这是用户在 2024-5-31 20:23 为 https://www.science.org/doi/full/10.1126/scirobotics.abi8017 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Full access
 评论
 医疗机器人


2010 至 2020 年医疗机器人研究十年回顾


pierre e. dupont https://orcid.org/0000-0001-7294-640x , bradley j. nelson https://orcid.org/0000-0001-9070-6987, michael goldfarb https://orcid.org/0000-0002-6622-095x, blake hannaford https://orcid.org/0000-0001-7370-4920, arianna menciassi https://orcid.ORG/0000-0001-6348-1081, MARCIA K. O'MALLEY HTTPS://ORCID.ORG/0000-0002-3563-1051, NABIL SIMAAN, PIETRO VALDASTRI HTTPS://ORCID.ORG/0000-0002-2280-5438, and GUANG-ZHONG YANG HTTPS://ORCID.ORG/0000-0003-4060-4020 作者信息与工作单位
 科学机器人
10 Nov 2021 2021 年 11 月 10 日
 第 6 卷第 60 期

Abstract 摘要

Robotics is a forward-looking discipline. Attention is focused on identifying the next grand challenges. In an applied field such as medical robotics, however, it is important to plan the future based on a clear understanding of what the research community has recently accomplished and where this work stands with respect to clinical needs and commercialization. This Review article identifies and analyzes the eight key research themes in medical robotics over the past decade. These thematic areas were identified using search criteria that identified the most highly cited papers of the decade. Our goal for this Review article is to provide an accessible way for readers to quickly appreciate some of the most exciting accomplishments in medical robotics over the past decade; for this reason, we have focused only on a small number of seminal papers in each thematic area. We hope that this article serves to foster an entrepreneurial spirit in researchers to reduce the widening gap between research and translation.
机器人学是一门前瞻性学科。人们将注意力集中在确定下一个重大挑战上。然而,在像医疗机器人这样的应用领域,重要的是要在清楚了解研究界最近取得的成就以及这些工作在临床需求和商业化方面的现状的基础上规划未来。这篇综述文章确定并分析了过去十年中医疗机器人学的八个关键研究主题。这些主题领域是通过检索标准确定的,检索标准确定了这十年中引用率最高的论文。我们撰写这篇综述文章的目的是为读者提供一种通俗易懂的方式,让他们快速了解过去十年中医疗机器人学领域最激动人心的成就;因此,我们只关注了每个主题领域中的少量开创性论文。我们希望这篇文章有助于培养研究人员的创业精神,缩小研究与转化之间不断扩大的差距。

INTRODUCTION 引言

Just more than three decades ago, the first roboticists began to explore the use of robot manipulators for performing surgical procedures. Two decades ago, the first commercial systems were installed in hospitals. In the past decade, the field of medical robotics has gained momentum, and thousands of robotic surgical systems are now installed in clinics around the world, and many millions of procedures have been performed. As the acceptance of surgical robots by our health care systems has become clear, robotics researchers have increasingly focused their attention on what the next generation of medical robots might look like. Their attention is not limited to surgical robots, and other areas of medicine are also being investigated, including robots to perform physical rehabilitation, telepresence robots for patient interaction with off-site health care workers, pharmacy automation, robots for disinfecting clinics, and more.
三十多年前,第一批机器人专家开始探索使用机器人机械手进行外科手术。二十年前,医院安装了第一批商用系统。在过去的十年中,医疗机器人技术领域的发展势头迅猛,目前世界各地的诊所已安装了数千台机器人手术系统,并已实施了数百万例手术。随着医疗系统对手术机器人的认可,机器人研究人员越来越关注下一代医疗机器人的发展。他们的关注点并不局限于手术机器人,其他医疗领域的机器人也在研究之中,包括进行身体康复的机器人、用于病人与异地医护人员互动的远程呈现机器人、药房自动化、用于诊所消毒的机器人等等。
Medical robots were first developed to allow surgeons to operate remotely and/or with improved precision on their patients, and the history of the field is well documented in the literature (13). The earliest efforts can be traced back to applications in neurosurgery (4) and orthopedic surgery (5). The first truly long-distance telesurgery was a transatlantic cholecystectomy performed 20 years ago (6). Although early progress in the field was somewhat unsteady, as is to be expected with the introduction of any radically new technology, medical robotics has reached a level of maturity that has encouraged the health care industry to make substantial investments in development activities.
开发医用机器人的初衷是为了让外科医生能够远程操作病人和/或提高操作精度,该领域的历史在文献中有详细记载(1-3)。最早的应用可追溯到神经外科(4)和整形外科(5)。第一次真正意义上的远距离远程手术是 20 年前进行的跨大西洋胆囊切除术(6)。虽然该领域的早期进展有些不稳定,但正如任何全新技术的引入所预料的那样,医疗机器人技术已经达到了一定的成熟度,从而鼓励医疗保健行业对开发活动进行大量投资。
Researchers, however, generally look farther into the future and beyond commercial development activities. As we consider some of the key research activities in the past decade, we obtain a glimpse of where medical robotics will head in the coming decades. This article focuses on the past 10 years and provides a retrospective assessment of the major accomplishments in medical robotics. We use an inclusive definition for what constitutes a medical robot that is intended to cover all material that would be appropriate for inclusion in a major robotics research journal or conference. This encompasses single- and multi–degree-of-freedom (DOF) motorized systems with motions that may be preprogrammed, joystick-prescribed, autonomous, or some combination of the three. We define medical robotics research as the creation of new robots and robotic technologies for medical interventions. A large body of medical journal papers devoted to the evaluation of existing medical robots has also been published over the past decade. Because these robots largely represent technologies developed during prior decades, they are not discussed here. Here, our goal was to identify the major research themes or “hot topics” in medical robotics over the decade and to summarize the seminal research papers that concisely highlight these themes.
不过,研究人员通常会把目光投向更长远的未来,而不是商业开发活动。当我们回顾过去十年中的一些重要研究活动时,就能窥见医疗机器人技术在未来几十年中的发展方向。本文聚焦过去十年,对医疗机器人领域的主要成就进行回顾性评估。对于什么是医疗机器人,我们采用了一个包容性的定义,旨在涵盖所有适合纳入主要机器人研究期刊或会议的材料。这包括单自由度和多自由度(DOF)机动系统,其运动方式可以是预编程、操纵杆规定、自主或三者的某种组合。我们将医疗机器人研究定义为为医疗干预创造新的机器人和机器人技术。过去十年间,医学期刊上也发表了大量专门评估现有医疗机器人的论文。由于这些机器人主要代表的是前几十年开发的技术,因此在此不做讨论。在此,我们的目标是确定这十年来医疗机器人领域的主要研究主题或 "热点话题",并总结能够简明扼要地突出这些主题的开创性研究论文。


十年热门话题


我们通过搜索科学网(Web of Science)上 2010-2020 年发表的有关医用机器人技术的高被引论文,确定了八个热门话题(表 1 和图 1)。这些热点话题可能与特定的临床应用有关(如话题1,机器人腹腔镜检查),也可能与在医学中广泛应用的使能技术有关(如话题7,软机器人技术)。

表 1.十年间的热门话题。
Open in viewer

图 1.十年八大热点话题的临床应用实例。

从 8 点钟方向开始,顺时针方向前进:腹腔镜机器人是医疗机器人技术的成功典范,其应用包括前列腺癌根治术、膀胱癌根治术、直肠癌切除术和子宫切除术。连续机器人是手动医疗器械的机器人版本,包括导管、支气管镜、子宫镜和结肠镜。非腹腔镜机器人已开发出各种应用,包括脑内电极植入和眼内显微手术。软体机器人已被用于辅助心脏收缩的软套筒和日常生活中的手部康复。辅助性可穿戴机器人可用于增强或替代运动障碍或截肢情况下的手臂和腿部运动。胶囊机器人是一种药丸大小的装置,可吞服用于消化道内窥镜诊断和治疗。治疗康复机器人可帮助神经损伤患者进行重复动作,以重新学习行走和抓握等任务。磁驱动可在体内无线产生力和力矩,以驱动无系机器人或确定导管尖端的方向。
Open in viewer

为了说明医用机器人学的论文数量是如何随着时间的推移而变化的,图2列出了工程和医学期刊的论文总数。图2和图3还列出了除一个热点话题之外的所有热点话题的论文总数(由于无法找到令人满意的搜索标准,因此未列出用于微创手术的非腹腔镜机器人的论文总数)。请注意,图 2 和图 3 的垂直尺度相差一个数量级。

图 2.1990 年至 2020 年在工程和医学期刊上发表的医疗机器人论文。

曲线报告了总数以及与腹腔镜机器人、治疗康复机器人和辅助可穿戴机器人等热门话题相对应的子集。请注意,由于冠状病毒病 2019(COVID-19)的停刊,2020 年的出版物数量可能有所减少(数据来自 Web of Science;参见材料与方法)。
Open in viewer

图 3.1990 年至 2020 年在工程和医学期刊上发表的医疗机器人论文。

曲线报告了软体机器人、磁驱动、胶囊机器人和连续机器人等热门话题的论文数量。请注意,由于 COVID-19 停产,2020 年的论文数量可能有所减少(数据来自 Web of Science;见材料与方法)。
Open in viewer

从图2可以看出,在工程和医学期刊上发表的有关医用机器人的论文数量呈指数增长,从1990年的6篇增加到2020年的3500多篇。由于直觉外科(Intuitive Surgical)公司的达芬奇机器人大获成功,医学期刊上有关腹腔镜机器人的论文占了绝大多数(占总数的60%至70%),2020年将超过1300篇。与这一技术的成熟度相对应,有关腹腔镜的工程论文在 2019 年达到 126 篇的高峰。

治疗康复和辅助可穿戴机器人是工程学论文的主要内容。在过去十年中,这两个热门话题约占工程期刊医学机器人论文的80%。虽然这两个主题在进入这十年时的论文数量相当,但治疗康复后来明显超过了辅助性可穿戴机器人。不过,值得注意的是,有关这些主题的医学论文数量还不到工程学论文数量的 25%。这可能是由于医学期刊论文通常报告临床试验的结果,而临床试验比工程研究更费钱费时。

图 3 中的技术不如图 2 中的技术成熟,因此工程和医学期刊论文较少。其中,磁驱动技术最为成熟,工程和医学论文都呈指数增长,医学论文的数量则落后于工程论文。这一主题的持续增长在一定程度上取决于能否开发出微型机器人在临床上的可行应用。

软机器人论文的分布图显示,这一主题还处于发展周期的早期。但需要注意的是,我们排除了材料期刊中出现的大量有关软致动器和传感器的基础文章,这些文章表明医疗机器人是一个潜在的应用领域。在未来十年中,将这些广泛应用的技术映射到医疗机器人中,很可能会产生图 3 中曲线所显示的指数级增长。

连续体机器人技术与众不同,因为早在 1990 年之前,人工驱动的连续体式医疗器械就已经存在。虽然近几十年来新的连续体机器人结构已经开发出来,但使这些设备成为机器人的关键进展并不是机械设计,而是数学建模。如下文热点话题部分所述,这项工作已基本完成,未来工程论文的增长可能会描述包含连续体组件的临床机器人设计。有关这一主题的医学论文起步较慢,因为商业化工作(如汉森医疗公司的心脏消融导管)并不成功。新的临床系统,如直觉外科的 Ion 机器人和 Auris Healthcare 的 Monarch 平台(后者基于 Hansen Medical 的机器人导管技术),都是用于进行远端肺部活检,这将在未来十年中引发越来越多的医学论文。

在热门话题技术中,胶囊机器人是最不成熟的,也许也是最专业的。正如图 3 中的出版物所报道的,在过去十年中,胶囊机器人的能力有了大幅提高。这项技术可能正处于拐点。如果能证明这些机器人的能力足以取代目前的临床方法,那么人们对这一话题的兴趣就会加快,从而推动其进一步发展。有证据表明,磁驱动软胶囊机器人就是这种情况,这种方法具有在消化道内进行无创诊断和治疗的潜力。

下文将介绍每个热点话题,总结十年来最重要的成就,并对当前和未来的研究方向提出见解。如图 2 和图 3 所示,每个主题都发表了许多论文。为了突出重点,为希望尽快了解某一主题的读者提供一份重点阅读清单,我们只提供了几篇引用率较高的论文作为参考文献。附注版参考书目作为补充材料,按热点话题编排,包括本文付印时被其他论文(Web of Science)和专利(Lens.org)引用的次数。

 机器人腹腔镜手术


腹腔镜机器人技术可能是医疗机器人技术中最成熟、商业上最成功的子领域。在过去十年中,腹腔镜机器人技术在临床、商业和学术三个方面都取得了进展。腹腔镜机器人研究中迅速增长的大部分是临床研究。许多研究旨在比较机器人与标准(通常是手动腹腔镜)技术在不同手术程序中的功效。例如,对前列腺癌根治术、膀胱癌根治术、直肠癌切除术和子宫切除术的研究。

