而言,男性更高;而男性则更高。四肢更长;拥有更大的肺部和更大的气道横截面积;比女性拥有更多的肌肉质量和更大的心脏(Dominelli 等人, 2019 ;Hilton & Lundberg, 2021 ;Hunter 等人, 2023 )。由于与睾酮以及生理和解剖系统的相关适应相关的深远的表现增强作用,竞技运动在青春期期间和之后通常分为男性和女性。 男性和女性运动表现的差异在青春期非常大,这也可能部分归因于雌激素的作用(Khosla 等, 1998 ;Ober 等, 2008 )。

Oestrogen 雌激素

Oestrogen is a broad category of sex-steroid hormones associated with the female reproductive organs and development of secondary female sex characteristics (Delgado & Lopez-Ojeda, 2023). Of the four naturally occurring oestrogens – oestrone, oestradiol, oestriol and oestetrol – oestradiol is the preponderant oestrogen among non-pregnant females during reproductive years and consequently a primary focus in biomedical research of premenopausal females. Although oestrogens are present in both males and females, before menopause, endogenous oestradiol concentrations are at least fourfold higher in adult females than males (Khosla et al., 1998; Ober et al., 2008). Despite their importance in the reproductive systems of both females and males (Delgado & Lopez-Ojeda, 2023; Finkelstein et al., 2013; Hess et al., 1997; Russell & Grossmann, 2019), oestrogens have limited anabolic effects (as opposed to testosterone) and are not a primary contributor to the large sex differences in athletic performance that involve muscle strength, power and aerobic capacity and endurance (Kong et al., 2019; Lowe et al., 2010). Oestrogens play important roles in glucose homeostasis, maintenance of bone health, immune function, cardiovascular health, fertility and neural functions in both males and females (Patel et al., 2018; Russell & Grossmann, 2019), and particularly in females, the maintenance of bone mass, skeletal muscle and tendon (Hansen, 2018; Lowe et al., 2010). Although the evidence base primarily rests on rodent models and ageing human muscle, there is emerging evidence suggesting an important mechanistic link between female sex hormones (oestrogens and progestogens) and skeletal muscle (mass, function and quality), particularly the preservation of skeletal muscle from menopausal- and age-related declines (sarcopenia) (Alexander et al., 2022; Pöllänen et al., 2015; Sipilä et al., 2006; van Geel et al., 2009). Better understanding the relationship between female sex hormones and skeletal muscle presents a key opportunity for future investigations.
雌激素是一类广泛的性类固醇激素,与女性生殖器官和女性第二性征的发育相关(Delgado & Lopez-Ojeda, 2023 )。在四种天然雌激素(雌酮、雌二醇、雌三醇和雌四醇)中,雌二醇是育龄期非怀孕女性中最主要的雌激素,因此是绝经前女性生物医学研究的主要焦点。尽管男性和女性体内均存在雌激素,但在绝经前,成年女性的内源性雌二醇浓度至少比男性高四倍(Khosla 等, 1998 ;Ober 等, 2008 )。尽管雌激素对女性和男性的生殖系统都很重要(Delgado & Lopez-Ojeda, 2023 ;Finkelstein et al., 2013 ;Hess et al., 1997 ;Russell & Grossmann, 2019 ),但其合成代谢作用有限(相反)睾酮),并且不是导致涉及肌肉力量、爆发力、有氧能力和耐力的运动表现存在巨大性别差异的主要因素(Kong 等人, 2019 年;Lowe 等人, 2010 年)。雌激素在男性和女性的葡萄糖稳态、维持骨骼健康、免疫功能、心血管健康、生育能力和神经功能中发挥着重要作用(Patel 等,2017)。, 2018 ; Russell & Grossmann, 2019 ),特别是对于女性,维持骨量、骨骼肌和肌腱(Hansen, 2018 ;Lowe 等人, 2010 )。尽管证据基础主要依赖于啮齿动物模型和衰老的人类肌肉,但有新的证据表明女性性激素(雌激素和孕激素)与骨骼肌(质量、功能和质量)之间存在重要的机制联系,特别是骨骼肌的保存与更年期和年龄相关的衰退(肌肉减少症)(Alexander 等人, 2022 ;Pöllänen 等人, 2015 ;Sipilä 等人, 2006 ;van Geel 等人, 2009 )。更好地了解女性性激素和骨骼肌之间的关系为未来的研究提供了关键机会。

Downstream actions of sex-steroid hormones during puberty contribute to improved athletic performance among both males and females and provide a clear rationale for age-related categorization in most competitive sports (Atkinson et al., 2024; Brown et al., 2024; Senefeld et al., 2019). However, female puberty may also contribute to irreversible differences in physiology and anatomy that can limit athletic performance among females compared with males, particularly during weight-bearing exercise. Females, for example, have a higher percentage of body fat than males and less muscle mass for a given body size (Bredella, 2017; Gallagher et al., 1997; Travers et al., 1995). Females also develop larger breasts than males, which create a load on the chest and a flexion torque when standing and moving upright (McGhee & Steele, 2020). The flexion torque needs to be countered by back extensor and stabilizer muscles, potentially compromising movement of the vertebrae and upper limbs (Brisbine et al., 2020; McGhee & Steele, 2020). Females also typically develop wider hips than males, creating a larger Q angle (angle between knee joint and hip joint), which is associated with higher risk and incidence of non-contact knee injuries such as patellofemoral pain, patellar subluxation, dislocation and instability, and anterior cruciate ligament injury (De Ste Croix et al., 2017; Skouras et al., 2022). Furthermore, bodily changes that occur with pregnancy and the post-partum musculoskeletal impairments that can arise, can temporarily remove females from athletic competition at the highest level, sometimes during their most competitive years (Davenport et al., 2023; Deering et al., 2018; Kimber et al., 2021). These differences can also contribute to diminished best performances by females in athletic performance and to the sex difference in performance beyond the other well-established performance-enhancing attributes of males (Hunter et al., 2023).
青春期性类固醇激素的下游作用有助于提高男性和女性的运动表现,并为大多数竞技运动中与年龄相关的分类提供明确的理由(Atkinson 等人, 2024 年;Brown 等人, 2024 年;Senefeld 等人)等, 2019 )。然而,女性青春期也可能导致生理和解剖学上不可逆转的差异,从而限制女性与男性的运动表现,特别是在负重运动期间。例如,对于给定的体型,女性的体脂百分比高于男性,而肌肉质量较少(Bredella, 2017 ;Gallagher 等, 1997 ;Travers 等, 1995 )。女性的乳房也比男性更大,这会在站立和直立移动时对胸部产生负荷和屈曲扭矩(McGhee & Steele, 2020 )。屈曲扭矩需要通过背部伸肌和稳定肌来抵消,这可能会影响椎骨和上肢的运动(Brisbine 等人, 2020 ;McGhee 和 Steele, 2020 )。女性的臀部通常比男性更宽,形成更大的 Q 角(膝关节和髋关节之间的角度),这与非接触性膝关节损伤(例如髌股疼痛、髌骨半脱位、脱位和不稳定)的风险和发生率较高相关。和前十字韧带损伤(De Ste Croix 等人, 2017 ;Skouras 等人, 2022 )。 此外,怀孕期间发生的身体变化以及可能出现的产后肌肉骨骼损伤可能会暂时使女性无法参加最高水平的体育比赛,有时甚至是在她们竞争最激烈的年份(Davenport 等人, 2023 年;Deering 等人, 2018 ;金伯等人, 2021 )。这些差异还可能导致女性在运动表现方面的最佳表现下降,并且导致表现上的性别差异超出男性其他公认的表现增强属性(Hunter et al., 2023 )。

Among females, the cyclical and acute fluctuations of oestrogen and progesterone across the menstrual cycle (Sims et al., 2021) were perceived to have substantial effects on human athletic performance and were often used as reason to exclude females from assessment and testing in human performance studies (Meignié et al., 2022; Sims & Heather, 2018). In contrast to these earlier beliefs, human motor performance varies minimally in magnitude across the menstrual cycle in eumenorrheic females as a group (DʼSouza et al., 2023; McNulty et al., 2020; Piasecki et al., 2023) and also varies little due to contraception options that might alter hormone fluctuations, such as oral contraceptive pills (Elliott-Sale et al., 2020). The findings supporting this broad view have recently been extensively reviewed (DʼSouza et al., 2023). For the unknown effects of these cycling hormones on physiology and function in females, and with an a priori hypothesis in place, biomedical researchers should monitor menstrual cycle status using rigorous methodologies as outlined previously (Elliott-Sale et al., 2021; Hirschberg, 2022). For comparison of human performance between males and females, however, there is little evidence that the menstrual cycle needs to be controlled (DʼSouza et al., 2023) on a large scale. Rather than be used as a rationale to exclude the study of females from research (DʼSouza et al., 2023; Meignié et al., 2022), biomedical researchers are encouraged to record descriptive information about the menstrual cycle (e.g. day of menstrual cycle) and potential physical symptoms specific to an individual (e.g. menstrual pain) that may explain poor performance on a given day, but without needing to control for the menstrual cycle phase across all females. Important to the focus of this review, the sex differences in athletic performance involving muscle strength, power, speed and aerobic endurance are considerably larger than the variations in performance across the menstrual cycle within a female.
在女性中,雌激素和孕激素在月经周期中的周期性和剧烈波动(Sims 等人, 2021 )被认为对人类运动表现产生重大影响,并且经常被用作将女性排除在人类表现评估和测试之外的理由研究(Meignié 等人, 2022 ;Sims 和 Heather, 2018 )。与这些早期的观点相反,月经周期中女性作为一个群体,人类运动表现在整个月经周期中的变化幅度很小(D'Souza 等人, 2023 ;McNulty 等人, 2020 ;Piasecki 等人, 2023 ),而且变化也很小。由于避孕选择可能会改变激素波动,例如口服避孕药(Elliott-Sale 等人, 2020 )。支持这一广泛观点的研究结果最近得到了广泛的审查(D'Souza 等人, 2023 )。由于这些循环激素对女性生理和功能的未知影响,并且有了先验假设,生物医学研究人员应该使用先前概述的严格方法来监测月经周期状态(Elliott-Sale 等人, 2021 年;Hirschberg, 2022 年) )。然而,为了比较男性和女性之间的人类表现,几乎没有证据表明需要大规模控制月经周期(D'Souza 等人, 2023 )。而不是用作将女性研究排除在研究之外的理由(D'Souza 等,2017)。, 2023 ; Meignié 等人, 2022 ),鼓励生物医学研究人员记录有关月经周期(例如月经周期的日期)和个人特有的潜在身体症状(例如月经疼痛)的描述性信息,这些症状可能解释特定日期的表现不佳,但无需控制所有女性的月经周期阶段。对于本次审查的重点来说,重要的是,涉及肌肉力量、力量、速度和有氧耐力的运动表现的性别差异比女性整个月经周期的表现差异要大得多。

