Estimating Canopy Parameters Based on the Stem Position in Apple Trees Using a 2D LiDAR
利用2D LiDART根据苹果树茎位置估计冠层参数
园艺工程系,莱比锡农业工程和生物经济研究所(TSB),Max-Eythh-Allee,14469 Potsdam,德国
雅典农业大学自然资源管理和农业工程系,11855雅典,希腊
农业工程研究所,作物生产技术,霍恩海姆大学,Garbenstraasse 9,70599斯图加特,德国
信件应收件人的作者。
农学2019,9(11),740; https://doi.org/10.3390/agronomy9110740
提交材料收到:2019年10月2日/修订:2019年11月5日/接受:2019年11月6日/发布:2019年11月11日
Abstract 摘要
冠层形态数据是果园栽培任务的关键。在这项研究中,一个二维光探测和距离(LiDAR)激光扫描系统安装在拖拉机上,在一个已知尺寸(1.81m×0.6m×0.6m)的盒子上进行测试,并应用于一个苹果园(n=224),获得树木的三维结构参数。对考虑四边高度的金属盒进行分析,得到的平均绝对误差(MAE)为8.18 mm,偏差(MBE)为2.75 mm,均方根误差(RMSE)为1.63%,这是由于点云中的缝隙和入射角随着激光孔径与物体距离的增加而增加。提出了一种基于二维点密度直方图的方法来估计每棵树的树干位置。圆柱形边界被投影在估计的树干位置周围,以分割每一棵树。随后,对分割的树木点云的高度、树干直径和体积进行了估计,并与人工测量进行了比较。使用实时动态全球导航卫星系统(RTK-GNSS)定义了每棵树的估计树干位置,MAE和MBE分别为33.7 mm和36.5 mm。考虑人工测量和分段点云估计数据的决定系数(R 2 )较高,高度的R 2
关键词:三维点云;树干位置;树干直径;冠层体积;精准园艺
1. Introduction 1.引言
果树的几何和结构特征信息为果园的管理提供了决定性的知识。几何变量(高度、宽度和体积)和结构变量(叶面积、叶密度、树干和树枝角度)影响相关的经济参数,如树木需水[1、2、3]、果实质量[4、5]和产量[6]。人工测量树木变量通常是不准确和耗时的。因此,出于管理目的在果园中进行测量在当前技术状态下缺乏可行性。
在其他用于此目的的仪器方法中,光检测和距离(LiDAR)激光扫描似乎是最适合于无损监测果树几何和结构参数的方法[7],因为它(I)使用主动光源,避免了不同光照条件的干扰影响,(Ii)实现了比人工测量更高的频率,并且(Iii)使我们能够使用单个传感器从一个距离的多个方向进行测量。激光二极管发射低色散的光子,当击中物体时,这些光子被反射回扫描仪的光电二极管。在考虑光速不变和传感器响应函数不变的情况下,光束从发射到反射的时间与扫描器与物体之间的距离成正比。马达在平面上扫描激光束,描述物体在二维(2D)上的形状。
然而,在农业中,2D LiDAR经常与高精度地理定位系统一起安装在拖拉机上,以获得树木的三维(3D)数据[8,9,10]。一些研究使用这种构型通过将行点云分割成恒定距离的切片来估计果树的结构参数[4,9,10,11]。用上述方法测得的橄榄园树行冠层体积与人工参考值具有较高的相关系数(r=0.906,p<0.0001)。在另一项研究中,Sanz和他的同事[12]使用树行的体积来获得叶面积,描述了不同时间阶段的高决定系数(R 2 ),在苹果树(R 2 =0.85)、梨树(R 2 =0.84)和藤本植物(R 2 =0.86)中采用对数模型。此外,已经开发了几种方法来提取体积,例如在藤本植物、橄榄和苹果上应用凸壳聚类或体素网格[2,13,14],而在柑橘上应用阿尔法形状聚类[15]。Jimenez-Berni和合著者[16]描述了当使用2D LiDAR时,小麦株高的分析具有很强的相关性(R 2 =0.99)。此外,叶面积指数可以通过利用葡萄藤和苹果树的横截面积来估计[5,13,17]。同样,修剪重量和藤材体积的相关性导致了与LiDAR测量的高决定系数(分别为R 2 =0.91;R 2 =0.76)[18]。
用于分离单个植物的点云聚类已经使用树之间的固定距离[13]、凸壳方法[14]和隐式半马尔可夫模型[19,20]来执行。Reiser等人。[20]利用初始植株和固定的植株间距来确定玉米植株的茎位置,以迭代地搜索最佳聚类群。丛生玉米植株的高度轮廓估计,显示出与手动参考读数的33毫米偏差。Garrido等人。[21]利用激光雷达和光幕检测杏树主茎位置,检测准确率达99.5%。检测到的茎的位置是在光学轮式里程计的帮助下获得的,该里程计将没有重叠叶片的植物分开。张和格里夫特[22]提出了一种基于茎密度的大芒激光雷达高度测量系统。在静态模式下,传感器处于静止状态,平均误差为5.08%;在动态模式下,传感器被驱动通过磁场边缘,平均误差为3.8%。在另一项研究中,使用2D直方图来获得棉花植株3D点云中的高度轮廓,结果与人工测量结果有很强的相关性(R 2 =0.98)[23]。此外,基于双变量点密度直方图确定了玉米植株的茎位置,以求出区域极大值[24]。因此,单个植物的分割是通过在估计的植物点云的茎位置周围投影一个空间圆柱边界来实现的。估计的玉米茎位与实际茎位的平均误差和标准差分别为24 mm和14 mm。对于整个植株高度轮廓,误差为8。考虑到手动获得的高度,发现7 mm。
这项研究的总体目标是提出一种通过2D LiDART系统确定苹果树茎位置的方法,作为商业果园中树木分离的基础。具体目标是在分析现场已知尺寸的盒子和现实世界的树木时测试LiDART系统的测量不确定性。通过估计奇异树木的高度、树干和树冠体积来评估树木点云的分析。本研究的创新之处在于将所提出的方法学应用于水果树,为果园内苹果树的几何变量提供了准确且精确的估计。
2. Material and Methods
2.材料和方法
2.1. Field Experiments 2.1.田间试验