在商业方面,直觉外科(Intuitive Surgical)公司生产的达芬奇机器人在这十年中不断发展。该系统现在可以在任何手臂上安装内窥镜和腹腔镜器械(早期型号有专门的内窥镜手臂),实现手臂和病人推车的半自动定位,并改进了器械耦合。在过去的十年中,达芬奇已经推出了至少 50 种不同的器械。此外,达芬奇的使用量也在迅速增长,根据其年度报告,2019 年完成的手术超过 120 万例。与此同时,在过去十年中,曾让直觉外科在机器人腹腔镜手术领域占据垄断地位的最初专利开始到期,导致几家大型医疗器械公司开始着手开发自己的机器人,目前这些机器人正在陆续推出。

这十年来,学术研究在两个方面取得了进展。首先是将腹腔镜机器人作为开发更强功能的平台。这方面的主要子课题包括引进开放式平台机器人用于研究,初步努力开发手术自动化,以及继续开展将力传感集成到腹腔镜工具中的工作。腹腔镜手术的第二个研究方向是考虑采用新的机器人结构,以减少手术的侵入性。单孔系统最受关注,包括直觉公司最近推出的商业系统达芬奇 SP。此外,还有一些关于机器人的研究,这些机器人被插入体内,然后在系绳或外部电场的驱动下以机械方式脱离。下文将逐一介绍这些课题。


开放式平台腹腔镜机器人


新的机器人功能通常无法单独开发和测试。为了使研究结果具有可重复性和可比性,必须在具有良好特性的高性能测试平台上进行此类研究。单个研究小组开发自己的腹腔镜机器人系统是一项巨大的重复性工作。认识到这一需求后,两个研究小组为研究界推出了开源机器人平台。第一个是 Raven II,这是一个非临床机器人手术研究平台,可在腹腔镜手术的典型工作容积内紧凑地支持 2 到 4 台腹腔镜器械(包括达芬奇 Si 器械)(7)。随后,直觉外科与几位学术研究人员合作推出了一个研究平台,该平台由翻新的达芬奇 Si 患者和外科医生侧机构、带有定制电子设备的立体显示硬件和控制包组成--达芬奇研究套件或 dVRK(8)。两套系统均未通过人体使用认证,但均已通过动物护理和使用委员会的批准,进行了动物手术。

 手术自动化


腹腔镜机器人系统用于执行各种标准手术任务。它们本身还能提供完整的器械运动驱动以及描述器械运动的高质量视频和丰富的数据集。随着达芬奇等商业产品的用户界面透明度达到了极高的水平,研究重点转向了可能需要通过自动辅助来补充远程操作机器人手术的使用案例。安全有效的自动化手术子任务可能带来的好处包括:提高精确度、融合非视觉或触觉传感器信息、遵守精确的术前计划,以及改善重复性应力损伤和对外科医生造成的其他人体工程学危害。安全有效地实现特定手术任务自动化的障碍非常明显,其中包括对(不断变化的)手术区域进行精确的三维(3D)重建、对细长灵活的内窥镜机制进行可重复的精确控制、操作员对整体操作状态的精确态势感知、任务计划对传感器误差、异常组织特性和紧急事件的稳健性。这方面的工作包括开发二维和三维计算机视觉技术来检测和定位机器人工具(9),以及通过观察手术子任务来学习(10)。还包括半自动体内缝合(11),尽管这些研究中的技术需要简化的视觉环境。自主性的发展仍然是一个非常活跃的研究前沿。


导航、术中成像和可视化


尽管手术自动化通常被视为一种新事物,但最早的一些医用机器人,例如在关节置换术中用于铣削骨腔的机器人,其自动化程度可与机床媲美(5)。术前计算机断层扫描或磁共振图像用于生成手术计划,并在计算机控制下执行,临床医生则提供全面监督。随着该领域开始关注软组织手术,预编程动作让位于临床医生指导的远程手术控制。尽管控制模式发生了变化,但利用术中或术前数据进行图像引导,对于所有类型的机器人手术,而不仅仅是腹腔镜手术,已变得越来越重要。这些技术可以评估组织灌注情况,观察组织表面以下的解剖细节,最大限度地降低损伤神经和血管等下层重要结构的风险。例如,直觉外科将近红外成像与吲哚青绿(ICG)整合在一起,可对体内微循环进行实时评估。ICG 是一种三羰花青化合物,可溶于水,可静脉注射。这种 "萤火虫 "技术可吸收近红外线,注射后仍留在血管内,可用于评估血液灌注情况,例如检测肠吻合处血液灌注减少是否会导致吻合口开裂(12)。


接触力传感与控制


手动器械和腹腔镜器械都会使外科医生的手脱离被操作的组织,从而扭曲或完全抑制力和触觉。为了在牵引等任务中安全操作组织,必须感知和控制相互作用力。此外,触觉传感还可以在机器人手术过程中在操纵器上重新进行组织触诊。这种传感的技术障碍包括腹腔镜器械尺寸小(直径 5 至 10 毫米)、可重复使用器械消毒措施的热度和腐蚀性、一次性使用器械的成本以及传感点与工具-组织接触点或区域之间的力学限制。通过使用巧妙的机械设计来分离拉力和抓取力(13),以及引入新的传感技术,如电容式顺应聚合物传感器(14),在解决这一局限性方面取得了进展。


单孔腹腔镜机器人


与标准开腹手术相比,腹腔镜手术方法虽然降低了侵入性,但典型的手动或机器人手术需要三到四个切口来安装单个器械和可视内窥镜。将多种器械控制、驱动和内窥镜可视化整合到一个单入口端口需要增加机械复杂性和密度。著名的创新单孔原型包括(15,16)。

 分离式手术机器人


经典的腹腔镜范例包括将细长的器械通过一个端口/导管插入腹壁的枢轴点。这种几何形状从根本上限制了外科医生接近手术任务的运动。打破这种限制的研究面临着以下挑战:在人体内部实现所有驱动和传感、提供适当的电源和通信,以及实现独立部署的机器人从手术部位安全部署和回收。能够消除套管支点限制的原型包括通过端口插入内窥镜和机器人器械,然后利用磁力(17)或同时用于动力传输的针尖大小的穿刺(18)将其连接到腹壁上。

在医学应用方面,支持腹腔镜手术的机器人是最先进的,已有 500 多万人接受了治疗,这表明下一个十年的发展势头迅猛。这一数量使得医疗创新和新器械的扩散有望继续下去。新的传感器、更好的估算和建模数据及算法将实现对力的精确控制。为支持腹腔镜外科医生和其他机器人外科医生而逐步引入的自动化技术将实现新型成像和治疗模式的无缝整合,从而增强外科医生作为先进手术器械的监督和监控者的作用。腹腔镜机器人技术最重要的进步将是那些能为患者带来最直接益处的技术,包括更好地治疗肿瘤边缘,减少切除健康组织的需要;发现并减少罕见的手术失误;减少手术过程中的创伤和感染风险。


非腹腔镜手术专用机器人


受达芬奇机器人在腹腔镜手术方面取得成功的启发,外科医生和工程师们在过去十年中也在探索非腹腔镜手术的新型机器人解决方案。重点领域包括腔内和自然孔介入以及用于显微手术的机器人。


腔内和自然孔道手术


在过去十年探索的外科手术机器人的新兴应用中,我们注意到腔内和内窥镜机器人方面的工作,这些机器人通过消除进入内部解剖结构所需的皮肤切口,以及提供允许沿着曲折解剖通道深入进入的解决方案,寻求进一步降低发病率。Shang 等人(19)提出了一种用于腔内手术的高度铰接式内窥镜平台,并展示了腹腔和经阴道入路。Burgner 等人(20)探索了同心管机器人用于经鼻垂体手术的可能性。Rivera-Serrano 等人(21)介绍了使用高度铰接的机器人探头进行经口入路和手动工具输送。

最近还推出了新的商业系统,重点是用于自然孔微创活检的可转向导管。其中最引人注目的可能是直觉外科公司的 Ion 系统和 Auris Healthcare 公司的 Monarch 系统。Ion 和 Monarch 系统利用灵巧的导管衔接来实现外周肺活检,否则很难安全实现。这些系统利用了以前开发的肌腱驱动连续机器人建模和设计技术。

 显微外科


视网膜显微手术面临着超出现有手动手术系统能力的独特挑战。研究人员采取了三种方法来应对这些挑战:(i) 具有震颤过滤功能的手持式机器人,(ii) 手拉手(合作式)机器人,以及 (iii) 具有远程运动中心的遥控机器人。带主动震颤消除功能的手持式机器人已在视网膜手术中得到改进(22)。在这种方法中,外科医生在手持工具中产生的震颤会被感应到,工具顶端的机器人会移动以抵消震颤,从而消除大部分震颤。

合作机器人为抑制震颤提供了另一种方法,同时也提供了更多的功能。这些机器人与外科医生一起固定手术工具,并在导纳控制下运行,根据外科医生施加到工具上的力来产生运动。机器人的动作比临床医生的徒手动作更加精确,而且不会产生震颤。此外,基于主动约束/虚拟固定装置的辅助控制法则可以帮助外科医生遵循所需的路径,避免危险的工具偏移,并为长时间握住手术工具提供生理缓解。这种方法已应用于玻璃体视网膜显微手术(23)。它还被商业化用于上气道的工具稳定,由于经口进入,针驱动器和抓取器的长度使得精确操作具有挑战性(Galen Robotics 公司)。该系统还在乳突切除术中进行了应用测试,涉及使用图像引导的屏障虚拟夹具进行安全的骨去毛刺,图像引导机器人系统降低了损伤面神经的风险。

机器人显微手术的第三种方法是使用远程操作。在这种方法中,临床医生根本不需要握住工具,而是通过输入设备控制机器人工具。这项技术具有合作式机器人的所有优点,并增加了运动缩放功能,有可能减少惯性和摩擦效应。这种用于眼内手术的系统已经进行了首次人体试验(24)。

 未来展望


有几项令人兴奋的发展将推动手术专用机器人平台的新一轮创新。在过去的十年中,我们已经看到了人工耳蜗电极阵列转向和插入领域的一些研究成果。这些例子表明,利用软机器人技术和可能的磁驱动技术来创建新的深度导航平台是很有潜力的。我们还看到了将操纵和诊断传感相结合的令人兴奋的工作。我们认为,目前仍然需要能够利用体内传感提高外科医生工作效率的解决方案。能够利用术中传感和自适应辅助行为(虚拟固定装置或共享控制)的系统也将使外科医生实现快速临床部署,并提高感知和性能。


辅助性可穿戴机器人


辅助可穿戴机器人学侧重于设计和控制可穿戴机器人设备,以改善肌肉骨骼或神经肌肉受损者的行动能力或功能。该领域的贡献包括为上肢和下肢截肢者开发机器人肢体(也称为动力假肢),以及为神经肌肉受损者(如脊髓损伤、中风、多发性硬化症或脑瘫患者)开发外骨骼(也称为动力矫形器)。虽然这一领域的历史至少可追溯到 20 世纪 60 年代初(例如,见《1963 年人体肢体外部控制国际研讨会论文集》),但在 2010 年至 2020 年这十年间,这一领域已全面崛起。

尽管对该领域的研究进行一一列举超出了本简短摘要的范围,但有三大类研究包括:(i) 动力下肢假肢;(ii) 神经控制上肢假肢;(iii) 下肢外骨骼(LLE)。在下肢假肢领域,2010 年(大约)之前的技术水平是能量被动式装置。在过去十年中,假肢膝关节和踝关节引入了动力装置。由于动力装置具有意志力,因此需要新的控制方法来确保人类与装置之间的协调。这方面的方法包括片式无源阻抗控制(如 (25) 所述)和相位可变控制(如 (26) 所述),前者可确保局部无源行为,后者则以统一的控制策略取代有限状态结构。此外,由于供电设备大大增加了此类设备的特定活动行为范围,因此需要活动识别方法来确定当前的活动状态和改变活动状态的意图。由数据缩减和分类方法组成的模式识别结构已经建立,在这种结构中,可以根据运动模式实时推断出特定的运动活动,例如 (27) 所描述的方法。

与下肢装置不同,2010 年之前的上肢假肢技术是动力型(即肌电假肢)。不过,这些装置通常使用单多维度手和顺序肌电控制。在过去的十年中,出现了多种多抓手,并开发出相应的多抓手和/或多自由度手与手臂控制方法。这些控制方法包括基于肌电图(EMG)的模式识别方法,其中多通道 EMG 被用作模式分类器的输入,反过来,模式分类器选择相应的所需抓握姿势或手臂运动,随后执行相应的协调手和/或手臂运动(28)。在这十年中,植入电极还被用于多抓握假臂的传出运动控制(29),以及提供与假手相对应的有意义的神经感觉反馈,如(30)和(31)报告的令人印象深刻的工作。

在过去十年中,LLEs 领域的学术研究和发展有了显著的增长,特别是与开发此类系统的设计和控制的最佳实践相关的研究,这些研究因损伤和目标的不同而各异。在这十年的早期就出现了描述外骨骼设计的工作,包括运动意图和控制方法。通过惯性测量单元(IMUs)测量身体姿态来推断步行(或进行不同活动)的意图,是一种广受欢迎的用户意图方法(32)。除了外骨骼,软质 "外衣 "也在这十年间问世(33)(另见 "用于医疗的软机器人技术 "部分)。相对于使用刚性连接的外骨骼,软质外骨骼使用低模量材料,通常配合肌腱驱动,在传递运动辅助的同时,不会对非驱动 DOF 施加很大的运动限制。尽管针对非行动不便者的 LLE 控制方法已在这十年间确立,例如(32),但该领域尚未完全确立相应的最佳实践,为行动不便者提供步态辅助。在非行动不便者的情况下,人与机器之间不需要关节级的合作控制,而辅助有行动能力的用户通常需要设备与人之间进行高度的关节级协调。预计在未来十年内,该领域将在不损害使用者的自主性或保持平衡能力的情况下(尤其是在没有稳定辅助装置的情况下),建立起辅助行动不便者的方法,并以改善平衡为理想目标。