Sexual differentiation before puberty
青春期前的性别分化

Sexual differentiation is a complex process which begins early in fetal life. As described above, sex is determined by the sex chromosome complement and gonadal development depends on the presence or absence of the SRY gene (Renault et al., 2020). In the presence of the SRY gene, gonadal development will follow a male pathway including Leydig cell differentiation which in turn produce testosterone when stimulated by activation of the hypothalamic-pituitary-gonadal (HPG) hormone axis (Lanciotti et al., 2018; Sekido & Lovell-Badge, 2013). In the absence of the SRY gene, gonadal development will follow a female pathway including ovary development and it is unknown whether there is a female-determining gene or parallel transcription factor to the SRY gene initiating ovary development (DiNapoli & Capel, 2008). After the initiation of gonadal development and differentiation, sex hormones regulate continued phenotypic development, genetic programming and sexual dimorphism (Hiort, 2013).
性别分化是一个复杂的过程,在胎儿生命的早期就开始了。如上所述,性别由性染色体补体决定,性腺发育取决于 SRY 基因的存在与否(Renault et al., 2020 )。在 SRY 基因存在的情况下,性腺发育将遵循男性途径,包括 Leydig 细胞分化,当下丘脑 - 垂体 - 性腺 (HPG) 激素轴的激活刺激时,Leydig 细胞分化又会产生睾酮 (Lanciotti et al., 2018 ; Sekido &洛弗尔-徽章, 2013 )。在缺乏SRY基因的情况下,性腺发育将遵循女性途径,包括卵巢发育,并且尚不清楚是否存在女性决定基因或与启动卵巢发育的SRY基因平行的转录因子(DiNapoli&Capel, 2008 )。性腺发育和分化开始后,性激素调节持续的表型发育、遗传编程和性二态性(Hiort, 2013 )。

Although much is known about somatic changes associated with puberty – changing sex hormone concentrations, changes in body composition, growth spurt and development of secondary sex characteristics (Beunen & Malina, 1988; Hunter et al., 2023) – less is known about the role of sex hormones before puberty (Becker & Hesse, 2020) and their effects on athletic performance in pre-pubertal boys and girls. There are two transient activations of the HPG hormone axis before puberty that are associated with large, temporary sex differences in endogenous testosterone concentrations: first, in fetal life (during the first two trimesters of gestation) and second, in neonatal life (‘minipuberty’ occurring between three and six months of life) (Renault et al., 2020). Available evidence suggests that newborn boys weigh more and have more fat-free mass than girls (Fryar et al., 2021; Veldhuis et al., 2005), boys accumulate less fat mass than girls during childhood (Veldhuis et al., 2005), and boys may have faster growth velocities than girls during early infancy, associated with higher postnatal testosterone surges (Kiviranta et al., 2016). These sex differences in body composition may confer an athletic advantage among boys compared with girls before ages associated with puberty and adolescence (Atkinson et al., 2024; Brown et al., 2024; Senefeld & Hunter, 2024). However, findings of sex differences in body composition and athletic performance during childhood are inconsistent (Becker & Hesse, 2020; Hunter et al., 2023), with a recent study showing no sex differences in glycolytic capacity and fibre type size of skeletal muscle among children aged 9–12 years (Esbjörnsson et al., 2022). The two transient activations of the HPG hormone axis are an understudied area with many opportunities for future studies.
尽管人们对青春期相关的躯体变化了解很多——性激素浓度的变化、身体成分的变化、生长突增和第二性征的发育(Beunen & Malina, 1988 ;Hunter et al., 2023 ),但对其作用却知之甚少。青春期前性激素的变化(Becker & Hesse, 2020 )及其对青春期前男孩和女孩运动表现的影响。青春期前 HPG 激素轴有两种短暂激活,与内源性睾酮浓度的暂时性巨大性别差异相关:首先是在胎儿期(妊娠的前两个三个月),其次是在新生儿期(“小青春期”)发生在出生后三到六个月之间)(Renault et al., 2020 )。现有证据表明,新生男孩比女孩体重更重,无脂肪质量也更多(Fryar et al., 2021 ;Veldhuis et al., 2005 ),男孩在童年时期比女孩积累更少的脂肪质量(Veldhuis et al., 2005 ) ,并且在婴儿早期,男孩的生长速度可能比女孩更快,这与出生后睾酮激素激增有关(Kiviranta 等人, 2016 )。在与青春期和青春期相关的年龄之前,这些身体成分的性别差异可能会赋予男孩相对于女孩的运动优势(Atkinson 等人, 2024 年;Brown 等人, 2024 年;Senefeld 和 Hunter, 2024 年)。 然而,关于儿童时期身体成分和运动表现的性别差异的研究结果并不一致(Becker & Hesse, 2020 ;Hunter 等, 2023 ),最近的一项研究表明,在糖酵解能力和骨骼肌纤维类型大小方面没有性别差异。 9-12 岁的儿童(Esbjörnsson 等人, 2022 )。 HPG 激素轴的两种短暂激活是一个尚未充分研究的领域,未来有很多研究机会。

Insight into sex differences in performance from real-world data
从真实世界数据洞察性别表现差异

Insights about physiological differences between males and females can be derived from well-designed and executed laboratory-based experiments. The combination of both physiological and sociological contributors to the sex differences in human performance derived from ‘real-world data’, however, can be gained from large observational studies and ‘passive experimentationʼ (Hunter, 2024; Joyner et al., 2023). Such studies involving the world's most elite athletes enable insight into rare human phenotypes exposed to extreme and prolonged exercise training who are logistically difficult to study outside of small case studies or series (Jones, 2006; Lucia et al., 2006; Robinson et al., 1937).
关于男性和女性之间生理差异的见解可以从精心设计和执行的实验室实验中得出。然而,源自“现实世界数据”的生理学和社会学因素对人类表现性别差异的贡献可以从大型观察研究和“被动实验”中获得(Hunter, 2024 ;Joyner 等人, 2023 )。此类研究涉及世界上最优秀的运动员,可以深入了解暴露于极端和长时间运动训练的罕见人类表型,这些表型在逻辑上很难在小型案例研究或系列之外进行研究(Jones, 2006 ;Lucia 等, 2006 ;Robinson 等,2006)。 , 1937 )。

World records of athletic events contested in real-world settings show large sex differences in performance, as depicted in Fig. 2. These records reflect, for the most part, the sex differences in human performance that closely approximate or reflect sex differences in physiology and anatomy that are largely independent of potential differences in exercise training. Males outperform females by about 5–35% with variation depending on the physiological requirements of the athletic event. Generally, sex differences in elite athletic performance are greatest among events that are more closely associated with maximal muscular strength or power, such as weightlifting. Conversely, sex differences in performance are smaller, although remain significant among events more closely associated with aerobic power and the oxidative capacity of muscle, such as marathon running and distance swimming (Hunter et al., 2023).
如图2所示,在现实世界中争夺的体育赛事的世界纪录显示出巨大的性别差异。这些记录在很大程度上反映了人类表现中的性别差异,这些差异非常接近或反映了生理学和解剖学上的性别差异,而这些差异在很大程度上独立于运动训练的潜在差异。男性比女性高出约 5-35%,具体差异取决于体育赛事的生理要求。一般来说,精英运动表现的性别差异在与最大肌肉力量或力量更密切相关的项目中最大,例如举重。相反,表现上的性别差异较小,尽管在与有氧能力和肌肉氧化能力更密切相关的项目中仍然显着,例如马拉松跑步和长距离游泳(Hunter等人, 2023 )。

Details are in the caption following the image
Figure 2. Sex differences in human performance of select Olympic sports
图 2. 特定奥林匹克运动项目中人类表现的性别差异

At the time of writing, the sex difference in the world record for the marathon is 9.4% and has fluctuated between about 9% and 12% since the mid-1980s (Cheuvront et al., 2005; Hunter et al., 2023; Joyner et al., 2020; Thibault et al., 2010), corresponding to several years after females were first eligible to run the marathon. The study of sex differences in world records of athletic events provide key insights into the importance of maximal representation of males and females to ensure that the sex differences in human performance are attributed to biological sex differences rather than sociocultural factors that limit female participation (Hunter, 2024).
截至撰写本文时,马拉松世界纪录的性别差异为 9.4%,自 20 世纪 80 年代中期以来一直在 9% 至 12% 之间波动(Cheuvront 等人, 2005 年;Hunter 等人, 2023 年;Joyner等人, 2020 ;Thibault 等人, 2010 ),相当于女性首次有资格参加马拉松比赛的几年后。对体育赛事世界纪录中性别差异的研究提供了关于男性和女性最大限度代表性的重要性的关键见解,以确保人类表现中的性别差异归因于生物性别差异,而不是限制女性参与的社会文化因素(Hunter, 2024 )。

A potent example of non-biological factors that have dramatically influenced the documented sex difference in performance is the rapid improvement in world record performances of females relative to males as more females have been permitted to compete in athletic events over the last 100 years. Several running events when females first competed include the marathon in 1983 (World Championships) and 1984 (Los Angeles Olympic Games), the 1500 m (1972 Munich Summer Olympic Games), 5000 m (1996 Atlanta Summer Olympic Games) and 10,000 m (1988 Seoul Summer Olympic Games). Given the rapid improvement of performance of females across many athletic events, a provocative, tongue-in-cheek scientific correspondence was published in 1992, in Nature entitled ‘Will women soon outrun men?’ (Whipp & Ward, 1992). Linear regression models were used to describe the progression of world record performances for running events from the early 1900s and these regressions suggested that females may soon ‘outrun’ males in events ranging from the 200 m (∼2040) to the marathon (∼1998), as redrawn and depicted in Fig. 3. The statistical approach used in the study by Whipp & Ward (1992) to predict the trajectory of performance did not account for the fundamental differences in physiology and anatomy between males and females that are associated with sex chromosomes and hormones. The more rapid improvement in the female records relative to the male, reflects the influence of sociocultural factors that affected female participation and access to training. In the last 50 years in particular, however, opportunities to train and compete have increased for females and the world record has dramatically improved (Hunter et al., 2015; Joyner et al., 2020) as more females have participated and the talent pool increased (Hunter & Stevens, 2013; Nesburg et al., 2023).
显着影响已记录的性别表现差异的非生物因素的一个有力例子是,随着过去 100 年越来越多的女性被允许参加体育赛事,女性相对于男性的世界纪录表现迅速提高。女子首次参加的几个跑步项目包括1983年(世界锦标赛)和1984年(洛杉矶奥运会)的马拉松、1500米(1972年慕尼黑夏季奥运会)、5000米(1996年亚特兰大夏季奥运会)和10,000米(1988年)首尔夏季奥运会)。鉴于女性在许多体育赛事中表现的迅速提高,1992 年《自然》杂志发表了一篇颇具挑衅性、半开玩笑的科学通讯,题为“女性很快就会超越男性吗?” (惠普和沃德, 1992 )。线性回归模型被用来描述自 1900 年代初以来跑步项目世界纪录表现的进展,这些回归表明女性可能很快就会在从 200 米(~2040 年)到马拉松(~1998 年)的赛事中“超越”男性,如图3中重新绘制和描绘的。 Whipp & Ward ( 1992 ) 在研究中使用的预测表现轨迹的统计方法没有考虑到男性和女性之间与性染色体和激素相关的生理学和解剖学的根本差异。相对于男性,女性记录的改善更快,反映了影响女性参与和接受培训的社会文化因素的影响。 然而,特别是在过去 50 年中,随着越来越多的女性参与和人才库的增加,女性的训练和比赛机会增加,世界纪录也显着提高(Hunter 等, 2015 ;Joyner 等, 2020 )增加(Hunter & Stevens, 2013 ;Nesburg 等人, 2023 )。

Details are in the caption following the image
Figure 3. Will females soon ‘outrun’ males?
图 3. 雌性很快就会“超越”雄性吗?