该实验于2018年7月初在位于德国马夸特(北纬52.466274°,东经12.57291°)的莱布尼茨农业工程与生物经济研究所实验站进行。果园位于8%的坡度上,朝东南方向。果园内栽种了苹果树。‘Gala’和‘JonaPrince’和传粉树‘Red Idred’各在M9砧木(n=224)上,树间距0.95m,训练成细长纺锤,构成了世界范围内生产的大多数苹果树,平均树高2.5m。没有传粉树被排除在研究之外,因为它们似乎具有类似于上述树型的树体结构,也被训练成细长纺锤形。树是用水平平行的钢丝支撑的。数据采集是在果细胞分裂结束时进行的,这是在6月份本地果实脱落后进行的。承载传感器框架的拖拉机沿被测两排的两侧行驶,平均车速为0.13m S −1 。
每棵树(n = 224)的树干位置使用实时运动学全球导航卫星系统(RTK-GNSS)定义,同时使用木表手动估计树高(H)。每棵树的平均宽度(W)在x和y轴的三个不同高度指定。此外,使用卷尺在0.3 m高度(始终在嫁接区域上方和地面上方)测量茎直径(S)。将树的x和y轴上的W值与H相乘,以确定每棵树的体积(V)[ 4]。
2.2. Instrumentation 2.2.仪表
承载传感器的刚性铝制传感器框架(图1)安装在拖拉机的前部三点式挂钩上。移动式地面光检测和测量(LiDART)(MPS-511,Sick AG,Waldkirch,德国)激光扫描仪安装在地平面上方1.6 m处。激活了两个数字过滤器以优化测量的距离值:根据制造商的设置无法避免的雾过滤器;和N脉冲到1脉冲过滤器,在测量期间两个脉冲被两个物体反射的情况下过滤掉第一个反射脉冲(表1)。
图1. (a)传感器框架系统的表示,显示LiDART和实时动态全球导航卫星系统(RTK-GNSS)的坐标系。(b)已知距离的金属盒。
表1. MPS 511规范数据[ 25]。
拖拉机的三维倾斜由惯性测量单元(IMU)MTi-G-710(XSENS,Enschede,荷兰)监测,该单元放置在距离LiDART 0.24 m处。静态和动态模式下航向传感器的准确度分别为1.0° RSSE,静态和动态模式下俯仰和横滚的准确度分别为0.25° RSSE和1.0° RSSE [ 26]。测量数据通过安装在1.74 m高度的AgGPS 542 RTK-GNSS(Trimble,Sunnyvale,CA,USA)进行地理参考。RTK-GNSS的水平精度为±25 mm +2 ppm,垂直精度为±37 mm +2 ppm。
具有多线程架构的软件是在Visual Studio(版本16.1,Microsoft,Redmond,WA,US)中开发的,以获取传感器数据。通过为每个连接的传感器创建动态线程来实现并行数据采集。因此,当每个线程读取原始传感器数据时,相应的测量结果和实时时钟(1 ms分辨率)的时间戳被组装到文本字符串中。该字符串存储在文本文件中以进行后处理。传感器的多线程数据采集导致非并发测量。因此,在同步时间实例之前,根据其单独的时间戳使用三次样条插值方法。
2.3. Sensor-Frame Analysis
2.3.传感器框架分析
建造了一个尺寸为1.81m×0.60m×0.60m的金属盒子,以验证传感器-框架系统的测量不确定度(图1b)。金属盒子上水平放置了五根相距0.3m的棒子。安装在拖拉机上的传感器框架以0.13m的S −1 分别扫描盒子的两侧。这些测量是在苹果树旁边进行的,以模拟真实的操作条件。计算了考虑金属盒实际尺寸和估计尺寸的平均绝对误差(MAE)、偏差(MBE)和均方根误差(方程式(1)-(3))。
其中,Db0b0是金属盒轮廓的实际参考尺寸,Db11是由LiDAR对时间实例i估计的金属盒的尺寸,n是每个轮廓的测量点的数目。此外,考虑到树干位置、树高、树干直径和冠层体积的手动测量和激光雷达测量,上述方程被用来估计测量不确定度。
2.4. Data Pre-Processing 2.4.数据预处理
现场数据的处理主要使用MatLab(2007b,MathWorks,Natick,MA,USA)的计算机视觉系统工具箱 TM 、统计离群滤波功能(SOR)和点云处理的CloudCompare(EDF R&D)的云到云距离(C2C)。
对LiDAR数据集进行过滤,只考虑距离测量在0.05m和4.00m之间的那些探测。结果探测从极坐标转换到笛卡尔坐标(xb0>,y LiDAR ,z LiDAR )。在拖拉机运动过程中,传感器框架的三维动态倾斜方向(偏航(ψ)、俯仰(θ)和横摇(φ))是由东北上(ENU)局部坐标系中的惯性测量单元传感器获取的。因此,可以使用坐标变换来计算传感器框架上的任何兴趣点。RTK-GNSS接收机获得的位置数据集,即纬度(φ)、经度(λ)和高度(H)(Lla),以WGS84定义的大地坐标系表示。
RTK-GNSS和IMU的输出数据必须在同一坐标系中进行转换,以便进行融合。融合是在ENU进行的,因为IMU的输出数据已经在这个地方坐标系中。然而,RTK-GNSS的输出数据被转换了两次,第一次是LLA到地球中心固定(ECEF)框架,第二次是ENU框架。
使用以下方程执行从大地坐标到ECEF坐标的转换[ 27]
其中e = 0.0818是地球椭圆体的第一个数字同心度,ð=[]是ECEF坐标中的位置,v(ph)是地球表面沿着椭圆体法向z轴的距离
其中,a = 6,378,137 m是地球的半长轴长度。从ECEF坐标到本地ENU坐标的转换是根据方程RST = RST估计的,其中RST = [n,e,d]是本地ENU坐标系中的位置,并且是从ECEF到ENU坐标系的转换矩阵
由于传感器之间的已知距离和角度,传感器框架能够实现转换和平移。通过多次平移(Trans(,-a)x Trans(,+b))和两次旋转(Rot(' roll ',-)x Rot(' yaw ',-)将LiDART框架转换为RTK-GNSS框架,以便对LiDART的每个点进行地理参考
其中是LiDART传感器坐标系到RTK-GNSS坐标系的变换矩阵
