Abstract 抽象的
Microplastics (MPs) are identified as emerging contaminants; however, their interactions with heavy metals in the environment have not been well elucidated. Here, the research progress, hotspots, and trends in the interactions of MPs and heavy metals were analyzed at a global scale using a bibliometric analysis combined with a literature review. We comprehensively searched the Web of Science Core Collection database from 2008 to July 5, 2022. A total of 552 articles published in 124 journals were selected, which came from 70 countries and 841 institutions. The most contributing journals, countries, institutions, and authors were identified. Visualization methods were used to identify high co-citation references and hot keywords in the 552 articles. Evolutionary and cluster analyses of hot keywords suggested several research hotspots in the co-contamination of MPs and heavy metals, including their toxicity and bioaccumulation, the adsorption and desorption behaviors, the environmental pollution and risk assessment, and their detection and characterization. Based on the current research status, several directions of priority are recommended to understand the interactions between MPs and heavy metals and their potential risks. This article can help recognize the current research status and future directions in this field.
微塑料 (MP) 被确定为新兴污染物;然而,它们与环境中重金属的相互作用尚未得到很好的阐明。本文采用文献计量分析和文献综述相结合的方法,对全球范围内MPs与重金属相互作用的研究进展、热点和趋势进行了分析。我们全面检索了2008年至2022年7月5日Web of Science核心合集数据库,共选取了124种期刊发表的552篇文章,来自70个国家、841个机构。确定了贡献最大的期刊、国家、机构和作者。使用可视化方法识别 552 篇文章中的高同被引参考文献和热门关键词。热点关键词的进化分析和聚类分析提出了MPs与重金属共污染的几个研究热点,包括其毒性与生物富集性、吸附与解吸行为、环境污染与风险评估、检测与表征。根据目前的研究现状,建议优先考虑几个方向来了解 MP 与重金属之间的相互作用及其潜在风险。本文有助于认识该领域当前的研究现状和未来的方向。
Similar content being viewed by others
其他人正在查看类似内容
Explore related subjects 探索相关主题
Discover the latest articles, news and stories from top researchers in related subjects.发现相关学科顶尖研究人员的最新文章、新闻和故事。
使用我们的预提交清单
Avoid common mistakes on your manuscript.
避免手稿中的常见错误。
Introduction 介绍
Increasing evidence confirms that microplastics (MPs) distribute in nearly every ecosystem on the planet, including marine and freshwater environments, soil, atmosphere, and even Arctic areas (Murphy et al. 2016; Auta et al. 2017; Morgana et al. 2018; Chen et al. 2020; Wang et al. 2022c). One estimation shows that the global release of primary MPs from commercial and household activities into the environment is in the order of 3.2 million tons/year (Boucher and Friot 2017). Another estimation shows that up to 430,000 and 300,000 tons MPs per year release into European and North American farmlands, respectively (Nizzetto et al. 2016). MPs can cause various negative impacts on environments and the organisms therein. After ingestion by organisms, MPs can accumulate in their digestive tract (Ma et al. 2020; Wang et al. 2022d), or excrete as fake feces, interfering with their energy flow (Ma et al. 2020). Previous studies have confirmed a series of negative consequences caused by MPs, such as oxidative stress, stunted growth and reduced fecundity in marine organisms, inhibited photosynthesis in phytoplankton in freshwater environments, and damage in liver organs in animals (Huang et al. 2021; Sun et al. 2022b). After entering the soil, MPs can affect soil properties and communities and their functions, inhibit plant nutrition and growth, and then cause serious damage to agroecosystems (Sun et al. 2022b; Wang et al. 2022b, 2022c, 2022d). MPs can also pose a human health risk through the food chain (Avio et al. 2017; Prata et al. 2020; Huang et al. 2021). Notably, MPs are also found in human blood, placenta, and lungs (Amato-Lourenço et al. 2021; Ragusa et al. 2021; Leslie et al. 2022), posing a potential health risk.
越来越多的证据证实,微塑料 (MP) 几乎分布在地球上的每个生态系统中,包括海洋和淡水环境、土壤、大气,甚至北极地区(Murphy 等人, 2016 年;Auta 等人, 2017 年;Morgana 等人, 2018 年;陈等人, 2020 ;王等人, 2022c )。一项估计显示,全球商业和家庭活动向环境中释放的初级 MP 量约为 320 万吨/年(Boucher 和 Friot, 2017 年)。另一项估计表明,每年有多达 43 万吨和 30 万吨 MP 分别释放到欧洲和北美农田中(Nizzetto 等人, 2016 年)。 MP 会对环境及其中的生物体造成各种负面影响。被生物体摄入后,MP可以在其消化道中积聚(Ma et al. 2020 ;Wang et al. 2022d ),或作为假粪便排出体外,干扰其能量流动(Ma et al. 2020 )。以往的研究已经证实MPs会造成一系列负面后果,如海洋生物的氧化应激、生长发育迟缓和繁殖力降低、淡水环境中浮游植物光合作用受到抑制、动物肝脏器官受损等(Huang等, 2021 ;Sun)等2022b )。 MPs进入土壤后会影响土壤性质和群落及其功能,抑制植物营养和生长,进而对农业生态系统造成严重破坏(Sun等, 2022b ;Wang等, 2022b , 2022c , 2022d )。国会议员还可以通过食物链对人类健康构成风险(Avio 等人, 2017 年;Prata 等人, 2020 年;Huang 等人,2020 年)。 2021 )。值得注意的是,MP 也存在于人体血液、胎盘和肺部中(Amato-Lourenço 等人, 2021 年;Ragusa 等人, 2021 年;Leslie 等人, 2022 年),构成潜在的健康风险。
Heavy metals are common environmental pollutants in various ecosystems. Previous studies have found that MPs and heavy metals coexist in marine, freshwater, and soil environments (Turner 2016; Zhou et al. 2019; Khalid et al. 2021). Heavy metals are used as catalysts in plastic production and can release into the environment with the decay of MPs (Hahladakis et al. 2018). MPs with small sizes and large specific surface areas can adsorb metals through surface electrostatic interaction, biofilm, or natural organic matter to form new complexes, thus producing a carrier effect on heavy metals (Cao et al. 2021; Gao et al. 2021). MPs can transport heavy metals into living organisms, leading to joint toxicity (Liu et al. 2021a). Co-contamination of MPs and heavy metals can alter soil microbiota and biological processes involved in C and N cycling (Wang et al. 2022c; Salam et al. 2023; Zhang et al. 2023). Co-exposure to MPs and heavy metals can cause severer oxidative stress responses and higher toxicity in higher plants, particularly crops (Kumar et al. 2022; Wang et al. 2022b; Huang et al. 2023), posing a threat to food safety. In particular, MPs carrying heavy metals can enter the bodies of humans and animals through ingestion, inhalation, and skin contact, causing health problems (Cao et al. 2021).
重金属是各种生态系统中常见的环境污染物。先前的研究发现MPs和重金属在海洋、淡水和土壤环境中共存(Turner 2016 ;Zhou et al. 2019 ;Khalid et al. 2021 )。重金属在塑料生产中用作催化剂,并会随着 MP 的腐烂而释放到环境中(Hahladakis 等人, 2018 )。尺寸小、比表面积大的MPs可以通过表面静电相互作用、生物膜或天然有机物吸附金属,形成新的复合物,从而对重金属产生载体效应(Cao等, 2021 ;Gao等, 2021 )。 MP 可以将重金属转运到生物体中,导致关节毒性(Liu et al. 2021a )。 MP 和重金属的共同污染可以改变土壤微生物群和参与碳氮循环的生物过程(Wang 等人, 2022c ;Salam 等人, 2023 ;Zhang 等人, 2023 )。 MPs和重金属的共同暴露会导致高等植物,特别是农作物出现更严重的氧化应激反应和更高的毒性(Kumar等人, 2022 ;Wang等人, 2022b ;Huang等人, 2023 ),对食品安全构成威胁。特别是,携带重金属的MP可以通过摄入、吸入和皮肤接触进入人类和动物体内,造成健康问题(Cao et al. 2021 )。
There have been some excellent reviews on the combined pollution of MPs and heavy metals. Kutralam-Muniasamy et al. (2021) reviewed the detection and analysis methods, pollution status, and migration risks of MPs and heavy metals in the environment. Gao et al. (2021) reviewed the behavior and influencing factors of heavy metal adsorption by MPs. Liu et al. (2021a) reviewed the effects of MPs on the mobility, bioavailability, and toxicity of heavy metals. Several excellent reviews have addressed the interactions of MPs and heavy metals in aquatic or terrestrial environments and their combined effects on living organisms and humans (Naqash et al. 2020; Cao et al. 2021; Khalid et al. 2021; Liu et al. 2021b, 2022; Kumar et al. 2022; Khoshmanesh et al. 2023). However, these reviews only focus on one or several particular environmental directions. Bibliometrics can provide a scientific approach to assess research trends from the growth of literature on a particular topic through a visual approach (Li et al. 2022a; Zeb et al. 2022) and can analyze all relevant countries, institutions, journals, authors, references, and keywords in the collected publications (Chen et al. 2016), which can help to understand the current advances, hotspots, and trends of a specific topic in an intuitive way. To our knowledge, no bibliometric analysis has been conducted on the interaction of MPs and heavy metals at a global scale.
关于 MP 和重金属的综合污染,已有一些精彩的评论。库特拉拉姆-穆尼亚萨米等人。 ( 2021 )对环境中MPs和重金属的检测分析方法、污染现状及迁移风险进行了综述。高等人。 ( 2021 )综述了MPs吸附重金属的行为及其影响因素。刘等人。 ( 2021a ) 回顾了 MP 对重金属迁移率、生物利用度和毒性的影响。几篇优秀的评论讨论了 MP 和重金属在水生或陆地环境中的相互作用及其对生物体和人类的综合影响(Naqash 等人, 2020 年;Cao 等人, 2021 年;Khalid 等人, 2021 年;Liu 等人, 2021b) , 2022 ; Khoshmanesh等人。然而,这些评论仅关注一个或几个特定的环境方向。文献计量学可以提供一种科学方法,通过视觉方法评估特定主题的文献增长的研究趋势(Li et al. 2022a ;Zeb et al. 2022 ),并且可以分析所有相关国家、机构、期刊、作者、参考文献、以及收集的出版物中的关键词(Chen et al. 2016 ),可以帮助直观地了解特定主题的当前进展、热点和趋势。据我们所知,尚未在全球范围内对 MP 与重金属的相互作用进行文献计量分析。
In this study, VOSviewer, Pajek64, and CiteSpace were used to analyze the literature on the interactions of MPs and heavy metals. The objective of this study was to visually analyze the current hotspots and trends in MPs and heavy metals, as well as the association or collaboration analysis of leading journals, countries, institutions, and authors. Finally, based on the results and knowledge gaps, we recommended several priority directions. Our results can help the researchers to comprehensively recognize the research advances and future perspectives of this field.
在本研究中,使用 VOSviewer、Pajek64 和 CiteSpace 来分析有关 MP 与重金属相互作用的文献。本研究的目的是直观地分析 MP 和重金属的当前热点和趋势,以及领先期刊、国家、机构和作者的关联或合作分析。最后,根据结果和知识差距,我们推荐了几个优先方向。我们的研究结果可以帮助研究人员全面认识该领域的研究进展和未来前景。
Methodology 方法论
Date source and search criteria
日期来源和搜索条件
The data were obtained by searching the Web of Science Core Collection database from 2008 to July 5, 2022, using the following terms: microplastic * OR nanoplastic * OR micro-plastic OR (nano)microplastic * OR (micro)nanoplastic * AND heavy metal * OR Cu OR Pb OR Zn OR Fe OR Cr OR Cd OR Hg OR Ni OR Mn OR Cobalt OR arsenic. A total of 840 search results were obtained without restrictions of document type or data category. Then, we selected the results by reading their titles and abstracts. Finally, the search results, including complete records in plain text format and cited references, were exported for subsequent data analysis.
数据是通过搜索 2008 年至 2022 年 7 月 5 日期间的 Web of Science 核心合集数据库获得的,使用以下术语:微塑料 * OR 纳米塑料 * OR 微塑料 OR (纳米)微塑料 * OR (微)纳米塑料 * AND 重金属* 或铜或铅或锌或铁或铬或镉或汞或镍或锰或钴或砷。在不限制文档类型或数据类别的情况下,总共获得了 840 条搜索结果。然后,我们通过阅读标题和摘要来选择结果。最后,导出搜索结果,包括纯文本格式的完整记录和引用的参考文献,以供后续数据分析。
Scientometric analysis 科学计量分析
To reflect the hotspots and trends of a specific domain in multiple dimensions, VOSviewer (Version 1.6.18), Pajek64 (Portable 5.15b), and CiteSpace (Version 5.8.R3) were used to analyze the document types, years, authors, institutions, countries, journal sources, keywords, and references to form visual network maps. Data were summarized using Microsoft Excel 2016. The importance of node content is represented by the size of nodes and the thickness of lines in the visualization diagram (Padilla et al. 2018). The size of nodes indicates the number or frequency, and the line between nodes indicates the association. A thicker line represents a closer relationship (Gao et al. 2019). Therefore, the research trend can be displayed by analyzing the network visualization graph generated from literature data, and the research prospects can be obtained. Some hotspot articles are also reviewed when we discuss the research progress and knowledge gaps.