治疗康复机器人


辅助性外骨骼和假肢的目的是替代丧失的功能,而康复机器人的设计目的则是在神经损伤(最常见的是中风和脊髓损伤)后对肢体进行重复运动治疗,从而恢复患者的能力。这些机器人设备能够以诱导或促进神经可塑性的方式执行伸手、抓握、行走和踝关节运动,从而恢复运动范围和运动协调性。当这些成果得以实现时,患者的肢体功能就得到了恢复,在某些情况下,他们能够进行自我护理、独立生活,甚至在受伤后重返工作岗位,而无需机器人设备的支持。

一些康复机器人采用外骨骼的形式,可安装在腿部、手臂或手上,而另一些则是末端效应器型机器人,通过手柄或脚部平台与人体连接。这些装置要么以下肢为目标,主要目的是恢复活动能力,要么以上肢为目标,主要目的是恢复灵活性。机器人成为物理治疗师的可靠工具,为病人提供精确、可重复的运动支持,其强度可通过可变阻力、辅助或重复次数进行调节。将机器人设备融入康复训练中可以降低人员成本,最大限度地减少工伤,并提高训练的一致性。用于康复的机器人既可以作为提供治疗的手段,也可以作为评估工具,因为机载传感器可以测量治疗干预过程中的动作特征,提供运动能力进展的细粒度视图,而传统的临床评估量表是粗略的,侧重于功能能力,无法捕捉到这一点。

自 20 世纪 90 年代初引入康复机器人作为提供精确、重复运动治疗的手段以来,康复机器人在设计、制造、控制和临床应用方面取得了重大进展。在 2010 年之前的十年中,主要的研究成果包括第一代神经康复机器人设备的临床评估和商业化,包括用于步态康复的基于跑步机的外骨骼(如 Lokomat)和用于上肢康复的末端效应器型机器人(如 InMotion ARM 机器人)。自这些最初的发展之后,在本世纪初,研究人员开始为上肢开发新的外骨骼型机器人,可针对肘部和肩部远端的特定关节运动,同时还推出了可促进地面行走的下肢外骨骼。在这十年中,为更好地协调机器人和病人之间的运动,在控制算法的开发方面开展了奠基性工作。

2010-2020 十年间,康复机器人研究主要集中在四个领域。首先是新型设备设计,越来越多地采用外骨骼形式,重点关注上肢远端关节,并将顺应性和软材料用于驱动和结构。第二是开发新的控制算法,以调节人与机器人之间的互动,最大限度地激发人的参与。第三是创建意图检测方法,以推断和支持病人所需的动作,而不是规定或预先编程的轨迹。第四,扩大机器人设备的使用范围,对神经康复进行客观和定量评估,而不仅仅是提供治疗。

在过去 10 年中,研究人员越来越关注手部和腕部康复机器人的设计,因为自我喂食、梳理和护理的能力需要恢复手部功能和灵活性。与行走的周期性不同,上肢和手部的运动涉及数十个自由度,因此需要对刚性手臂和手部外骨骼进行复杂的运动学设计,并采用基于肌腱或缆绳的驱动方案,试图通过远程定位执行器来减轻设备重量和惯性(34)。一些研究小组已将软机器人技术应用于基于手套的设计中,这些设计侧重于功能性抓握,使用气动驱动,甚至可以促进家庭康复(35)。

在过去十年中,康复机器人的控制方法取得了令人瞩目的进步,主要是那些促进机器人与病人之间合作的方法。人们提出了越来越先进的方法来估计病人启动或执行伸手动作或步态轨迹的能力,并将其与机器人设备的自适应控制方案相结合,自动调整机器人的支持量,最大限度地提高病人对动作执行的贡献[上肢康复的例子见(36),下肢康复的例子见(37)]。众所周知,这种策略可以促进神经可塑性,而神经可塑性对于运动协调能力的恢复至关重要(38)。

患者在认知和身体两方面的参与是康复过程中促进神经可塑性的另一个已知因素(39)。在过去的十年中,研究人员开发了新的方法来检测患者的运动意向,这些方法使用表面肌电图(EMG)测量肌肉本身的电活动,或使用脑电图(EEG)从头皮表面记录的电位变化推断患者的运动意向。对这些技术的临床评估尚处于早期阶段,但一些初步研究结果表明,基于脑电图的意向检测结果与未进行意向检测的机器人治疗结果相当[例如,见(40)]。尽管这一结果乍看起来令人失望,但考虑到实验设置的复杂性和计算开销,使用该技术在单次治疗中实现的动作重复次数远远低于单纯的机器人康复治疗。尽管如此,临床疗效却不相上下,这意味着此类技术可以让更多无法主动运动的严重受损者从机器人康复中受益。

在过去十年中,机器人康复设备作为评估工具的应用是取得进步的最后一个领域。众所周知,临床评估量表在检测运动功能改善方面的能力相对较弱。配有高分辨率传感器的机器人设备可用于评估运动范围、肢体内部和肢体之间的协调性以及运动流畅性等特征(41)。此外,这些设备还可以在更高分辨率的时间尺度上跟踪康复情况,因为数据可以在每次治疗过程中收集。机器人对神经恢复的评估极有可能影响干预本身,这为机器人设备在未来显著改善康复效果带来了希望。

过去十年的发展已开始在临床上进行评估,既使用研究级设备,也使用已商业化的设备。旨在评估新型设备、控制器和用户意图检测方法对中风和脊髓损伤康复的功效的临床研究,在某些情况下正在积极招募参与者,而其他研究已被列入临床试验数据库,但尚未招募参与者。临床研究的例子包括软机器人手套、步态康复互动外骨骼的调查,以及使用肌电图或脑电图控制康复外骨骼的可能性。虽然与机器人技术的进步没有直接关系,但还有一些临床研究旨在确定现有设备对不同神经损伤的治疗效果。例如,为治疗中风患者而开发的设备正在对脊髓损伤患者进行评估。正在进行的另一项值得注意的工作是评估机器人康复与脊柱刺激或药物治疗等其他治疗干预措施相结合的疗效。

虽然机器人设备已被证明能有效地对中风和脊髓损伤后的上肢和下肢进行治疗,但与传统疗法相比,迄今为止对临床功能结果的改善并不明显(38)。未来的研究工作越来越集中于更好地了解神经可塑性的机制,包括如何可靠地诱导和利用神经可塑性以最大限度地提高治疗效果。这些工作越来越依赖于神经科学的进步,包括记录神经元活动的新技术。机器人技术的进步对实现这些目标也至关重要,包括开发更合适的设备以及嵌入设备中的更精确的传感和驱动,以针对最有可能促进恢复功能和独立性的上下肢远端自由度。最后,还需要先进的控制算法,能够更精确地实时描述患者的能力,不仅能调整完成动作所需的支持程度,还能施加适当的阻力或挑战。

 胶囊机器人


新千年伊始,Given Imaging 公司(现为美敦力公司)推出了无线胶囊内窥镜,作为检查胃肠道的微创方法。只需吞下一颗 "药丸",就能采集肠道深处的图像,这彻底改变了胃肠道内窥镜检查领域,并引发了一个全新的研究领域:医用胶囊机器人。

人们很快就认识到,传统的胶囊内窥镜只能被动地在胃肠道内移动,无法与肠道互动并进行干预。解决这一问题的第一个方法自然是采用 "机载驱动",利用内部微型运动机制(如腿)主动控制胶囊(42)。

然而,随着研究界意识到一个重大挑战,对这种方法的热情迅速消退:利用现有技术将复杂的机制(包括充足的电源)集成到一个 "药丸大小 "的装置(通常长 24 毫米,直径 11 毫米)中是不切实际的解决方案。

为解决这一限制,我们探索了磁驱动的替代方法。磁耦合的使用绕过了对复杂机械装置的需求,减少了对机载电源的需求,从而减小了设备的整体尺寸和复杂性。这种驱动形式通过外部产生的磁场来操纵胶囊(内含嵌入式磁铁)。这种机械结构简单的装置可以精确控制胶囊的方向并诱导相对运动。磁场可由永久磁铁或电磁铁产生。两者相比,虽然电磁铁产生的体积磁通密度低于永久磁铁,但电磁铁在改变磁场大小方面提供了额外的控制能力。医用胶囊机器人目前已成为标准介入内窥镜检查的临床可行替代方案。

虽然提供了一个优雅的机械解决方案,但该领域的研究人员面临着开发可靠控制策略的挑战--由于磁场的高度非线性特性,这是一项复杂的任务。这些策略从手动操作手持式外部永久磁铁发展到机器人控制磁场(43、44)。事实证明,这种方法在临床和商业上对胃部探查都很有效,目前已在医院使用(NaviCam,ANKON)。

通过将磁驱动与软机器人技术相结合,在药丸大小的机器人中成功展示了利用磁驱动的有效介入能力。一种由外部磁场驱动的智能顺从装置显示了主动移动到感兴趣的部位并递送药物(45)或收集组织活检样本(46)的可行性。

随着市场对易用性的要求越来越高,再加上磁力驱动的复杂性,机器人辅助在胶囊内窥镜磁力控制中的作用大大增加。其中一个关键因素就是实时定位技术的引入。了解胶囊的位置和方向(即姿态)对于规划磁力和扭矩的应用以实现所需的运动至关重要(47)。临床上可行的定位实例主要基于磁定位技术(48)。现在,研究人员能够探索不同程度的计算机辅助,最终目标是使内窥镜检查像电子游戏中驾驶汽车一样直观。

在下一个十年开始之际,药丸大小机器人的智能磁控制与多模式成像(如多光谱、自动荧光和微波)和微型/纳米机器人相结合,可能会提供前所未有的诊断和治疗能力。除了临床用途外,这还可以提供一个研究平台,深入人体,解决与微生物组等有关的其他科学问题。

未来还可能在能量存储或无线电力传输方面取得令人兴奋的进展,从而恢复机载驱动方法或 "多尺度操作",如(46)中所建议的那样,一个药丸大小的机器人可以部署一支介入微型机器人大军。无论前路如何,医用胶囊机器人技术仍然是一个令人兴奋、发展迅速、极具影响力的研究领域。


医学磁传动


早在磁场用于生成人体内部图像之前,磁场就被用于进行外科手术。利用磁场提取意外嵌入眼球的铁屑的证据至少可以追溯到 17 世纪和工业革命时期。20 世纪 50 年代,人们开始首次研究如何利用磁场引导安装在尖端的磁铁导管。不过,直到 2003 年,Stereotaxis 公司的 Niobe 机器人磁导航系统才开始投入市场,该系统使用两块移动的永久磁铁产生变化的磁场,用于引导心内膜消融导管治疗心律失常(电生理学手术)。虽然这种磁导导管系统的市场渗透速度缓慢,但在过去十年中,研究人员和医疗设备公司对它的兴趣与日俱增,我们看到发表的相关论文数量呈线性增长,引用次数也呈指数增长。


多多维电磁导航系统建模


过去十年中,磁致动领域的一项重要突破,也是磁致动和微机器人领域引用率最高的论文是 (49)。这项工作将任意数量的几何排列电磁学的物理和数学知识进行了概括,以便对给定的磁体施加磁力和力矩。这为机器人界将 50 多年来在机器人机械手控制和设计方面的研究成果用于解决磁驱动问题开辟了道路。这项工作产生的专利为一家公司开发七电磁铁系统奠定了基础,该系统已被用于对多名患者进行心内膜导管消融术。


磁导向微型机器人


如上一节所述,胶囊机器人是一种相对较大的装置,可以安装较大的永久磁铁,从而利用磁场梯度提供可观的驱动力(43)。随着自由游动装置的尺寸越来越小,可安装的磁性材料数量也越来越少,这使得磁场梯度方法具有挑战性,因此需要新的磁驱动策略。受鞭毛细菌的螺旋运动和精子等真核生物的行波运动的启发,2010 年前出现了第一批微型机器人。螺旋结构尤其适合磁驱动,因为旋转磁场产生的扭矩与流体阻力扭矩相当。在过去十年中,人们开发出了强大的制造技术和有效的模型,为开发能够执行有用医疗任务的微型机器人创造了机会(50)。在这个方向上的许多努力仍在继续,新的动力是使用最终会在体内生物降解而不会对病人造成伤害的材料,或开发磁性工具,用于在使用后从体内回收磁性微机器人。


毫米尺度的磁运动策略


如果放宽对磁性材料选择的限制,将有毒的硬磁性颗粒融入柔性聚合物结构中,就可以设计出毫米级的机器人,展示出许多令人兴奋的新运动策略。Sitti 的研究小组(51)最近研究出一种能够利用各种动态变化的磁场进行多模式运动的单一装置,其中的许多技术在这项研究中达到了顶峰。论文在实验中展示了大量令人印象深刻的滚动、行走、跳跃和爬行运动。