所有旋转(Rot)和平移(Trans)的一般矩阵形式如方程(11)所示,并且通过将它们替换到方程(10)中,可以生成方程的矩阵形式表示。考虑LiDART时间戳,在点云中实现了三维倾斜方向()。
实施IMU数据的三维倾斜以稳定传感器框架坐标系的方向(方程(12))
2.5. Point Cloud Rigid Registration and Stitching
2.5.点云刚性配准和缝合
该过程首先对每个点云对实施SEN过滤器,首先计算每个点到其邻居的平均距离,然后拒绝比平均距离更远的点,同时还要考虑标准差。此外,还使用随机样本共识(RASAC)算法来删除属于地面的点。数据点与平面之间的距离阈值定义为5 mm,而平面模型中通过实现各行RTK-GNSS高度差额外考虑了场的倾斜度。如上所述,在两行中都应用了一个5毫米高的平面,以去除土壤的反射率。RASAC算法分别应用于每条路径。
由于使用RTK-GNSS的上述点云地理参考方法,两条路径预先对准。还在CloudCompare中进行了额外的粗略预对准,以便在共同坐标系中重叠两侧。两两路径的比对采用迭代最近点算法,迭代最小化对应点的距离。使用二叉树(其中每个节点表示k维空间的一个分区(K-d树))来加速比较方案处理[28]。此外,将局部表面法向量和曲率作为ICP值的变量来选择对应点。将用于最小化距离的匹配值的特征值的差值的权重因子分配给x、y、z和法向量。X轴被赋予更高的权重,因为它是在点云对之间产生最大偏差的行驶方向的轴。最大对应距离被设置为0.1m。因此,ICP最小化了点与其对应点的表面之间的距离,或法线的方向。最后,使用体素网格过滤器(1 mm×1 mm×1 mm)将两个边合并成单个点云。对金属盒子的每一面的重建都采用了类似的方法。最初,使用SOR滤波器来对每个单独侧面的点云进行去噪。然后,估计法向量和曲率,并将其整合到ICP算法中。因此,两条边的边缘对齐了,然后又进行了合并。每一面都用0号在垂直和水平方向上分为6个部分。3 m步,分别获得平均高度和平均宽度。高度是通过减去每个单独边的每个垂直部分的最大和最小点来测量的,而宽度是通过减去每个水平部分的最大和最小宽度来获得的。
此外,测量了每个单独的延伸条(EB)的高度和宽度。使用四个垂直平面来获得最小点和最大点之间的差,估计EB之间的平均高度差(ΔEB)。
2.6. Tree Row Alignment 2.6.树行对齐
确定股骨柄位置的方法依赖于Vazquez-Arellano及其同事之前的研究[ 24]。使用考虑最小绝对剩余(RAL)的一阶多项曲线连接各行中的参考股骨柄位置(方程(13))
通过旋转合并的点云直到它与x轴对齐来利用直线的斜率。
2.7. Tree Stem Estimation
2.7.树干估计
生成和旋转的点云通过配对点云中每个点的x和y值,使用双变量方法获得三维点密度直方图。双变量直方图描绘落入大小为3 cm 2 的每个箱中的点的频率。
使用整行的双变量直方图来检测出现频率最高的词干位置。采用半径为0.65m、高度为4m的圆柱体,以最高点的坐标为基点,在该帧内得到点密度直方图。频率最高的点被认为是起点,因为它是茎的概率最高的点。通过加上平均行内距离(0.95m),在x轴的两个方向上估计下一个茎的位置。在这一点上,应用了第二个圆柱体,具有上述尺寸,并将下一个杆的坐标作为底座的中心。在圆柱体框架内使用点密度直方图来测试下一个杆的坐标是保持不变还是需要重新定位。对后一个圆柱体内的树点云进行分割,并对每行的所有树迭代应用此过程。
2.8. Tree Height 2.8.树高
当每棵树根据其树干位置进行分割时,通过计算z轴上最大点和最小点之间的差(H LiDAR )来估计高度。然而,用RANSAC算法拟合到土壤点的平面错误地将一些靠近土壤的植物点归类为土壤点[29,30]。为此,采用刚体变换对树木点云进行配准,对土壤点云进行对齐和融合。利用SOR滤波器对合并后的土壤点云进行滤波,并与树状点云进行融合。利用融合后的点云获取树木和土壤信息,进行高度估计。
2.9. Stem Diameter 2.9。茎直径
如上所述,S manual 是在每棵树离地0.30米的高度测量的。因此,在每一株切段树中,选择距土壤0.05m到0.3m之间的区域来计算树干直径(S LiDAR )。选定的点在x轴和y轴上绘制。一条线将边界上的点彼此连接起来,创建了一个多边形。为了确定多边形内中心的坐标,采用了k-均值聚类法。因此,估计了中心到边界点之间的最大欧几里德距离,并与手动测量的参考茎直径进行了比较。
2.10. Canopy Volume 2.10.冠层体积
记录树木的H和树木分支点距地面的距离。以0.5 m高度间隔从两侧测量每棵树的树冠宽度。通过将测量的顶部和底部宽度的平均值乘以相应的高度来计算每个区域的横截面积。如上所述,将树的面积与h的积相乘以确定V [ 4]。
另一方面,在分割的树点云中应用了凸壳。选择Delaunnay方法进行三角测量,而使用等于1的收缩因子来创建使点重叠的紧凑边界。此方法适合指定结构周围的边界,并计算该区域的体积。为了用这种方法测量体积,在Matlab [ 31]中使用具有相同收缩因子的边界函数开发了一种算法来估计体积。
3. Results and Discussion
3.结果和讨论
3.1. Measuring Uncertainty of the System Applied in the Field
3.1.现场应用系统的不确定度测量
重建金属箱的侧面后,LiDART系统能够检测土壤的斜坡和箱的结构细节(图2)。一侧的延伸金属条被描绘出来,而S的主体中也显示了它们的形状。然而,由于太阳从金属盒的反射,点的间隙是可见的。0.1667°的角分辨率导致平均每毫米撞击20次。S、S和S上总共记录了565架飞机,S上记录了643架飞机。利用ICP算法将边对齐和配准在一起,然后合并在一起(图3b)。利用C2C功能来估计两侧的平均重叠,显示平均距离误差为12 mm,标准差为0.5 mm。