These observations of real-world data indicate the sex difference in elite athletic human performance can be larger than that predicted by physiological and anatomical sex differences. The narrowing of the large sex difference among older age group record-holders in weight-lifting (Huebner et al., 2019) and elite marathons (Hunter & Stevens, 2013; Knechtle, Di Gangi et al., 2020; Nesburg et al., 2023) in recent years also reflects the increased participation among females in these events. These findings provide a window into the sex bias that can be introduced into studies of human performance and health when fewer females than males are included in research studies, masking an accurate representation of the biological mechanisms for the sex differences in performance.
这些对现实世界数据的观察表明,精英运动员表现中的性别差异可能比生理和解剖性别差异预测的更大。举重(Huebner 等, 2019 )和精英马拉松(Hunter & Stevens, 2013 ;Knechtle、Di Gangi 等, 2020 ;Nesburg 等,2020)老年组记录保持者之间巨大的性别差异正在缩小。 , 2023 )近年来也反映出女性参与这些活动的增加。这些发现为了解性别偏见提供了一个窗口,当研究中纳入的女性少于男性时,性别偏见可以被引入到人类表现和健康研究中,从而掩盖了对表现性别差异的生物机制的准确表述。

Sex differences in human performance and physiological mechanisms
人类表现和生理机制的性别差异

The larger concentration of endogenous testosterone in adult males compared with females (10–15×) and the associated physiological adaptations conferred by testosterone are a primary determinant for sex differences in human motor performance. Males outperform females in sporting events decided by muscular strength and power, speed or aerobic capacity, and testosterone has large effects on human physiology and anatomy that dictate these attributes of performance. The anabolic effects of testosterone on the body are profound during puberty, increasing human physical performance involving muscle power and endurance more rapidly in males than females as the endogenous testosterone levels of males rise into adulthood (Handelsman et al., 2018; Hunter et al., 2023; Senefeld et al., 2019).
与女性相比,成年男性的内源性睾酮浓度更高(10-15倍),以及睾酮赋予的相关生理适应是人类运动表现性别差异的主要决定因素。在体育赛事中,男性的表现优于女性,这取决于肌肉力量和力量、速度或有氧能力,而睾酮对决定这些表现属性的人体生理学和解剖学有很大影响。睾酮对身体的合成代谢作用在青春期是深远的,随着男性内源性睾酮水平上升到成年期,男性比女性更快地提高人类身体机能,包括肌肉力量和耐力(Handelsman 等, 2018 ;Hunter 等,2018)。 , 2023 ;塞内菲尔德等人, 2019 )。

Additionally, as detailed earlier, there are female attributes associated with sex-steroid hormones in females (e.g. body fat, skeletal structure and breast development) that can be a disadvantage relative to males of similar age and training, especially during weight-bearing exercise (De Ste Croix et al., 2017; Hewett et al., 2005; McGhee et al., 2020; Travers et al., 1995). Notably, sex differences in performance of sporting events associated with technical skill and cognition, such as archery and shooting, are minimal (Hamilton et al., 2021; Handelsman, 2024; Hunter et al., 2023). This section highlights several key mechanisms contributing to sex differences in human athletic performance and detailed in greater depth elsewhere (Hunter et al., 2023). Fig. 4 shows a graphical summary of the concepts described in this section. Note that beyond the scope of this review are the sex differences in response to short-term and long-term training that are reviewed in more detail elsewhere (Hunter et al., 2023; Landen et al., 2023; Roberts et al., 2020).
此外,如前所述,女性的一些特征与性类固醇激素相关(例如身体脂肪、骨骼结构和乳房发育),相对于年龄和训练相似的男性来说,这些特征可能是不利的,尤其是在负重运动中。 De Ste Croix 等人, 2017 ;Hewett 等人, 2005 ;McGhee 等人, 2020 ;Travers 等人, 1995 )。值得注意的是,与技术技能和认知相关的体育赛事(例如射箭和射击)表现的性别差异很小(Hamilton 等人, 2021 ;Handelsman, 2024 ;Hunter 等人, 2023 )。本节重点介绍了导致人类运动表现性别差异的几个关键机制,并在其他地方进行了更深入的详细介绍(Hunter 等人, 2023 )。图4显示了本节中描述的概念的图形摘要。请注意,对短期和长期训练的性别差异超出了本次审查的范围,这些差异在其他地方进行了更详细的审查(Hunter 等人, 2023 年;Landen 等人, 2023 年;Roberts 等人, 2020 )。

Details are in the caption following the image
Figure 4. Schematic representation of sex differences in anatomy and physiology associated with sex differences in athletic human performance
图 4. 与人类运动表现性别差异相关的解剖学和生理学性别差异的示意图

Muscular strength and power performance
肌肉力量和力量表现

The largest sex differences in physical performance are typically observed among physical tasks and events that rely on muscle strength and power (Fig. 2). Strength and power of limb skeletal muscles of females are ∼50–70% that of males and the sex difference is largest in upper-limb than lower-limb muscles among both young and older adults (Akima et al., 2001; Alcazar et al., 2020; Bartolomei et al., 2021; Feeler et al., 2010; Lindle et al., 1997; Miller et al., 1993; Nuzzo, 2023; Senefeld et al., 2013; Suetta et al., 2019; Sundberg, Kuplic et al., 2018; Wrucke et al., 2023). While much of the sex difference in maximal strength or power of the lower limbs is explained by larger and faster contracting muscle mass (Galvan-Alvarez et al., 2023; Perez-Gomez et al., 2008), the sex difference is also present in some cases even when expressed relative to body weight and lean body mass or muscle cross-sectional area (e.g. Alcazar et al., 2023; Frontera et al., 2000; Nuzzo, 2023; Wrucke et al., 2023). Accordingly, weight-lifting records of males are substantially larger than those of females in a similar weight category of competition (Hunter et al., 2023; Nuzzo, 2023).
体能表现上最大的性别差异通常出现在依赖肌肉力量和力量的体力任务和活动中(图2 )。女性肢体骨骼肌的力量和力量约为男性的 50-70%,并且年轻人和老年人中上肢肌肉的性别差异最大,而下肢肌肉的性别差异最大(Akima 等, 2001 ;Alcazar 等) ., 2020 ;Feeler等,2010;Miller 等,2023 Senefeld 2019 Sundberg、Kuplic 等人, 2018 ;Wrucke 等人, 2023 )。虽然下肢最大力量或爆发力的性别差异很大程度上可以通过更大且收缩更快的肌肉质量来解释(Galvan-Alvarez 等人, 2023 ;Perez-Gomez 等人, 2008 ),但性别差异也存在在某些情况下,甚至当相对于体重和去脂体重或肌肉横截面积来表达时(例如Alcazar等人, 2023 ;Frontera等人, 2000 ;Nuzzo, 2023 ;Wrucke等人, 2023 )。因此,在相似重量级别的比赛中,男性的举重记录明显高于女性(Hunter 等人,2017)。, 2023 ;努佐, 2023 )。

Mechanisms for the sex differences in strength and power
力量和功率性别差异的机制

The mechanisms for the large sex differences in maximal strength and power are primarily of muscular origin with minimal differences in neural drive. The sex differences in morphology and composition of human skeletal muscle and the resultant metabolic capacity and contractile properties of similarly trained males and females are ultimately due to sex-related differences in human skeletal muscle gene expression and the interaction with sex-specific hormones and training status (Chapman et al., 2020; Landen et al., 2021; Liu et al., 2010; Maher et al., 2009; Roth et al., 2002; Welle et al., 2008).
最大力量和功率方面存在巨大性别差异的机制主要是肌肉起源,而神经驱动方面的差异很小。人类骨骼肌形态和组成的性别差异,以及由此产生的经过类似训练的男性和女性的代谢能力和收缩特性,最终是由于人类骨骼肌基因表达的性别相关差异以及与性别特异性激素和训练状态的相互作用造成的。 (Chapman 等人, 2020 ;Landen 等人, 2021 ;Liu 等人, 2010 ;Maher 等人, 2009 ;Roth 等人, 2002 ;Welle 等人, 2008 )。

While maximal muscle strength is largely dependent on the cross-sectional area of a muscle (Lieber & Fridén, 2000; Maughan et al., 1983; Narici, 1999), power is the product of force (strength) and contractile velocity, both of which are greater in the skeletal muscles of males than females (e.g. Alcazar et al., 2020; Wrucke et al., 2023). Skeletal muscles of males on average produce more maximal force/torque during both static and dynamic contractions than females because the mass and cross-sectional area of skeletal muscles is larger in males (Bartolomei et al., 2021; Gallagher et al., 1997; Lindle et al., 1997; Suetta et al., 2019). The greater muscle mass of males is primarily due to a larger cross-sectional area of all muscle fibre types (Larsson et al., 2006; Toft et al., 2003), with the largest sex difference in type II (fast) muscle fibres (Alway et al., 1989; Esbjornsson-Liljedahl et al., 1999; Fournier et al., 2022; Grosicki et al., 2022; Haizlip et al., 2015; Nuzzo, 2024; Porter et al., 2002; Staron et al., 2000; Trappe et al., 2003). Best estimates indicate the absolute number of fibres within a muscle does not differ between the sexes (Miller et al., 1993) although this is difficult to assess experimentally. Although the cross-sectional area of muscle fibres is larger in males than females, single-fibre studies indicate that the specific tension (force per unit cross-sectional area) of the fibres is similar between the sexes in young and older adults (Frontera et al., 2000; Grosicki et al., 2022; Krivickas et al., 2006; Teigen et al., 2020; Trappe et al., 2003). Thus, the greater muscle strength exerted by males compared with females is primarily due to a larger muscle volume among males.
虽然最大肌肉力量很大程度上取决于肌肉的横截面积(Lieber & Fridén, 2000 ;Maughan 等, 1983 ;Narici, 1999 ),但功率是力(力量)和收缩速度的乘积,两者都是男性的骨骼肌比女性的骨骼肌更大(例如 Alcazar 等人, 2020 ;Wrucke 等人, 2023 )。男性骨骼肌在静态和动态收缩过程中平均比女性产生更多的最大力/扭矩,因为男性骨骼肌的质量和横截面积更大(Bartolomei et al., 2021 ;Gallagher et al., 1997 ; Lindle 等人, 1997 ;Suetta 等人, 2019 )。男性的肌肉质量较大,主要是由于所有肌纤维类型的横截面积较大(Larsson 等, 2006 ;Toft 等, 2003 ),其中 II 型(快)肌纤维的性别差异最大(Alway 等人, 1989 ;Esbjornsson-Liljedahl 等人, 1999 ;Fournier 等人, 2022 ;Grosicki 等人, 2022 ;Haizlip 等人, 2015 ;Nuzzo, 2024 ;Porter 等人, 2002 ;Staron等人, 2000 ;特拉普等人, 2003 )。 最佳估计表明,肌肉内纤维的绝对数量在性别之间没有差异(Miller 等人, 1993 ),尽管这很难通过实验进行评估。尽管男性肌纤维的横截面积大于女性,但单纤维研究表明,年轻人和老年人的不同性别之间纤维的比张力(每单位横截面积的力)相似(Frontera 等)等人, 2000 ;Grosicki 等人, 2022 ;Krivickas 等人, 2006 ;Teigen 等人, 2020 ;Trappe 等人, 2003 。因此,与女性相比,男性发挥更大的肌肉力量主要是由于男性的肌肉体积更大。