磁导向导管


磁驱动技术目前的发展趋势是回归本源,磁导管和内窥镜的研究越来越多。赵和合作者最近的研究(52)证明了磁驱动用于引导内嵌硬磁颗粒的亚毫米级水凝胶覆盖导管的潜力。这项工作确定了未来可使用此类设备进行的一系列医疗程序。毫无疑问,人们之所以越来越感兴趣,是因为有望在更小的范围内制造出更可操控的医疗设备,而且比复杂的拉线式或电机式设备更经济。

在过去的十年中,医疗用磁力传动技术取得了多项进展。我们对如何产生动态变化的磁场和磁场梯度有了更深入的了解,这些磁场和磁场梯度可以无害地穿透整个人体。我们看到,随着软机器人技术的发展趋势,软聚合物材料的使用也在增加,其目标是制造出更安全、更可操控的磁性医疗设备(48, 49)。最后,我们还看到许多此类研究已进入体内试验甚至人体试验阶段。当然,在下一个十年中,利用这种技术将实现更有效的医疗疗法,从而迅速加快商业化进程。


医疗软机器人


要确定是机器人技术领域的哪项成就开创了医学软机器人技术领域,并非易事。基于软概念、内在顺应性结构和智能材料的机器人技术从一开始就与生物仿生学和生物启发密切相关。另一方面,人们对具有顺应性身体的生物启发机器人的兴趣与日俱增,这促进了对智能材料的研究,这些材料可用于制造软机器人,或为软机器人提供从宏观到纳米级的传感和驱动能力(53)。举例来说,大多数关于具有传感功能的人造皮肤的研究都可以在应用于软机器人和软设备的文献中找到。

纵观过去 10 年的文献,有许多关于软机器人和生物启发机器人技术的基础综述或调查论文,这些技术可用于许多应用领域(包括与内在安全性问题极为相关的医疗领域),还有许多关于新型智能材料的材料科学论文和综述,其中传统的硅基传感技术被具有智能行为的硅基技术所取代。

考虑到过去十年中引用率最高的论文,不包括材料论文和调查论文,可以确定两类与医学有关的作品:一类是用于康复或增强人体功能的可穿戴软体机器人,这在前面的章节中已经介绍过。第二类包括用于介入和手术的机器人或介入和手术机器人组件。关于手术和干预领域,可以确定三个平行的子课题:(i) 用于手术或干预的软装置,即在宏观和微观尺度上用软机器人设计取代整个传统装置(45, 54);(ii) 软、生物启发或顺应性组件,可作为独立装置使用,也可集成到更传统的系统中(55, 56);(iii) 用于高级模拟器的软组件和系统,既可用于训练,也可用于研究特定生理功能(57-59),介于机器人和生物人造器官之间。

在第一类中,一些用于外科手术和内窥镜检查的模块化和可调刚度装置的有趣设计已经开发出来,并已达到临床前或尸体测试水平(54)。其主要理念是将外科手术操纵器改造成大象躯干或章鱼手臂,只需改变不同部分的硬度,同一手臂就能完成更多任务。将软机器人技术应用于胃肠道胶囊内窥镜检查也取得了相关成果,如上所述,开发出了用于靶向给药的软体胶囊(44、54)。

就第二类而言,生物启发组件--在某些情况下具有软体或与环境安全互动的生物仿真--已证明与传统设备(55, 60)相比具有更强的能力,例如在活组织检查方面。不过,早在 20 多年前,先进的内窥镜就已经开始探索软体和生物启发设计,试图使医疗工具的形状适应所探索的人体环境特征(如上文提到的 (45, 46))。

最后,还有一个不容易归入任何类别的最新研究方向,即把软机器人用于体内辅助或治疗设备(59,61)。除了磁性微机器人学和软机器人学交叉领域的一些研究已经进入临床阶段外,所介绍的大多数技术仍需要大量的临床前和临床验证。

软机器人技术领域虽然尚未产生典型的医疗机器人系统,但它正在引导大多数医疗仪器的设计和开发。与此同时,软机器人技术还促进了对软材料和新型制造技术的研究,从而为生物医学应用开辟了意想不到的途径。


医疗连续机器人


连续机器人通过挠曲变形而非离散关节来改变形状。这种机器人能够形成三维曲线,因此可以通过比传统机器人机制更小的手术走廊进行手术。它们可以通过自然孔道进入体内,在体腔内导航,并在通过固体组织时绕过关键结构。与传统设计相比,连续体机器人的挠曲顺应性也提高了其安全性。

连续机器人的特点可以通过用于产生挠性形状变化的驱动方法来体现。最常见的形状控制方法是改变施加在围绕中央柔性骨架排列的一条或多条腱上的位移或拉力。这种技术的另一种变体称为多骨干设计,用可施加拉伸力和压缩力的杆来代替腱串。第三种类型是同心管机器人,它模糊了执行元件和主干的作用,利用预先弯曲的同心组合超弹性管的相对平移和旋转来实现形状变化。本文另一部分将详细讨论磁驱动技术,它是第四种技术,利用放置在患者周围的外部磁铁,使带磁头的软管产生所需的偏转。

在 2010 年之前的十年中,主要的研究进展涉及为肌腱和多骨干驱动连续机器人架构开发设计原则和基于力学的运动学模型。这项工作促成了重要的医疗机器人商业化工作,如汉森医疗公司的腱驱动心导管。此外,还提出了一种腱驱动设计,用球形关节连接的一系列短圆柱链节取代了柔性骨干。这种设计成为 Medrobotics 公司商业化手术机器人的基础。2000 年代,首次提出了同心管机器人的概念,但直到 2010 年才完成对这种结构的设计原理和运动学模型的更完整描述(62)。

2010-2020 年这十年间,连续机器人研究主要集中在四个领域:(i) 将外部接触和负载纳入机器人建模和控制;(ii) 开发机器人刚度控制方法;(iii) 创造 "软 "连续机器人;(iv) 为特定临床应用设计连续机器人。下文将逐一介绍。


扩展运动学模型以考虑外部接触和载荷


在许多医疗应用中,机器人不仅会在其顶端与组织接触,还会在其长度方向的许多位置与组织接触。与刚性机器人不同的是,这些接触力会使连续机器人产生明显的变形,从而导致与尖端位置和方向相关的运动学图谱(如肌腱张力)出现较大误差。一个重要的研究方向是将外部负载纳入运动学模型(63),并从运动学输入变量(如肌腱张力)推断外部负载(64)。另外,还有人提出了一种无模型方法,即在任务执行过程中估算接触受限的运动学模型(65)。对于基于模型的控制方法,除了从运动学输入推断外部负载外,另一种方法是直接感知外部负载。虽然以适合医疗干预的尺寸和价格创造分布式传感皮肤仍是一个悬而未决的问题,但在过去十年中,人们在开发可估算机器人形状的传感器方面做出了显著的努力(66)。

 刚度控制


与刚性机器人相比,连续体机器人固有的灵活性提高了它们在体内导航到手术部位时的安全性。然而,手术任务涉及对组织施力,而连续体机器人的顶端刚度较低,需要较大的机器人位移才能产生一定的力。基于任务的作用力水平以及可用于操纵机器人的有限空间,决定了执行任务所需的最小顶端刚度。近十年来,一些重要的工作已经开发出了增强和控制连续机器人刚度的机械设计方法,例如在挠性部件中加入层干扰(67)。在固有刚度足够的情况下,已开发出控制算法来修改运动学输入,以达到所需的顶端刚度(68)。

 软连续机器人


连续机器人通常由顺应性聚合材料制成,一些最早的例子采用气动或液压驱动--这两个特征通常用来定义 "软 "机器人。不过,除少数例外情况外,医疗连续机器人都避免使用气体或流体驱动,因为这往往会增加建模的复杂性和响应时间。不过,随着软机器人技术在过去十年中的爆炸式增长,这些驱动方法以及更多顺应性材料的使用正被应用于医疗领域(69)。


针对特定应用的连续型机器人设计


除了深化技术工具箱之外,研究人员还与临床医生合作,开发出专门用于执行特定手术的机器人系统。例如,Ding 等人(16)制造了一种用于腹部手术的单端口系统。插入腹部后,两个多骨干连续臂和一个传统关节立体内窥镜臂从一个鞘中伸出,形成一个拟人化的外科医生头部和手臂。泰坦医疗公司获得了这项技术的商业化许可。作为第二个例子,(20) 的系统探索了如何使用两个同心管机器人和一个单独的被动内窥镜进行经鼻颅底手术。该系统是同心管结构以及为支持该结构而开发的理论建模如何提供执行实际神经外科任务所需的工作空间、刚度和可操作性的重要早期演示。

过去十年间,设计和模拟各种连续体机器人结构的基本技术日趋成熟。虽然这项研究已基本完成,但新传感技术的出现很可能会推动基于传感器的控制技术的发展。例如,光纤布拉格光栅传感器是一种非常昂贵的技术,也是目前研究的主要形状传感方式(66)。廉价的替代技术很可能会催生新一代的控制算法。此外,我们很可能会看到人们对应用软机器人技术生产替代机器人设计以及将学习/人工智能应用于机器人导航和控制的持续兴趣。虽然这项工作在很大程度上是由研究的新颖性而非临床需求驱动的,但它将为技术工具箱增添新的内容。

早期的验证实验都是学术性的,很少关注最终的医疗应用,而在过去的十年中,人们越来越重视创建原型系统,如上述可执行实际医疗程序的系统。要想让连续性机器人进入临床,这一研究方向在未来几年将越来越重要。这有几个原因。首先,创建和演示针对特定手术的原型是降低技术商业化风险的基本步骤。它还能与当前的临床实践进行成本效益的初步比较。因此,这些技术示范项目可直接促成商业化努力。同样重要的是,针对特定手术的原型可用于确定关键的知识差距,从而促进未来的基础研究。

DISCUSSION

The number of papers on medical robotics has grown exponentially from less than 10 published in 1990 to more than 5200 in 2020. Consequently, the fraction of papers published during the past decade is more than 80% of the total. These publications span the entire range of the research pipeline. Engineering journal publications have covered the creation of new robotic technologies for medical applications and the design of new medical robots. Medical journal publications have completed the research process by evaluating existing robot designs in human patients.
Although the field cannot yet point to comprehensive clinical trials that show that robotic surgical procedures provide improved procedural outcomes for patients (70) or reduced procedure cost compared with nonrobotic surgery (71), a number of patient benefits have been demonstrated. These include shorter hospital stays, faster recuperation, fewer reoperations, and reduced blood transfusions (71). For surgeons, robots provide improved ergonomics, leading to reductions in neck and back pain (72) as well as hand and wrist numbness (73) with less physical and mental stress compared with direct hand-controlled procedures (74). These factors increase a surgeon’s quality of life and could potentially lengthen their career. Studies have also shown that robotics can markedly reduce radiation exposure to both the surgeon and the patient (75).
To further this progress, it would be beneficial to channel future engineering research efforts in the most promising directions. This requires developing an understanding of how robots and their underlying technologies add value in medicine. Whereas in almost all other industries, robots are used as autonomous agents to reduce human labor costs, medical robots, at least to date, have been developed to add value in other application-dependent ways.
For example, all the benefits mentioned in the preceding paragraph arise in laparoscopic surgery except for reduced radiation exposure, which applies to cardiac catheterization procedures. In therapeutic rehabilitation, it can be argued that the value currently added is in providing a larger number of repetitions rather than in improving the quality of the repetitions. On the other hand, energy-delivery robots, e.g., for radiotherapy, provide a combination of precision, repeatability, and speed that is hard to match by other means. Similarly, a powered prosthesis can directly improve patient outcomes by expanding both the number and quality of daily living tasks that can be performed compared with a nonrobotic device. Capsule robots may eventually replace some open bowel procedures, improving the diagnostic possibilities in hard-to-reach body regions and reducing the discomfort of existing endoluminal bowel procedures.
In directing robotic technology research to maximize value added, the most important technology targets are those that will enable new types of interventions that are either currently impossible or impractical based on current technology. Magnetic actuation is an example of a technology that is enabling for capsule robots and medical microrobots. This technique has allowed miniaturization by moving actuation and power supplies outside the body. Soft robotics is likely to be a very important enabling technology over the next decade. Much of the most promising work is currently being performed in the materials community and relates to the creation of thin polymer layers with embedded sensors and actuators. Although this work seems far from medical application now, these capabilities will likely have a large influence on interventional, rehabilitative, and assistive robots. Other enabling technologies in sensing, imaging, actuation, and energy storage may arise as crossovers from consumer electronics.
As an alternative to enabling new procedures, a technology can have a major influence if it provides a new way for a medical robot to add value. The effective synergy of preoperative and intraoperative imaging integrated with flexible, ergonomically enhanced surgical tools is an important example of this approach, which represents a substantial contribution over the past decade. The value of this approach will likely continue in the future. Translating cellular and molecular imaging modalities from the laboratory to an in vivo–in situ surgical setting will further expand the functional capabilities of surgical interventions by providing improved tissue detection, labeling, and targeting for both macroscopic and cell-based therapies. This approach can fundamentally alter the planned surgical pathways by streamlining intraoperative surgical decision making and optimization with increased consistency and accuracy, circumventing potential postoperative complications and revisions.
Another way for robots to add value is through autonomy. Although the development of autonomous driving capabilities has been perhaps the hottest topic in all of robotics over the decade, the use of autonomy in medical robots is currently limited. Examples include assistive wearable robots and rehabilitation robots. These systems produce preprogrammed motions that can be switched between and altered on the basis of user inputs. Similarly, orthopedic robots mill out preprogrammed cavities in bone, and radiosurgery robots play back preprogrammed trajectories to produce the desired x-ray exposures of internal lesions. Although these preprogrammed motions represent a very simple form of autonomy, they are enabling for these applications. For example, an assistive lower leg prosthesis would be useless if the operator had to actively control the ankle motion during walking.
The technological frontier in medical robot autonomy corresponds to endowing the robot with the capability to formulate and alter its plans and motions based on real-time sensor data. Examples could include autonomous laparoscopic surgery to remove cancerous lesions or autonomous transcatheter repair of a heart valve. This level of autonomy brings with it not only technical challenges but also regulatory, ethical, and legal challenges, which have yet to be fully resolved and will raise commercialization costs. Consequently, it will be much easier to incrementally add such autonomous functionality to preexisting medical robots whose value can be justified without consideration of autonomous functionality. Examples include automated suturing for laparoscopic surgery, autonomous navigation of flexible endoscopes, or autonomous electrophysiological catheter mapping inside the heart.
An evolutionary trend toward progressive automation as suggested by Fig. 4 will provide time for the necessary technological developments in algorithms and sensors while allowing stakeholders time to progressively construct an appropriate regulatory and legal framework. Medical applications for which autonomy is necessary to justify the robot will be more challenging to commercialize in the short term but may be of highest value in the long term. The lower hanging fruit of this type could include simple time-critical endoluminal interventions, whereas bionic implants represent a more complicated class of devices.
Open in viewer
Of the more than 19,000 engineering papers published on medical robotics since 1990, only a handful can be considered enabling for existing commercial medical robots. Even the papers of high technological influence comprising the bibliography have modest numbers of patent citations. In part, this may be due to the substantial lag that can occur between technology development and its commercial application. Perhaps, an equally important contributor is the mismatch between technology research and the realities of medical device commercialization.
Bringing robotic technology to clinical use requires much more than simply well-cited research articles. A genuine clinical need must be identified. A relevant technology must be developed to address this need that considers the specifics of how the robot adds value for the clinician and for the patient. Medical doctors must be convinced of this value proposition. The technology must also be developed with hospital administrative and financial constraints well considered and without hindering well-established clinical workflows. Potential risks must be identified early on so that ethical approvals can be obtained. Last, attractive business models must be developed to ensure that sufficient investment can be obtained to bring the technology through the complex pathways that must be navigated for any medical device to achieve commercial success. Maximizing the chance of success suggests that technology researchers stray from their ivory towers to form deep collaborations with clinicians, regulators, investors, and the business community.