图2. (a)从金属盒中重建四面。S和S是平行于y轴的边,而S和S是平行于x轴的边。(b)配准和对齐金属盒的四个侧面后产生的合并点云。
图3.当拖拉机上的LiDART系统(a)穿过苹果树左侧的路径a、c和(b)穿过苹果树右侧的路径d、b时,重建了点云的表示。出于说明目的,仅显示了每一行的一部分。
S的高度估计MAE和RMES最高,分别为8.18毫米和1.63%,而同侧的MBE最高,为2.75毫米(表2)。对于S,最低MAE和RSSE分别为1.06毫米和0.21%。另一方面,宽度的结果显示MAE普遍较低,而MBE增强。
表2.金属盒每一侧(S)的高度和宽度结果(n = 6)、最大值(Max)、最小值(Min)、标准差(SD)、平均绝对误差(MAE)、偏差(MBE)、均方误差(RSSE)。
当关于延伸条(EB)时,S结果变得更加明显。当考虑EB高度和宽度分析时,测量的不确定度增加。EB位于最靠近地面的位置,与棒的实际尺寸偏差最大(表3)。EB和EB更接近LiDART的高度水平,并且发现的差距更小。因此,测量的不确定度降低了。EB的平均高度为29 mm,最低MAE为0.2 mm,MBE为-0.2 mm。EB和EB中的最高MBE分别为2.8毫米和-2.8毫米,RSSE分别为5.5%和5.3%。Palleja等人[ 15]也发现了类似的结果,他们提到,由于地面粗糙度和运行期间拖拉机发动机轨迹的振荡而导致的LiDART高度错位可能会影响测量结果,产生高达3.5%的误差。
表3.延伸条的估计高度和宽度(EB)(n = 6)、最大值(Max)、最小值(Min)、标准差(SD)、平均绝对误差(MAE)、偏差(MBE)、均方误差(RSSE)。
EB和EB之间的平均距离(A EB)为312.67 mm,说明除其他外,最低SD(±1.74 mm)和MAE为1.27 mm,但最高MBE为3.1 mm。此外,A EB与金属盒已知尺寸的偏差最大,平均值为293 mm,SD为±6.68 mm。应该指出的是,A EB和A EB的平均值相当接近,分别为295.2 mm和296.8 mm,分别描绘了4.77 mm和3.17 mm MBE。
扫描过程基本上可以受到扫描仪机构、大气条件和环境、物体属性以及扫描几何形状的影响[32]。在高入射角下测得的电子束具有最高的MBE和MAE。因此,当入射角增大和与扫描仪的距离增大时,扫描几何形状会影响点云质量[33,34]。尽管这种偏见可能会得到纠正,但精确度的不足依然存在。还应考虑高反射率的材料会使后向散射信号失真[32]。S 3 的情况就是这样,有440个点击率缺失。如果部分光束落在目标之外,失真将特别明显,其可能性还取决于角度分辨率[33]。因此,扰动因素的组合可能会增加MBE和MAE,特别是在诸如EB的较小维度的对象中。虽然这是一个意料之中的发现,但量化指向了在树干分析中可以预期的测量不确定度。
3.2. Separation of Trees by Means of the Stem Position
3.2.通过树干位置分离树木
激光雷达系统从两侧扫描了一行的每一面。树的左侧结构由a和c路径描述,而右侧由b和d路径描述(图3a,b)。
点云的配准和对准是利用ICP算法两两进行的。在两种情况下使用了比较方案算法:在与土壤点成对的一侧(图4a)和在使用RANSAC去除土壤点之后的成对侧(图4b),以评估哪种情况提供了更好的对准。采用C2C函数对重叠差异进行量化。包括土壤点的排列导致距离误差为163.5 mm,标准偏差为31.1mmSD,并观察到80.5mmMBE。相比之下,去除土壤点导致的平均距离误差减少了81.6 mm,SD为21.4 mm,RMSE为0.71%,MBE为5.2 mm。结果,对于去除土壤点的情况,发现影响重叠过程的低测量不确定度[24,35]。
图4.在两种情况下,使用单个树点云的迭代最近点算法(ICC)算法进行配准和对齐(a)具有土壤点的树点云(b)使用RASAC去除土壤后的树点云。给出了每个情况下具有最佳结果的树。
两行的点云合并为单个点云。树木的结构被明确定义。然而,观察到5毫米以上的杂草点仍留在行内(图4 b)。
3D重建点云的原始数据由18,441,933个点组成。SEN过滤器的应用使点云减少了12.17%,删除了2,241,786个点。使用RASAC算法对土壤点进行分割后发现,另外58.59%的数据(10,820,983个点)属于土壤。剩余的5,382,849个积分属于树木,占积分总数的29.23%。Arellano和同事[ 30]已经指出了土壤撞击在他们的3D重建点云中的主导地位,这表明植物点的排列与土壤点是分开的。
二元点密度矩形图能够检测每棵树的激光撞击峰值(图5)。茎点集中在植物中心的假设是基于之前的研究[ 8,24]。一致地,假设更接近茎位置的区域出现频率增加。然而,考虑到树冠的形成,该假设需要确认,此外,峰值数量和位置的分析可能会受到点云质量的影响。潜在的噪音或点云重叠的低质量可能会导致更多峰值,因为局部bin计数变得更加不均匀。稳定的bin大小的使用触发了二元矩形图中峰的过滤,因此影响了最高峰的检测。
图5.合并和过滤后一个苹果行点云的配准和对齐结果。(a)强度图像,其中较暖的正方形指示峰值,以及(b)所得行点云的二元点密度矩形图。
将估计的茎位置的坐标与使用RTK-GNSS定义的茎位置进行比较(图6)。估计的股骨柄位置与TEK股骨柄位置密切相关,显示MAE为33.7 mm,MBE为36.5 mm。尽管对齐存在一定误差,但该算法只能错过224棵树中的一个茎位置(图6)。
3.3. Estimation of Tree Variables
3.3.树变量的估计
确定树干位置后,将减去的土壤与树木的点云合并(图7a),以避免失去树木撞击。估计的茎位置的坐标被用作分割圆柱体的中心,以获得属于每棵树的点。圆柱体边界内的点被分割并视为树点(图7 b)。
图7. (a)具有估计干位置和RTK-GNSS定义的干位置的合并点云。出于说明目的,仅表示第1行的第一部分。(b)基于估计的茎位置进行单树分割的投影圆柱体。
