Section 1. Navigation Aids
第 1 节.导航辅助设备

  1. General 常规
    1. Various types of air navigation aids are in use today, each serving a special purpose. These aids have varied owners and operators, namely: the Federal Aviation Administration (FAA), the military services, private organizations, individual states and foreign governments. The FAA has the statutory authority to establish, operate, maintain air navigation facilities and to prescribe standards for the operation of any of these aids which are used for instrument flight in federally controlled airspace. These aids are tabulated in the Chart Supplement.
      今天有各种类型的空中导航设备在使用,每一种都有特殊的用途。这些辅助设备有不同的所有者和运营商,即:美国联邦航空管理局 (FAA)、军事服务、私人组织、各个州和外国政府。FAA 拥有建立、操作、维护空中导航设施的法定权力,并为用于在联邦控制空域进行仪表飞行的任何这些辅助设备的操作规定标准。这些辅助工具在 Chart Supplement 中列出。
    2. Pilots should be aware of the possibility of momentary erroneous indications on cockpit displays when the primary signal generator for a ground-based navigational transmitter (for example, a glideslope, VOR, or nondirectional beacon) is inoperative. Pilots should disregard any navigation indication, regardless of its apparent validity, if the particular transmitter was identified by NOTAM or otherwise as unusable or inoperative.
      飞行员应注意,当地面导航发射器(例如,下滑道、VOR 或非定向信标)的主信号发生器不工作时,驾驶舱显示屏上可能会出现瞬时错误指示。如果特定发射器被 NOTAM 识别或因其他原因无法使用或无法操作,飞行员应无视任何导航指示,无论其表面有效性如何。
  2. Nondirectional Radio Beacon (NDB)
    无向无线电信标 (NDB)
    1. A low or medium frequency radio beacon transmits nondirectional signals whereby the pilot of an aircraft properly equipped can determine bearings and “home” on the station. These facilities normally operate in a frequency band of 190 to 535 kilohertz (kHz), according to ICAO Annex 10 the frequency range for NDBs is between 190 and 1750 kHz, and transmit a continuous carrier with either 400 or 1020 hertz (Hz) modulation. All radio beacons except the compass locators transmit a continuous three-letter identification in code except during voice transmissions.
      低频或中频无线电信标传输非定向信号,因此装备适当的飞机的飞行员可以确定航站的方位和“归位”。这些设施通常在 190 至 535 kHz 的频段内运行,根据国际民航组织附件 10,NDB的频率范围在 190 至 1750 kHz 之间,并以 400 或 1020 赫兹 (Hz) 调制发射连续载波。除罗盘定位器外,所有无线电信标都以代码形式传输连续的三个字母标识,语音传输期间除外。
    2. When a radio beacon is used in conjunction with the Instrument Landing System markers, it is called a Compass Locator.
      当无线电信标与 Instrument Landing System 标记一起使用时,它称为罗盘定位器。
    3. Voice transmissions are made on radio beacons unless the letter “W” (without voice) is included in the class designator (HW).
      语音传输在无线电信标上进行,除非类指示符 (HW) 中包含字母“W”(无语音)。
    4. Radio beacons are subject to disturbances that may result in erroneous bearing information. Such disturbances result from such factors as lightning, precipitation static, etc. At night, radio beacons are vulnerable to interference from distant stations. Nearly all disturbances which affect the Automatic Direction Finder (ADF) bearing also affect the facility's identification. Noisy identification usually occurs when the ADF needle is erratic. Voice, music or erroneous identification may be heard when a steady false bearing is being displayed. Since ADF receivers do not have a “flag” to warn the pilot when erroneous bearing information is being displayed, the pilot should continuously monitor the NDB's identification.
      无线电信标会受到干扰,从而导致错误的方位信息。此类干扰是由闪电、降水静电等因素引起的。在夜间,无线电信标容易受到来自远距离电台的干扰。几乎所有影响自动测向仪 (ADF) 方位的干扰也会影响设施的识别。当 ADF 针不稳定时,通常会发生嘈杂的识别。当显示稳定的错误方位时,可能会听到声音、音乐或错误的识别。由于 ADF 接收器没有“标志”来在显示错误的方位信息时警告飞行员,因此飞行员应持续监控 NDB 的识别。
  3. VHF Omni-directional Range (VOR)
    VHF 全向范围 (VOR)
    1. VORs operate within the 108.0 to 117.95 MHz frequency band and have a power output necessary to provide coverage within their assigned operational service volume. They are subject to line-of-sight restrictions, and the range varies proportionally to the altitude of the receiving equipment.
      VOR 在 108.0 至 117.95 MHz 频段内运行,并具有在其分配的运营服务量内提供覆盖所需的功率输出。它们受到视线限制,并且射程与接收设备的海拔高度成比例变化。