MATERIALS AND METHODS

The manuscript is not intended to be a traditional survey that provides sweeping coverage of medical robotics over the decade or to provide an exhaustive bibliography of the field. Instead, our goal was to provide a focused view of the most important research advances of the decade and to point the reader to a small set of papers that are seminal with respect to these advances. Research was defined as the development of new robots and robotic technology. Clinical evaluation papers using existing robots were excluded unless they conveyed an important translational result.
This approach, by its nature, injects some subjectivity into the paper; however, we attempted to be as objective as possible. Our approach was as follows. We first developed an initial list of prospective hot topics based on author consensus. This list of topics was then validated and refined by performing a broad search of medical/surgical robotics using Web of Science and then grouping the results by topic. This resulted in dropping some candidate topics while subdividing others into multiple topics. For example, although there has been important work in orthopedic and spinal procedure robots, the highly cited papers were published before 2010. Furthermore, we observed that there was important research on procedure-specific robots that did not fit into any of the hot topics. This included robots developed for endoluminal and natural orifice transluminal endoscopic surgery procedures along with robots for microsurgery. To include this work, we added a final hot topic on nonlaparoscopic procedure–specific robots.
Given this list of hot topics, we then sought to identify topic-specific search terms for use with Web of Science that would provide comprehensive coverage for that topic. Our goal was twofold. First, we wished to identify the total number of papers published on each hot topic as reported in Figs. 2 and 3. Second, for inclusion in our bibliography, we wished to identify the most influential papers for each topic based on citation count.
Identification of the topic-specific search terms meeting these two goals was an iterative process. Initially, each search was formulated by building a set of common terms related to medical robots that returned the most comprehensive set of relevant references:
(medical* OR medicine OR surgical OR surgery OR surgeon (in TOPIC) AND robot* OR manipulator (in TOPIC)).
This search was then further constrained using keywords for each hot topic. The keywords were tested and revised by reviewing the search results based on the authors’ knowledge of the field to ensure that the results for the top 100 cited papers returned by the search were both relevant and comprehensive. This approach worked well for four of the eight topics. For the remaining four topics, it was also necessary to adapt the common search terms along with topic-specific keywords to identify a search that yielded relevant and comprehensive results.
Each section of the paper was then composed on the basis of the authors’ knowledge of the topic as supported by the search results. For each hot topic, a small number of the most highly cited research papers were selected to support the major concepts. These are the papers included in the bibliography. Although, in some cases, papers had similar numbers of citations and subjective decisions were made to pick one over another, the overall selection process was objective. Survey papers were excluded.
Paper citation counts included in the bibliography of the Supplementary Materials are from Web of Science. Patent citation counts are from Lens.org. Data were collected on 11 October 2021.

Data within Figs. 2 and 3

Figures 2 and 3 report the year-by-year numbers of publications resulting from the Web of Science searches for the individual and combined hot topic searches. The results are further broken down by publication type (engineering versus medical journals). Searches were performed on 11 October 2021.

Web of Science search terms

The sets of search terms for each hot topic that are listed below were used with Web of Science to identify the most highly cited papers for each topic.

Robots for laparoscopic surgery

medical* OR medicine OR surgical OR surgery OR surgeon (in TOPIC) AND robot* OR manipulator (in TOPIC) AND laparoscop* (in TOPIC and TITLE).

Nonlaparoscopic procedure–specific robots

medical* OR medicine OR surgical OR surgery OR surgeon (in TOPIC) AND robot* OR manipulator (in TOPIC) NOT laparoscop* (in TOPIC and TITLE).

Assistive wearable robotics

(prosthe* OR orthos* OR orthot* OR exoskelet* OR exosuit*) AND (robotic OR powered), all in TOPIC 2010–2020. Figure search: (prosthe* OR orthos* OR orthot* OR exoskelet* OR exosuit*) AND (robotic OR powered), NOT (rehab*), all in TOPIC 2010-2020.

Therapeutic rehabilitation robots

(robot* OR exoskelet*) AND (rehab*)), all TOPIC 2010–2020.

Medical capsule robots

(robot*) AND (pill OR capsul*) AND (medic* OR endoscop* OR intestin* OR surg*) all TOPIC 2010–2020.

Magnetic actuation for medicine

(robot* OR microrobot* OR nanorobot* OR manipulat* OR actuat*) AND (magnet* OR micromagnet* OR nanomagnet*) AND (medical* OR medicine* OR surgical* OR surgeon* OR surgery*) all in TOPIC 2010–2020.

Soft robotics for medicine

(medical* OR medicine OR surgical OR surgery OR surgeon) AND (robot OR robotics) AND (soft) NOT (materials OR material) NOT (rehabilitation), all in TOPIC 2010–2020.

Continuum robots for medicine

WoS Search: (medical* OR medicine OR surgical OR surgery OR surgeon) AND (robot* OR manipulator) AND (continuum OR snake) all in TOPIC 2010–2020.

Acknowledgments

We thank M. Mencattelli for assistance with the figures and references. We also thank Y. Guo and Z. Zhang for preparing Figs. 1 and 4.
Funding: Partial support for P.E.D. was provided by the NIH under grants R01NS099207 and R01HL124020. Partial support for B.J.N. was provided by the Swiss National Science Foundation through grant 200020B_185039 and by the ERC through advanced grant 743217. Partial support for M.K.O. was provided by the National Science Foundation under grant 2025130 and by the TIRR Foundation under grant 018-114. Partial support for G.-Z.Y. was provided by the Science and Technology Commission of Shanghai Municipality under grant 20DZ2220400.
Author contributions: All authors assisted in writing and editing the paper.
Competing interests: N.S. is an inventor on patent US 8116886 B2 submitted by Columbia University that covers works on steerable continuum/soft robots as implants (licensed to Auris Surgical); an inventor of US 9089354 B2 and US 10058390 B2 submitted by Johns Hopkins University on continuum robots for confined spaces and upper airway surgery and on U.S. patent 10406026 on steerable continuum robots for intraocular surgery (licensed to Intuitive Surgical and Carl Zeiss GmbH); and an inventor on U.S. patent application US 2014/0350337 A1 submitted by Columbia University on continuum robots for single port access and commercially translated through a research agreement to Titan Medical. B.H. is a cofounder of Applied Dexterity Inc. The other authors declare that they have no relevant competing interests.
Data and materials availability: All data presented in the paper can be reproduced as described in Materials and Methods.

Supplementary Materials

This PDF file includes:

Annotated reference list

REFERENCES AND NOTES

1
R. D. Howe, Y. Matsuoka, Robotics for surgery. Annu. Rev. Biomed. Eng. 1, 211–240 (1999).
2
R. M. Satava, Surgical robotics: The early chronicles. Surg. Laparosc. Endosc. Percutan. Tech. 12, 6–16 (2002).
3
N. Simaan, R. M. Yasin, L. Wang, Medical technologies and challenges of robot-assisted minimally invasive intervention and diagnostics. Annu. Rev. Control Robot. Auton. Syst. 1, 465–490 (2018).
4
Y. S. Kwoh, J. Hou, E. A. Jonckheere, S. Hayati, A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans. Biomed. Eng. 35, 153–160 (1988).
5
R. H. Taylor, B. D. Mittelstadt, H. A. Paul, W. Hanson, P. Kazanzides, J. F. Zuhars, B. Williamson, B. L. Musits, E. Glassman, W. L. Bargar, An image-directed robotic system for precise orthopaedic surgery. IEEE Trans. Robot. Autom. 10, 261–275 (1994).
6
J. Marescaux, J. Leroy, M. Gagner, F. Rubino, D. Mutter, M. Vix, S. E. Butner, M. K. Smith, Transatlantic robot-assisted telesurgery. Nature 413, 379–380 (2001).
7
B. Hannaford, J. Rosen, D. W. Friedman, H. King, P. Roan, L. Cheng, D. Glozman, J. Ma, S. N. Kosari, L. White, Raven-II: An open platform for surgical robotics research. IEEE Trans. Biomed. Eng. 60, 954–959 (2013).
8
P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, S. P. DiMaio, An open-source research kit for the da Vinci® Surgical System, in Proceedings of the 2014 IEEE international conference on robotics and automation (ICRA), Hong Kong, China, 31 May to 7 June 2014.
9
D. Sarikaya, J. J. Corso, K. A. Guru, Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection. IEEE Trans. Med. Imaging 36, 1542–1549 (2017).
10
A. Murali, S. Sen, B. Kehoe, A. Garg, S. McFarland, S. Patil, W. D. Boyd, S. Lim, P. Abbeel, K. Goldberg, Learning by observation for surgical subtasks: Multilateral cutting of 3d viscoelastic and 2d orthotropic tissue phantoms, in Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26 to 30 May 2015.
11
A. Shademan, R. S. Decker, J. D. Opfermann, S. Leonard, A. Krieger, P. C. Kim, Supervised autonomous robotic soft tissue surgery. Sci. Transl. Med. 8, 337ra364 (2016).
12
M. D. Jafari, K. H. Lee, W. J. Halabi, S. D. Mills, J. C. Carmichael, M. J. Stamos, A. Pigazzi, The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg. Endosc. 27, 3003–3008 (2013).
13
M. B. Hong, Y.-H. Jo, Design and evaluation of 2-DOF compliant forceps with force-sensing capability for minimally invasive robot surgery. IEEE Trans. Robot. 28, 932–941 (2012).
14
U. Kim, D.-H. Lee, W. J. Yoon, B. Hannaford, H. R. Choi, Force sensor integrated surgical forceps for minimally invasive robotic surgery. IEEE Trans. Robot. 31, 1214–1224 (2015).
15
M. Piccigallo, U. Scarfogliero, C. Quaglia, G. Petroni, P. Valdastri, A. Menciassi, P. Dario, Design of a novel bimanual robotic system for single-port laparoscopy. IEEE/ASME Trans. Mechatron. 15, 871–878 (2010).
16
J. Ding, R. E. Goldman, K. Xu, P. K. Allen, D. L. Fowler, N. Simaan, Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery. IEEE/ASME Trans. Mechatron. 18, 1612–1624 (2013).
17
G. Tortora, P. Dario, A. Menciassi, Array of robots augmenting the kinematics of endocavitary surgery. IEEE/ASME Trans. Mechatron. 19, 1821–1829 (2014).
18
C. A. Castro, A. Alqassis, S. Smith, T. Ketterl, Y. Sun, S. Ross, A. Rosemurgy, P. P. Savage, R. D. Gitlin, A wireless robot for networked laparoscopy. IEEE Trans. Biomed. Eng. 60, 930–936 (2013).
19
J. Shang, D. P. Noonan, C. Payne, J. Clark, M. H. Sodergren, A. Darzi, G.-Z. Yang, An articulated universal joint based flexible access robot for minimally invasive surgery, in Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9 to 13 May 2011.
20
J. Burgner, D. C. Rucker, H. B. Gilbert, P. J. Swaney, P. T. Russell, K. D. Weaver, R. J. Webster, A telerobotic system for transnasal surgery. IEEE/ASME Trans. Mechatron. 19, 996–1006 (2013).
21
C. M. Rivera-Serrano, P. Johnson, B. Zubiate, R. Kuenzler, H. Choset, M. Zenati, S. Tully, U. Duvvuri, A transoral highly flexible robot: Novel technology and application. Laryngoscope 122, 1067–1071 (2012).
22
R. A. MacLachlan, B. C. Becker, J. C. Tabarés, G. W. Podnar, L. A. Lobes, C. N. Riviere, Micron: An actively stabilized handheld tool for microsurgery. IEEE Trans. Robot. 28, 195–212 (2012).
23
A. Üneri, M. A. Balicki, J. Handa, P. Gehlbach, R. H. Taylor, I. Iordachita, New steady-hand eye robot with micro-force sensing for vitreoretinal surgery, in Proceedings of the 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26 to 29 September 2010.
24
T. L. Edwards, K. Xue, H. C. M. Meenink, M. J. Beelen, G. J. L. Naus, M. P. Simunovic, M. Latasiewicz, A. D. Farmery, M. D. de Smet, R. E. MacLaren, First-in-human study of the safety and viability of intraocular robotic surgery. Nat. Biomed. Eng. 2, 649–656 (2018).
25
F. Sup, H. A. Varol, M. Goldfarb, Upslope walking with a powered knee and ankle prosthesis: Initial results with an amputee subject. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 71–78 (2011).
26
R. D. Gregg, T. Lenzi, L. J. Hargrove, J. W. Sensinger, Virtual constraint control of a powered prosthetic leg: From simulation to experiments with transfemoral amputees. IEEE Trans. Robot. 30, 1455–1471 (2014).
27
A. Young, T. Kuiken, L. Hargrove, Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J. Neural Eng. 11, 056021 (2014).
28
L. J. Hargrove, L. A. Miller, K. Turner, T. A. Kuiken, Myoelectric pattern recognition outperforms direct control for transhumeral amputees with targeted muscle reinnervation: A randomized clinical trial. Sci. Rep. 7, 13840 (2017).
29
P. M. Rossini, S. Micera, A. Benvenuto, J. Carpaneto, G. Cavallo, L. Citi, C. Cipriani, L. Denaro, V. Denaro, G. Di Pino, F. Ferreri, E. Guglielmelli, K.-P. Hoffmann, S. Raspopovic, J. Rigosa, L. Rossini, M. Tombini, P. Dario, Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin. Neurophysiol. 121, 777–783 (2010).
30
S. Raspopovic, M. Capogrosso, F. M. Petrini, M. Bonizzato, J. Rigosa, G. Di Pino, J. Carpaneto, M. Controzzi, T. Boretius, E. Fernandez, G. Granata, C. M. Oddo, L. Citi, A. L. Ciancio, C. Cipriani, M. C. Carrozza, W. Jensen, E. Guglielmelli, T. Stieglitz, P. M. Rossini, S. Micera, Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222ra219 (2014).
31
D. W. Tan, M. A. Schiefer, M. W. Keith, J. R. Anderson, J. Tyler, D. J. Tyler, A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6, 257ra138 (2014).
32
R. J. Farris, H. A. Quintero, S. A. Murray, K. H. Ha, C. Hartigan, M. Goldfarb, A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 482–490 (2014).
33
L. N. Awad, J. Bae, K. O’donnell, S. M. De Rossi, K. Hendron, L. H. Sloot, P. Kudzia, S. Allen, K. G. Holt, T. D. Ellis, C. J. Walsh, A soft robotic exosuit improves walking in patients after stroke. Sci. Transl. Med. 9, eaai9084 (2017).
34
Y. Mao, S. K. Agrawal, Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Trans. Robot. 28, 922–931 (2012).
35
P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, C. J. Walsh, Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015).
36
A. U. Pehlivan, D. P. Losey, M. K. O’Malley, Minimal assist-as-needed controller for upper limb robotic rehabilitation. IEEE Trans. Robot. 32, 113–124 (2016).
37
A. Duschau-Wicke, A. Caprez, R. Riener, Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J. Neuroeng. Rehabil. 7, 43 (2010).
38
S. C. Cramer, M. Sur, B. H. Dobkin, C. O’Brien, T. D. Sanger, J. Q. Trojanowski, J. M. Rumsey, R. Hicks, J. Cameron, D. Chen, W. G. Chen, L. G. Cohen, C. de Charms, C. J. Duffy, G. F. Eden, E. E. Fetz, R. Filart, M. Freund, S. J. Grant, S. Haber, P. W. Kalivas, B. Kolb, A. F. Kramer, M. Lynch, H. S. Mayberg, P. S. McQuillen, R. Nitkin, A. Pascual-Leone, P. Reuter-Lorenz, N. Schiff, A. Sharma, L. Shekim, M. Stryker, E. V. Sullivan, S. Vinogradov, Harnessing neuroplasticity for clinical applications. Brain 134, 1591–1609 (2011).
39
H. I. Krebs, J. J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B. T. Volpe, N. Hogan, Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Auton. Robot. 15, 7–20 (2003).
40
K. K. Ang, K. S. G. Chua, K. S. Phua, C. Wang, Z. Y. Chin, C. W. K. Kuah, W. Low, C. Guan, A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46, 310–320 (2015).
41
S. H. Scott, S. P. Dukelow, Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy. J. Rehabil. Res. Dev. 48, 335–353 (2011).
42
P. Valdastri, R. J. Webster III, C. Quaglia, M. Quirini, A. Menciassi, P. Dario, A new mechanism for mesoscale legged locomotion in compliant tubular environments. IEEE Trans. Robot. 25, 1047–1057 (2009).
43
G. Ciuti, P. Valdastri, A. Menciassi, P. Dario, Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica 28, 199–207 (2010).
44
F. Carpi, N. Kastelein, M. Talcott, C. Pappone, Magnetically controllable gastrointestinal steering of video capsules. IEEE Trans. Biomed. Eng. 58, 231–234 (2011).
45
S. Yim, M. Sitti, Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans. Robot. 28, 183–194 (2012).
46
S. Yim, E. Gultepe, D. H. Gracias, M. Sitti, Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans. Biomed. Eng. 61, 513–521 (2013).
47
A. W. Mahoney, J. J. Abbott, Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy. Int. J. Robot. Res. 35, 129–147 (2016).
48
C. Di Natali, M. Beccani, P. Valdastri, Real-time pose detection for magnetic medical devices. IEEE Trans. Magn. 49, 3524–3527 (2013).
49
M. P. Kummer, J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul, B. J. Nelson, OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 26, 1006–1017 (2010).
50
S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, B. J. Nelson, Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012).
51
W. Hu, G. Z. Lum, M. Mastrangeli, M. Sitti, Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).
52
Y. Kim, G. A. Parada, S. Liu, X. Zhao, Ferromagnetic soft continuum robots. Sci. Robot. 4, eaax7329 (2019).
53
A. Cangialosi, C. Yoon, J. Liu, Q. Huang, J. Guo, T. D. Nguyen, D. H. Gracias, R. Schulman, DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling. Science 357, 1126–1130 (2017).
54
H. Abidi, G. Gerboni, M. Brancadoro, J. Fras, A. Diodato, M. Cianchetti, H. Wurdemann, K. Althoefer, A. Menciassi, Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 14, e1875 (2018).
55
S. Y. Ko, L. Frasson, F. R. y Baena, Closed-loop planar motion control of a steerable probe with a “programmable bevel” inspired by nature. IEEE Trans. Robot. 27, 970–983 (2011).
56
V. Levering, Q. Wang, P. Shivapooja, X. Zhao, G. P. López, Soft robotic concepts in catheter design: An on-demand fouling-release urinary catheter. Adv. Healthc. Mater. 3, 1588–1596 (2014).
57
E. T. Roche, M. A. Horvath, I. Wamala, A. Alazmani, S.-E. Song, W. Whyte, Z. Machaidze, C. J. Payne, J. C. Weaver, G. Fishbein, J. D. Kuebler, N. V. Vasilyev, D. J. Mooney, F. A. Pigula, C. J. Walsh, Soft robotic sleeve supports heart function. Sci. Transl. Med. 9, eaaf3925 (2017).
58
F. Chen, S. Dirven, W. Xu, X. Li, Soft actuator mimicking human esophageal peristalsis for a swallowing robot. IEEE/ASME Trans. Mechatron. 19, 1300–1308 (2014).
59
C. J. Payne, I. Wamala, C. Abah, T. Thalhofer, M. Saeed, D. Bautista-Salinas, M. A. Horvath, N. V. Vasilyev, E. T. Roche, F. A. Pigula, C. J. Walsh, An implantable extracardiac soft robotic device for the failing heart: Mechanical coupling and synchronization. Soft Robot. 4, 241–250 (2017).
60
H. Liu, J. Li, X. Song, L. D. Seneviratne, K. Althoefer, Rolling indentation probe for tissue abnormality identification during minimally invasive surgery. IEEE Trans. Robot. 27, 450–460 (2011).
61
D. D. Damian, K. Price, S. Arabagi, I. Berra, Z. Machaidze, S. Manjila, S. Shimada, A. Fabozzo, G. Arnal, D. Van Story, J. D. Goldsmith, A. T. Agoston, C. Kim, R. W. Jennings, P. D. Ngo, M. Manfredi, P. E. Dupont, In vivo tissue regeneration with robotic implants. Sci. Robot. 3, eaaq0018 (2018).
62
P. E. Dupont, J. Lock, B. Itkowitz, E. Butler, Design and control of concentric-tube robots. IEEE Trans. Robot. 26, 209–225 (2010).
63
D. C. Rucker, B. A. Jones, R. J. Webster III, A geometrically exact model for externally loaded concentric-tube continuum robots. IEEE Trans. Robot. 26, 769–780 (2010).
64
K. Xu, N. Simaan, Intrinsic wrench estimation and its performance index for multisegment continuum robots. IEEE Trans. Robot. 26, 555–561 (2010).
65
M. C. Yip, D. B. Camarillo, Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans. Robot. 30, 880–889 (2014).
66
R. Xu, A. Yurkewich, R. V. Patel, Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors. IEEE Robot. Autom. Latt. 1, 1052–1059 (2016).
67
Y.-J. Kim, S. Cheng, S. Kim, K. Iagnemma, A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery. IEEE Trans. Robot. 29, 1031–1042 (2013).
68
M. Mahvash, P. E. Dupont, Stiffness control of surgical continuum manipulators. IEEE Trans. Robot. 27, 334–345 (2011).
69
M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer, P. Dasgupta, A. Menciassi, Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: The STIFF-FLOP approach. Soft Robot. 1, 122–131 (2014).
70
E. Haglind, S. Carlsson, J. Stranne, A. Wallerstedt, U. Wilderäng, T. Thorsteinsdottir, M. Lagerkvist, J.-E. Damber, A. Bjartell, J. Hugosson, P. Wiklund, G. Steineck; LAPPRO steering committee, Urinary incontinence and erectile dysfunction after robotic versus open radical prostatectomy: A prospective, controlled, nonrandomised trial. Eur. Urol. 68, 216–225 (2015).
71
A. Forsmark, J. Gehrman, E. Angenete, A. Bjartell, I. Björholt, S. Carlsson, J. Hugosson, T. Marlow, K. Stinesen-Kollberg, J. Stranne, A. Wallerstedt, P. Wiklund, U. Wilderäng, E. Haglind, Health economic analysis of open and robot-assisted laparoscopic surgery for prostate cancer within the prospective multicentre LAPPRO trial. Eur. Urol. 74, 816–824 (2018).
72
A. Bagrodia, J. D. Raman, Ergonomic considerations of radical prostatectomy: Physician perspective of open, laparoscopic, and robot-assisted techniques. J. Endourol. 23, 627–633 (2009).
73
O. N. Gofrit, A. A. Mikahail, K. C. Zorn, G. P. Zagaja, G. D. Steinberg, A. L. Shalhav, Surgeons’ perceptions and injuries during and after urologic laparoscopic surgery. Urology 71, 404–407 (2008).
74
R. H. van der Schatte Olivier, C. van’t Hullenaar, J. Ruurda, I. Broeders, Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surg. Endosc. 23, 1365–1371 (2009).
75
T. M. Patel, S. C. Shah, Y. Y. Soni, R. C. Radadiya, G. A. Patel, P. O. Tiwari, S. B. Pancholy, Comparison of robotic percutaneous coronary intervention with traditional percutaneous coronary intervention: A propensity score–matched analysis of a large cohort. Circ. Cardiovasc. Interv. 13, e008888 (2020).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science Robotics
Volume 6 | Issue 60
November 2021

Submission history

Received: 1 April 2021
Accepted: 20 October 2021

Permissions

Request permissions for this article.