考虑z轴上最大点和最小点之间的差来估计高度。如上所述,圆柱体的半径基于手动测量的树木平均宽度(n = 224)。然而,一些长枝的树点被布置在圆柱体之外,导致树冠体积被低估。然而,这一错误并没有表明对身高的低估(表4)。Arellano等人[ 24]采用类似的方法确定了玉米的茎位置,并获得了植物的高度轮廓,表明MAE与实际高度的7.3毫米。核桃树被分割,并考虑z轴上的Min和Max值估计其高度,结果与手动测量存在显着关系(R = 0.95)[ 36]。Malambo等人[ 37]利用类似的圆柱边界方法来分段高粱树,报告r = 0.86与RSSE = 11.4厘米的相关性。
表4.高度(H)(mm)、茎直径(S)(mm)、树冠体积(V)(mm)和基于LiDART的测量H、S、V(n = 224)的手动测量值的描述性统计量,涉及最大值(Max)、最小值(Min)、平均绝对误差(MAE)(mm)、偏差(MBE)(mm)、均方误差(RSSE)、决定系数(R)。
在本研究中,手动测量了每一行的植物高度轮廓,作为地面事实,以验证点云的结果,指出高度变化900毫米(表4)。在比较平均值时,手动测量的平均值(H)和根据LiDART数据得出的估计高度(H)的平均值略有变化40 mm。商业苹果园也可以预期类似的价值。参考值和估计值相关,显示R = 0.87,MAE为5.55 mm,MBE为0.62 mm。5.7%的RSSE可以通过LiDART的测量不确定度以及通过手动测量定义股骨柄延伸最高点的不确定度来解释。
在分段的树木点云中选择0.10米到0.30米之间的树干截面来分析树干直径(图8)。品种和砧木的嫁接区域总是出现在这一区段以下。S manual 和S LiDAR 的平均值相差2.4 mm,而最小值相差8 mm。后者的结果由MAE为2.52 mm和−为3.75 mm的相当大的差异来描述,然而,参考值和估计值显示较高的R 2 =0.88和相对较低的2.23%RMSE,当在盒子的延伸杆上测量时,认识到增强的入射角的扰动效应(表4)。园艺中基于茎位置的圆柱体拟合法估算茎直径的方法比较少见。将圆柱体安装在树干尖端的自动检测在林业中得到了广泛的研究[38,39,40]。然而,这些研究中的大多数使用了3D陆地LiDAR,它能够在不移动系统的情况下提供茎点的3D表示,从而限制了对准过程中的误差。此外,在森林中,树干在离地面几米的地方没有树叶的覆盖,允许每个树干更多的命中率和树干点的分割,而不会强加重合的结构。
图8. (a)干点选择在0.1 m和0.3 m之间用红色标记,以及(b)由LiDART(S)检测到的选定干点,以2D方式绘制,并带有干边界和干位置。
使用凸壳算法来估计树冠体积(图9 b)。为了易于区分,每个单独体积的边界都以假色示出。与地面真实方法类似,凸壳方法不会计算树冠内间隙的体积,而是考虑整体树冠几何形状。体积的手动测量显示与来自分段树点云的体积数据具有强相关性(R = 0.77)(表4)。基于圆柱体配合法的手工方法对树冠结构进行粗略简化,主要高估了实际数据和凸壳算法计算的数据。因此,发现体积分析的偏差最高(表4),而与高度估计相比,观察到RMES略有降低。
图9. (a)四棵示例苹果树的点云和(b)凸壳方法的可视化,显示奇异树(T)的树冠体积(V)。
这种对体积的高估可能是由于落在圆柱体内的杂草点在土壤清除过程中没有被去除,因此凸壳边界被增加,这反过来又提供了高估。在以前的研究中,用凸壳方法测定苹果树和藤本植物的体积,其相关性分别为r=0.81和r=0.82[2]。此外,有人提到,凸壳方法没有考虑树冠间隙,可能会导致过度估计。Cheein等人。[13]开发了一种基于圆柱体的模型,用于实时描述苹果树的体积,根据树冠中心对树木进行分割。该模型显示了87%的准确率,但是圆柱体外围的点可能会导致计算体积的夸大和不切实际的增加。这项研究中提出的基于树干位置的树木分割方法表明,V manual 和V LiDAR 之间存在很强的关系(R 2 =0.77)。然而,在一些树木中,主要的缺点是在圆柱体内,来自相邻树木的树点干扰,导致可能的体积偏差。
4. Conclusions 4.结论
LiDAR系统能够估计简单的物体结构,在由于物体的反射和激光扫描器入射角度和命中密度增加而导致命中失误的情况下,最高RMSE为1.63。应用双变量点密度直方图可以检测树干位置,MAE为43.7 mm,MBE为36.5 mm。它还提供了关于H LiDAR 的有意义的信息,这与H manual (R 2 =0.87)密切相关。此外,对S LiDAR 的估计方法与S manual 有很高的相关性(R 2 =0.88)。与上述参数(R 2 =0.77)相比,V manual 和V LiDAR 的相关性较低(R 2 =0.77),这可能是由于V manual 中的错误或点云数据中树内存在杂草。在苹果树上证实了凸壳估测冠层体积的方法。
需要使用用于单植物分割的聚类算法(例如,欧几里德、最大流/最小切割定理、区域生长分割)进行进一步的研究,以便树冠的部分不会从树的点云中被切断,并且可以分析后期生长阶段的植物。此外,需要探索非刚性配准和对齐,以减少各种误差的影响,这些误差减少了点云对之间的重叠。
总而言之,LiDART系统能够检测苹果树中的几何变量,这些变量可用于农业应用,以测量树木生长,以进行树木个体果园管理,同时考虑机械修剪、灌溉和喷洒。
Author Contributions 作者贡献
NT制定了实验计划,进行了数据分析,编写了应用的代码并编写了文本。DSP支持实验设计,为编程做出了贡献,并添加了数据分析的指导。SF支持实验规划、数据分析和文本修改。M.Z.- S.支持实验计划,为数据分析和解释添加了指导,并修改了文本。
Funding 资金
这项研究是由 PRIMEFRUIT 项目在欧洲创新伙伴关系 (EIP) 的框架内资助的, 由勃兰登堡州农村发展, 环境和农业部 (MLUL) 授予勃兰登堡州投资银行, 赠款编号 80168342.