为了多维度反映特定领域的热点和趋势,使用VOSviewer(1.6.18版本)、Pajek64(Portable 5.15b)、CiteSpace(5.8.R3版本)对文献类型、年份、作者、机构进行分析、国家、期刊来源、关键词和参考文献,形成可视化网络地图。使用 Microsoft Excel 2016 汇总数据。节点内容的重要性通过可视化图中节点的大小和线条的粗细来表示(Padilla et al. 2018 )。节点的大小表示数量或频率,节点之间的线表示关联性。线越粗代表关系越密切(Gao et al. 2019 )。因此,通过分析文献数据生成的网络可视化图可以展示研究趋势,并得出研究前景。在讨论研究进展和知识差距时,我们也会回顾一些热点文章。
Results and discussion 结果与讨论
The quantity and type of publications and the dominant journals
出版物数量、类型及主导期刊
A total of 552 articles on MPs and heavy metals were selected for this study, including original research articles (471 items, accounting for 85% of the total number) and review articles (81 items, 15%) (Fig. 1a). The first publication on MPs and heavy metals was published on June 14, 2014, by Holmes et al. in the journal “Marine Chemistry.” Since 2019, the number of publications has increased significantly (Fig. 1b, Table S1). From 2014 to 2021, the number of papers grew exponentially (R2 = 0.9915). In 2021, the annual number of articles published reached 228, accounting for 41.30% of the total number.
本研究共选取了552篇有关MPs和重金属的文章,其中包括原创研究文章(471篇,占总数的85%)和综述文章(81篇,占15%)(图1a )。第一份关于 MP 和重金属的出版物由 Holmes 等人于 2014 年 6 月 14 日出版。在《海洋化学》杂志上。自2019年以来,出版物数量显着增加(图1 b,表S 1 )。从2014年到2021年,论文数量呈指数增长( R 2 = 0.9915)。 2021年全年发表文章数达到228篇,占总数的41.30%。
These publications were published by a total of 124 journals. The top 16 journals are shown in Fig. 1c and Table S2. There were close citation relationships among these journals. The journal Science of the Total Environment published the highest number of papers (88 papers, accounting for 15.94%), followed by Journal of Hazardous Materials (61, 11.05%), Environmental Pollution (50, 9.06%), Chemosphere (50, 9.06%), and Marine Pollution Bulletin (44, 7.97%). All five journals received citations more than 1000 times.
这些出版物共有 124 种期刊发表。排名前 16 的期刊如图1c和表 S 2所示。这些期刊之间存在着密切的引用关系。 Science of the Total Environment 期刊发文数量最多(88 篇,占比 15.94%),其次是 Journal of Hazardous Materials(61 篇,占比 11.05%)、Environmental Pollution(50 篇,占比 9.06%)、Chemosphere(50 篇,占比 9.06)。 %) 和海洋污染公报 (44, 7.97%)。所有五种期刊的引用均超过 1000 次。
Contributing countries, institutions, and authors
贡献国家、机构和作者
The authors of the 552 papers come from 841 institutions in 70 countries (Figs. 1 and 2). The partnerships of major contributing countries (top 30) and institutions (top 44) are shown in Table S3, Table S4, and Table S5, respectively. The country with the highest number (267) of published papers is China, accounting for 48.37%, followed by India (47, 8.51%), America (44, 7.97%), UK (34, 6.16%), South Korea (33, 5.98%), Australia (26, 4.71%), and Spain (26, 4.71%). Chinese ACAD SCI has published the most papers (35), accounting for 6.34%, followed by UNIV Chinese ACAD SCI (21, 3.80%), Univ Plymouth (18, 3.26%), Tongji Univ (15, 2.72%), and Hunan Univ (15 papers, 2.72%). As shown in Fig. 1d, the major contributing countries have close cooperation. The publications of the major contributing institutions were published after 2020 (Fig. 2a). The cooperation among the major contributing organizations is limited (Fig. 2c).
552篇论文的作者来自70个国家的841个机构(图1和图2 )。主要贡献国家(前30名)和机构(前44名)的伙伴关系分别如表S 3 、表S 4和表S 5所示。发表论文数量最多的国家(267 篇)是中国,占 48.37%,其次是印度(47 篇,8.51%)、美国(44 篇,7.97%)、英国(34 篇,6.16%)、韩国(33 篇)。 , 5.98%)、澳大利亚(26, 4.71%)和西班牙(26, 4.71%)。中国 ACAD SCI 发表论文最多(35 篇,占比 6.34%),其次是 UNIV 中国 ACAD SCI(21 篇,3.80%)、普利茅斯大学(18 篇,3.26%)、同济大学(15 篇,2.72%)、湖南大学大学(15 篇论文,2.72%)。如图1d所示,主要出资国合作密切。主要贡献机构的出版物均在2020年后出版(图2a )。主要贡献组织之间的合作是有限的(图2c )。
The cooperation map of the authors can reflect the current situation of mutual communication and cooperation in the field. A total of 2623 authors contributed to the 552 papers, and 39 authors published more than 5 articles. The author with the largest number of publications (15 papers) is Andrew Turner, from Plymouth University, followed by Zhengguo Song’s team (10 papers), and Julien Gigault (9 papers) (Table S6). Among these 39 authors, 32 of them had cooperative papers, particularly in the year 2021 (Fig. 3). These authors’ information is shown in Table S6. Figure 3 c shows that there are nine author collaboration clusters, but there is no collaboration among the authors outside of the clusters.
作者的合作图谱能够反映该领域相互交流与合作的现状。共有2623位作者贡献了552篇论文,其中39位作者发表了5篇以上的文章。发表论文数量最多的作者(15篇论文)是来自普利茅斯大学的Andrew Turner,其次是宋正国团队(10篇论文)和Julien Gigault团队(9篇论文)(表S 6 )。在这39位作者中,有32位有合作论文,特别是在2021年(图3 )。这些作者的信息如表S 6所示。图3c显示有9个作者协作集群,但集群外的作者之间没有协作。
Annual variation analysis of high co-citation and burst references
高同被引和突发参考文献的年度变化分析
Co-citation analysis provides a tool to quantify and visualize the thematic evolution of a specific research area (Cobo et al. 2011). The co-citation of documents was displayed using VOSviewer. Among the 552 articles, their references with more than 50 citations are listed in Table S7. Burst references can reveal the high attention to a research topic in a certain period. Fig. S1 shows the top 25 references with the strongest citation bursts. The annual variation of some important co-cited references in the field of MPs and heavy metals since 2014 is shown Fig. 4 and Fig. S2. Details of these articles are shown in Table S8. By analyzing these cited references, several research directions of high concern can be summarized below.
同被引分析提供了一种工具来量化和可视化特定研究领域的主题演变(Cobo 等人, 2011 )。使用VOSviewer显示文献的共引情况。在552篇文章中,被引用次数超过50次的参考文献列于表S 7中。爆发引用可以揭示某一时期某个研究主题的高度关注度。图 S 1显示了引用爆发最强的前 25 篇参考文献。自2014年以来MP和重金属领域一些重要同被引用文献的年度变化如图4和图S 2所示。这些文章的详细信息如表 S 8所示。通过分析这些引用的参考文献,可以总结出几个备受关注的研究方向。
The occurrence and abundance of MPs in the environment and organisms is of the highest priority. The first widely recognized study on MPs was published in Science in 2004, which reported the occurrence of MPs in marine sediments (Thompson et al. 2004). Thereafter, increasing studies have confirmed the occurrence of MPs in aquatic and terrestrial environments (Andrady 2011; Browne et al. 2011; Horton et al. 2017). In general, microplastic abundance is higher in the areas of intensive human activities, such as ports (Claessens et al. 2011) and agricultural soil (Zhang and Liu 2018). The abundance of MPs is also high in the places where material exchange occurs frequently, such as coastlines (Cole et al. 2011; Pan and Wang 2012), estuaries (Nicolaus et al. 2015), and Subtropical Gyre (Ter Halle et al. 2017). One survey found that MPs were distributed in three dimensions in the environment, and even in coastal areas as deep as 2 m underground (Turra et al. 2014). MPs are also widely detected in sewage treatment plants (Mason et al. 2016). It is found that MPs can only be largely removed in the primary treatment process, and secondary and tertiary wastewater treatment cannot effectively remove MPs (Carr et al. 2016). MPs have also been found in more remote areas, such as the deep ocean (Van Cauwenberghe et al. 2013), remote mountain lakes (Free et al. 2014), and the North Pole (Lusher et al. 2015; Amélineau et al. 2016). Meanwhile, MPs can be ingested by a variety of organisms, including marine (Cole et al. 2011) and freshwater organisms (Eerkes-Medrano et al. 2015). The researchers examined the abundance of MPs in fish (Boerger et al. 2010; Lusher et al. 2013) and mussels (Qu et al. 2018), through consuming which humans may have access to large amounts of MPs in their diets (Van Cauwenberghe and Janssen 2014). In an aqueous environment, the density, size, shape, ageing degree, and abundance of MPs will determine their availability to living organisms (Lima et al. 2014; Botterell et al. 2019).
MP 在环境和生物体中的出现和丰度是重中之重。第一篇得到广泛认可的关于 MP 的研究发表在 2004 年的《科学》杂志上,报告了海洋沉积物中 MP 的存在(Thompson 等, 2004 )。此后,越来越多的研究证实MP在水生和陆地环境中存在(Andrady 2011 ;Browne et al. 2011 ;Horton et al. 2017 )。一般来说,人类活动密集的地区微塑料丰度较高,例如港口(Claessens等, 2011 )和农业土壤(Zhang和Liu, 2018 )。在物质交换频繁的地方,如海岸线(Cole et al. 2011 ;Pan and Wang 2012 )、河口(Nicolaus et al. 2015)、亚热带环流(Ter Halle et al. 2012 )等物质交换频繁的地方,MP的丰度也很高。 2017 )。一项调查发现,MP在环境中呈三维分布,甚至在地下2 m深处的沿海地区也有分布(Turra et al. 2014 )。 MP 在污水处理厂中也广泛检测到(Mason 等, 2016 )。研究发现,MPs只能在一级处理过程中大量去除,二级和三级废水处理无法有效去除MPs(Carr等, 2016 )。在更偏远的地区也发现了MP,例如深海(Van Cauwenberghe等人, 2013年)、偏远的高山湖泊(Free等人, 2014年)和北极(Lusher等人, 2015年;Amélineau等人,2015年)。 2016 )。同时,MP 可以被多种生物体摄入,包括海洋生物(Cole 等,2017)。 2011 )和淡水生物(Eerkes-Medrano 等人, 2015 )。研究人员检查了鱼类(Boerger 等人, 2010 年;Lusher 等人, 2013 年)和贻贝(Qu 等人, 2018 年)中 MP 的丰度,通过食用这些贻贝,人类可以从饮食中获取大量 MP(Van Cauwenberghe)和詹森2014 )。在水环境中,MP 的密度、大小、形状、老化程度和丰度将决定它们对生物体的可用性(Lima 等人, 2014 年;Botterell 等人, 2019 年)。
The second hotspot is the adsorption, enrichment, and carrying of heavy metals by MPs. The adsorption of heavy metals by MPs occurs commonly in the environment (Rochman et al. 2014a; Wang et al. 2017). The main mechanism underlying heavy metal adsorption by MPs is electrostatic interaction (Guo et al. 2020). The association of heavy metals with MPs is closely related to the concentration of heavy metals in the environment (Zhou et al. 2019). The ability of MPs to adsorb heavy metals is also affected by pH (Turner and Holmes 2015), temperature (Wang et al. 2020b), surface characteristics of MPs (Avio et al. 2017; Tang et al. 2020), and exposure time (Rochman et al. 2014a). Some studies have found that the aged MPs adsorb much more pollutants than the original MPs (Holmes et al. 2014; Wang et al. 2020b). A field investigation found that MPs can be enriched with dangerous metals, such as Cd and Pb, increasing the risk of metals ingested by organisms (Ashton et al. 2010). MPs can act as carriers of heavy metals and other pollutants, and thus facilitate the transport of pollutants in aquatic environments (Browne et al. 2013; Brennecke et al. 2016; Alimi et al. 2018). MPs effectively increase the intake of Cd, Pb, Br, and Hg by organisms (Turner 2018; Fernández et al. 2020). MPs and related contaminants ingested by low-trophic organisms can be transferred to higher-trophic organisms (Wright et al. 2013).
第二个热点是MPs对重金属的吸附、富集和携带。 MP 对重金属的吸附在环境中普遍存在(Rochman 等人, 2014a ;Wang 等人, 2017 )。 MPs 吸附重金属的主要机制是静电相互作用(Guo et al. 2020 )。重金属与MPs的关联与环境中重金属的浓度密切相关(Zhou et al. 2019 )。 MP 吸附重金属的能力还受到 pH 值(Turner 和 Holmes 2015 )、温度(Wang 等人, 2020b )、MP 表面特性(Avio 等人, 2017 ;Tang 等人, 2020 )和暴露时间的影响。 (Rochman 等人, 2014a )。一些研究发现,老化的 MP 比原来的 MP 吸附的污染物要多得多(Holmes 等, 2014 ;Wang 等, 2020b )。一项现场调查发现,MP 中可能富含危险金属,例如镉和铅,增加了生物体摄入金属的风险(Ashton 等人, 2010 )。 MP可以作为重金属和其他污染物的载体,从而促进污染物在水生环境中的传输(Browne等人, 2013 ;Brennecke等人, 2016 ;Alimi等人, 2018 )。 MP 有效增加生物体对 Cd、Pb、Br 和 Hg 的摄入量(Turner 2018 ;Fernández et al. 2020 )。低营养级生物体摄入的 MP 和相关污染物可以转移到高营养级生物体中 (Wright et al. 2013 )。
Third, the toxicity of MPs to animals attracts increasing attention. MPs can accumulate in living organisms and cause inflammation, tissue damage, oxidative stress, neurotoxicity (Brandts et al. 2018), endocrine system function, lipid and energy metabolism, and the expression of genes (Rochman et al. 2014b; Lu et al. 2016; Rodriguez-Seijo et al. 2017; Barboza et al. 2020). MPs can cause physical damage and chemical transfer of toxicants when ingested by organisms (Wright et al. 2013; Eerkes-Medrano et al. 2015;). Co-exposure to MPs and heavy metals can adversely affect living organisms, such as inhibited growth and increased metal accumulation (Barboza et al. 2018; Wang et al. 2022d). A previous study found that polystyrene MPs can enhance the accumulation and toxicity of Cd in zebrafish (Lu et al. 2018).