Acknowledgments

We thank M. Mencattelli for assistance with the figures and references. We also thank Y. Guo and Z. Zhang for preparing Figs. 1 and 4.
Funding: Partial support for P.E.D. was provided by the NIH under grants R01NS099207 and R01HL124020. Partial support for B.J.N. was provided by the Swiss National Science Foundation through grant 200020B_185039 and by the ERC through advanced grant 743217. Partial support for M.K.O. was provided by the National Science Foundation under grant 2025130 and by the TIRR Foundation under grant 018-114. Partial support for G.-Z.Y. was provided by the Science and Technology Commission of Shanghai Municipality under grant 20DZ2220400.
Author contributions: All authors assisted in writing and editing the paper.
Competing interests: N.S. is an inventor on patent US 8116886 B2 submitted by Columbia University that covers works on steerable continuum/soft robots as implants (licensed to Auris Surgical); an inventor of US 9089354 B2 and US 10058390 B2 submitted by Johns Hopkins University on continuum robots for confined spaces and upper airway surgery and on U.S. patent 10406026 on steerable continuum robots for intraocular surgery (licensed to Intuitive Surgical and Carl Zeiss GmbH); and an inventor on U.S. patent application US 2014/0350337 A1 submitted by Columbia University on continuum robots for single port access and commercially translated through a research agreement to Titan Medical. B.H. is a cofounder of Applied Dexterity Inc. The other authors declare that they have no relevant competing interests.
Data and materials availability: All data presented in the paper can be reproduced as described in Materials and Methods.

Authors

Affiliations

Funding Information

TIRR Foundation: 018-114

Notes

*
Corresponding author. Email: pierre.dupont@childrens.harvard.edu

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. An Operating Stiffness Controller for the Medical Continuum Robot Based on Impedance Control, Cyborg and Bionic Systems, 5, (2024)./doi/10.34133/cbsystems.0110
    Abstract
  2. Remote magnetic navigation enables precision telesurgery, Science Robotics, 9, 87, (2024)./doi/10.1126/scirobotics.ado3187
    Abstract
  3. Human-scale navigation of magnetic microrobots in hepatic arteries, Science Robotics, 9, 87, (2024)./doi/10.1126/scirobotics.adh8702
    Abstract
  4. Dexterous helical magnetic robot for improved endovascular access, Science Robotics, 9, 87, (2024)./doi/10.1126/scirobotics.adh0298
    Abstract
  5. Development of a Collaborative Robotic Platform for Autonomous Auscultation, Applied Sciences, 13, 3, (1604), (2023).https://doi.org/10.3390/app13031604
    Crossref
  6. Reproducibility challenges in robotic surgery, Frontiers in Robotics and AI, 10, (2023).https://doi.org/10.3389/frobt.2023.1127972
    Crossref
  7. A review on the application of intelligent control strategies for post-stroke hand rehabilitation machines, Advances in Mechanical Engineering, 15, 1, (168781322211480), (2023).https://doi.org/10.1177/16878132221148018
    Crossref
  8. Surgical robots in movies may not be science fiction, Science Robotics, 8, 82, (2023)./doi/10.1126/scirobotics.adk3242
    Abstract
  9. Using robotics to move a neurosurgeon’s hands to the tip of their endoscope, Science Robotics, 8, 82, (2023)./doi/10.1126/scirobotics.adg6042
    Abstract
  10. A multifunctional soft robot for cardiac interventions, Science Advances, 9, 43, (2023)./doi/10.1126/sciadv.adi5559
    Abstract
  11. See more
Loading...

View Options

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Fig. 1. Example clinical applications for the eight hot topics of the decade.
Starting at 8 o’clock and proceeding clockwise: Laparoscopic robots are the success story of medical robotics with applications including radical prostatectomy, radical cystectomy for bladder cancer, rectal cancer resection, and hysterectomy. Continuum robots are robotic versions of manual medical instruments including catheters, bronchoscopes, uteroscopes, and colonoscopes. Nonlaparoscopic robots have been developed for varying applications including electrode implantation in the brain and microsurgery inside the eye. Soft robots have been used, e.g., to create soft sleeves to assist heart contraction and for hand rehabilitation of daily living tasks. Assistive wearable robots are used to augment or replace arm and leg motion in the cases of motion impairment or amputation. Capsule robots are pill-sized devices that are swallowed for endoscopic diagnosis and treatment of the alimentary canal. Therapeutic rehabilitation robots assist patients with neurological injuries in performing repetitive movements to relearn tasks such as walking and grasping. Magnetic actuation enables the wireless generation of forces and torques inside the body to actuate an untethered robot or to orient the tip of a catheter.
Fig. 2. Medical robotics papers published in engineering and medical journal papers from 1990 to 2020.
Curves report total numbers along with subsets corresponding to hot topics of laparoscopic robots, therapeutic rehabilitation robots, and assistive wearable robots. Note that 2020 publications were potentially reduced by coronavirus disease 2019 (COVID-19) shutdowns (data from Web of Science; see Materials and Methods).
Fig. 3. Medical robotics papers published in engineering and medical journal papers from 1990 to 2020.
Curves report paper numbers for hot topics of soft robotics, magnetic actuation, capsule robots, and continuum robots. Note that 2020 publications were potentially reduced by COVID-19 shutdowns (data from Web of Science; see Materials and Methods).
Fig. 4. Application-specific trend toward increasing medical robot autonomy.
In current use, the level of autonomy is typically the minimum needed to be clinically useful. For example, radiotherapy robots operate at a level of conditional autonomy computing and executing a radiation exposure trajectory to provide the desired radiation dose inside a patient while minimizing exposure of surrounding tissues. Orthopedic robots are capable of autonomously milling out a prescribed cavity for knee and hip implants. In contrast, laparoscopic surgical robots have proven successful under continuous operator control and so currently offer only limited robotic assistance. Transcatheter mechanical thrombectomy and heart valve repair are examples of clinical applications for which robotic solutions have yet to be developed, although both could potentially benefit from robotic solutions. In the future, it is anticipated that the level of autonomy of current robotic systems will increase. The biggest increases will be for those applications for which autonomy is vital to their function. For example, highly autonomous systems for remotely performing emergency mechanical thrombectomies to treat stroke would substantially increase the accessibility of this treatment while also decreasing the time to treatment. As a second example, bionic implants that improve or restore body functions will be sufficiently integrated with their host to not require continuous conscious control.

Multimedia

Tables

Table 1. Hot topics of the decade.