Acknowledgments 致谢
作者很感激本文的出版得到了莱比锡协会开放获取基金的资助。
Conflicts of Interest 利益冲突
作者声明不存在利益冲突。
References 引用
- Lee, K.H.; Ehsani, R. A laser scanner based measurement system for quantification of citrus tree geometric characteristics. Appl. Eng. Agric. 2009, 25, 777–788. [Google Scholar] [CrossRef]
Lee,KT;埃萨尼河基于激光扫描仪的测量系统,用于量化柑橘树几何特征。Appl. Eng. Agric.2009,25,777-788。[ Google Scholar] [ CrossRef] - Chakraborty, M.; Khot, L.R.; Sankaran, S.; Jacoby, P.W. Evaluation of mobile 3D light detection and ranging based canopy mapping system for tree fruit crops. Comput. Electron. Agric. 2019, 158, 284–293. [Google Scholar] [CrossRef]
查克拉博蒂,M.; Khot,LR;桑卡兰,S.;普华永道基于移动3D光检测和范围的树木水果作物冠层绘图系统的评估。Comput.电子。农业。2019,158,284-293。[ Google Scholar] [ CrossRef] - Tsoulias, N.; Paraforos, D.S.; Fountas, S.; Zude-Sasse, M. Calculating the Water Deficit Spatially Using LiDAR Laser Scanner in an Apple Orchard. In Proceedings of the European 12th Conference of Precision Agriculture, Montpellier, France, 8–11 July 2019. [Google Scholar]
北卡罗来纳州祖利亚斯;帕拉福罗斯,DS; Fontas,S.; Zude-Sasse,M.使用LiDART激光扫描仪计算苹果园的空间缺水量。发表于2019年7月8日至11日法国蒙彼利埃欧洲第十二届精准农业会议纪要。[谷歌学者] - Sanz, R.; Rosell, J.R.; Llorens, J.; Gil, E.; Planas, S. Relationship between tree row LIDAR-volume and leaf area density for fruit orchards and vineyards obtained with a LIDAR 3D Dynamic Measurement System. Agric. For. Meteorol. 2013, 171, 153–162. [Google Scholar] [CrossRef]
- Arno, J.; Escola, A.; Valle’s, J.M.; Llorens, J.; Sanz, R.; Masip, J.; Palacín, J.; Rosell-Polo, J.R. Leaf area index estimation in vineyards using a ground-based LiDAR scanner. Precis. Agric. 2013, 14, 290–306. [Google Scholar] [CrossRef]
- Tagarakis, A.C.; Koundouras, S.; Fountas, S.; Gemtos, T. Evaluation of the use of LIDAR laser scanner to map pruning wood in vineyards and its potential for management zones delineation. Precis. Agric. 2018, 19, 334–347. [Google Scholar] [CrossRef]
- Rosell, J.R.; Sanz, R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Comput. Electron. Agric. 2012, 81, 124–141. [Google Scholar] [CrossRef]
- Walklate, P.J.; Cross, J.V.; Richardson, G.M.; Murray, R.A.; Baker, D.E. Comparison of different spray volume deposition models using LIDAR measurements of apple orchards. Biosyst. Eng. 2002, 82, 253–267. [Google Scholar] [CrossRef]
- Rosell Polo, J.R.; Sanz, R.; Llorens, J.; Arnó, J.; Escolà, A.; Ribes-Dasi, M.; Masip, J.; Camp, F.; Gràcia, F.; Solanelles, F.; et al. A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosyst. Eng. 2009, 102, 128–134. [Google Scholar] [CrossRef]
- Escola, A.; Martínez-Casasnovas, J.A.; Rufat, J.; Arnó, J.; Arbonés, A.; Sebé, F.; Pascual, M.; Sebe, F.; Pascual, M.; Gregorio, E.; et al. Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds. Precis. Agric. 2017, 18, 111–132. [Google Scholar] [CrossRef]
- Miranda-Fuentes, A.; Llorens, J.; Gamarra-Diezma, J.; Gil-Ribes, J.; Gil, E. Towards an optimized method of olive tree crown volume measurement. Sensors 2015, 15, 3671–3687. [Google Scholar] [CrossRef] [PubMed]
- Sanz, R.; Llorens, J.; Escolà, A.; Arnó, J.; Planas, S.; Román, C.; Rosell-Polo, J.R. LIDAR and non-LIDAR-based canopy parameters to estimate the leaf area in fruit trees and vineyard. Agric. For. Meteorol. 2018, 260, 229–239. [Google Scholar] [CrossRef]
- Cheein, F.A.A.; Guivant, J.; Sanz, R.; Escolà, A.; Yandún, F.; Torres-Torriti, M.; Rosell-Polo, J.R. Real-time approaches for characterization of fully and partially scanned canopies in groves. Comput. Electron. Agric. 2018, 118, 361–371. [Google Scholar] [CrossRef]
- Colaço, A.F.; Trevisan, R.G.; Molin, J.P.; Rosell-Polo, J.R. Orange tree canopy volume estimation by manual and LiDAR-based methods. Adv. Anim. Biosci. 2017, 8, 477–480. [Google Scholar] [CrossRef]
- Palleja, T.; Tresanchez, M.; Teixido, M.; Sanz, R.; Rosell, J.R.; Palacin, J. Sensitivity of tree volume measurement to trajectory errors from a terrestrial LIDAR scanner. Agric. For. Meteorol. 2010, 150, 1420–1427. [Google Scholar] [CrossRef]