第三,MPs对动物的毒性日益引起人们的关注。 MP可以在生物体中积聚并引起炎症、组织损伤、氧化应激、神经毒性(Brandts等, 2018 )、内分泌系统功能、脂质和能量代谢以及基因表达(Rochman等, 2014b ;Lu等,2014)。 2016 ;罗德里格斯·塞乔等人,2020 ; MP 被生物体摄入后会造成物理损伤和有毒物质的化学转移(Wright 等人, 2013 年;Eerkes-Medrano 等人, 2015 年;)。同时接触 MP 和重金属会对生物体产生不利影响,例如生长受到抑制和金属积累增加(Barboza 等人, 2018 年;Wang 等人, 2022d )。之前的一项研究发现,聚苯乙烯 MPs 可以增强斑马鱼体内镉的积累和毒性(Lu et al. 2018 )。
Another hotspot is the effects of MPs in terrestrial ecosystems (de Souza Machado et al. 2018; Zhang et al. 2022b). MPs can enter and accumulate in soils through multiple pathways, producing ecological effects on soil physical, chemical, and biological properties and soil functionality (Wang et al. 2022c; Zhao et al. 2022a). MPs can interfere with the germination of plants (Bosker et al. 2019), and impede plant growth, inhibit photosynthesis, and interfere with nutrient metabolism, causing oxidative damage and genotoxicity in plants (Zhang et al. 2022b). MPs can change soil properties and soil ecosystem functions via mediating plant growth and earthworm’s health (Boots et al. 2019) and soil microbial communities (Huang et al. 2019). As a vector of metals, MPs can increase the exposure of metals to earthworms and improve the bioavailability of metals (Hodson et al. 2017), following which the combined toxicity of MPs and heavy metals in terrestrial ecosystems has become a hotspot attracting wide attention (Khalid et al. 2021).
另一个热点是 MPs 对陆地生态系统的影响(de Souza Machado 等人, 2018 ;Zhang 等人, 2022b )。 MPs可以通过多种途径进入土壤并在土壤中积累,对土壤物理、化学、生物性质和土壤功能产生生态效应(Wang等, 2022c ;Zhao等, 2022a )。 MPs会干扰植物的发芽(Bosker et al. 2019 ),并阻碍植物生长,抑制光合作用,干扰养分代谢,造成植物氧化损伤和遗传毒性(Zhang et al. 2022b )。 MP可以通过调节植物生长和蚯蚓的健康(Boots et al. 2019 )和土壤微生物群落(Huang et al. 2019 )来改变土壤性质和土壤生态系统功能。 MPs作为金属的载体,可以增加蚯蚓对金属的暴露量,提高金属的生物利用度(Hodson et al. 2017 ),随后MPs与重金属在陆地生态系统中的联合毒性问题成为人们广泛关注的热点。哈立德等人, 2021 )。
Cluster analysis of hot keywords
热门关键词聚类分析
There are a total of 2480 keywords in the 552 papers. We combined some keywords with the same meaning, such as “microplastics (MPs),” “microplastic,” and “microplastic pollution” (Table S9). After that, 167 keywords with more than 5 keyword occurrences were used to draw the knowledge graph of the keyword co-occurrence network (Fig. 5). In order to analyze keyword clustering more clearly, we exported map, network, and VOS files of Fig. 5 from VOSviewer, imported them into Pajek, and rearranged them with “Kamada-Kawai” and “In Y Direction” methods to obtain Figs. 6, S3, and S4, respectively.
552篇论文中共有2480个关键词。我们将一些具有相同含义的关键词组合在一起,例如“微塑料(MP)”、“微塑料”和“微塑料污染”(表S 9 )。之后,使用167个出现次数超过5次的关键词绘制关键词共现网络的知识图谱(图5 )。为了更清楚地分析关键词聚类,我们从VOSviewer导出图5的地图、网络和VOS文件,导入Pajek,并使用“Kamada-Kawai”和“Y方向”方法重新排列,得到图5和图5。分别如图6 、S 3和S 4所示。
Understandably, the keyword microplastics has the highest frequency (364 times). Other hot keywords include “metals” (319 times), “adsorption” (159 times), “marine” (151 times), “pollution” (107 times), “sediments” (84 times), “debris” (81 times), “toxicity” (78 times), “contamination” (70 times), “accumulation” (68 times), “cadmium” (63 times), “resin pellets” (63 times), and “nanoplastics” (60 times) (Table S10).
可以理解的是,关键词“微塑料”的出现频率最高(364次)。其他热门关键词包括“金属”(319次)、“吸附”(159次)、“海洋”(151次)、“污染”(107次)、“沉积物”(84次)、“碎片”(81次) )、“毒性”(78次)、“污染”(70次)、“蓄积性”(68次)、“镉”(63次)、“树脂颗粒”(63次)、“纳米塑料”(60次) )(表 S 10 )。
The Overlay map shows the average occurrence year of each keyword (Fig. 5a and Fig. S3). Some keywords appear earlier (green color), such as marine, debris, resin pellet, “chemicals,” and “pellets.” Some other keywords appear later (yellow color), such as toxicity, “PS-MPs,” “soil,” “removal,” “bioaccumulation,” “copper,” “arsenic,” “zinc,” “biofilm,” “communities,” and “organisms.” In particular, the keywords such as microplastics and metals must have appeared early, but the average time is after 2020, indicating the rapid growth of research in this area in recent years, which is consistent with the results in Fig. 1b. The density map shows a density visualization of keywords and hotspot intensities (Fig. 5b and Fig. S4). The keywords with the highest density (red and yellow) are microplastics, metals, adsorption, marine, pollution, sediments, debris, toxicity, contamination, accumulation, “water,” resin pellets, cadmium, nanoplastics, and PS-MPs. The Network map shows the co-occurrence relationship of keywords (Fig. 5c). The analysis of high-frequency keywords in each keyword cluster can reveal the research hotspots in the field of MPs and heavy metals from 2014 to 2022. These keywords are divided into six clusters (Fig. 6), and different colors indicate that the keywords belong to different clusters. The detailed information on each hot keyword is shown in Table S10.
Overlay图显示了每个关键词的平均出现年份(图5a和图S3 )。一些关键词出现较早(绿色),例如海洋、碎片、树脂颗粒、“化学品”和“颗粒”。其他一些关键词稍后出现(黄色),例如毒性、“PS-MP”、“土壤”、“去除”、“生物累积”、“铜”、“砷”、“锌”、“生物膜”、“社区” 、”和“有机体”。尤其是微塑料、金属等关键词肯定出现较早,但平均时间在2020年以后,说明近年来该领域的研究增长迅速,与图1b的结果一致。密度图显示了关键词和热点强度的密度可视化(图5b和图S4 )。密度最高的关键词(红色和黄色)是微塑料、金属、吸附、海洋、污染、沉积物、碎片、毒性、污染、积累、“水”、树脂颗粒、镉、纳米塑料和 PS-MP。网络图显示了关键词的共现关系(图5c )。对每个关键词簇中的高频关键词进行分析,可以揭示2014年至2022年MPs和重金属领域的研究热点。这些关键词被分为6个簇(图6 ),不同颜色表示关键词所属到不同的集群。每个热门关键词的详细信息如表S 10所示。
Cluster 1 (red) has three core keywords toxicity, accumulation, and fish, indicating that it focuses on the toxicity and accumulation of MPs and heavy metals by organisms (particularly fish). Both MPs and loaded heavy metals can be absorbed by organisms, producing toxic effects. There is a correlation between the metal content in organisms and the metal content adsorbed by MPs isolated from organisms (Zhu et al. 2020), suggesting that MPs can increase the bioaccumulation of heavy metals in living organisms (Yang et al. 2022c). A large number of studies have shown that MPs can aggravate the accumulation of metals in organisms and that co-existing MPs and metals can produce higher toxicity than alone (Lu et al. 2018; Banaee et al. 2019; Wan et al. 2021; Wang et al. 2021b; Luo et al. 2022; Zhang et al. 2022a). For example, polystyrene MPs increased Cd accumulation in zebrafish and co-exposure to Cd and MPs induced oxidative damage and inflammation (Lu et al. 2018). Biofilms can enhance the combined toxicity of MPs and heavy metals (Qi et al. 2021). However, in some cases, due to the adsorption of heavy metals by MPs, the bioavailability of heavy metals is reduced, and the toxicity of heavy metals is delayed (Wen et al. 2018; Wang et al. 2021c).
集群1(红色)具有三个核心关键词毒性、积累和鱼类,表明其重点关注生物体(特别是鱼类)对MP和重金属的毒性和积累。 MP 和负载的重金属都可以被生物体吸收,产生毒性作用。生物体中的金属含量与从生物体中分离出的MPs吸附的金属含量之间存在相关性(Zhu et al. 2020 ),这表明MPs可以增加生物体内重金属的生物富集(Yang et al. 2022c )。大量研究表明,MPs会加剧生物体内金属的积累,MPs与金属共存会产生比单独存在更高的毒性(Lu et al. 2018 ; Banaee et al. 2019 ; Wan et al. 2021 ;王等人, 2021b ;张等人, 2022a ) 。例如,聚苯乙烯MPs增加了斑马鱼体内Cd的积累,并且同时暴露于Cd和MPs会引起氧化损伤和炎症(Lu et al. 2018 )。生物膜可以增强 MP 和重金属的综合毒性(Qi 等人, 2021 )。然而,在某些情况下,由于MPs对重金属的吸附,导致重金属的生物利用度降低,延迟了重金属的毒性(Wen等, 2018 ;Wang等, 2021c )。
Cluster 2 (green) mainly focuses on the adsorption of heavy metals by MPs, including the adsorption mechanisms, kinetics, isotherms, and influencing factors. The adsorption behaviors of heavy metals onto MPs are complex, with common sorption mechanisms such as physical and chemical adsorption, electrostatic force and surface complexation, external and internal diffusion, van der Waals force, π-π interaction, polar interaction, non-covalent interaction, the pseudo-first- or pseudo-second-order kinetics, and the Langmuir or Freundlich models (Gao et al. 2021). The factors influencing the adsorption behaviors of heavy metals by MPs can be divided into categories: (1) the polymer type, size, dose, and surface characteristics of MPs (Gao et al. 2021), (2) the intrinsic properties and concentration of metals (Dong et al. 2019, 2020; Wang et al. 2019; Tang et al. 2021; Li et al. 2022c), and (3) the environmental conditions, such as the solution pH, temperature, salinity, dissolved organic matter, and particulate matter (Gao et al. 2021). Notably, MPs in the environment will undergo ageing, weathering, and degradation, which can cause a series of changes in surface functional groups, polarity, and surface area, and consequently change the adsorption behaviors of heavy metals (Gao et al. 2021). Due to their low density, MPs can move easily in water and thus increase the transport of the leased metals due to the carrier effect (Liu et al. 2021a). Particularly, MPs reduce the adsorption capacity but increase the desorption of heavy metals by soil, leading to increased mobility of these metals (Zhang et al. 2020; Li et al. 2021). Understandably, soil with MPs may have higher bioavailability and toxicity of heavy metals and increased leaching to water bodies.
Cluster 2(绿色)主要研究MPs对重金属的吸附,包括吸附机理、动力学、等温线和影响因素。 MPs对重金属的吸附行为较为复杂,常见的吸附机制有物理和化学吸附、静电力和表面络合、内外扩散、范德华力、π-π相互作用、极性相互作用、非共价相互作用等、伪一级或伪二级动力学,以及 Langmuir 或 Freundlich 模型(Gao 等人, 2021 )。影响MPs吸附重金属行为的因素可分为几类:(1)MPs的聚合物类型、尺寸、剂量和表面特性(Gao et al. 2021 ),(2)MPs的内在性质和浓度。金属(Dong et al. 2019 , 2020 ; Wang et al. 2019 ; Tang et al. 2021 ; Li et al. 2022c ),以及(3)环境条件,例如溶液 pH 值、温度、盐度、溶解有机物和颗粒物(Gao 等人, 2021 )。值得注意的是,环境中的MP会发生老化、风化和降解,从而引起表面官能团、极性和表面积的一系列变化,从而改变重金属的吸附行为(Gao等, 2021 )。由于其密度低,MP 可以在水中轻松移动,从而由于载流子效应而增加了租赁金属的传输(Liu 等人, 2021a )。特别是,MPs降低了吸附能力,但增加了土壤对重金属的解吸,导致这些金属的迁移性增加(Zhang等人, 2020 ;Li等人, 2021 )。 可以理解的是,含有MP的土壤可能具有更高的重金属生物利用度和毒性,并且增加了对水体的淋滤。
Cluster 3 (blue) focuses on how MPs or heavy metals interact with microorganisms and other contaminants (e.g., antibiotics) in different environments, especially in the soil. MPs can alter the speciation, bioavailability, and toxicity of heavy metals to microorganisms (Wang et al. 2021a; Yang et al. 2022a). The co-occurrence of MPs and heavy metals can modify soil microbial community diversity and structure and their ecosystem functions (Feng et al. 2022; Yin et al. 2022). The ingestion of MPs and heavy metals by organisms increases their intestinal burden and triggers changes in the gut microbial community and functions (Yan et al. 2020; Jiang et al. 2022; Yang et al. 2022b). Biofilms colonizing microplastic surfaces (plastisphere) significantly affect heavy metal adsorption by MPs (Li et al. 2022b). The adsorption of heavy metals by MPs, in turn, affects biofilm formation and ecological functions (Wang et al. 2022a). Microorganisms can influence the fate of MPs (e.g., ageing and degradation) and heavy metals (e.g., transformation and sorption) in the environment, and biofilms have been shown to enhance the transport of metals by MPs and increase their combined toxicity (Qi et al. 2021). Thus, the interactions among MPs, heavy metals, and microorganisms are complex and deserve to be explored.