The contractile speed of whole muscle is faster among males than females largely because the whole muscle of females possesses a greater relative area of type I (slow) fibres and a smaller relative area of the type II (fast) fibres compared with males (Esbjornsson-Liljedahl et al., 1999; Hunter et al., 2023; Nuzzo, 2024; Staron et al., 2000). Type II (fast) muscle fibres of males are relatively bigger than those in females so that this sex difference in muscle fibre size is greater for type II than for type I (slow) fibres (Esbjornsson-Liljedahl et al., 1999; Fournier et al., 2022; Hunter et al., 2023; Maher et al., 2009; Roepstorff et al., 2006; Staron et al., 2000; Teigen et al., 2020). Consequently, the larger whole muscle of males has proportionally more type II (fast) fibre area than females. Accordingly, myosin heavy chain (MHC) analysis of skeletal muscle fibres extracted from muscle biopsies typically shows females with higher relative content of MHC I than males and lower MHC II content (Galvan-Alvarez et al., 2023; Staron et al., 2000).
男性整体肌肉的收缩速度比女性更快,很大程度上是因为与男性相比,女性整体肌肉具有较大的 I 型(慢速)纤维相对面积和较小的 II 型(快)纤维相对面积(Esbjornsson- Liljedahl 等人, 1999 ;Hunter 等2023 ;Staron 等人, 2000 )。男性的 II 型(快)肌纤维相对大于女性,因此 II 型肌纤维大小的性别差异比 I 型(慢)纤维更大(Esbjornsson-Liljedahl 等, 1999 ;Fournier 等)人, 2022 ;Maher 等人, 2009 ;Staron人, 2000 因此,男性较大的整体肌肉比女性具有更多的 II 型(快)纤维面积。因此,对从肌肉活检中提取的骨骼肌纤维进行肌球蛋白重链 (MHC) 分析通常显示,女性的 MHC I 相对含量高于男性,而 MHC II 含量较低(Galvan-Alvarez 等人, 2023 年;Staron 等人, 2000 年) )。

Relative area of type II fibres could also be larger in the whole muscle of males if they possessed a larger relative number of type II fibres (% composition or % distribution) than in females. Several studies report the percentage composition of fibre types do not significantly differ between males and females (e.g. Carter et al., 2001; Esbjornsson-Liljedahl et al., 1999; Larsson et al., 2006; Porter et al., 2002; Staron et al., 2000; Toft et al., 2003). However, others found the composition (%) of type I muscle fibres was greater in females than males, with differences varying between ∼3% and 13% in the vastus lateralis (Fournier et al., 2022; Maher et al., 2009; Roepstorff et al., 2006; Simoneau & Bouchard, 1989). Accordingly, a recent meta-analysis reported a small-to-moderate effect size for females expressing 2.6% more type I fibre (% composition) than males (Nuzzo, 2024). Type II fibres generate more peak force than type I fibres and over twice maximal shortening velocity and peak power than type I fibres (Bottinelli et al., 1996; Sundberg, Hunter et al., 2018; Teigen et al., 2020; Trappe et al., 2003). These findings further support the suggestion that males have faster contractile properties than females because of a larger relative type II fibre area in their whole muscle than females.
如果男性拥有比女性更多的 II 型纤维相对数量(组成百分比或分布百分比),则男性整个肌肉中 II 型纤维的相对面积也可能更大。一些研究表明,男性和女性之间纤维类型的百分比组成没有显着差异(例如 Carter 等人, 2001 ;Esbjornsson-Liljedahl 等人, 1999 ;Larsson 等人, 2006 ;Porter 等人, 2002 ;Staron等人, 2000 ;托夫特等人, 2003 )。然而,其他人发现女性 I 型肌纤维的组成(%)高于男性,股外侧肌的差异在 ∼3% 到 13% 之间(Fournier 等人, 2022 年;Maher 等人, 2009 年; Roepstorff 等人, 2006 ;Simoneau 和 Bouchard, 1989 )。因此,最近的一项荟萃​​分析报告称,女性表达的 I 型纤维(组成百分比)比男性多 2.6%,其效应大小为小到中等(Nuzzo, 2024 )。 II 型纤维比 I 型纤维产生更多的峰值力,并且比 I 型纤维产生超过两倍的最大缩短速度和峰值功率(Bottinelli 等人, 1996 ;Sundberg、Hunter 等人, 2018 ;Teigen 等人, 2020 ;Trappe 等人等, 2003 )。 这些发现进一步支持了以下观点:男性比女性具有更快的收缩特性,因为其整个肌肉中的相对 II 型纤维面积比女性更大。

Consequently, the skeletal muscle of males is larger in volume with relatively a larger fast-contracting type II fibre area than females. The sex difference in maximal muscular power of a single limb, therefore, is considerable (up to 50% larger) in males compared with females of similar training status and age, and larger than the sex difference in maximal strength (Alcazar et al., 2020; Bartolomei et al., 2021; Sundberg, Kuplic et al., 2018; Trappe et al., 2003; Wrucke et al., 2023).
因此,男性的骨骼肌体积比女性更大,具有相对更大的快速收缩II型纤维面积。因此,与训练状态和年龄相似的女性相比,男性单肢最大肌肉力量的性别差异相当大(高达 50%),并且大于最大力量的性别差异(Alcazar 等人, 2020 ;Bartolomei 等人, 2021 ;Sundberg、Kuplic 等2018 ;Trappe 等人, 2003

Similar to single-limb exercise, males exert up to ∼50% greater anaerobic power (work per unit time) than females during maximal, short-term whole-body exercise including cycling, running, skiing, jumping and swimming (Bulbulian et al., 1996; Esbjornsson et al., 1993; Esbjornsson-Liljedahl et al., 2002; Maud & Shultz, 1986; Mayhew & Salm, 1990; Mayhew et al., 2001; Murphy et al., 1986; Perez-Gomez et al., 2008; Sollie & Losnegard, 2022; Weber et al., 2006; Zera et al., 2022). Anaerobic power is associated with size of the exercising limbs and the volume of muscle utilized: it reflects capacity of intramuscular high-energy phosphates (adenosine triphosphate (ATP) and phosphocreatine (PCr)) and anaerobic glycolysis (Maud & Shultz, 1986; Weber et al., 2006). Most of the sex difference in anaerobic power is explained by muscle mass, although some sex difference remains during arm exercise and more prolonged sprints (Bartolomei et al., 2021; Hübner-Woźniak et al., 2004; Maud & Shultz, 1986; Perez-Gomez et al., 2008; Weber et al., 2006). The sex differences in normalized anaerobic power are likely due to the greater power and glycolytic capacity of type II fibres (Esbjornsson et al., 1993; Green et al., 1984; Jaworowski et al., 2002; Komi & Karlsson, 1978) which, as discussed above, are larger in proportional area in the skeletal muscle of males compared with females. The consequences for repeated contractions and fatigability of limb muscles are related to sex differences in fibre types and discussed in the section ‘Performance fatigability’.
与单肢运动类似,在最大程度的短期全身运动(包括骑自行车、跑步、滑雪、跳跃和游泳)中,男性的无氧能力(单位时间做功)比女性高出约 50%(Bulbulian 等人,2017)。 , 1996 Esbjornsson-Liljedahl1986 ;Mayhew1986 ., 2008 ; Sollie 和 Losnegard, 2022 ; Weber 等人, 2006 ; Zera 等人, 2022无氧功率与运动肢体的大小和所用肌肉的体积有关:它反映了肌内高能磷酸盐(三磷酸腺苷(ATP)和磷酸肌酸(PCr))和无氧糖酵解的能力(Maud&Shultz, 1986 ;Weber等)等, 2006 )。大多数无氧能力的性别差异可以通过肌肉质量来解释,尽管在手臂锻炼和更长时间的冲刺期间仍然存在一些性别差异(Bartolomei et al., 2021 ; Hübner-Woźniak et al., 2004 ; Maud & Shultz, 1986 ; Perez -戈麦斯等人, 2008 ;韦伯等人, 2006 )。 标准化无氧能力的性别差异可能是由于 II 型纤维的更大的功率和糖酵解能力(Esbjornsson 等人, 1993 年;Green 等人, 1984 年;Jaworowski 等人, 2002 年;Komi 和 Karlsson, 1978 年),如上所述,与女性相比,男性骨骼肌的比例面积更大。肢体肌肉反复收缩和疲劳的后果与纤维类型的性别差异有关,并在“性能疲劳”部分中讨论。

Healthy males and females have similar neural drive during maximal effort contractions
健康男性和女性在最大努力收缩期间具有相似的神经驱动