Share

Share

Share article link

Share on social media

References

References

1
R. D. Howe, Y. Matsuoka, Robotics for surgery. Annu. Rev. Biomed. Eng. 1, 211–240 (1999).
2
R. M. Satava, Surgical robotics: The early chronicles. Surg. Laparosc. Endosc. Percutan. Tech. 12, 6–16 (2002).
3
N. Simaan, R. M. Yasin, L. Wang, Medical technologies and challenges of robot-assisted minimally invasive intervention and diagnostics. Annu. Rev. Control Robot. Auton. Syst. 1, 465–490 (2018).
4
Y. S. Kwoh, J. Hou, E. A. Jonckheere, S. Hayati, A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans. Biomed. Eng. 35, 153–160 (1988).
5
R. H. Taylor, B. D. Mittelstadt, H. A. Paul, W. Hanson, P. Kazanzides, J. F. Zuhars, B. Williamson, B. L. Musits, E. Glassman, W. L. Bargar, An image-directed robotic system for precise orthopaedic surgery. IEEE Trans. Robot. Autom. 10, 261–275 (1994).
6
J. Marescaux, J. Leroy, M. Gagner, F. Rubino, D. Mutter, M. Vix, S. E. Butner, M. K. Smith, Transatlantic robot-assisted telesurgery. Nature 413, 379–380 (2001).
7
B. Hannaford, J. Rosen, D. W. Friedman, H. King, P. Roan, L. Cheng, D. Glozman, J. Ma, S. N. Kosari, L. White, Raven-II: An open platform for surgical robotics research. IEEE Trans. Biomed. Eng. 60, 954–959 (2013).
8
P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, S. P. DiMaio, An open-source research kit for the da Vinci® Surgical System, in Proceedings of the 2014 IEEE international conference on robotics and automation (ICRA), Hong Kong, China, 31 May to 7 June 2014.
9
D. Sarikaya, J. J. Corso, K. A. Guru, Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection. IEEE Trans. Med. Imaging 36, 1542–1549 (2017).
10
A. Murali, S. Sen, B. Kehoe, A. Garg, S. McFarland, S. Patil, W. D. Boyd, S. Lim, P. Abbeel, K. Goldberg, Learning by observation for surgical subtasks: Multilateral cutting of 3d viscoelastic and 2d orthotropic tissue phantoms, in Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26 to 30 May 2015.
11
A. Shademan, R. S. Decker, J. D. Opfermann, S. Leonard, A. Krieger, P. C. Kim, Supervised autonomous robotic soft tissue surgery. Sci. Transl. Med. 8, 337ra364 (2016).
12
M. D. Jafari, K. H. Lee, W. J. Halabi, S. D. Mills, J. C. Carmichael, M. J. Stamos, A. Pigazzi, The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg. Endosc. 27, 3003–3008 (2013).
13
M. B. Hong, Y.-H. Jo, Design and evaluation of 2-DOF compliant forceps with force-sensing capability for minimally invasive robot surgery. IEEE Trans. Robot. 28, 932–941 (2012).
14
U. Kim, D.-H. Lee, W. J. Yoon, B. Hannaford, H. R. Choi, Force sensor integrated surgical forceps for minimally invasive robotic surgery. IEEE Trans. Robot. 31, 1214–1224 (2015).
15
M. Piccigallo, U. Scarfogliero, C. Quaglia, G. Petroni, P. Valdastri, A. Menciassi, P. Dario, Design of a novel bimanual robotic system for single-port laparoscopy. IEEE/ASME Trans. Mechatron. 15, 871–878 (2010).
16
J. Ding, R. E. Goldman, K. Xu, P. K. Allen, D. L. Fowler, N. Simaan, Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery. IEEE/ASME Trans. Mechatron. 18, 1612–1624 (2013).
17
G. Tortora, P. Dario, A. Menciassi, Array of robots augmenting the kinematics of endocavitary surgery. IEEE/ASME Trans. Mechatron. 19, 1821–1829 (2014).
18
C. A. Castro, A. Alqassis, S. Smith, T. Ketterl, Y. Sun, S. Ross, A. Rosemurgy, P. P. Savage, R. D. Gitlin, A wireless robot for networked laparoscopy. IEEE Trans. Biomed. Eng. 60, 930–936 (2013).
19
J. Shang, D. P. Noonan, C. Payne, J. Clark, M. H. Sodergren, A. Darzi, G.-Z. Yang, An articulated universal joint based flexible access robot for minimally invasive surgery, in Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9 to 13 May 2011.
20
J. Burgner, D. C. Rucker, H. B. Gilbert, P. J. Swaney, P. T. Russell, K. D. Weaver, R. J. Webster, A telerobotic system for transnasal surgery. IEEE/ASME Trans. Mechatron. 19, 996–1006 (2013).
21
C. M. Rivera-Serrano, P. Johnson, B. Zubiate, R. Kuenzler, H. Choset, M. Zenati, S. Tully, U. Duvvuri, A transoral highly flexible robot: Novel technology and application. Laryngoscope 122, 1067–1071 (2012).
22
R. A. MacLachlan, B. C. Becker, J. C. Tabarés, G. W. Podnar, L. A. Lobes, C. N. Riviere, Micron: An actively stabilized handheld tool for microsurgery. IEEE Trans. Robot. 28, 195–212 (2012).
23
A. Üneri, M. A. Balicki, J. Handa, P. Gehlbach, R. H. Taylor, I. Iordachita, New steady-hand eye robot with micro-force sensing for vitreoretinal surgery, in Proceedings of the 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26 to 29 September 2010.
24
T. L. Edwards, K. Xue, H. C. M. Meenink, M. J. Beelen, G. J. L. Naus, M. P. Simunovic, M. Latasiewicz, A. D. Farmery, M. D. de Smet, R. E. MacLaren, First-in-human study of the safety and viability of intraocular robotic surgery. Nat. Biomed. Eng. 2, 649–656 (2018).
25
F. Sup, H. A. Varol, M. Goldfarb, Upslope walking with a powered knee and ankle prosthesis: Initial results with an amputee subject. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 71–78 (2011).
26
R. D. Gregg, T. Lenzi, L. J. Hargrove, J. W. Sensinger, Virtual constraint control of a powered prosthetic leg: From simulation to experiments with transfemoral amputees. IEEE Trans. Robot. 30, 1455–1471 (2014).
27
A. Young, T. Kuiken, L. Hargrove, Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J. Neural Eng. 11, 056021 (2014).
28
L. J. Hargrove, L. A. Miller, K. Turner, T. A. Kuiken, Myoelectric pattern recognition outperforms direct control for transhumeral amputees with targeted muscle reinnervation: A randomized clinical trial. Sci. Rep. 7, 13840 (2017).
29
P. M. Rossini, S. Micera, A. Benvenuto, J. Carpaneto, G. Cavallo, L. Citi, C. Cipriani, L. Denaro, V. Denaro, G. Di Pino, F. Ferreri, E. Guglielmelli, K.-P. Hoffmann, S. Raspopovic, J. Rigosa, L. Rossini, M. Tombini, P. Dario, Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin. Neurophysiol. 121, 777–783 (2010).
30
S. Raspopovic, M. Capogrosso, F. M. Petrini, M. Bonizzato, J. Rigosa, G. Di Pino, J. Carpaneto, M. Controzzi, T. Boretius, E. Fernandez, G. Granata, C. M. Oddo, L. Citi, A. L. Ciancio, C. Cipriani, M. C. Carrozza, W. Jensen, E. Guglielmelli, T. Stieglitz, P. M. Rossini, S. Micera, Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222ra219 (2014).
31
D. W. Tan, M. A. Schiefer, M. W. Keith, J. R. Anderson, J. Tyler, D. J. Tyler, A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6, 257ra138 (2014).
32
R. J. Farris, H. A. Quintero, S. A. Murray, K. H. Ha, C. Hartigan, M. Goldfarb, A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 482–490 (2014).
33
L. N. Awad, J. Bae, K. O’donnell, S. M. De Rossi, K. Hendron, L. H. Sloot, P. Kudzia, S. Allen, K. G. Holt, T. D. Ellis, C. J. Walsh, A soft robotic exosuit improves walking in patients after stroke. Sci. Transl. Med. 9, eaai9084 (2017).
34
Y. Mao, S. K. Agrawal, Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Trans. Robot. 28, 922–931 (2012).
35
P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, C. J. Walsh, Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015).
36
A. U. Pehlivan, D. P. Losey, M. K. O’Malley, Minimal assist-as-needed controller for upper limb robotic rehabilitation. IEEE Trans. Robot. 32, 113–124 (2016).
37
A. Duschau-Wicke, A. Caprez, R. Riener, Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J. Neuroeng. Rehabil. 7, 43 (2010).
38
S. C. Cramer, M. Sur, B. H. Dobkin, C. O’Brien, T. D. Sanger, J. Q. Trojanowski, J. M. Rumsey, R. Hicks, J. Cameron, D. Chen, W. G. Chen, L. G. Cohen, C. de Charms, C. J. Duffy, G. F. Eden, E. E. Fetz, R. Filart, M. Freund, S. J. Grant, S. Haber, P. W. Kalivas, B. Kolb, A. F. Kramer, M. Lynch, H. S. Mayberg, P. S. McQuillen, R. Nitkin, A. Pascual-Leone, P. Reuter-Lorenz, N. Schiff, A. Sharma, L. Shekim, M. Stryker, E. V. Sullivan, S. Vinogradov, Harnessing neuroplasticity for clinical applications. Brain 134, 1591–1609 (2011).
39
H. I. Krebs, J. J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B. T. Volpe, N. Hogan, Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Auton. Robot. 15, 7–20 (2003).
40
K. K. Ang, K. S. G. Chua, K. S. Phua, C. Wang, Z. Y. Chin, C. W. K. Kuah, W. Low, C. Guan, A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46, 310–320 (2015).
41
S. H. Scott, S. P. Dukelow, Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy. J. Rehabil. Res. Dev. 48, 335–353 (2011).
42
P. Valdastri, R. J. Webster III, C. Quaglia, M. Quirini, A. Menciassi, P. Dario, A new mechanism for mesoscale legged locomotion in compliant tubular environments. IEEE Trans. Robot. 25, 1047–1057 (2009).
43
G. Ciuti, P. Valdastri, A. Menciassi, P. Dario, Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica 28, 199–207 (2010).
44
F. Carpi, N. Kastelein, M. Talcott, C. Pappone, Magnetically controllable gastrointestinal steering of video capsules. IEEE Trans. Biomed. Eng. 58, 231–234 (2011).
45
S. Yim, M. Sitti, Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans. Robot. 28, 183–194 (2012).
46
S. Yim, E. Gultepe, D. H. Gracias, M. Sitti, Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans. Biomed. Eng. 61, 513–521 (2013).
47
A. W. Mahoney, J. J. Abbott, Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy. Int. J. Robot. Res. 35, 129–147 (2016).
48
C. Di Natali, M. Beccani, P. Valdastri, Real-time pose detection for magnetic medical devices. IEEE Trans. Magn. 49, 3524–3527 (2013).
49
M. P. Kummer, J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul, B. J. Nelson, OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 26, 1006–1017 (2010).
50
S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, B. J. Nelson, Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012).
51
W. Hu, G. Z. Lum, M. Mastrangeli, M. Sitti, Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).
52
Y. Kim, G. A. Parada, S. Liu, X. Zhao, Ferromagnetic soft continuum robots. Sci. Robot. 4, eaax7329 (2019).
53
A. Cangialosi, C. Yoon, J. Liu, Q. Huang, J. Guo, T. D. Nguyen, D. H. Gracias, R. Schulman, DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling. Science 357, 1126–1130 (2017).
54
H. Abidi, G. Gerboni, M. Brancadoro, J. Fras, A. Diodato, M. Cianchetti, H. Wurdemann, K. Althoefer, A. Menciassi, Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 14, e1875 (2018).
55
S. Y. Ko, L. Frasson, F. R. y Baena, Closed-loop planar motion control of a steerable probe with a “programmable bevel” inspired by nature. IEEE Trans. Robot. 27, 970–983 (2011).
56
V. Levering, Q. Wang, P. Shivapooja, X. Zhao, G. P. López, Soft robotic concepts in catheter design: An on-demand fouling-release urinary catheter. Adv. Healthc. Mater. 3, 1588–1596 (2014).
57
E. T. Roche, M. A. Horvath, I. Wamala, A. Alazmani, S.-E. Song, W. Whyte, Z. Machaidze, C. J. Payne, J. C. Weaver, G. Fishbein, J. D. Kuebler, N. V. Vasilyev, D. J. Mooney, F. A. Pigula, C. J. Walsh, Soft robotic sleeve supports heart function. Sci. Transl. Med. 9, eaaf3925 (2017).
58
F. Chen, S. Dirven, W. Xu, X. Li, Soft actuator mimicking human esophageal peristalsis for a swallowing robot. IEEE/ASME Trans. Mechatron. 19, 1300–1308 (2014).
59
C. J. Payne, I. Wamala, C. Abah, T. Thalhofer, M. Saeed, D. Bautista-Salinas, M. A. Horvath, N. V. Vasilyev, E. T. Roche, F. A. Pigula, C. J. Walsh, An implantable extracardiac soft robotic device for the failing heart: Mechanical coupling and synchronization. Soft Robot. 4, 241–250 (2017).
60
H. Liu, J. Li, X. Song, L. D. Seneviratne, K. Althoefer, Rolling indentation probe for tissue abnormality identification during minimally invasive surgery. IEEE Trans. Robot. 27, 450–460 (2011).
61
D. D. Damian, K. Price, S. Arabagi, I. Berra, Z. Machaidze, S. Manjila, S. Shimada, A. Fabozzo, G. Arnal, D. Van Story, J. D. Goldsmith, A. T. Agoston, C. Kim, R. W. Jennings, P. D. Ngo, M. Manfredi, P. E. Dupont, In vivo tissue regeneration with robotic implants. Sci. Robot. 3, eaaq0018 (2018).
62
P. E. Dupont, J. Lock, B. Itkowitz, E. Butler, Design and control of concentric-tube robots. IEEE Trans. Robot. 26, 209–225 (2010).
63
D. C. Rucker, B. A. Jones, R. J. Webster III, A geometrically exact model for externally loaded concentric-tube continuum robots. IEEE Trans. Robot. 26, 769–780 (2010).
64
K. Xu, N. Simaan, Intrinsic wrench estimation and its performance index for multisegment continuum robots. IEEE Trans. Robot. 26, 555–561 (2010).
65
M. C. Yip, D. B. Camarillo, Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans. Robot. 30, 880–889 (2014).
66
R. Xu, A. Yurkewich, R. V. Patel, Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors. IEEE Robot. Autom. Latt. 1, 1052–1059 (2016).
67
Y.-J. Kim, S. Cheng, S. Kim, K. Iagnemma, A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery. IEEE Trans. Robot. 29, 1031–1042 (2013).
68
M. Mahvash, P. E. Dupont, Stiffness control of surgical continuum manipulators. IEEE Trans. Robot. 27, 334–345 (2011).
69
M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer, P. Dasgupta, A. Menciassi, Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: The STIFF-FLOP approach. Soft Robot. 1, 122–131 (2014).
70
E. Haglind, S. Carlsson, J. Stranne, A. Wallerstedt, U. Wilderäng, T. Thorsteinsdottir, M. Lagerkvist, J.-E. Damber, A. Bjartell, J. Hugosson, P. Wiklund, G. Steineck; LAPPRO steering committee, Urinary incontinence and erectile dysfunction after robotic versus open radical prostatectomy: A prospective, controlled, nonrandomised trial. Eur. Urol. 68, 216–225 (2015).
71
A. Forsmark, J. Gehrman, E. Angenete, A. Bjartell, I. Björholt, S. Carlsson, J. Hugosson, T. Marlow, K. Stinesen-Kollberg, J. Stranne, A. Wallerstedt, P. Wiklund, U. Wilderäng, E. Haglind, Health economic analysis of open and robot-assisted laparoscopic surgery for prostate cancer within the prospective multicentre LAPPRO trial. Eur. Urol. 74, 816–824 (2018).
72
A. Bagrodia, J. D. Raman, Ergonomic considerations of radical prostatectomy: Physician perspective of open, laparoscopic, and robot-assisted techniques. J. Endourol. 23, 627–633 (2009).
73
O. N. Gofrit, A. A. Mikahail, K. C. Zorn, G. P. Zagaja, G. D. Steinberg, A. L. Shalhav, Surgeons’ perceptions and injuries during and after urologic laparoscopic surgery. Urology 71, 404–407 (2008).
74
R. H. van der Schatte Olivier, C. van’t Hullenaar, J. Ruurda, I. Broeders, Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surg. Endosc. 23, 1365–1371 (2009).
75
T. M. Patel, S. C. Shah, Y. Y. Soni, R. C. Radadiya, G. A. Patel, P. O. Tiwari, S. B. Pancholy, Comparison of robotic percutaneous coronary intervention with traditional percutaneous coronary intervention: A propensity score–matched analysis of a large cohort. Circ. Cardiovasc. Interv. 13, e008888 (2020).
View figure
Fig. 1
Fig. 1. Example clinical applications for the eight hot topics of the decade.
Starting at 8 o’clock and proceeding clockwise: Laparoscopic robots are the success story of medical robotics with applications including radical prostatectomy, radical cystectomy for bladder cancer, rectal cancer resection, and hysterectomy. Continuum robots are robotic versions of manual medical instruments including catheters, bronchoscopes, uteroscopes, and colonoscopes. Nonlaparoscopic robots have been developed for varying applications including electrode implantation in the brain and microsurgery inside the eye. Soft robots have been used, e.g., to create soft sleeves to assist heart contraction and for hand rehabilitation of daily living tasks. Assistive wearable robots are used to augment or replace arm and leg motion in the cases of motion impairment or amputation. Capsule robots are pill-sized devices that are swallowed for endoscopic diagnosis and treatment of the alimentary canal. Therapeutic rehabilitation robots assist patients with neurological injuries in performing repetitive movements to relearn tasks such as walking and grasping. Magnetic actuation enables the wireless generation of forces and torques inside the body to actuate an untethered robot or to orient the tip of a catheter.
View figure
Fig. 2
Fig. 2. Medical robotics papers published in engineering and medical journal papers from 1990 to 2020.
Curves report total numbers along with subsets corresponding to hot topics of laparoscopic robots, therapeutic rehabilitation robots, and assistive wearable robots. Note that 2020 publications were potentially reduced by coronavirus disease 2019 (COVID-19) shutdowns (data from Web of Science; see Materials and Methods).
View figure
Fig. 3
Fig. 3. Medical robotics papers published in engineering and medical journal papers from 1990 to 2020.
Curves report paper numbers for hot topics of soft robotics, magnetic actuation, capsule robots, and continuum robots. Note that 2020 publications were potentially reduced by COVID-19 shutdowns (data from Web of Science; see Materials and Methods).
View figure
Fig. 4
Fig. 4. Application-specific trend toward increasing medical robot autonomy.
In current use, the level of autonomy is typically the minimum needed to be clinically useful. For example, radiotherapy robots operate at a level of conditional autonomy computing and executing a radiation exposure trajectory to provide the desired radiation dose inside a patient while minimizing exposure of surrounding tissues. Orthopedic robots are capable of autonomously milling out a prescribed cavity for knee and hip implants. In contrast, laparoscopic surgical robots have proven successful under continuous operator control and so currently offer only limited robotic assistance. Transcatheter mechanical thrombectomy and heart valve repair are examples of clinical applications for which robotic solutions have yet to be developed, although both could potentially benefit from robotic solutions. In the future, it is anticipated that the level of autonomy of current robotic systems will increase. The biggest increases will be for those applications for which autonomy is vital to their function. For example, highly autonomous systems for remotely performing emergency mechanical thrombectomies to treat stroke would substantially increase the accessibility of this treatment while also decreasing the time to treatment. As a second example, bionic implants that improve or restore body functions will be sufficiently integrated with their host to not require continuous conscious control.
Table 1
Table 1. Hot topics of the decade.