集群 3(蓝色)重点关注 MP 或重金属如何与不同环境中的微生物和其他污染物(例如抗生素)相互作用,特别是在土壤中。 MP 可以改变重金属对微生物的形态、生物利用度和毒性(Wang 等人, 2021a ;Yang 等人, 2022a )。 MPs和重金属的共存可以改变土壤微生物群落的多样性和结构及其生态系统功能(Feng等, 2022 ;Yin等, 2022 )。生物体摄入 MP 和重金属会增加肠道负担,引发肠道微生物群落和功能的变化(Yan 等人, 2020 ;Jiang 等人, 2022 ;Yang 等人, 2022b )。定殖微塑料表面(塑料球)的生物膜显着影响 MP 的重金属吸附(Li 等人, 2022b )。 MP 对重金属的吸附反过来会影响生物膜的形成和生态功能(Wang 等人, 2022a )。微生物可以影响环境中MP的命运(例如老化和降解)和重金属(例如转化和吸附),生物膜已被证明可以增强MP对金属的转运并增加其综合毒性(Qi等人) 2021 )。因此,MP、重金属和微生物之间的相互作用是复杂的,值得探索。
Cluster 4 (yellow) focuses on investigating and assessing the abundance and risks of microplastic pollution or heavy metals in the aquatic environment. MPs widely distribute in both marine and terrestrial ecosystems, and their surfaces are capable of adsorbing and enriching metals (Li et al. 2020; Patterson et al. 2020). There is a positive correlation between the amount of metal enriched on the surface of MPs and the abundance of metal surrounding them (Zhu et al. 2020). Both MPs and heavy metals, such as Cr, Cd, and As, have been found to contaminate water and sediments (Mohsen et al. 2019; Jahromi et al. 2021; Sun et al. 2022a). Heavy metals and MPs have also been detected in aquatic animals, such as bivalves, oysters, sea cucumbers, and fish (Mohsen et al. 2019; Zhu et al. 2020; Jahromi et al. 2021; Vieira et al. 2021; Sun et al. 2022a). Since many of these animals are consumed as sea foods by humans, their ingestion of MPs and associated heavy metals will bring enlarged health risks for consumers.
集群 4(黄色)重点调查和评估水生环境中微塑料污染或重金属的丰度和风险。 MPs广泛分布在海洋和陆地生态系统中,其表面具有吸附和富集金属的能力(Li et al. 2020 ;Patterson et al. 2020 )。 MPs表面富集的金属量与其周围金属的丰度呈正相关(Zhu et al. 2020 )。 MP 和 Cr、Cd 和 As 等重金属均被发现会污染水和沉积物(Mohsen 等人, 2019 年;Jahromi 等人, 2021 年;Sun 等人, 2022a )。在双壳类、牡蛎、海参和鱼类等水生动物中也检测到了重金属和 MP(Mohsen 等人, 2019 年;Zhu 等人, 2020 年;Jahromi 等人, 2021 年;Vieira 等人, 2021 年;Sun 等人)等2022a )。由于许多这些动物被人类作为海鲜食用,它们摄入的MP和相关重金属将给消费者带来更大的健康风险。
The core keywords in cluster 5 (purple) are pollutants such as persistent organic pollutants and polycyclic aromatic-hydrocarbons, indicating that it is concerned with the interrelationship of MPs or heavy metals with other pollutants in the environment. In many cases, MPs or heavy metals do not singly exist in the environment but co-exist with other pollutants, such as organochlorine pesticides and polycyclic aromatic hydrocarbons (Fred-Ahmadu et al. 2022). These pollutants are even ingested together by living organisms (Borges-Ramírez et al. 2021; Hu et al. 2022; Xiang et al. 2022). Similar to heavy metals, organic pollutants can adsorb and interact on the surface of MPs. For example, the presence of other pollutants alters the adsorption behavior of heavy metals by MPs (Yu et al. 2020; Zhao et al. 2022b). Co-exposure of MPs and heavy metals with a variety of other contaminants can lead to complex toxicity to organisms (Menéndez-Pedriza and Jaumot 2020; Xiang et al. 2022), making it difficult to investigate the interactions of MPs and heavy metals. It is also challenging to assess the biological toxicity of multiple pollutants.
第5组(紫色)的核心关键词是持久性有机污染物和多环芳烃等污染物,表明它与MP或重金属与环境中其他污染物的相互关系有关。在许多情况下,MP或重金属并不单独存在于环境中,而是与其他污染物共存,例如有机氯农药和多环芳烃(Fred-Ahmadu等人, 2022 )。这些污染物甚至被生物体一起摄入(Borges-Ramírez 等人, 2021 ;Hu 等人, 2022 ;Xiang 等人, 2022 )。与重金属类似,有机污染物可以在MPs表面吸附并相互作用。例如,其他污染物的存在会改变 MP 对重金属的吸附行为(Yu 等人, 2020 ;Zhao 等人, 2022b )。 MP 和重金属与多种其他污染物的共同暴露可能导致对生物体产生复杂的毒性(Menéndez-Pedriza 和 Jaumot 2020 ;Xiang 等人2022 ),使得研究 MP 和重金属的相互作用变得困难。评估多种污染物的生物毒性也具有挑战性。
Cluster 6 (cyan) focuses on the identification and characterization of MPs (and heavy metals) in the environment. Understanding the abundance of MPs in the environment and the concentration of metals on the surface of MPs is a prerequisite for further study of their interactions (Mohsen et al. 2019; Kutralam-Muniasamy et al. 2021). MPs and nanoplastics are considered a type of new pollutants for which analytical methods still need to be developed. The separation, identification, and classification of MPs (i.e., polymer type, particle size, shape, color) are difficult due to their small size and the fact that they can aggregate or interact with other environmental media (Bitencourt et al. 2020; Tirkey and Upadhyay 2021). Although analytical methods for heavy metals are relatively mature (Inobeme et al. 2023), it is difficult to separate smaller MPs (e.g., nanoplastics) from environmental samples such as soils, causing challenges in the identification and quantification of the associated metals. The future development of high-throughput and standard methods to identify and accurately characterize MPs and the associated heavy metals would therefore be a ground-breaking initiative (Kutralam-Muniasamy et al. 2021).
集群 6(青色)侧重于环境中 MP(和重金属)的识别和表征。了解环境中 MP 的丰度以及 MP 表面金属的浓度是进一步研究其相互作用的先决条件(Mohsen 等人, 2019 年;Kutralam-Muniasamy 等人, 2021 年)。 MP 和纳米塑料被认为是一种新污染物,其分析方法仍需开发。 MP 的分离、识别和分类(即聚合物类型、粒径、形状、颜色)很困难,因为它们尺寸小,而且它们可以聚集或与其他环境介质相互作用(Bitencourt 等人, 2020 ;Tirkey)和 Upadhyay 2021 )。尽管重金属的分析方法相对成熟(Inobeme et al. 2023 ),但很难从土壤等环境样品中分离出较小的MP(例如纳米塑料),这给相关金属的识别和定量带来了挑战。因此,未来开发高通量和标准方法来识别和准确表征 MP 及相关重金属将是一项突破性举措(Kutralam-Muniasamy 等人, 2021 )。
Timeline view of keywords co-occurrence network and burst keywords analysis
关键词共现网络时间线视图及突发关键词分析
The keyword co-occurrence network represents the static scene, but cannot display the dynamic changes in the study area. The timeline view and burst keywords can illustrate the evolution of keywords. The size of the node indicates the frequency of keyword occurrences. The colored lines connecting two nodes represent their co-occurrence relationship (Wang et al. 2020a).
关键词共现网络代表静态场景,但无法显示研究区域的动态变化。时间轴视图和突发关键词可以说明关键词的演变。节点的大小表示关键字出现的频率。连接两个节点的彩色线代表它们的共现关系(Wang et al. 2020a )。
Fig. S5 shows the evolution of keywords from 2014 to 2022. The adsorption behaviors of metallic pollutants onto MPs are the most frequent topic, accompanied by the keywords like pollution and accumulation. In addition to the appearance of individual metal elements, keywords such as cadmium, bioaccumulation, and toxicity are also mentioned during this period. Over time, the keywords such as risk, ecosystem, and “food web” appeared, indicating that the research areas continued to expand.
图S 5显示了2014年至2022年关键词的演变。金属污染物在MP上的吸附行为是最常见的主题,同时伴随着污染和积累等关键词。除了个别金属元素的出现外,镉、生物富集性、毒性等关键词也被提及。随着时间的推移,风险、生态系统、“食物网”等关键词出现,表明研究领域不断扩大。
To display hot topics, Fig. S6 shows the 10 keywords with strength greater than 2, as well as the 10 keywords with strength less than 2 but expected to be hot topics in the future. Debris and “litter” are among the hot keywords. Subsequently, the marine environment, the water environment, the type of plastic particles, and the toxicity have become hot topics. In 2021, researchers started to shift their focus from local phenomena to global impacts, as shown by the emergence of ecosystem. The transfer of MPs and heavy metals through the food web is also a current hotspot. MPs and related contaminants can potentially have long-term effects on biological and human health through the food web and dietary exposure (Huang et al. 2021).
为了显示热门话题,图S 6显示了强度大于2的10个关键词,以及强度小于2但预计未来会成为热门话题的10个关键词。碎片和“垃圾”是热门关键词之一。随后,海洋环境、水环境、塑料颗粒的种类、毒性等成为热门话题。 2021年,研究人员开始将注意力从局部现象转向全球影响,生态系统的出现就表明了这一点。 MP和重金属通过食物网的转移也是当前的热点。 MP 和相关污染物可能通过食物网和饮食暴露对生物和人类健康产生长期影响(Huang 等人, 2021 )。
To conclude, MPs and heavy metals have been extensively studied in aquatic (particularly marine) environments, but the data from studies in soil and atmospheric environments are relatively lacking. The ecotoxicological studies of MPs and heavy metals on food webs and ecosystems are worth exploring.
综上所述,MPs和重金属在水生(特别是海洋)环境中得到了广泛的研究,但土壤和大气环境的研究数据相对缺乏。 MPs和重金属对食物网和生态系统的生态毒理学研究值得探索。
Conclusions and future directions
结论和未来方向
Using a bibliometric analysis based on VOSviewer, Pajek64, and CiteSpace, the background of knowledge, research performance, and the latest knowledge structure on MPs and heavy metals over the last 9 years were presented and reviewed. A total of 552 articles have been published in 124 journals, such as Science of the Total Environment, Journal of Hazardous Materials, Environmental Pollution, Chemosphere, and Marine Pollution Bulletin. There are 39 authors having more than 5 articles, and Andrew Turner, from Plymouth University, published the largest number of publications (15 papers). A total of 70 countries have published articles related to this field, with China making the largest contribution. The leading institutions and authors have close collaborations. The analysis of the total highly cited literature shows that the hotspots are shifting from marine to terrestrial ecosystems, with focus on the exploration of toxicity mechanisms. Hot keyword analysis shows that the research on MPs and heavy metals has focused on their toxicity and bioaccumulation, the adsorption and desorption behaviors, the environmental pollution and risk assessment, and their detection and characterization.
利用基于VOSviewer、Pajek64和CiteSpace的文献计量分析,对过去9年MP和重金属的知识背景、研究表现和最新知识结构进行了介绍和回顾。在Science of the Total Environment、Journal of Hazardous Materials、Environmental Pollution、Chemosphere、Marine Pollution Bulletin等124种期刊上共发表论文552篇。有39位作者发表了超过5篇文章,来自普利茅斯大学的Andrew Turner发表的出版物数量最多(15篇论文)。共有70个国家发表了与该领域相关的文章,其中中国贡献最大。领先机构和作者有着密切的合作。对高被引文献总数的分析表明,热点正在从海洋生态系统转向陆地生态系统,并重点关注毒性机制的探索。热点关键词分析表明,MPs和重金属的研究主要集中在其毒性与生物富集性、吸附与解吸行为、环境污染与风险评估、检测与表征等方面。
Based on the current bibliometric analysis of the research history and current status of MPs and heavy metals, the following directions for future research should be highlighted.
根据目前对MP和重金属研究历史和现状的文献计量分析,未来研究应重点关注以下方向。
-
1.
Both MPs and heavy metals are persistent in the environment. Considering the spatiotemporal heterogeneity of MPs and heavy metals in the environments, one of the priority directions is to investigate their co-occurrence, source, characteristics, and environmental fate and behaviors, especially in terrestrial ecosystems and soil environments that have not been unveiled sufficiently. MPs with smaller sizes (e.g., nanoplastics) and aged surface generally have a stronger ability to adsorb and enrich heavy metals, which deserve more concern.
MP 和重金属都在环境中持久存在。考虑到环境中MPs和重金属的时空异质性,优先研究的方向之一是研究它们的共现、来源、特征以及环境命运和行为,特别是在尚未充分揭示的陆地生态系统和土壤环境中。尺寸较小(如纳米塑料)和表面老化的MP通常具有较强的吸附和富集重金属的能力,值得更多关注。 -
2.