Sex differences in skeletal muscle force and power production during single-limb maximal efforts are not associated with neural mechanisms or an inability of the central nervous system to adequately activate skeletal muscle. Evidence supports the proposition that neural drive or voluntary activation is similar between males and females during maximal effort contractions of skeletal muscle using several different stimulation modalities, including contractions evoked using electrical stimulation of the motor nerve or muscle; transcranial magnetic stimulation of the motor cortex; and superimposed stimuli during maximal effort contractions (Ansdell et al., 2019; Besson et al., 2021; Hunter et al., 2006; Keller et al., 2011; Kent-Braun & Ng, 1999; Molenaar et al., 2013; Senefeld et al., 2018; Temesi et al., 2015; Yoon et al., 2015). The similar and near maximal levels of voluntary activation during single-limb contractions of males and females indicate that muscular mechanisms rather than neural mechanisms are primarily responsible for the larger power output of males than females for single-limb exercise and cycling in young and older adults (Perez-Gomez et al., 2008; Wrucke et al., 2023). The erroneous and pervasive notion that sex differences in skeletal muscle function (e.g. strength, power, performance fatigability) in laboratory studies are because females ‘do not try as hard’ as males is refuted by voluminous scientific evidence, some of which is referenced above and elsewhere (Nuzzo, 2023).
单肢最大努力期间骨骼肌力量和功率产生的性别差异与神经机制或中枢神经系统无法充分激活骨骼肌无关。有证据支持这一观点,即在使用几种不同的刺激方式(包括使用运动神经或肌肉的电刺激引起的收缩)进行骨骼肌的最大努力收缩期间,男性和女性之间的神经驱动或自愿激活是相似的;运动皮层的经颅磁刺激;以及最大努力收缩期间的叠加刺激(Ansdell et al., 2019 ; Besson et al., 2021 ; Hunter et al., 2006 ; Keller et al., 2011 ; Kent-Braun & Ng, 1999 ; Molenaar et al., 2013 ;Senefeld 等人, 2018 ;Temesi 等人, 2015 ;Yoon 等人, 2015 )。男性和女性单肢收缩期间的自愿激活水平相似且接近最大水平,这表明肌肉机制而不是神经机制是男性在年轻人和老年人的单肢运动和骑自行车中比女性更大的功率输出的主要原因(Perez-Gomez 等人, 2008 年;Wrucke 等人, 2023 年)。骨骼肌功能存在性别差异的错误且普遍的观念(例如 实验室研究中认为女性“不像男性那样努力”,是因为女性“不像男性那样努力”,这一点已被大量科学证据反驳,其中一些证据在上文和其他地方引用(Nuzzo, 2023 )。

Performance fatigability 性能疲劳度

During laboratory-based studies of performance fatigability, repeated or sustained contractions are typically performed by different participants (e.g. males and females) at the same relative intensity (percentage of maximal strength or power) as opposed to the same absolute force or power. Performance fatigability of limb muscles can be measured as a reduction in the expected or maximal force or power output of the muscle (Enoka & Duchateau, 2008; Gandevia, 2001) and provides insight into performance independent of the larger strength and power of males compared with females. In this context, females typically outperform males (fatigue less) during and in response to isometric and slow, dynamic-contraction tasks (performed at the same relative intensities) and across various muscle groups in the upper and lower limbs (Ansdell, Thomas et al., 2020; Hicks et al., 2001; Hunter, 2014, 2016a, 2018; Yoon et al., 2015). Consistent with studies comparing the performance of males and females at the same relative intensity, females exhibit a higher relative critical intensity (the asymptote of the hyperbolic torque–duration relationship representing a metabolic threshold of maximal sustainable work rate (Burnley et al., 2012; Poole et al., 2016)), i.e. relative to maximal torque, along the intensity–duration curve for isometric fatiguing contractions sustained to task failure (Ansdell et al., 2019). Thus, the higher relative metabolic threshold (critical intensity) of females for the isometric fatiguing task indicate they are less fatigable at the same relative intensity as males (Ansdell et al., 2019).
在基于实验室的性能疲劳性研究中,不同的参与者(例如男性和女性)通常以相同的相对强度(最大力量或功率的百分比)而不是相同的绝对力或功率进行重复或持续收缩。肢体肌肉的性能疲劳性可以通过肌肉的预期或最大力量或功率输出的减少来测量(Enoka & Duchateau, 2008 ;Gandevia, 2001 ),并提供与男性相比,独立于较大力量和功率的性能的洞察。女性。在这种情况下,女性在进行等长和缓慢的动态收缩任务(以相同的相对强度进行)时以及在响应等长和缓慢的动态收缩任务(以相同的相对强度进行)时以及在上肢和下肢的各个肌肉群中表现通常优于男性(Ansdell,Thomas等人) ., 2020 ; Hicks 等人, 2001 ; Hunter 等人, 2014, 2016a , 2018 ; Yoon 等人, 2015 )。与比较男性和女性在相同相对强度下的表现的研究一致,女性表现出更高的相对临界强度(双曲线扭矩-持续时间关系的渐近线代表最大可持续工作率的代谢阈值(Burnley等, 2012 ; Poole 等人, 2016 )),即相对于最大扭矩,沿着持续至任务失败的等长疲劳收缩的强度-持续时间曲线(Ansdell 等人, 2019 )。 因此,女性在等长疲劳任务中相对代谢阈值(临界强度)较高,表明她们在与男性相同的相对强度下不易疲劳(Ansdell 等人, 2019 )。

Sex differences in performance fatigability of limb muscles are task dependent
肢体肌肉疲劳性能的性别差异取决于任务

The magnitude of the sex difference in performance fatigability of single-limb exercise, however, changes with contraction velocity for the lower limb – as contraction velocity increases, the sex difference (greater fatigability of males compared with females) is diminished in young adults (Hunter, 2016b). During fast-dynamic contractions, sex differences in performance fatigability of single-limb contractions are primarily minimal for lower-limb exercise in both young and old adults (Hunter, 2016b; Senefeld et al., 2013, 2018; Sundberg, Kuplic et al., 2018). In contrast, for upper-limb muscles (elbow flexor muscles), older males were more fatigable than older females for moderate-to-fast velocity dynamic contractions (Lewis et al., 2022; Senefeld et al., 2017; Yoon et al., 2015).
然而,单肢运动表现疲劳性的性别差异程度随着下肢收缩速度的变化而变化——随着收缩速度的增加,年轻人中的性别差异(男性比女性更大的疲劳性)减少(Hunter , 2016b )。在快速动态收缩期间,年轻人和老年人的下肢运动中,单肢收缩的疲劳性的性别差异基本上很小(Hunter, 2016b ;Senefeld 等人, 2013,2018 ;Sundberg,Kuplic 等人,2018)。 , 2018 )。相比之下,对于上肢肌肉(肘屈肌),老年男性比老年女性更容易疲劳,进行中速至快速的动态收缩(Lewis et al., 2022 ;Senefeld et al., 2017 ;Yoon et al.,2017)。 , 2015 )。

For whole-body dynamic exercise, the findings on sex difference in performances fatigability are varied. Consistent with the single-limb exercise, females exhibited less fatigability than males during or after multiple sprint exercise (Billaut & Bishop, 2009), including cycling (Billaut & Bishop, 2012) and running (Laurent et al., 2010). The sex differences were largely accounted for by the greater mechanical work required of the males compared with females (Billaut & Bishop, 2012) and presumably the higher metabolic demands. However, consistent with fast-dynamic single-limb contractions, there were minimal sex differences in the relative critical power of males and females during cycling exercise on the power–duration curve (Ansdell, Škarabot et al., 2020; James, Leach et al., 2023; Sundberg et al., 2017). While anaerobic capacity was greater in males than females, there were no sex differences in lower-limb cycling time-to-failure (∼2.4 min) at 120% power of VO2 max (Martin-Rincon et al., 2021). Thus, while the sex difference in lower-limb exercise performance appears to be diminished with fast-dynamic contractions in the lower limb during single-limb repeated contractions, some studies suggest that females are less fatigable than males during upper-limb exercise and in some whole-body exercises, that may be accounted for by initial absolute mechanical work.
对于全身动态运动,疲劳性能的性别差异的研究结果各不相同。与单肢运动一致,女性在多次冲刺运动期间或之后表现出比男性更少的疲劳性(Billaut&Bishop, 2009 ),包括骑自行车(Billaut&Bishop, 2012 )和跑步(Laurent等人, 2010 )。性别差异主要是由于与女性相比,男性需要做更多的机械工作(Billaut & Bishop, 2012 ),并且可能需要更高的代谢需求。然而,与快速动态单肢收缩一致,在自行车运动期间,男性和女性的相对临界功率在功率-持续时间曲线上存在最小的性别差异(Ansdell,Škarabot 等人, 2020 ;James,Leach 等人) ., 2023 ;桑德伯格等人, 2017 )。虽然男性的无氧能力高于女性,但在最大摄氧量 2的 120% 功率下,下肢循环至力竭的时间(~2.4 分钟)没有性别差异(Martin-Rincon 等人, 2021 )。因此,虽然下肢运动表现的性别差异似乎随着单肢重复收缩期间下肢的快速动态收缩而减小,但一些研究表明,女性在上肢运动期间比男性不易疲劳,并且在某些情况下,女性比男性更不易疲劳。全身锻炼,可以通过初始绝对机械功来解释。

The primary mechanisms contributing to sex differences in performance fatigability during the isometric and slow-dynamic contractions are muscular (contractile) in origin (Ansdell et al., 2019; Hunter et al., 2006; Keller et al., 2011; Senefeld et al., 2018) and persistent across the lifespan (Yoon et al., 2015). For sustained isometric tasks, the greater strength of males (due to a larger muscle mass) can play a primary role in limiting blood flow in males more rapidly than females during low-to-moderate force sustained isometric contractions performed at the same relative intensity (Hunter & Enoka, 2001). The larger absolute forces and greater intramuscular pressures exerted on the feed arteries during sustained contractions can limit perfusion and oxygen supply in males more than females, resulting in an increased rate of metabolite buildup in the males. Accordingly, the metaboreflex (pressor response: increased in mean arterial pressure with contraction (Mitchell & Victor, 1996; Rowell & OʼLeary, 1990)) was greater in males than females and associated with the initial absolute strength in the elbow flexor mucles (Hunter & Enoka, 2001). When the isometric fatiguing-contraction task was intermittent, however, the muscle was relatively perfused and the females outperformed the males (longer time to task failure) even when matched for strength (Hunter et al., 2004, 2009).
等长收缩和慢动态收缩期间导致疲劳性能性别差异的主要机制是肌肉(收缩)(Ansdell 等人, 2019 ;Hunter 等人, 2006 ;Keller 等人, 2011 ;Senefeld 等人) ., 2018 )并在整个生命周期中持续存在(Yoon 等人, 2015 )。对于持续的等长收缩任务,男性的更大力量(由于肌肉质量更大)可以在以相同相对强度进行低到中等力量的持续等长收缩期间比女性更快地限制男性血流方面发挥主要作用。亨特和伊诺卡, 2001 )。在持续收缩过程中,施加在供血动脉上的绝对力和肌内压力更大,可能比女性更能限制雄性的灌注和氧气供应,导致雄性代谢物积累的速度增加。因此,男性的代谢反射(升压反应:平均动脉压随着收缩而增加(Mitchell & Victor, 1996 ;Rowell & O'Leary, 1990 ))比女性更大,并且与肘屈肌的初始绝对强度相关(Hunter &伊诺卡, 2001 )。然而,当等长疲劳收缩任务是间歇性的时,肌肉相对灌注,即使在力量匹配的情况下,女性的表现也优于男性(任务失败的时间更长)(Hunter et al., 2004, 2009 )。