- Jimenez-Berni, J.A.; Deery, D.M.; Rozas-Larraondo, P.; Condon, A.T.G.; Rebetzke, G.J.; James, R.A.; Bovill, W.D.; Sirault, X.R. High throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR. Front. Plant Sci. 2018, 9, 237. [Google Scholar] [CrossRef] [PubMed]
- Escolà, A.; Rosell-Polo, J.R.; Planas, S.; Gil, E.; Pomar, J.; Camp, F.; Solanelles, F. Variable rate sprayer. Part 1—Orchard prototype: Design, implementation and validation. Comput. Electron. Agric. 2013, 95, 122–135. [Google Scholar] [CrossRef]
- Siebers, M.; Edwards, E.; Jimenez-Berni, J.; Thomas, M.; Salim, M.; Walker, R. Fast phenomics in vineyards: Development of GRover, the grapevine rover, and LiDAR for assessing grapevine traits in the field. Sensors 2018, 18, 2924. [Google Scholar] [CrossRef] [PubMed]
- Underwood, J.P.; Jagbrant, G.; Nieto, J.I.; Sukkarieh, S. Lidar-based tree recognition and platform localization in orchards. J. Field Rob. 2015, 32, 1056–1074. [Google Scholar] [CrossRef]
- Reiser, D.; Vázquez-Arellano, M.; Paraforos, D.S.; Garrido-Izard, M.; Griepentrog, H.W. Iterative individual plant clustering in maize with assembled 2D LiDAR data. Comput. Indust. 2018, 99, 42–52. [Google Scholar] [CrossRef]
- Garrido, M.; Perez-Ruiz, M.; Valero, C.; Gliever, C.J.; Hanson, B.D.; Slaughter, D.C. Active optical sensors for tree stem detection and classification in nurseries. Sensors 2014, 14, 10783–10803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Grift, T.E. A LIDAR-based crop height measurement system for Miscanthus giganteus. Comput. Electron. Agric. 2012, 85, 70–76. [Google Scholar] [CrossRef]
- Sun, S.; Li, C.; Paterson, A. In-field high-throughput phenotyping of cotton plant height using LiDAR. Remote Sens. 2017, 9, 377. [Google Scholar] [CrossRef]
- Vázquez-Arellano, M.; Paraforos, D.S.; Reiser, D.; Garrido-Izard, M.; Griepentrog, H.W. Determination of stem position and height of reconstructed maize plants using a time-of-flight camera. Comput. Electron. Agric. 2018, 154, 276–288. [Google Scholar] [CrossRef]
- SICK AG. Operation Instructions LMS5XX Laser Measurement Sensors. Available online: https://www.sick.com/media/docs/4/14/514/Operating_instructions_Laser_Measurement_Sensors_of_the_LMS5xx_Product_Family_en_IM0037514.pdf (accessed on 21 June 2019).
- Kooi, B. MTi User Manual, MTi 10-Series and MTi 100-Series. 2014. Available online: http://www.farnell.com/datasheets/1935846.pdf (accessed on 21 June 2019).
- Farrell, J.; Barth, M. The Global Positioning System & Inertial Navigation; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Bentley, J.L. Multidimensional binary search trees used for associative searching. Commun. ACM 1975, 18, 509–517. [Google Scholar] [CrossRef]
- Garrido, M.; Paraforos, D.S.; Reiser, D.; Arellano, M.V.; Griepentrog, H.W.; Valero, C. 3D maize plant reconstruction based on georeferenced overlapping lidar point clouds. Remote Sens. 2015, 7, 17077–17096. [Google Scholar] [CrossRef]
- Vázquez-Arellano, M.; Reiser, D.; Paraforos, D.S.; Garrido-Izard, M.; Burce, M.E.C.; Griepentrog, H.W. 3-D reconstruction of maize plants using a time-of-flight camera. Comput. Electron. Agric. 2018, 145, 235–247. [Google Scholar] [CrossRef]
- Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H.T. The Quickhull Algorithm for Convex Hulls. ACM Trans. Math. Softw. 1996, 22, 469–483. [Google Scholar] [CrossRef]
- Soudarissanane, S.; Lindenbergh, R.; Menenti, M.; Teunissen, P. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS J. Photogram. Remote Sens. 2011, 66, 389–399. [Google Scholar] [CrossRef]
- Forsman, M.; Börlin, N.; Olofsson, K.; Reese, H.; Holmgren, J. Bias of cylinder diameter estimation from ground-based laser scanners with different beam widths: A simulation study. ISPRS J. Photogram. Remote Sens. 2018, 135, 84–92. [Google Scholar] [CrossRef]
- Kaasalainen, S.; Jaakkola, A.; Kaasalainen, M.; Krooks, A.; Kukko, A. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods. Remote Sens. 2011, 3, 2207–2221. [Google Scholar] [CrossRef]