Analytical methods should be developed and standardized for effective extraction and accurate quantification of MPs (particularly nanoplastics) and the associated heavy metals from various environmental samples.
应开发并标准化分析方法,以便从各种环境样品中有效提取和准确定量 MP(特别是纳米塑料)和相关重金属。 -
3.
Most current studies on the interaction of MPs and heavy metals are focused on aquatic (marine) organisms and ecosystems. However, MPs and heavy metals are both common contaminants in terrestrial ecosystems, particularly agroecosystems, posing threats to food safety and security. The co-contamination effects and toxicity of MPs and co-existing heavy metals on terrestrial crops and soil biota should be addressed in future work. There is a need to gain insight into their toxicological mechanisms on organisms using multi-techniques, such as omics (e.g., genomics, transcriptomics, proteomics, and metabolomics).
目前大多数关于 MP 和重金属相互作用的研究都集中在水生(海洋)生物和生态系统。然而,MPs和重金属都是陆地生态系统特别是农业生态系统中常见的污染物,对食品安全构成威胁。未来的工作应解决 MP 和共存重金属对陆地作物和土壤生物群的共同污染效应和毒性。需要使用组学(例如基因组学、转录组学、蛋白质组学和代谢组学)等多种技术来深入了解它们对生物体的毒理学机制。 -
4.
The impact of MPs on the bioavailability and bioaccessibility of heavy metals and the ability of MPs and heavy metals to be transported along food webs through trophic levels need to be further investigated. It is expected that the ingestion and bioaccumulation of MPs may release the associated heavy metals from organisms to the food chain, and thus biomagnify across trophic levels, posing uncertain ecological and health risks.
MPs对重金属生物利用度和生物可及性的影响以及MPs和重金属沿着食物网通过营养级运输的能力需要进一步研究。预计 MP 的摄入和生物富集可能会将相关重金属从生物体释放到食物链中,从而在营养级上进行生物放大,从而带来不确定的生态和健康风险。 -
5.
MPs and heavy metals co-occur in the atmosphere and foods and drinking water, thus entering human bodies through inhalation and ingestion (Al Osman et al. 2019; Pironti et al. 2021). Although the presence of MPs in human tissues and their health risk have been reported, the combined toxicity mechanisms and health risks of MPs and heavy metals have not been well elucidated.
MP 和重金属同时存在于大气、食物和饮用水中,从而通过吸入和摄入进入人体(Al Osman 等人, 2019 年;Pironti 等人, 2021 年)。尽管MPs在人体组织中的存在及其健康风险已有报道,但MPs和重金属的综合毒性机制和健康风险尚未得到很好的阐明。 -
6.
Finally, sustainable strategies are needed to reduce pollution from MPs and heavy metals, such as the use of policy, legislative and regulatory, and environmental interventions in promoting the reduction, reuse, and recycling (i.e., 3Rs) of plastic and metallic wastes, and the development of biodegradable plastics to replace non-degradable polymers.
最后,需要采取可持续战略来减少MP和重金属的污染,例如利用政策、立法和监管以及环境干预措施来促进塑料和金属废物的减少、再利用和回收(即3R),以及开发可生物降解塑料以取代不可降解聚合物。
Data availability 数据可用性
Not applicable 不适用
References 参考
Al Osman M, Yang F, Massey IY (2019) Exposure routes and health effects of heavy metals on children. Biometals 32:563–573
Al Osman M、Yang F、Massey IY (2019) 重金属对儿童的暴露途径和健康影响。生物金属三十二:563–573Alimi OS, Farner Budarz J, Hernandez LM, Tufenkji N (2018) Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 52(4):1704–1724
Alimi OS、Farner Budarz J、Hernandez LM、Tufenkji N (2018) 水生环境中的微塑料和纳米塑料:聚集、沉积和增强的污染物迁移。环境科学技术52(4):1704–1724Amato-Lourenço LF, Carvalho-Oliveira R, Júnior GR, dos Santos GL, Ando RA, Mauad T (2021) Presence of airborne microplastics in human lung tissue. J Hazard Mater 416:126124
Amato-Lourenço LF、Carvalho-Oliveira R、Júnior GR、dos Santos GL、Ando RA、Mauad T (2021) 人体肺组织中空气中微塑料的存在。 J 危险材料 416:126124Amélineau F, Bonnet D, Heitz O, Mortreux V, Harding AM, Karnovsky N, Walkusz W, Fort J, Grémillet D (2016) Microplastic pollution in the Greenland Sea: background levels and selective contamination of planktivorous diving seabirds. Environ Pollut 219:1131–1139
Amélineau F、Bonnet D、Heitz O、Mortreux V、Harding AM、Karnovsky N、Walkusz W、Fort J、Grémillet D (2016) 格陵兰海的微塑料污染:背景水平和食浮游生物潜水海鸟的选择性污染。环境污染219:1131–1139Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605
Andrady AL (2011) 海洋环境中的微塑料。三月污染公牛 62(8):1596–1605Ashton K, Holmes L, Turner A (2010) Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull 60(11):2050–2055
Ashton K、Holmes L、Turner A (2010) 海洋环境中金属与塑料生产颗粒的协会。三月污染公牛 60(11):2050–2055Auta HS, Emenike C, Fauziah S (2017) Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ Int 102:165–176
Auta HS、Emenike C、Fauziah S (2017) 海洋环境中微塑料的分布和重要性:对来源、归宿、影响和潜在解决方案的回顾。环境国际102:165–176Avio CG, Gorbi S, Regoli F (2017) Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar Environ Res 128:2–11
Avio CG、Gorbi S、Regoli F (2017) 海洋中的塑料和微塑料:从新出现的污染物到新出现的威胁。海洋环境研究 128:2–11Banaee M, Soltanian S, Sureda A, Gholamhosseini A, Haghi BN, Akhlaghi M, Derikvandy A (2019) Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere 236:124335
Banaee M、Soltanian S、Sureda A、Gholamhosseini A、Haghi BN、Akhlaghi M、Derikvandy A (2019) 镉和微塑料颗粒对鲤鱼( Cyprinus carpio )生化和免疫参数的单一和综合影响的评估。化学圈 236:124335Barboza LGA, Lopes C, Oliveira P, Bessa F, Otero V, Henriques B, Raimundo J, Caetano M, Vale C, Guilhermino L (2020) Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci Total Environ 717:134625
Barboza LGA, Lopes C, Oliveira P, Bessa F, Otero V, Henriques B, Raimundo J, Caetano M, Vale C, Guilhermino L (2020) 东北大西洋野生鱼类中的微塑料及其引起神经毒性作用、脂质的潜力氧化损伤以及与摄入暴露相关的人类健康风险。科学总环境 717:134625Barboza LGA, Vieira LR, Branco V, Carvalho C, Guilhermino L (2018) Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in Dicentrarchus labrax juveniles. Sci Rep 8(1):15655
Barboza LGA、Vieira LR、Branco V、Carvalho C、Guilhermino L (2018) 微塑料会增加鳃中汞的生物浓度和肝脏中的生物累积,并导致唇形鱼幼鱼氧化应激和损伤。科学报告 8(1):15655Bitencourt GR, Mello PA, Flores EM, Pirola C, Carnaroglio D, Bizzi CA (2020) Determination of microplastic content in seafood: an integrated approach combined with the determination of elemental contaminants. Sci Total Environ 749:142301
Bitencourt GR、Mello PA、Flores EM、Pirola C、Carnaroglio D、Bizzi CA (2020) 海鲜中微塑料含量的测定:与元素污染物测定相结合的综合方法。科学总环境 749:142301Boerger CM, Lattin GL, Moore SL, Moore CJ (2010) Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar Pollut Bull 60(12):2275–2278
Boerger CM、Lattin GL、Moore SL、Moore CJ (2010) 北太平洋中央环流食浮游生物鱼类的塑料摄入。三月污染公牛 60(12):2275–2278Boots B, Russell CW, Green DS (2019) Effects of microplastics in soil ecosystems: above and below ground. Environ Sci Technol 53(19):11496–11506
Boots B、Russell CW、Green DS (2019) 微塑料对土壤生态系统的影响:地上和地下。环境科学技术53(19):11496–11506Borges-Ramírez MM, Escalona-Segura G, Huerta-Lwanga E, Iñigo-Elias E, Rendón-von Osten J (2021) Organochlorine pesticides, polycyclic aromatic hydrocarbons, metals and metalloids in microplastics found in regurgitated pellets of black vulture from Campeche, Mexico. Sci Total Environ 801:149674
Borges-Ramírez MM、Escalona-Segura G、Huerta-Lwanga E、Iñigo-Elias E、Rendón-von Osten J (2021) 坎佩切黑秃鹫反流颗粒中发现的微塑料中的有机氯农药、多环芳烃、金属和准金属,墨西哥。科学总环境 801:149674Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG (2019) Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774–781
Bosker T、Bouwman LJ、Brun NR、Behrens P、Vijver MG (2019) 微塑料积聚在种子荚膜的孔隙中,并延迟陆生维管束植物Lepidium sativum的发芽和根系生长。化学圈226:774–781Botterell ZL, Beaumont N, Dorrington T, Steinke M, Thompson RC, Lindeque PK (2019) Bioavailability and effects of microplastics on marine zooplankton: a review. Environ Pollut 245:98–110
Botterell ZL、Beaumont N、Dorrington T、Steinke M、Thompson RC、Lindeque PK (2019) 微塑料对海洋浮游动物的生物利用度和影响:综述。环境污染245:98–110Boucher J, Friot D (2017) Primary microplastics in the oceans: a global evaluation of sources. International Union for Conservation of Nature and Natural Resources, Gland, Switzerland, p 43
Boucher J、Friot D (2017) 海洋中的初级微塑料:全球来源评估。国际自然和自然资源保护联盟,格朗,瑞士,第 43 页Brandts I, Teles M, Gonçalves A, Barreto A, Franco-Martinez L, Tvarijonaviciute A, Martins M, Soares A, Tort L, Oliveira M (2018) Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine. Sci Total Environ 643:775–784
Brandts I、Teles M、Gonçalves A、Barreto A、Franco-Martinez L、Tvarijonaviciute A、Martins M、Soares A、Tort L、Oliveira M (2018) 单独和联合暴露于卡马西平后纳米塑料对贻贝的影响。科学总环境643:775–784Brennecke D, Duarte B, Paiva F, Caçador I, Canning-Clode J (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 178:189–195
Brennecke D、Duarte B、Paiva F、Caçador I、Canning-Clode J (2016) 微塑料作为海洋环境重金属污染的载体。河口海岸陆架科学178:189–195Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179
Browne MA、Crump P、Niven SJ、Teuten E、Tonkin A、Galloway T、Thompson R (2011) 全球海岸线上微塑料的积累:来源和汇。环境科学技术45(21):9175–9179Browne MA, Niven SJ, Galloway TS, Rowland SJ, Thompson RC (2013) Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Current Biol 23(23):2388–2392
Browne MA、Niven SJ、Galloway TS、Rowland SJ、Thompson RC (2013) 微塑料将污染物和添加剂转移到蠕虫体内,减少与健康和生物多样性相关的功能。现代生物学 23(23):2388–2392Cao Y, Zhao M, Ma X, Song Y, Zuo S, Li H, Deng W (2021) A critical review on the interactions of microplastics with heavy metals: mechanism and their combined effect on organisms and humans. Sci Total Environ 788:147620
曹Y,赵敏,马X,宋Y,左S,李华,邓文(2021)微塑料与重金属相互作用的批判性评论:机制及其对生物体和人类的综合影响。科学总环境 788:147620Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastic particles in wastewater treatment plants. Water Res 91:174–182
Carr SA、Liu J、Tesoro AG (2016) 废水处理厂中微塑料颗粒的传输和归宿。水研究91:174–182Chen D, Liu Z, Luo Z, Webber M, Chen J (2016) Bibliometric and visualized analysis of emergy research. Ecol Engin 90:285–293
Chen D, Liu Z, Luo Z, Webber M, Chen J (2016) 能值研究的文献计量与可视化分析。生态工程90:285–293Chen G, Feng Q, Wang J (2020) Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ 703:135504
Chen G, Feng Q, Wang J (2020) 大气中微塑料及其对人类风险的迷你回顾。科学总环境 703:135504Claessens M, De Meester S, Van Landuyt L, De Clerck K, Janssen CR (2011) Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar Pollut Bull 62(10):2199–2204
Claessens M、De Meester S、Van Landuyt L、De Clerck K、Janssen CR (2011) 比利时海岸海洋沉积物中微塑料的出现和分布。三月污染公牛 62(10):2199–2204Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F (2011) An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the Fuzzy Sets Theory field. J Inform 5(1):146–166