There are several other possible mechanisms for the sex difference in fatigability during dynamic or intermittent tasks that are not explained by muscle mass – one involves a sex difference in skeletal muscle metabolism that is related to differences between males and females in fibre type proportional area and the effects on contractile function (Billaut & Bishop, 2009; Esbjornsson et al., 1993; Maher et al., 2009). Males demonstrate a greater glycolytic capacity than females (Esbjornsson et al., 1993; Green et al., 1984; Jaworowski et al., 2002; Komi & Karlsson, 1978) and females typically demonstrate greater oxidative capacity of whole muscle than males (Esbjornsson et al., 1993, 2012; Russ et al., 2005). Accordingly, in response to a fatiguing contraction with a single limb, females exhibit a smaller reduction of the contractile function such as relaxation rates (that reflect fibre types’ proportional areas) compared with males (e.g. Hunter et al., 2006; Senefeld et al., 2018; Yoon et al., 2015). Other mechanisms, however, may also contribute to the sex differences in fatigability including differences in muscle perfusion and blood flow due to vasodilatation and sympathetic activation, which can be larger in females than males (Hunter et al., 2009; Kellawan et al., 2015; Parker et al., 2007). Sex differences in perfusion or fibre type proportional area can both lead to a larger and more rapid accumulation of fatigue-inducing metabolites in males relative to females during fatiguing exercise, and greater fatigability of males than females.
在动态或间歇性任务中,疲劳性的性别差异还有其他几种可能的机制,这些机制无法用肌肉质量来解释——其中之一涉及骨骼肌代谢的性别差异,与男性和女性之间纤维类型比例面积和肌肉质量的差异有关。对收缩功能的影响(Billaut & Bishop, 2009 ;Esbjornsson 等, 1993 ;Maher 等, 2009 )。男性比女性表现出更强的糖酵解能力(Esbjornsson 等人, 1993 年;Green 等人, 1984 年;Jaworowski 等人, 2002 年;Komi 和 Karlsson, 1978 年),并且女性通常比男性表现出更大的整个肌肉氧化能力(Esbjornsson)等人, 1993 年,2012 年;拉斯等人, 2005 年)。因此,与男性相比,为了应对单肢的疲劳收缩,女性表现出收缩功能的较小程度的降低,例如松弛率(反映纤维类型的比例面积)(例如 Hunter 等人, 2006 年;Senefeld 等人) ., 2018 ;尹等人, 2015 )。然而,其他机制也可能导致疲劳性的性别差异,包括由于血管舒张和交感神经激活而导致的肌肉灌注和血流差异,女性的差异可能大于男性(Hunter 等, 2009 ;Kellawan 等, 2015 ;帕克等人。, 2007 )。灌注或纤维类型比例面积的性别差异都可以导致在疲劳运动期间男性相对于女性疲劳诱导代谢物的更大和更快的积累,并且男性比女性更容易疲劳。

Notably, however, greater afferent feedback in response to a large accumulation of metabolites from the contracting skeletal muscle among males (larger metaboreflex, e.g. Hunter & Enoka, 2001; Jarvis et al., 2011; Samora et al., 2019) have led in some instances to larger reductions in neural drive (reductions in voluntary activation, i.e. central fatigue) compared with females during high-intensity isometric tasks of the lower-limb muscles (Martin & Rattey, 2007; Russ & Kent-Braun, 2003). The larger central fatigue (in males, however, is not observed in upper-limb muscles (Hunter et al., 2006; Keller et al., 2011; Yoon et al., 2007). Collectively, however, the limited sex differences in neural drive during fatiguing contractions is not the primary mechanism for greater fatigability of males than females.
然而,值得注意的是,男性收缩骨骼肌代谢物大量积累时产生的更大的传入反馈(更大的代谢反射,例如 Hunter & Enoka, 2001 ;Jarvis 等, 2011 ;Samora 等, 2019 )导致了在某些情况下,与女性相比,在下肢肌肉进行高强度等长训练时,神经驱动力会大幅下降(自愿激活减少,即中枢疲劳)(Martin & Rattey, 2007 ;Russ & Kent-Braun, 2003 )。较大的中枢疲劳(然而,在男性中,上肢肌肉中没有观察到这种情况(Hunter 等人, 2006 年;Keller 等人, 2011 年;Yoon 等人, 2007 年)。然而,总的来说,性别差异有限疲劳收缩期间的神经驱动并不是男性比女性更易疲劳的主要机制。

While considerable research has emerged to understand the sex differences in fatigability during fatiguing exercise in the last 25 years (Hicks et al., 2001; Hunter, 2014, 2024), less is known about recovery from a fatiguing bout of exercise. Key opportunities for further studies involve understanding the impact of sex differences during fatiguing exercise on short- and long-term recovery, in response to isometric and dynamic contractions of all velocities and whole-body exercise (Laurent et al., 2010; Martin-Rincon et al., 2021; Senefeld et al., 2018).
虽然在过去 25 年中已经开展了大量研究来了解疲劳运动期间疲劳性的性别差异(Hicks 等, 2001 ;Hunter, 2014,2024 ),但人们对从疲劳运动中恢复的了解却很少。进一步研究的关键机会包括了解疲劳运动期间性别差异对短期和长期恢复的影响,以响应所有速度和全身运动的等长收缩和动态收缩(Laurent 等人, 2010 ;Martin-Rincon)等人, 2021 ;Senefeld 等人, 2018 )。

Maximal aerobic power and endurance performance
最大有氧功率和耐力表现

The best performing males are faster than females over short and long distances in running, cycling, skiing, speed skating and swimming (Hunter et al., 2023). The sex difference in performance among elite distance runners, and the world records in the 10 km or marathon events ranges from ∼10 to 12% (Fig. 2) – this difference has stabilized over the last 40 years among the most elite runners (Cheuvront et al., 2005; Hunter et al., 2023; Sparling et al., 1998; Thibault et al., 2010). A sex difference ranging from 10 to 16% is observed in ultramarathon running events (>50 km races) when similarly trained males and females in nutritionally fed conditions are compared (Besson et al., 2022; Senefeld, Smith et al., 2016; Tiller et al., 2021). Swimming world records show a significant but smaller sex difference in longer distance events (∼7% for the 1500 m vs. 13% for the 50 m freestyle) (Senefeld, Joyner et al., 2016) (Fig. 2) and remain significant in ultradistance open water swimming (∼10% in the 5 km 2023 World Championships (World-Aquatics, 2024)). Thus, in endurance sports the best males outperform the best female, and these differences are not trivial, despite being a smaller percentage difference than power and jumping sports (Figure 2). For example, in 2023, the best performance of a female in the marathon (world record: 2:11:53 h:min:s) was ranked as the 719th best performance among the males (World-Athletics, 2024). Even in ultramarathon events, males outperform females at the elite level (Besson et al., 2022; Senefeld, Smith et al., 2016; Tiller et al., 2021), despite outstanding performances from individual female athletes.
在跑步、骑自行车、滑雪、速滑和游泳方面,表现最好的男性在短距离和长距离上都比女性更快(Hunter et al., 2023 )。精英长跑运动员的表现以及 10 公里或马拉松赛事的世界纪录之间的性别差异约为 10% 至 12%(图2 )——这种差异在过去 40 年中在最优秀的跑步运动员中已经稳定下来(Cheuvront等人, 2005 ;Hunter人, 2023 ;Thibault 等人, 2010 )。当在营养喂养条件下对经过类似训练的男性和女性进行比较时,在超级马拉松比赛(>50 公里比赛)中观察到性别差异为 10% 至 16%(Besson 等人, 2022 年;Senefeld、Smith 等人, 2016 年;蒂勒等人, 2021 )。游泳世界纪录显示,在长距离项目中,性别差异显着但较小(1500 m 的性别差异为7%,50 m 自由泳的性别差异为 13%)(Senefeld、Joyner 等人, 2016 年)(图2 ),并且仍然显着超长距离开放水域游泳(2023 年 5 公里世界锦标赛(世界游泳锦标赛, 2024 年)中约占 10%)。因此,在耐力运动中,最好的男性表现优于最好的女性,尽管这些差异比力量和跳跃运动的百分比差异更小,但这些差异并非微不足道(图2 )。 例如,2023年,女子马拉松的最佳成绩(世界纪录:2:11:53小时:分:秒)在男子马拉松比赛中排名第719位(世界田径, 2024年)。即使在超级马拉松比赛中,尽管个别女性运动员表现出色,但男性在精英级别的表现也优于女性(Besson 等人, 2022 ;Senefeld,Smith 等人, 2016 ;Tiller 等人, 2021 )。

This section will discuss the key predictors of endurance performance, and the dominant mechanisms for the persistent sex difference among elite male and female endurance athletes. While multiple factors contribute, a key determinant of endurance performance and the difference between males and females who are of similar training status and age, is maximal oxygen utilization (V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ or aerobic power) (Bunc & Heller, 1989; Joyner, 2017; Pate & OʼNeill, 2007; Santisteban et al., 2022).
本节将讨论耐力表现的关键预测因素,以及精英男性和女性耐力运动员持续性别差异的主导机制。虽然有多种因素影响,但耐力表现的一个关键决定因素以及具有相似训练状态和年龄的男性和女性之间的差异是最大氧气利用率。 V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ 或有氧力量)(Bunc & Heller, 1989 ;Joyner, 2017 ;Pate & O´Neill, 2007 ;Santisteban 等, 2022 )。