      NOTE- 注意-

      Normal service ranges for the various classes of VORs are given in Navigational Aid (NAVAID) Service Volumes, Paragraph 1-1-8.
      导航辅助 (NAVAID) 服务卷第 1-1-8 段中给出了各种类别 VOR 的正常服务范围。

    2. Most VORs are equipped for voice transmission on the VOR frequency. VORs without voice capability are indicated by the letter “W” (without voice) included in the class designator (VORW).
      大多数 VOR 都配备了 VOR 频率上的语音传输。没有语音功能的 VOR 由类指示符 (VORW) 中包含的字母“W”(无语音)表示。
    3. The only positive method of identifying a VOR is by its Morse Code identification or by the recorded automatic voice identification which is always indicated by use of the word “VOR” following the range's name. Reliance on determining the identification of an omnirange should never be placed on listening to voice transmissions by the Flight Service Station (FSS) (or approach control facility) involved. Many FSSs remotely operate several omniranges with different names. In some cases, none of the VORs have the name of the “parent” FSS. During periods of maintenance, the facility may radiate a T-E-S-T code (- ● ●●● -) or the code may be removed. Some VOR equipment decodes the identifier and displays it to the pilot for verification to charts, while other equipment simply displays the expected identifier from a database to aid in verification to the audio tones. You should be familiar with your equipment and use it appropriately. If your equipment automatically decodes the identifier, it is not necessary to listen to the audio identification.
      识别 VOR 的唯一积极方法是通过其摩斯电码识别或录制的自动语音识别,该语音识别始终通过在范围名称后使用“VOR”一词来表示。绝不能依赖确定全能范围的识别,而不能依赖于监听所涉及的飞行服务站 (FSS)(或进近控制设施)的语音传输。许多 FSS远程操作多个具有不同名称的全能范围。在某些情况下,没有任何 VOR 具有“父”FSS 的名称。在维护期间,设备可能会辐射 T-E-S-T 代码 (- ● ●●● -) 或代码可能会被移除。一些 VOR 设备对标识符进行解码并将其显示给飞行员以验证图表,而其他设备则只显示数据库中的预期标识符,以帮助验证音频音调。您应该熟悉您的设备并适当使用它。如果您的设备自动解码标识符,则无需收听音频识别。
    4. Voice identification has been added to numerous VORs. The transmission consists of a voice announcement, “AIRVILLE VOR” alternating with the usual Morse Code identification.
      语音识别已添加到许多 VOR 中。传输包括语音广播“AIRVILLE VOR”与通常的摩斯电码识别交替。
    5. The effectiveness of the VOR depends upon proper use and adjustment of both ground and airborne equipment.
      VOR 的有效性取决于地面和机载设备的正确使用和调整。
      1. Accuracy. The accuracy of course alignment of the VOR is excellent, being generally plus or minus 1 degree.
        准确性。 当然,VOR 的对准精度非常好,通常为正负 1 度。
      2. Roughness. On some VORs, minor course roughness may be observed, evidenced by course needle or brief flag alarm activity (some receivers are more susceptible to these irregularities than others). At a few stations, usually in mountainous terrain, the pilot may occasionally observe a brief course needle oscillation, similar to the indication of “approaching station.” Pilots flying over unfamiliar routes are cautioned to be on the alert for these vagaries, and in particular, to use the “to/from” indicator to determine positive station passage.