Cobo MJ、López-Herrera AG、Herrera-Viedma E、Herrera F (2011) 一种检测、量化和可视化研究领域演变的方法:模糊集理论领域的实际应用。 J 告知 5(1):146–166Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62(12):2588–2597
Cole M、Lindeque P、Halsband C、Galloway TS (2011) 海洋环境中的塑料微粒作为污染物:综述。三月污染公牛 62(12):2588–2597de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biol 24(4):1405–1416
de Souza Machado AA、Kloas W、Zarfl C、Hempel S、Rillig MC (2018) 微塑料对陆地生态系统构成新的威胁。全球变化生物学 24(4):1405–1416Dong Y, Gao M, Song Z, Qiu W (2019) Adsorption mechanism of As(III) on polytetrafluoroethylene particles of different size. Environ Pollut 254:112950
董Y,高明,宋Z,邱文(2019) As(III)在不同粒径聚四氟乙烯颗粒上的吸附机理。环境污染 254:112950Dong Y, Gao M, Song Z, Qiu W (2020) As (III) adsorption onto different-sized polystyrene microplastic particles and its mechanism. Chemosphere 239:124792
董Y,高明,宋Z,邱文(2020)不同粒径聚苯乙烯微塑料颗粒上As(III)的吸附及其机理。化学圈 239:124792Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82
Eerkes-Medrano D、Thompson RC、Aldridge DC (2015) 淡水系统中的微塑料:对新出现的威胁的回顾、知识差距的识别和研究需求的优先排序。水研究75:63–82Feng X, Wang Q, Sun Y, Zhang S, Wang F (2022) Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. J Hazard Mater 424:127364
Feng X, Wang Q, Sun Y, Zhang S, Wang F (2022) 微塑料改变铅锌污染土壤中的土壤性质、重金属有效性和细菌群落。 J 危险材料 424:127364Fernández B, Santos-Echeandía J, Rivera-Hernández JR, Garrido S, Albentosa M (2020) Mercury interactions with algal and plastic microparticles: comparative role as vectors of metals for the mussel, Mytilus galloprovincialis. J Hazard Mater 396:122739
Fernández B、Santos-Echeandía J、Rivera-Hernández JR、Garrido S、Albentosa M (2020) 汞与藻类和塑料微粒的相互作用:作为贻贝、贻贝金属载体的比较作用。 J 危险材料 396:122739Fred-Ahmadu OH, Tenebe IT, Ayejuyo OO, Benson NU (2022) Microplastics and associated organic pollutants in beach sediments from the Gulf of Guinea (SE Atlantic) coastal ecosystems. Chemosphere 298:134193
Fred-Ahmadu OH、Tenebe IT、Ayejuyo OO、Benson NU (2022) 几内亚湾(大西洋东南部)沿海生态系统海滩沉积物中的微塑料和相关有机污染物。化学圈 298:134193Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, Boldgiv B (2014) High-levels of microplastic pollution in a large, remote, mountain lake. Mar Pollut Bull 85(1):156–163
Free CM、Jensen OP、Mason SA、Eriksen M、Williamson NJ、Boldgiv B (2014) 大型偏远高山湖泊中的高水平微塑料污染。三月污染公牛 85(1):156–163Gao X, Hassan I, Peng Y, Huo S, Ling L (2021) Behaviors and influencing factors of the heavy metals adsorption onto microplastics: a review. J Clean Prod 319:128777
高X,哈桑一世,彭Y,霍S,凌L(2021)重金属在微塑料上的吸附行为及其影响因素:综述。 J 清洁产品 319:128777Gao Y, Ge L, Shi S, Sun Y, Liu M, Wang B, Shang Y, Wu J, Tian J (2019) Global trends and future prospects of e-waste research: a bibliometric analysis. Environ Sci Pollut Res 26(17):17809–17820
高Y, 葛丽, 石松, 孙Y, 刘明, 王波, 尚Y, 吴静, 田静(2019) 电子垃圾研究的全球趋势与未来展望:文献计量分析。环境科学污染研究26(17):17809–17820Guo X, Liu Y, Wang J (2020) Equilibrium, kinetics and molecular dynamic modeling of Sr2+ sorption onto microplastics. J Hazard Mater 400:123324
郭X,刘Y,王J (2020) Sr 2+吸附到微塑料上的平衡、动力学和分子动力学模型。 J 危险材料 400:123324Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199
Hahladakis JN、Velis CA、Weber R、Iacovidou E、Purnell P (2018) 塑料中存在的化学添加剂概述:使用、处置和回收过程中的迁移、释放、归宿和环境影响。 J 危险材料 344:179–199Hodson ME, Duffus-Hodson CA, Clark A, Prendergast-Miller MT, Thorpe KL (2017) Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ Sci Technol 51(8):4714–4721
Hodson ME、Duffus-Hodson CA、Clark A、Prendergast-Miller MT、Thorpe KL (2017) 塑料袋衍生的微塑料作为陆地无脊椎动物金属暴露的载体。环境科学技术51(8):4714–4721Holmes LA, Turner A, Thompson RC (2014) Interactions between trace metals and plastic production pellets under estuarine conditions. Mar Chem 167:25–32
Holmes LA、Turner A、Thompson RC (2014) 河口条件下痕量金属和塑料生产颗粒之间的相互作用。三月化学167:25–32Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141
Horton AA、Walton A、Spurgeon DJ、Lahive E、Svendsen C (2017) 淡水和陆地环境中的微塑料:评估当前的理解,以确定知识差距和未来的研究重点。科学总环境586:127–141Hu L, Zhao Y, Xu H (2022) Trojan horse in the intestine: a review on the biotoxicity of microplastics combined environmental contaminants. J Hazard Mater 439:129652
胡丽,赵Y,徐华(2022)肠道特洛伊木马:微塑料结合环境污染物的生物毒性综述。 J 危险材料 439:129652Huang F, Hu J, Chen L, Wang Z, Sun S, Zhang W, Jiang H, Luo Y, Wang L, Zeng Y (2023) Microplastics may increase the environmental risks of Cd via promoting Cd uptake by plants: a meta-analysis. J Hazard Mater 448:130887
Huang F, Hu J, Chen L, Wang Z, Sun S, Zhang W, Jiang H, Luo Y, Wang L, Zeng Y (2023) 微塑料可能通过促进植物对 Cd 的吸收增加 Cd 的环境风险:一种元分析。 J 危险材料 448:130887Huang W, Song B, Liang J, Niu Q, Zeng G, Shen M, Deng J, Luo Y, Wen X, Zhang Y (2021) Microplastics and associated contaminants in the aquatic environment: a review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. J Hazard Mater 405:124187
黄文, 宋波, 梁杰, 牛强, 曾刚, 沉明, 邓军, 罗Y, 文X, 张Y (2021) 水生环境中的微塑料及相关污染物:生态毒理学效应、营养转移的综述,以及对人类健康的潜在影响。 J 危险材料 405:124187Huang Y, Zhao Y, Wang J, Zhang M, Jia W, Qin X (2019) LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ Pollut 254:112983
Huang Y,Zhao Y,Wang J,Zhang M,Jia W,Qin X (2019) LDPE微塑料膜改变土壤中微生物群落组成和酶活性。环境污染 254:112983Inobeme A, Mathew JT, Jatto E, Inobeme J, Adetunji CO, Muniratu M, Onyeachu BI, Adekoya MA, Ajai AI, Mann A, Olori E, Akhor SO, Eziukwu CA, Kelani T, Omali PI (2023) Recent advances in instrumental techniques for heavy metal quantification. Environ Monit Assess 195(4):452
Inobeme A, Mathew JT, Jatto E, Inobeme J, Adetunji CO, Muniratu M, Onyeachu BI, Adekoya MA, Ajai AI, Mann A, Olori E, Akhor SO, Eziukwu CA, Kelani T, Omali PI (2023) 最新进展重金属定量的仪器技术。环境监测评估 195(4):452Jahromi FA, Keshavarzi B, Moore F, Abbasi S, Busquets R, Hooda PS, Jaafarzadeh N (2021) Source and risk assessment of heavy metals and microplastics in bivalves and coastal sediments of the Northern Persian Gulf, Hormogzan Province. Environ Res 196:110963
Jahromi FA、Keshavarzi B、Moore F、Abbasi S、Busquets R、Hooda PS、Jaafarzadeh N (2021) 霍尔莫克赞省波斯湾北部双壳类和沿海沉积物中重金属和微塑料的来源和风险评估。环境资源 196:110963Jiang X, Yang Y, Wang Q, Liu N, Li M (2022) Seasonal variations and feedback from microplastics and cadmium on soil organisms in agricultural fields. Environ Int 161:107096
江晓,杨勇,王强,刘宁,李明 (2022) 微塑料和镉对农田土壤生物的季节变化及反馈。环境国际 161:107096Khalid N, Aqeel M, Noman A, Khan SM, Akhter N (2021) Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environ Pollut 290:118104
Khalid N、Aqeel M、Noman A、Khan SM、Akhter N (2021) 水生和陆地环境中微塑料与重金属的相互作用和影响。环境污染 290:118104Khoshmanesh M, Sanati AM, Ramavandi B (2023) Co-occurrence of microplastics and organic/inorganic contaminants in organisms living in aquatic ecosystems: a review. Mar Pollut Bull 187:114563
Khoshmanesh M、Sanati AM、Ramavandi B (2023) 水生生态系统中生物体中微塑料和有机/无机污染物的共存:综述。三月污染公牛 187:114563Kumar R, Ivy N, Bhattacharya S, Dey A, Sharma P (2022) Coupled effects of microplastics and heavy metals on plants: uptake, bioaccumulation, and environmental health perspectives. Sci Total Environ 836:155619
Kumar R、Ivy N、Bhattacharya S、Dey A、Sharma P (2022) 微塑料和重金属对植物的耦合影响:吸收、生物累积和环境健康观点。科学总环境 836:155619Kutralam-Muniasamy G, Pérez-Guevara F, Martínez IE, Shruti V (2021) Overview of microplastics pollution with heavy metals: analytical methods, occurrence, transfer risks and call for standardization. J Hazard Mater 415:125755
Kutralam-Muniasamy G、Pérez-Guevara F、Martínez IE、Shruti V (2021) 重金属微塑料污染概述:分析方法、发生、转移风险和标准化呼吁。 J 危险材料 415:125755Leslie HA, Van Velzen MJ, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH (2022) Discovery and quantification of plastic particle pollution in human blood. Environ Int 163:107199
Leslie HA、Van Velzen MJ、Brandsma SH、Vethaak AD、Garcia-Vallejo JJ、Lamoree MH (2022) 人类血液中塑料颗粒污染的发现和量化。环境国际 163:107199Li M, Liu Y, Xu G, Wang Y, Yu Y (2021) Impacts of polyethylene microplastics on bioavailability and toxicity of metals in soil. Sci Total Environ 760:144037
Li M, Liu Y, Xu G, Wang Y, Yu Y (2021) 聚乙烯微塑料对土壤中金属生物有效性和毒性的影响。科学总环境 760:144037Li M, Wang Y, Xue H, Wu L, Wang Y, Wang C, Gao X, Li Z, Zhang X, Hasan M (2022a) Scientometric analysis and scientific trends on microplastics research. Chemosphere 304:135337
李敏,王Y,薛华,吴L,王Y,王C,高X,李Z,张X,哈桑M(2022a)微塑料研究的科学计量分析和科学趋势。化学圈 304:135337Li W, Lo H-S, Wong H-M, Zhou M, Wong C-Y, Tam NF-Y, Cheung S-G (2020) Heavy metals contamination of sedimentary microplastics in Hong Kong. Mar Pollut Bull 153:110977
Li W, Lo HS, Wong HM, Zhou M, Wong CY, Tam NF-Y, Cheung SG (2020) 香港沉积微塑料的重金属污染。三月污染公牛 153:110977Li Y, Wang X, Wang Y, Sun Y, Xia S, Zhao J (2022b) Effect of biofilm colonization on Pb (II) adsorption onto poly (butylene succinate) microplastic during its biodegradation. Sci Total Environ 833:155251
Li Y,Wang X,Wang Y,Sun Y,Xia S,Zhao J (2022b)生物膜定植对聚丁二酸丁二醇酯微塑料生物降解过程中 Pb (II) 吸附的影响。科学总环境 833:155251Li Y, Zhang Y, Su F, Wang Y, Peng L, Liu D (2022c) Adsorption behaviour of microplastics on the heavy metal Cr(VI) before and after ageing. Chemosphere 302:134865
李Y,张Y,苏F,王Y,彭L,刘D(2022c)老化前后微塑料对重金属Cr(VI)的吸附行为。化学圈 302:134865Lima A, Costa M, Barletta M (2014) Distribution patterns of microplastics within the plankton of a tropical estuary. Environ Res 132:146–155
Lima A、Costa M、Barletta M (2014) 热带河口浮游生物内微塑料的分布模式。环境研究 132:146–155Liu G, Dave PH, Kwong RW, Wu M, Zhong H (2021a) Influence of microplastics on the mobility, bioavailability, and toxicity of heavy metals: a review. Bull Environ Contam Toxicol 107(4):710–721
Liu G, Dave PH, Kwong RW, Wu M, Zhuh H (2021a) 微塑料对重金属迁移性、生物利用度和毒性的影响:综述。公牛环境污染毒理学 107(4):710–721Liu S, Huang J, Zhang W, Shi L, Yi K, Yu H, Zhang C, Li S, Li J (2022) Microplastics as a vehicle of heavy metals in aquatic environments: a review of adsorption factors, mechanisms, and biological effects. J Environ Manag 302:113995
Liu S, Huang J, 张 W, Shi L, Yi K, Yu H, 张 C, Li S, Li J (2022) 微塑料作为水生环境中重金属的载体:吸附因素、机制和生物的综述影响。 J 环境管理 302:113995Liu S, Shi J, Wang J, Dai Y, Li H, Li J, Liu X, Chen X, Wang Z, Zhang P (2021b) Interactions between microplastics and heavy metals in aquatic environments: a review. Front Microbiol 12:730