- Lu, H.; Tang, L.; Whitham, S.A.; Mei, Y. A robotic platform for corn seedling morphological traits characterization. Sensors 2017, 17, 2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estornell, J.; Velázquez-Martí, A.; Fernández-Sarría, A.; López-Cortés, I.; Martí-Gavilá, J.; Salazar, D. Estimation of structural attributes of walnut trees based on terrestrial laser scanning. RAET 2017, 48, 67–76. [Google Scholar] [CrossRef]
- Malambo, L.; Popescu, S.C.; Horne, D.W.; Pugh, N.A.; Rooney, W.L. Automated detection and measurement of individual sorghum panicles using density-based clustering of terrestrial lidar data. ISPRS J Photogramm. Remote Sen. 2019, 149, 1–13. [Google Scholar] [CrossRef]
- Dassot, M.; Colin, A.; Santenoise, P.; Fournier, M.; Constant, T. Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Comput. Electron. Agric. 2012, 89, 86–93. [Google Scholar] [CrossRef]
- Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J.; et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 2015, 6, 198–208. [Google Scholar] [CrossRef]
- Srinivasan, S.; Popescu, S.; Eriksson, M.; Sheridan, R.; Ku, N.W. Terrestrial laser scanning as an effective tool to retrieve tree level height, crown width, and stem diameter. Remote Sens. 2015, 7, 1877–1896. [Google Scholar] [CrossRef] [Green Version]
Functional Data | General Data |
---|---|
Operating range: up to 10 m | Light detection and ranging (LiDAR) Class: 1 (IEC 60825-1) |
Scanning angle: 190° | Enclosure rating: IP 67 |
Scanning frequency: 25 Hz | Temperature range: −40 °C to 60 °C |
Systematic error: ± 25 mm | Light source: 905 nm (near infrared) |
Statistical error: ± 6 mm | Total weight: 3.7 kg |
Angular resolution: 0.1667° | Laser beam diameter at the front screen: 13.6 mm |
Mean (m) | Max (m) | Min (m) | SD (mm) | MAE (mm) | MBE (mm) | RMSE (%) | ||
---|---|---|---|---|---|---|---|---|
Height | S1 | 1.83 | 1.83 | 1.81 | 13.98 | 8.18 | 2.75 | 1.63 |
S2 | 1.80 | 1.81 | 1.79 | 13.34 | 3.00 | 1.75 | 0.60 | |
S3 | 1.80 | 1.82 | 1.79 | 1.78 | 3.31 | 0.68 | 0.66 | |
S4 | 1.79 | 1.81 | 1.79 | 5.37 | 1.06 | −0.81 | 0.21 | |
Width | S1 | 0.60 | 0.60 | 0.58 | 2.10 | 4.51 | 2.33 | 0.90 |
S2 | 0.59 | 0.60 | 0.58 | 7.10 | 1.50 | −1.5 | 0.30 | |
S3 | 0.58 | 0.59 | 0.58 | 7.96 | 2.06 | −4.06 | 0.81 | |
S4 | 0.59 | 0.61 | 0.59 | 8.5 | 2.18 | −2.22 | 0.43 |
Mean (mm) | Max (mm) | Min (mm) | SD (mm) | MAE (mm) | MBE (mm) | RMSE (%) | ||
---|---|---|---|---|---|---|---|---|
Height | EB1 | 21 | 30 | 11 | 7.9 | 2.1 | −2.1 | 4.2 |
EB2 | 10 | 30 | 10 | 8.5 | 2.8 | −2.8 | 5.6 | |
EB3 | 27 | 29 | 20 | 4.8 | 0.8 | −0.8 | 1.5 | |
EB4 | 28 | 30 | 20 | 4.8 | 0.6 | −1.5 | 3.2 | |
EB5 | 29 | 30 | 28 | 0.9 | 0.2 | −0.2 | 3.0 | |
Width | EB1 | 89 | 100 | 81 | 8.5 | 2.8 | 2.8 | 5.5 |
EB2 | 81 | 85 | 79 | 2.6 | 0.4 | −2.8 | 5.3 | |
EB3 | 104 | 120 | 85 | 4.8 | 0.8 | −0.8 | 1.5 | |
EB4 | 102 | 103 | 100 | 1.9 | 1.5 | 0.4 | 0.8 | |
EB5 | 102 | 104 | 100 | 1.9 | 1.6 | 0.4 | 0.7 |
Min | Max | Mean | MAE | MBE | RMSE (%) | R2 | |
---|---|---|---|---|---|---|---|
Hmanual (mm) | 1900 | 2800 | 2310 | 5.55 | 0.62 | 5.71 | 0.87 |
HLiDAR (mm) | 1870 | 2820 | 2350 | ||||
Smanual (mm) | 55 | 132.5 | 97.1 | 2.52 | −3.75 | 2.23 | 0.88 |
SLiDAR (mm) | 63 | 136 | 99.5 | ||||
Vmanual (m3) | 0.23 | 1.12 | 0.55 | 5.23 | 5.93 | 4.64 | 0.77 |
VLiDAR (m3) | 0.38 | 1.05 | 0.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsoulias, N.; Paraforos, D.S.; Fountas, S.; Zude-Sasse, M. Estimating Canopy Parameters Based on the Stem Position in Apple Trees Using a 2D LiDAR. Agronomy 2019, 9, 740. https://doi.org/10.3390/agronomy9110740
Tsoulias N, Paraforos DS, Fountas S, Zude-Sasse M. Estimating Canopy Parameters Based on the Stem Position in Apple Trees Using a 2D LiDAR. Agronomy. 2019; 9(11):740. https://doi.org/10.3390/agronomy9110740
Chicago/Turabian StyleTsoulias, Nikos, Dimitrios S. Paraforos, Spyros Fountas, and Manuela Zude-Sasse. 2019. "Estimating Canopy Parameters Based on the Stem Position in Apple Trees Using a 2D LiDAR" Agronomy 9, no. 11: 740. https://doi.org/10.3390/agronomy9110740
APA StyleTsoulias, N., Paraforos, D. S., Fountas, S., & Zude-Sasse, M. (2019). Estimating Canopy Parameters Based on the Stem Position in Apple Trees Using a 2D LiDAR. Agronomy, 9(11), 740. https://doi.org/10.3390/agronomy9110740