Maximal aerobic power, also referred to as maximal oxygen uptake or
最大有氧功率,也称为最大摄氧量或
, represents the highest rate of oxygen uptake and utilization during human performance, and is a key determinant of human endurance performance in both males and females (Joyner, 1991; Joyner & Dominelli, 2021). Among both elite and recreationally active adults, the sex difference in absolute values of maximal aerobic power (L·O2 min−1) ranges from about 20 to 40%, and when normalized to body mass (ml O2·kg−1·min−1) is about 10–20% larger in males than females (Bunc & Heller, 1989; Durstine et al., 1987; Jensen et al., 2001; Jones, 2006; Joyner & Coyle, 2008; Loe et al., 2013; Pate & OʼNeill, 2007; Pollock, 1977; Riley-Hagan et al., 1992; Saltin & Astrand, 1967; Støa et al., 2020). Generally, the smallest sex difference is observed among similarly trained, elite endurance athletes in the range of about 10–14% (Bunc & Heller, 1989; Pate & OʼNeill, 2007). For example, V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ is about 10% greater among elite male runners (74.1 ± 2.6 ml O2·kg−1·min−1: range of ∼70–85 ml O2·kg−1·min−1) compared with elite female runners (67.1 ± 2.1 ml O2·kg−1·min−1: range of 60–75 ml O2·kg−1·min−1) (Pate & OʼNeill, 2007). This sex difference in V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ when normalized to fat-free mass is considerably reduced with some studies reporting small sex differences (∼5%) and others reporting negligible differences (Bunc & Heller, 1989; Cureton et al., 1986; Martin-Rincon et al., 2021; Sparling, 1980). Any small sex difference in
,代表人类运动过程中最高的摄氧量和利用率,是男性和女性人类耐力表现的关键决定因素(Joyner, 1991 ;Joyner & Dominelli, 2021 )。在精英人士和休闲活跃的成年人中,最大有氧功率绝对值 (L·O 2 min -1 ) 的性别差异约为 20% 至 40%,并且当标准化为体重时 (ml O 2 ·kg -1 · min −1 ) 男性比女性大约 10-20% (Bunc & Heller, 1989 ; Durstine et al., 1987 ; Jensen et al., 2001 ; Jones, 2006 ; Joyner & Coyle, 2008 ; Loe et al. , 2013 ;波洛克, 1977Saltin和阿斯特兰德 2020 一般来说,在接受过类似训练的精英耐力运动员中观察到的性别差异最小,约为 10-14%(Bunc & Heller, 1989 ;Pate & O´Neill, 2007 )。例如, V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$精英女性跑步 67.1 ±2。1 ml O 2 ·kg -1 ·min -1 :范围为 60–75 ml O 2 ·kg -1 ·min -1 ) (Pate & O´Neill, 2007 )。这种性别差异 V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ 当标准化为无脂肪质量时,体重会显着减少,一些研究报告性别差异很小(~5%),而其他研究报告差异可以忽略不计(Bunc&Heller, 1989 ;Cureton等人, 1986 ;Martin-Rincon等人, 2021 ;斯帕林, 1980 )。任何微小的性别差异
V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ that may exist even when normalized for fat-free mass is likely due to greater haemoglobin mass in males compared with females (Cureton et al., 1986; Santisteban et al., 2022; Schmidt & Prommer, 2010).
,代表人类运动过程中最高的摄氧量和利用率,是男性和女性人类耐力表现的关键决定因素(Joyner, 1991 ;Joyner & Dominelli, 2021 )。在精英人士和休闲活跃的成年人中,最大有氧功率绝对值 (L·O 2 min -1 ) 的性别差异约为 20% 至 40%,并且当标准化为体重时 (ml O 2 ·kg -1 · min −1 ) 男性比女性大约 10-20% (Bunc & Heller, 1989 ; Durstine et al., 1987 ; Jensen et al., 2001 ; Jones, 2006 ; Joyner & Coyle, 2008 ; Loe et al. , 2013 ;波洛克, 1977Saltin和阿斯特兰德 2020 一般来说,在接受过类似训练的精英耐力运动员中观察到的性别差异最小,约为 10-14%(Bunc & Heller, 1989 ;Pate & O´Neill, 2007 )。例如, V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$精英女性跑步 67.1 ±2。1 ml O 2 ·kg -1 ·min -1 :范围为 60–75 ml O 2 ·kg -1 ·min -1 ) (Pate & O´Neill, 2007 )。这种性别差异 V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ 当标准化为无脂肪质量时,体重会显着减少,一些研究报告性别差异很小(~5%),而其他研究报告差异可以忽略不计(Bunc&Heller, 1989 ;Cureton等人, 1986 ;Martin-Rincon等人, 2021 ;斯帕林, 1980 )。任何微小的性别差异 V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ 即使对无脂肪质量进行标准化,这种情况也可能存在,这可能是由于男性的血红蛋白质量高于女性(Cureton 等人, 1986 年;Santisteban 等人, 2022 年;Schmidt 和 Prommer, 2010 年)。

The transport of oxygen from the air to metabolically active tissues involve a series of alternating convective and diffusive steps which require the coordination of many anatomical and physiological elements (Dominelli et al., 2021). Although many factors potentially contribute to sex differences in
氧气从空气到代谢活跃组织的运输涉及一系列交替的对流和扩散步骤,需要许多解剖学和生理学元素的协调(Dominelli 等人, 2021 )。尽管许多因素可能导致性别差异
V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ (Joyner, 2017; Santisteban et al., 2022), the primary contributing anatomical and physiological sex differences that limit females from achieving the same V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ as similar trained males include the following. Relative to females, males have: (i) a larger heart size (and subsequently larger stroke volume and cardiac output); (ii) higher blood haemoglobin concentration and mass (∼12–15% higher); (iii) greater skeletal muscle mass; and (iv) lower relative (%) body fat, the latter of which is important for weight-bearing exercise (Bassareo & Crisafulli, 2020; Joyner, 2017; Pate & OʼNeill, 2007; Petek et al., 2023; Santisteban et al., 2022; Sparling, 1980; St Pierre et al., 2022). Furthermore, sex differences in the pulmonary system anatomy cause a greater work of breathing for females compared with males (Dominelli et al., 2019) because females have smaller lungs when matched for height (Ripoll et al., 2020; Schwartz et al., 1988) and smaller conductive airways when matched for lung size (Martin et al., 1987; Sheel et al., 2009).
(Joyner, 2017 ;Santisteban 等人, 2022 ),限制女性实现相同目标的主要解剖学和生理性别差异 V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ 因为类似的受过训练的男性包括以下人员。相对于女性,男性具有:(i)心脏尺寸更大(因此每搏输出量和心输出量更大); (ii) 较高的血液血红蛋白浓度和质量(约高 12-15%); (iii) 更大的骨骼肌质量; (iv) 较低的相对 (%) 体脂,后者对于负重运动很重要(Bassareo & Crisafulli, 2020 ;Joyner, 2017 ;Pate & O´Neill, 2007 ;Petek et al., 2023 ;Santisteban et al. ., 2022 ;斯帕林, 1980 ;圣皮埃尔等人, 2022 )。此外,肺系统解剖结构中的性别差异导致女性与男性相比需要更大的呼吸功(Dominelli 等人, 2019 ),因为在身高匹配时,女性的肺部较小(Ripoll 等人, 2020 ;Schwartz 等人, 1988 )和与肺尺寸匹配时较小的传导气道(Martin 等人, 1987 ;Sheel 等人, 2009 )。

The left ventricular mass of males is larger than that of females even when matched for lean body mass in young adults, young athletes and sedentary people (Forså et al., 2023; Morrison et al., 2023) and as reviewed elsewhere (Hunter et al., 2023; Petek et al., 2023). Maximal heart rates reached during exercise, however, do not differ between males and females who are similarly trained (Bassareo & Crisafulli, 2020; Fu & Levine, 2005; Loe et al., 2013; Maldonado-Martin et al., 2004; Pate & O'Neill, 2007; Riley-Hagan et al., 1992; Sparling, 1980; Venables et al., 2005). Thus, despite the similar heart rates, the primary reasons for a lower
即使与年轻人、年轻运动员和久坐人群的去脂体重相匹配,男性的左心室质量也大于女性(Forså 等人, 2023 年;Morrison 等人, 2023 年)以及其他文献的评论(Hunter 等人)等人, 2023 ;Petek 等人, 2023 )。然而,经过类似训练的男性和女性在运动过程中达到的最大心率没有差异(Bassareo & Crisafulli, 2020 ;Fu & Levine, 2005 ;Loe et al., 2013 ;Maldonado-Martin et al., 2004Pate) & O'Neill,2007 ;Riley-Hagan 等, 1992 ;Sparling, 1980 ;Venables 等, 2005 。因此,尽管心率相似,但心率较低的主要原因是
in females compared with males are central in origin: a smaller cardiac mass and lungs reduce the capacity of a female to deliver oxygenated blood (that has lower haemoglobin) to the working muscles compared with a male of similar training status and age.
与男性相比,女性的主要问题是:与训练状态和年龄相似的男性相比,女性的心脏质量和肺部较小,从而降低了女性向工作肌肉输送含氧血液(血红蛋白较低)的能力。

In support, there are minimal sex differences in several other primary predictors of endurance performance (Joyner, 2017; Joyner & Coyle, 2008) so neither are largely affected by the sex of the athlete. The first, critical velocity is the maximal intensity of performance (e.g. running or cycling intensity as a percentage of
作为支持,耐力表现的其他几个主要预测因素的性别差异很小(Joyner, 2017 ;Joyner&Coyle, 2008 ),因此两者都不受运动员性别的影响很大。第一个临界速度是表现的最大强度(例如跑步或骑自行车强度占
) , blood lactate and intramuscular metabolites such as H+, PCr and Pi that can be stabilized for a prolonged period (Jones et al., 2010). Although the absolute
、血乳酸和肌内代谢物,如 H + 、PCr 和 P,可以长期稳定(Jones 等, 2010 )。虽然绝对
is higher in males than females, there are minimal sex differences in the relative intensity of maximal sustainable running or cycling in similarly and highly trained male and female distance athletes who sustain running for several hours at ∼80–90%
男性高于女性,在类似且训练有素的男性和女性长距离运动员中,最大可持续跑步或骑自行车的相对强度存在最小的性别差异,这些运动员以〜80-90%的速度持续跑步几个小时
(Davies & Thompson, 1979; Helgerud, 1994; Helgerud et al., 1990; Joyner, 1993; Maughan & Leiper, 1983).
(Davies 和 Thompson, 1979 ;Helgerud, 1994 ;Helgerud 等人, 1990 ;Joyner, 1993 ;Maughan 和 Leiper, 1983 )。

Second, economy of movement (a surrogate for efficiency because calculations of true mechanical efficiency during running, for example, are difficult to achieve) is also considered a major contributor to endurance performance (Joyner & Coyle, 2008; Joyner et al., 2020; Levine, 2008). Running economy, for example, is most advantageous for an athlete when they have low oxygen utilization (% V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$) for a given speed, reducing reliance on anaerobic metabolism. Over a running career, distance athletes can improve their running economy (Jones, 2006) but there are minimal sex differences among elite and sub-elite runners (Bunc & Heller, 1989; Daniels & Daniels, 1992; Davies & Thompson, 1979; Helgerud, 1994; Loftin et al., 2009). Female runners at several different ability levels, were, however, shown to have slightly better running economy (lower oxygen cost at submaximal velocities) than similarly trained males (Mendonca et al., 2020; Støa et al., 2020), although any small differences are not able to overcome the large sex differences in
其次,运动的经济性(效率的替代指标,因为例如很难计算跑步过程中的真实机械效率)也被认为是耐力表现的主要贡献者(Joyner & Coyle, 2008 ;Joyner et al., 2020 ;莱文, 2008 )。例如,当运动员的氧气利用率较低时(% V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ )对于给定的速度,减少对无氧代谢的依赖。在跑步生涯中,长跑运动员可以提高他们的跑步经济性(Jones, 2006 ),但精英和次精英跑步者之间的性别差异很小(Bunc&Heller, 1989 ; Daniels&Daniels, 1992 ; Davies&Thompson, 1979 ; Helgerud , 1994 ;洛夫廷等人, 2009 )。然而,几个不同能力水平的女性跑步者的跑步经济性(次最大速度下的氧气成本较低)比接受类似训练的男性跑步者略好(Mendonca 等人, 2020 年;Støa 等人, 2020 年),尽管任何小差异并不能克服巨大的性别差异
.