Liu S, Shi J, Wang J, Dai Y, Li H, Li J, Liu X, Chen X, Wang Z, Zhuang P (2021b) 水生环境中微塑料与重金属的相互作用:综述。前沿微生物 12:730Lu K, Qiao R, An H, Zhang Y (2018) Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere 202:514–520
陆克,乔睿,安华,张勇(2018) 微塑料对斑马鱼体内镉富集及慢性毒性作用的影响。化学圈202:514–520Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ding L, Ren H (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50(7):4054–4060
陆Y,张Y,邓Y,江W,赵Y,耿J,丁L,任华(2016)聚苯乙烯微塑料在斑马鱼( Danio rerio )中的吸收和积累及肝脏毒性作用。环境科学技术50(7):4054–4060Luo B, Li J, Wang M, Zhang X, Mi Y, Xiang J, Gong S, Zhou Y, Ma T (2022) Chronic toxicity effects of sediment-associated polystyrene nanoplastics alone and in combination with cadmium on a keystone benthic species Bellamya aeruginosa. J Hazard Mater 433:128800
Luo B, Li J, Wang M, Zhang X, Mi Y,向J,Gong S,Zhou Y,Ma T (2022)沉积物相关聚苯乙烯纳米塑料单独和与镉组合对关键底栖物种Bellamya的慢性毒性作用铜绿假单胞菌。 J 危险材料 433:128800Lusher AL, Mchugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67(1-2):94–99
Lusher AL、Mchugh M、Thompson RC (2013) 英吉利海峡中上层和底层鱼类胃肠道中微塑料的出现。三月污染公牛 67(1-2):94–99Lusher AL, Tirelli V, O’Connor I, Officer R (2015) Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci Rep 5(1):14947
Lusher AL、Tirelli V、O'Connor I、Officer R (2015) 北极极地水域中的微塑料:首次报告的地表和次地表样品中的颗粒值。科学报告 5(1):14947Ma H, Pu S, Liu S, Bai Y, Mandal S, Xing B (2020) Microplastics in aquatic environments: toxicity to trigger ecological consequences. Environ Pollut 261:114089
Ma H, Pu S, Liu S, Bai Y, Mandal S, Xing B (2020) 水生环境中的微塑料:引发生态后果的毒性。环境污染 261:114089Mason SA, Garneau D, Sutton R, Chu Y, Ehmann K, Barnes J, Fink P, Papazissimos D, Rogers DL (2016) Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ Pollut 218:1045–1054
Mason SA、Garneau D、Sutton R、Chu Y、Ehmann K、Barnes J、Fink P、Papazissimos D、Rogers DL (2016) 在美国城市污水处理厂的废水中广泛检测到微塑料污染。环境污染218:1045–1054Menéndez-Pedriza A, Jaumot J (2020) Interaction of environmental pollutants with microplastics: a critical review of sorption factors, bioaccumulation and ecotoxicological effects. Toxics 8(2):40
Menéndez-Pedriza A、Jaumot J (2020) 环境污染物与微塑料的相互作用:对吸附因子、生物累积和生态毒理学效应的严格审查。有毒物质 8(2):40Mohsen M, Wang Q, Zhang L, Sun L, Lin C, Yang H (2019) Heavy metals in sediment, microplastic and sea cucumber Apostichopus japonicus from farms in China. Mar Pollut Bull 143:42–49
Mohsen M, Wang Q, Zhang L, Sun L, Lin C, Yang H (2019) 中国养殖场沉积物、微塑料和刺参中的重金属。三月污染公牛 143:42–49Morgana S, Ghigliotti L, Estévez-Calvar N, Stifanese R, Wieckzorek A, Doyle T, Christiansen JS, Faimali M, Garaventa F (2018) Microplastics in the Arctic: a case study with sub-surface water and fish samples off Northeast Greenland. Environ Pollut 242:1078–1086
Morgana S、Ghigliotti L、Estévez-Calvar N、Stifanese R、Wieckzorek A、Doyle T、Christiansen JS、Faimali M、Garaventa F (2018) 北极的微塑料:格陵兰岛东北部地下水和鱼类样本的案例研究。环境污染242:1078–1086Murphy F, Ewins C, Carbonnier F, Quinn B (2016) Wastewater treatment works (WWTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 50(11):5800–5808
Murphy F、Ewins C、Carbonnier F、Quinn B (2016) 废水处理厂 (WWTW) 作为水生环境中微塑料的来源。环境科学技术50(11):5800–5808Naqash N, Prakash S, Kapoor D, Singh R (2020) Interaction of freshwater microplastics with biota and heavy metals: a review. Environ Chem Lett 18(6):1813–1824
Naqash N、Prakash S、Kapoor D、Singh R (2020) 淡水微塑料与生物群和重金属的相互作用:综述。环境化学快报 18(6):1813–1824Nicolaus EM, Law RJ, Wright SR, Lyons BP (2015) Spatial and temporal analysis of the risks posed by polycyclic aromatic hydrocarbon, polychlorinated biphenyl and metal contaminants in sediments in UK estuaries and coastal waters. Mar Pollut Bull 95(1):469–479
Nicolaus EM、Law RJ、Wright SR、Lyons BP (2015) 英国河口和沿海水域沉积物中多环芳烃、多氯联苯和金属污染物造成的风险的时空分析。三月污染公牛 95(1):469–479Nizzetto L, Futter M, Langaas S (2016) Are agricultural soils dumps for microplastics of urban origin? Environ Sci Technol 50:10777–10779
Nizzetto L、Futter M、Langaas S (2016) 农业土壤是城市微塑料垃圾场吗?环境科学技术50:10777–10779Padilla FM, Gallardo M, Manzano-Agugliaro F (2018) Global trends in nitrate leaching research in the 1960–2017 period. Sci Total Environ 643:400–413
Padilla FM、Gallardo M、Manzano-Agugliaro F (2018) 1960-2017 年硝酸盐浸出研究的全球趋势。科学总环境643:400–413Pan K, Wang W-X (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421:3–16
Pan K, Wang WX (2012) 中国河口和沿海环境中的痕量金属污染。科学总环境421:3–16Patterson J, Jeyasanta KI, Sathish N, Edward JP, Booth AM (2020) Microplastic and heavy metal distributions in an Indian coral reef ecosystem. Sci Total Environ 744:140706
Patterson J、Jeyasanta KI、Sathish N、Edward JP、Booth AM (2020) 印度珊瑚礁生态系统中的微塑料和重金属分布。科学总环境 744:140706Pironti C, Ricciardi M, Motta O, Miele Y, Proto A, Montano L (2021) Microplastics in the environment: intake through the food web, human exposure and toxicological effects. Toxics 9(9):224
Pironti C、Ricciardi M、Motta O、Miele Y、Proto A、Montano L (2021) 环境中的微塑料:通过食物网摄入、人体接触和毒理学影响。毒物 9(9):224Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2020) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455
Prata JC、da Costa JP、Lopes I、Duarte AC、Rocha-Santos T (2020) 微塑料环境暴露:对人类健康可能影响的概述。科学总环境 702:134455Qi K, Lu N, Zhang S, Wang W, Wang Z, Guan J (2021) Uptake of Pb(II) onto microplastic-associated biofilms in freshwater: adsorption and combined toxicity in comparison to natural solid substrates. J Hazard Mater 411:125115
Qi K,Lu N,Zhang S,Wang W,Wang Z,Guan J (2021) 淡水中微塑料相关生物膜对 Pb(II) 的吸收:与天然固体基质相比的吸附和组合毒性。 J 危险材料 411:125115Qu X, Su L, Li H, Liang M, Shi H (2018) Assessing the relationship between the abundance and properties of microplastics in water and in mussels. Sci Total Environ 621:679–686
曲晓,苏丽,李辉,梁明,石辉(2018)评估水和贻贝中微塑料的丰度和性质之间的关系。科学总环境621:679–686Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti MCA, Baiocco F, Draghi S (2021) Plasticenta: first evidence of microplastics in human placenta. Environ Int 146:106274
Ragusa A、Svelato A、Santacroce C、Catalano P、Notarstefano V、Carnevali O、Papa F、Rongioletti MCA、Baiocco F、Draghi S (2021) Plasticenta:人类胎盘中微塑料的第一个证据。环境国际 146:106274Rochman CM, Hentschel BT, Teh SJ (2014a) Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. PLoS One 9(1):e85433
Rochman CM、Hentschel BT、Teh SJ (2014a) 塑料类型对金属的长期吸附是相似的:对水生环境中塑料碎片的影响。 PLoS One 9(1):e85433Rochman CM, Kurobe T, Flores I, Teh SJ (2014b) Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Total Environ 493:656–661
Rochman CM、Kurobe T、Flores I、Teh SJ (2014b) 成鱼因摄入含有或不含海洋环境中吸附的化学污染物的聚乙烯而出现内分泌干扰的早期预警信号。科学总环境493:656–661Rodriguez-Seijo A, Lourenço J, Rocha-Santos T, Da Costa J, Duarte A, Vala H, Pereira R (2017) Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ Pollut 220:495–503
Rodriguez-Seijo A、Lourenço J、Rocha-Santos T、Da Costa J、Duarte A、Vala H、Pereira R (2017) Eisenia andrei Bouché 中微塑料的组织病理学和分子效应。环境污染220:495–503Salam M, Zheng H, Liu Y, Zaib A, Ur Rehman SA, Riaz N, Eliw M, Hayat F, Li H, Wang F (2023) Effects of micro(nano)plastics on soil nutrient cycling: state of the knowledge. J Environ Manag 344:118437
Salam M、Zheng H、Liu Y、Zaib A、Ur Rehman SA、Riaz N、Eliw M、Hayat F、Li H、Wang F (2023) 微(纳米)塑料对土壤养分循环的影响:知识状况。 J 环境管理 344:118437Sun N, Shi H, Li X, Gao C, Liu R (2022a) Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: role, effects, and mechanism. Environ Int 171:107711
孙娜,施华,李新,高成,刘瑞(2022a)负载环境污染物的微纳米塑料对生物体和细胞的综合毒性:作用、影响和机制。环境国际 171:107711Sun Q, Li J, Wang C, Chen A, You Y, Yang S, Liu H, Jiang G, Wu Y, Li Y (2022b) Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Front Env Sci Eng 16(1):1–14
孙强,李军,王成,陈安,尤勇,杨胜,刘华,蒋刚,吴勇,李勇 (2022b) 海洋微塑料分布、来源、鉴定、毒性及生物降解研究进展、淡水和土壤环境。前沿环境科学工程 16(1):1–14Tang S, Lin L, Wang X, Feng A, Yu A (2020) Pb(II) uptake onto nylon microplastics: interaction mechanism and adsorption performance. J Hazard Mater 386:121960
唐S,林L,王X,冯A,于A(2020)尼龙微塑料对Pb(II)的吸收:相互作用机制和吸附性能。 J 危险材料 386:121960Tang S, Lin L, Wang X, Yu A, Sun X (2021) Interfacial interactions between collected nylon microplastics and three divalent metal ions (Cu(II), Ni(II), Zn(II)) in aqueous solutions. J Hazard Mater 403:123548
唐S,林L,王X,于A,孙X(2021)收集的尼龙微塑料与水溶液中三种二价金属离子(Cu(II),Ni(II),Zn(II))之间的界面相互作用。 J 危险材料 403:123548Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L, Gigault J (2017) Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol 51(23):13689–13697
Ter Halle A、Jeanneau L、Martignac M、Jardé E、Pedrono B、Brach L、Gigault J (2017) 北大西洋副热带环流中的纳米塑料。环境科学技术51(23):13689–13697Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science 304(5672):838
Thompson RC、Olsen Y、Mitchell RP、Davis A、Rowland SJ、John AW、McGonigle D、Russell AE (2004) 迷失在海上:所有塑料都在哪里?科学304(5672):838Tirkey A, Upadhyay LSB (2021) Microplastics: an overview on separation, identification and characterization of microplastics. Mar Pollut Bull 170:112604
Tirkey A, Upadhyay LSB (2021) 微塑料:微塑料分离、识别和表征概述。三月污染公牛 170:112604Turner A (2016) Heavy metals, metalloids and other hazardous elements in marine plastic litter. Mar Pollut Bull 111(1-2):136–142
Turner A (2016) 海洋塑料垃圾中的重金属、类金属和其他有害元素。三月污染公牛 111(1-2):136–142Turner A (2018) Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test. Environ Pollut 236:1020–1026
Turner A (2018) 基于鸟类生理提取测试的海洋塑料中有害元素的动员动力学。环境污染236:1020–1026Turner A, Holmes LA (2015) Adsorption of trace metals by microplastic pellets in fresh water. Environ Chem 12(5):600–610
Turner A, Holmes LA (2015) 淡水中微塑料颗粒对微量金属的吸附。环境化学 12(5):600–610Turra A, Manzano AB, Dias RJS, Mahiques MM, Barbosa L, Balthazar-Silva D, Moreira FT (2014) Three-dimensional distribution of plastic pellets in sandy beaches: shifting paradigms. Sci Rep 4(1):4435
Turra A、Manzano AB、Dias RJS、Mahiques MM、Barbosa L、Balthazar-Silva D、Moreira FT (2014) 沙滩中塑料颗粒的三维分布:转变范式。科学报告 4(1):4435Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70
Van Cauwenberghe L, Janssen CR (2014) 供人类食用的双壳类动物中的微塑料。环境污染193:65–70Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499
Van Cauwenberghe L、Vanreusel A、Mees J、Janssen CR (2013) 深海沉积物中的微塑料污染。环境污染182:495–499Vieira KS, Neto JAB, Crapez MAC, Gaylarde C, da Silva PB, Saldaña-Serrano M, Bainy ACD, Nogueira DJ, Fonseca EM (2021) Occurrence of microplastics and heavy metals accumulation in native oysters Crassostrea Gasar in the Paranaguá estuarine system Brazil. Mar Pollut Bull 166:112225
Vieira KS, Neto JAB, Crapez MAC, Gaylarde C, da Silva PB, Saldaña-Serrano M, Bainy ACD, Nogueira DJ, Fonseca EM (2021) 巴西巴拉那瓜河口系统本地牡蛎Crassostrea Gasar中微塑料和重金属积累的发生。三月污染公牛 166:112225Wan J-K, Chu W-L, Kok Y-Y, Lee C-S (2021) Influence of polystyrene microplastic and nanoplastic on copper toxicity in two freshwater microalgae. Environ Sci Pollut Res 28(25):33649–33668
Wan JK,Chu WL,Kok YY,Lee CS (2021)聚苯乙烯微塑料和纳米塑料对两种淡水微藻中铜毒性的影响。环境科学污染研究28(25):33649–33668Wang B, Wang C, Hu Y (2022a) Sorption behavior of Pb(II) onto polyvinyl chloride microplastics affects the formation and ecological functions of microbial biofilms. Sci Total Environ 832:155026
王波,王成,胡燕(2022a)聚氯乙烯微塑料对Pb(II)的吸附行为影响微生物生物膜的形成和生态功能。科学总环境 832:155026Wang F, Feng X, Liu Y, Adams CA, Sun Y, Zhang S (2022b) Micro(nano)plastics and terrestrial plants: up-to-date knowledge on uptake, translocation, and phytotoxicity. Resour Conserv Recycl 185:106503
Wang F, Feng X, Liu Y, Adams CA, Sun Y, Zhuang S (2022b) 微(纳米)塑料与陆地植物:吸收、易位和植物毒性的最新知识。资源保护回收 185:106503Wang F, Wang Q, Adams CA, Sun Y, Zhang S (2022c) Effects of microplastics on soil properties: current knowledge and future perspectives. J Hazard Mater 424:127531
Wang F、Wang Q、Adams CA、Sun Y、Zhang S (2022c) 微塑料对土壤性质的影响:当前知识和未来前景。 J 危险材料 424:127531Wang F, Wang X, Song N (2021a) Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Sci Total Environ 784:147133
Wang F, Wang X, Song N (2021a) 聚乙烯微塑料通过改变土壤微环境来增加生菜 ( Lactuca sativa L.) 的镉吸收。科学总环境 784:147133Wang F, Yang W, Cheng P, Zhang S, Zhang S, Jiao W, Sun Y (2019) Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere 235:1073–1080
王峰,杨文,程平,张书,张书,焦文,孙Y (2019) 水溶液中微塑料对镉的吸附特性。化学圈235:1073–1080Wang G, Wu P, Wu X, Zhang H, Guo Q, Cai Y (2020a) Mapping global research on sustainability of megaproject management: a scientometric review. J Clean Prod 259:120831
Wang G、Wu P、Wu X、Zhang H、Guo Q、Cai Y (2020a) 绘制巨型项目管理可持续性的全球研究:科学计量回顾。 J 清洁产品 259:120831Wang J, Peng J, Tan Z, Gao Y, Zhan Z, Chen Q, Cai L (2017) Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171:248–258
王军,彭军,谭正,高勇,詹志,陈强,蔡丽 (2017) 北江沿岸表层沉积物中的微塑料:组成、丰度、表面结构及其与重金属的相互作用。化学圈171:248–258Wang L, Gao Y, Jiang W, Chen J, Chen Y, Zhang X, Wang G (2021b) Microplastics with cadmium inhibit the growth of Vallisneria natans (Lour.) Hara rather than reduce cadmium toxicity. Chemosphere 266:128979
王丽,高Y,姜文,陈J,陈Y,张X,王G(2021b)含镉微塑料抑制苦草生长而不是降低镉毒性。化学圈 266:128979Wang Q, Adams CA, Wang F, Sun Y, Zhang S (2022d) Interactions between microplastics and soil fauna: a critical review. Crit Rev Environ Sci Technol 52(18):3211–3243
Wang Q、Adams CA、Wang F、Sun Y、Zhang S (2022d) 微塑料与土壤动物之间的相互作用:批判性评论。 Crit Rev 环境科学技术 52(18):3211–3243Wang Q, Zhang Y, Wangjin X, Wang Y, Meng G, Chen Y (2020b) The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. J Environ Sci 87:272–280
王Q,张Y,王进X,王Y,孟G,陈Y(2020b)紫外辐射影响微塑料对水溶液中金属的吸附行为。环境科学杂志 87:272–280Wang Z, Fu D, Gao L, Qi H, Su Y, Peng L (2021c) Aged microplastics decrease the bioavailability of coexisting heavy metals to microalga Chlorella vulgaris. Ecotox Environ Saf 217:112199
Wang Z, Fu D, Gau L, Qi H, Su Y, Peng L (2021c) 老化微塑料降低了微藻小球藻共存重金属的生物利用度。 Ecotox 环境 Saf 217:112199Wen B, Jin S-R, Chen Z-Z, Gao J-Z, Liu Y-N, Liu J-H, Feng X-S (2018) Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of the discus fish (Symphysodon aequifasciatus). Environ Pollut 243:462–471
文波,金苏瑞,陈志忠,高金正,刘银宁,刘建辉,冯晓生 (2018) 微塑料和镉的单独和联合作用对七彩神仙鱼镉积累、抗氧化防御和先天免疫的影响。环境污染243:462–471Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492
Wright SL、Thompson RC、Galloway TS (2013) 微塑料对海洋生物的物理影响:综述。环境污染178:483–492Xiang Y, Jiang L, Zhou Y, Luo Z, Zhi D, Yang J, Lam SS (2022) Microplastics and environmental pollutants: key interaction and toxicology in aquatic and soil environments. J Hazard Mater 422:126843
向Y,江L,周Y,罗Z,支D,杨J,Lam SS(2022)微塑料和环境污染物:水生和土壤环境中的关键相互作用和毒理学。 J 危险材料 422:126843Yan W, Hamid N, Deng S, Jia P-P, Pei D-S (2020) Individual and combined toxicogenetic effects of microplastics and heavy metals (Cd, Pb, and Zn) perturb gut microbiota homeostasis and gonadal development in marine medaka (Oryzias melastigma). J Hazard Mater 397:122795
Yan W, Hamid N, Deng S, Jia PP, Pei DS (2020) 微塑料和重金属(Cd、Pb 和 Zn)的单独和组合毒理学效应扰乱海洋青鳉 ( Oryzias melastigma ) 的肠道微生物群稳态和性腺发育。 J 危险材料 397:122795Yang X, Li Z, Ma C, Yang Z, Wei J, Wang T, Wen X, Chen W, Shi X, Zhang Y (2022a) Microplastics influence on Hg methylation in diverse paddy soils. J Hazard Mater 423:126895
杨X,李Z,马C,杨Z,魏J,王T,文X,陈W,石X,张Y(2022a)微塑料对不同水稻土中汞甲基化的影响。 J 危险材料 423:126895Yang Y, Xu G, Yu Y (2022b) Microplastics impact the accumulation of metals in earthworms by changing the gut bacterial communities. Sci Total Environ 831:154848
Yang Y, Xu G, Yu Y (2022b) 微塑料通过改变肠道细菌群落影响蚯蚓体内金属的积累。科学总环境 831:154848Yang Z, Zhu L, Liu J, Cheng Y, Waiho K, Chen A, Wang Y (2022c) Polystyrene microplastics increase Pb bioaccumulation and health damage in the Chinese mitten crab Eriocheir sinensis. Sci Total Environ 829:154586
Yang Z, Zhu L, Liu J, Cheng Y, Waiho K, Chen A, Wang Y (2022c) 聚苯乙烯微塑料增加中华绒螯蟹体内 Pb 的生物累积和健康损害。科学总环境 829:154586Yin W, Zhang B, Zhang H, Zhang D, Leiviskä T (2022) Vertically co-distributed vanadium and microplastics drive distinct microbial community composition and assembly in soil. J Hazard Mater 440:129700
Yin W、Zhang B、Zhang H、Zhang D、Leiviskä T (2022) 垂直共分布的钒和微塑料驱动土壤中不同的微生物群落组成和组装。 J 危险材料 440:129700Yu F, Li Y, Huang G, Yang C, Chen C, Zhou T, Zhao Y, Ma J (2020) Adsorption behavior of the antibiotic levofloxacin on microplastics in the presence of different heavy metals in an aqueous solution. Chemosphere 260:127650
于芳,李Y,黄刚,杨超,陈成,周涛,赵Y,马J (2020) 水溶液中不同重金属存在下抗生素左氧氟沙星对微塑料的吸附行为。化学球 260:127650Zeb A, Liu W, Shi R, Lian Y, Wang Q, Tang J, Lin D (2022) Evaluating the knowledge structure of micro- and nanoplastics in terrestrial environment through scientometric assessment. Appl Soil Ecol 177:104507
Zeb A, Liu W, Shi R, Lian Y, Wang Q, Tang J, Lin D (2022) 通过科学计量评估评估陆地环境中微纳米塑料的知识结构。应用土壤生态 177:104507Zhang G, Liu Y (2018) The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ 642:12–20
张刚,刘燕 (2018) 中国西南地区土壤团聚体组分中微塑料的分布。科学总环境642:12–20Zhang S, Han B, Sun Y, Wang F (2020) Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. J Hazard Mater 388:121775
张S,韩B,孙Y,王芳(2020)微塑料影响农业土壤中Cd的吸附和解吸特性。 J 危险材料 388:121775Zhang S, Pei L, Zhao Y, Shan J, Zheng X, Xu G, Sun Y, Wang F (2023) Effects of microplastics and nitrogen deposition on soil multifunctionality, particularly C and N cycling. J Hazard Mater 451:131152
张S,裴琳,赵Y,单J,郑X,徐G,孙Y,王F(2023)微塑料和氮沉降对土壤多功能性特别是C和N循环的影响。 J 危险材料 451:131152Zhang S, Ren S, Pei L, Sun Y, Wang F (2022a) Ecotoxicological effects of polyethylene microplastics and ZnO nanoparticles on earthworm Eisenia fetida. Appl Soil Ecol 176:104469
张S,任S,裴L,孙Y,王F(2022a)聚乙烯微塑料和ZnO纳米颗粒对蚯蚓Eisenia fetida的生态毒理学影响。应用土壤生态 176:104469Zhang Z, Cui Q, Chen L, Zhu X, Zhao S, Duan C, Zhang X, Song D, Fang L (2022b) A critical review of microplastics in the soil-plant system: distribution, uptake, phytotoxicity and prevention. J Hazard Mater 424:127750
张Z,崔Q,陈L,朱X,赵S,段C,张X,宋D,方L(2022b)土壤-植物系统中微塑料的批判性评论:分布,吸收,植物毒性和预防。 J 危险材料 424:127750Zhao H, Li P, Su F, He X, Elumalai V (2022a) Adsorption behavior of aged polybutylece terephthalate microplastics coexisting with Cd(II)-tetracycline. Chemosphere 301:134789
赵华,李平,苏峰,何翔,Elumalai V (2022a) 老化聚对苯二甲酸丁二醇酯微塑料与四环素镉共存的吸附行为。化学圈 301:134789Zhao S, Zhang Z, Chen L, Cui Q, Cui Y, Song D, Fang L (2022b) Review on migration, transformation and ecological impacts of microplastics in soil. Appl Soil Ecol 176:104486
赵S,张Z,陈L,崔Q,崔Y,宋D,方L(2022b)土壤中微塑料的迁移转化和生态影响研究进展。应用土壤生态 176:104486Zhou Y, Liu X, Wang J (2019) Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. Sci Total Environ 694:133798
周Y,刘X,王J(2019)中国中部郊区土壤中微塑料的表征及其重金属与微塑料的关联。科学总环境 694:133798Zhu X, Qiang L, Shi H, Cheng J (2020) Bioaccumulation of microplastics and its in vivo interactions with trace metals in edible oysters. Mar Pollut Bull 154:111079
朱X,强L,石H,程J(2020)食用牡蛎中微塑料的生物累积及其与微量金属的体内相互作用。三月污染公牛 154:111079
Funding 资金
This work was supported by the Natural Science Foundation of Shandong Province (ZR2020MD120).
该工作得到了山东省自然科学基金项目(ZR2020MD120)的资助。
Author information 作者信息
Authors and Affiliations 作者和单位
Contributions 贡献
Kehan Li: writing — original draft, formal analysis, conceptualization, software. Fayuan Wang: writing — review and editing, conceptualization, funding acquisition, resources.
李克涵:写作——初稿、形式分析、概念化、软件。王法源:写作——审查和编辑、概念化、资金获取、资源。
Corresponding author 通讯作者
Ethics declarations 道德声明
Ethics approval and consent to participate
道德批准并同意参与
Not applicable. 不适用。
Consent for publication 同意发表
Not applicable. 不适用。
Competing interests 利益竞争
The authors declare no competing interests.
作者声明没有竞争利益。
Additional information 附加信息
Responsible Editor: Philippe Garrigues
责任编辑:菲利普·加里格斯
Publisher’s note 出版商备注
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
施普林格·自然对于已出版的地图和机构隶属关系中的管辖权主张保持中立。
Supplementary information
补充资料
ESM 1 环境管理1
(DOCX 268575 kb) (DOCX 268575 kb)
Rights and permissions 权利和权限
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Springer Nature 或其许可方(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议拥有本文的专有权;作者对本文已接受的手稿版本的自行存档仅受此类出版协议和适用法律的条款的约束。
About this article 关于本文
Cite this article 引用这篇文章
Li, ., Wang, F. Global hotspots and trends in interactions of microplastics and heavy metals: a bibliometric analysis and literature review.
Environ Sci Pollut Res 30, 93309–93322 (2023). https://doi.org/10.1007/s11356-023-29091-7
Li, ., Wang, F. 微塑料与重金属相互作用的全球热点和趋势:文献计量分析和文献综述。环境科学污染研究30 , 93309–93322 (2023)。 https://doi.org/10.1007/s11356-023-29091-7
Received 已收到:
Accepted 公认:
Published 已发表:
Issue Date 签发日期:
DOI: https://doi.org/10.1007/s11356-023-29091-7