In swimming, females exhibit a better economy of movement than males (Pendergast et al., 1977; Zamparo et al., 2020). This advantage in the water is likely due to the higher percentage body fat among females, and a smaller body surface area, allowing less drag and resistance in the water, and thus a lower oxygen consumption at a given speed (Joyner, 2017; Klentrou & Montpetit, 1992; Pendergast et al., 1977; Zamparo et al., 2020). Economy of motion in the water, may explain the narrowing of the male advantage in swimming between 50 m sprint and 1500 m distance in the pool (Knechtle, Dalamitros et al., 2020) (Figure 2; Senefeld, Joyner et al., 2016).
在游泳中,女性比男性表现出更好的运动经济性(Pendergast 等, 1977 ;Zamparo 等, 2020 )。这种在水中的优势可能是由于女性的体脂百分比较高,体表面积较小,因此水中的阻力和阻力较小,因此在给定速度下的耗氧量较低(Joyner, 2017 ;Klentrou &蒙佩蒂特, 1992 ;彭德加斯特等人, 1977 ;赞帕罗等人, 2020 )。水中运动的经济性可以解释男性在泳池中游泳从 50 m 冲刺到 1500 m 距离之间的优势缩小的原因(Knechtle、Dalamitros 等人, 2020 年)(图2 ;Senefeld、Joyner 等人, 2016 年) )。

Finally, another contributor to endurance performance is substrate utilization, although any differences between males and females does not appear to largely influence the sex difference in performance in highly trained athletes. During endurance exercise at a similar intensity, females oxidize more fat, less carbohydrate and less amino acids than males (Cano et al., 2022; Horton et al., 1998; Lamont et al., 2001; Tarnopolsky, 2008; Tarnopolsky et al., 1990; Venables et al., 2005). Accordingly, females had elevated gene expression in lipid metabolism pathways compared with males, although this sex difference was diminished between elite endurance trained males and females (Chapman et al., 2020). This sex difference in substrate metabolism occurs predominantly at moderate intensity exercise (40–60% of maximal aerobic power) (Venables et al., 2005) and is related to the higher proportional area of type I fibres in the skeletal muscle of females relative to males (Billaut & Bishop, 2009; Maher et al., 2009). Because highly trained and elite athletes perform at higher intensities of V̇O2${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}}}$ peak (>80% V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$) (Davies & Thompson, 1979), for the moderate intensities that show the sex difference in fat oxidation, a performance advantage for females is likely to be small.
最后,耐力表现的另一个影响因素是基质利用率,尽管男性和女性之间的任何差异似乎并没有在很大程度上影响训练有素的运动员表现中的性别差异。在相似强度的耐力运动中,女性比男性氧化更多的脂肪、更少的碳水化合物和更少的氨基酸(Cano et al., 2022 ; Horton et al., 1998 ; Lamont et al., 2001 ; Tarnopolsky, 2008 ; Tarnopolsky et al. ., 1990 ;维纳布尔斯等人, 2005 )。因此,与男性相比,女性脂质代谢途径中的基因表达升高,尽管这种性别差异在接受过耐力训练的精英男性和女性之间有所减小(Chapman 等人, 2020 )。这种底物代谢的性别差异主要发生在中等强度运动(最大有氧功率的 40-60%)时(Venables 等, 2005 ),并且与女性骨骼肌中 I 型纤维面积比例较高有关。男性(Billaut & Bishop, 2009 ;Maher 等人, 2009 )。因为训练有素的精英运动员会以更高的强度表现 V̇O2${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}}}$ 峰值 (>80% V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ )(Davies & Thompson, 1979 ),对于显示脂肪氧化性别差异的中等强度,女性的表现优势可能很小。

The sex differences in performance and the proposed mechanisms highlighted in this review are specific to acute bouts of exercise. Several previous reviews address whether there are sex differences in the whole muscle adaptations to exercise training such as resistance training, and the cellular and molecular mechanisms involved (Hunter et al., 2023; Landen et al., 2023; Roberts et al., 2020). An opportunity for high-impact future research, includes studies on the effects of long-term endurance and power training on the sex differences in cardiovascular and neuromuscular adaptations due to sex-steroid hormones, sex chromosomes and the gene-by-environment interactions (epigenetics) among other factors.
本次综述中强调的表现上的性别差异和拟议的机制是针对急性运动的。之前的几篇评论讨论了整个肌肉对运动训练(例如阻力训练)的适应是否存在性别差异,以及所涉及的细胞和分子机制(Hunter et al., 2023 ;Landen et al., 2023 ;Roberts et al., 2020) )。未来高影响力研究的机会,包括研究长期耐力和力量训练对由于性类固醇激素、性染色体和基因与环境相互作用(表观遗传学)引起的心血管和神经肌肉适应的性别差异的影响。 )等因素。

Conclusions 结论

In this review, we highlighted the profound sex differences in human performance and the physiological mechanisms contributing to these sex differences for activities that rely on muscle strength and power, speed and aerobic capacity. Males outperform females in many physical capacities because they are faster, stronger and more powerful, particularly after male puberty. These sex differences are primarily conferred by demonstrably greater endogenous testosterone, an anabolic hormone (steroid) that is ∼15 times higher in concentration in adult males than adult females. Female attributes associated with oestrogen (e.g. higher percentage body fat, skeletal structure and breast development) can also contribute to the sex difference in human performance. We also highlight important insights related to the study of ‘real-world data’ and elite athletes. World records and performances of elite athletes may serve as a proxy for the physiological and anatomical differences between adult males and females.
在这篇综述中,我们强调了人类表现中深刻的性别差异,以及在依赖肌肉力量和力量、速度和有氧能力的活动中造成这些性别差异的生理机制。男性在许多身体能力上都优于女性,因为他们更快、更强、更有力,尤其是在男性青春期之后。这些性别差异主要是由明显更高的内源性睾酮造成的,这是一种合成代谢激素(类固醇),成年男性的浓度比成年女性高约 15 倍。与雌激素相关的女性特征(例如较高的身体脂肪百分比、骨骼结构和乳房发育)也可能导致人类表现的性别差异。我们还强调了与“真实世界数据”和精英运动员研究相关的重要见解。精英运动员的世界纪录和表现可以作为成年男性和女性之间生理和解剖学差异的代表。

The athletic advantage of males in muscle strength and power are large and reflect sex differences at muscle fibre size and proportional area of fibre type, and anaerobic capacity, with minimal differences in neural drive. Aerobic power (V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$) largely dictates the sex difference in endurance performance because males have larger hearts, lungs, haemoglobin concentrations and thus greater oxygen delivered to the working muscles, with a greater muscle mass and lower percentage body fat than females. Substrate utilization and metabolism differ between the sexes and can explain some of the sex differences in performance fatigability of limb muscles (relative performance declines independent of absolute strength and power) but with limited the impact of the sex difference of absolute performance among elite athletes. The profound sex differences in human physical performance that are largely attributable to the direct and indirect effects of sex-steroid hormones, sex chromosomes and epigenetics, provide a scientific rationale and framework for policy on sex-based categories in sports during puberty and adulthood. This review also reveals opportunities to conduct high-impact studies to understand the mechanisms that influence the sex differences in human performance. We strongly encourage investigators to seriously consider filling the gaps in the insufficient knowledgebase of the mechanisms for the sex difference in human performance by evaluating sex as a biological variable.
男性在肌肉力量和力量方面的运动优势很大,反映了肌纤维大小、纤维类型比例面积以及无氧能力方面的性别差异,而神经驱动方面的差异很小。有氧功率( V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ )在很大程度上决定了耐力表现的性别差异,因为男性比女性拥有更大的心脏、肺和血红蛋白浓度,因此可以向工作肌肉输送更多的氧气,并且肌肉质量更大,体脂百分比更低。性别之间的底物利用和代谢不同,可以解释肢体肌肉疲劳性能的一些性别差异(相对性能下降,与绝对力量和爆发力无关),但精英运动员绝对性能性别差异的影响有限。人类身体表现的深刻性别差异很大程度上归因于性类固醇激素、性染色体和表观遗传学的直接和间接影响,这为青春期和成年期体育运动中基于性别的类别政策提供了科学依据和框架。这篇综述还揭示了进行高影响力研究的机会,以了解影响人类表现性别差异的机制。我们强烈鼓励研究人员认真考虑通过将性别评估为生物变量来填补人类表现性别差异机制知识库不足的空白。

Biographies 传记

  • image

    Sandra Hunter is a Professor and Chair of Movement Science in the School of Kinesiology at the University of Michigan. She has long-standing interests in understanding sex as a biological variable and the limits of human performance. Her research focuses on investigating the mechanisms contributing to neuromuscular fatigue and impairments in neuromuscular function with human ageing, and in clinical populations such as people with type 2 diabetes and COVID-19 survivors.
    桑德拉·亨特 (Sandra Hunter)是密歇根大学运动机能学院运动科学教授兼系主任。她长期以来对理解性别作为生物变量和人类表现的局限性有着浓厚的兴趣。她的研究重点是调查人类衰老过程中导致神经肌肉疲劳和神经肌肉功能损伤的机制,以及 2 型糖尿病患者和 COVID-19 幸存者等临床人群的机制。

  • image

    Jonathon (Jack) Senefeld is an Assistant Professor of Kinesiology at the University of Illinois Urbana-Champaign. His research focuses on the limits of human performance with specific interests in fatigue of skeletal muscle, oxygen transport and sex differences in physiological regulation. During the coronavirus disease 2019 (COVID-19) pandemic, he collaborated on international efforts to treat patients with convalescent plasma.
    乔纳森(杰克)塞内菲尔德是伊利诺伊大学厄巴纳-香槟分校运动机能学助理教授。他的研究重点是人类表现的极限,特别关注骨骼肌疲劳、氧气输送和生理调节的性别差异。在 2019 年冠状病毒病 (COVID-19) 大流行期间,他与国际社会合作,利用恢复期血浆治疗患者。

Additional information 附加信息

Competing interests 利益竞争

No competing interests or conflicts of interest declared.
未声明存在竞争利益或利益冲突。

Author contributions 作者贡献

Both authors have approved the final version of the manuscript and agree to be accountable for all aspects of the work. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.
两位作者都批准了手稿的最终版本,并同意对工作的各个方面负责。所有被指定为作者的人都有资格获得作者身份,并且列出所有有资格获得作者身份的人。

Funding 资金

No funding was received for this work.
这项工作没有收到任何资助。

Acknowledgements 致谢

The authors thank Professor Michael Joyner for intellectual discussions and valuable comments on drafts of this manuscript.
作者感谢迈克尔·乔伊纳教授对本手稿草稿的智力讨论和宝贵评论。