        粗糙度。 在一些 VOR 上,可能会观察到轻微的航向粗糙,航向指针或短暂的旗帜警报活动证明了这一点(一些接收器比其他接收器更容易受到这些不规则性的影响)。在几个站点,通常在山区地形,飞行员可能偶尔会观察到短暂的航向指针振荡,类似于“接近站点”的指示。飞行员在不熟悉的航线上飞行时,应注意这些变幻莫测的情况,特别是使用 “to/from” 指示器来确定正确的车站通过。
        1. Certain propeller revolutions per minute (RPM) settings or helicopter rotor speeds can cause the VOR Course Deviation Indicator to fluctuate as much as plus or minus six degrees. Slight changes to the RPM setting will normally smooth out this roughness. Pilots are urged to check for this modulation phenomenon prior to reporting a VOR station or aircraft equipment for unsatisfactory operation.
          某些螺旋桨每分钟转数 (RPM) 设置或直升机旋翼速度会导致 VOR 航向偏差指示器波动多达正负 6 度。对 RPM 设置的轻微更改通常会使这种粗糙度变得平滑。敦促飞行员在报告 VOR 站或飞机设备运行不满意之前检查这种调制现象。
    6. The VOR Minimum Operational Network (MON). As flight procedures and route structure based on VORs are gradually being replaced with Performance-Based Navigation (PBN) procedures, the FAA is removing selected VORs from service. PBN procedures are primarily enabled by GPS and its augmentation systems, collectively referred to as Global Navigation Satellite System (GNSS). Aircraft that carry DME/DME equipment can also use RNAV which provides a backup to continue flying PBN during a GNSS disruption. For those aircraft that do not carry DME/DME, the FAA is retaining a limited network of VORs, called the VOR MON, to provide a basic conventional navigation service for operators to use if GNSS becomes unavailable. During a GNSS disruption, the MON will enable aircraft to navigate through the affected area or to a safe landing at a MON airport without reliance on GNSS. Navigation using the MON will not be as efficient as the new PBN route structure, but use of the MON will provide nearly continuous VOR signal coverage at 5,000 feet AGL across the NAS, outside of the Western U.S. Mountainous Area (WUSMA).
      VOR 最小操作网络 (MON)。随着基于 VOR 的飞行程序和航线结构逐渐被基于性能的导航 (PBN) 程序所取代,FAA 正在从服务中移除选定的 VER。PBN 程序主要由 GPS 及其增强系统(统称为全球导航卫星系统 (GNSS))实现。携带 DME/DME 设备的飞机也可以使用 RNAV,RNAV 为 GNSS 中断期间继续飞行 PBN 提供备份。对于那些不携带 DME/DME 的飞机,FAA 保留了一个有限的 VOR 网络,称为 VOR MON,以便在 GNSS 不可用时为运营商提供基本的常规导航服务。在 GNSS 中断期间,MON 将使飞机能够在不依赖 GNSS 的情况下穿过受影响区域或安全降落在 MON 机场。使用 MON 的导航效率不如新的 PBN 路线结构,但使用 MON 将在美国西部山区 (WUSMA) 之外的 NAS 上 5,000 英尺 AGL 提供几乎连续的 VOR 信号覆盖。

      NOTE- 注意-

      There is no plan to change the NAVAID and route structure in the WUSMA.
      没有计划改变 WUSMA 中的 NAVAID 和路线结构。

      The VOR MON has been retained principally for IFR aircraft that are not equipped with DME/DME avionics. However, VFR aircraft may use the MON as desired. Aircraft equipped with DME/DME navigation systems would, in most cases, use DME/DME to continue flight using RNAV to their destination. However, these aircraft may, of course, use the MON.
      VOR MON 主要保留用于未配备 DME/DME 航空电子设备的 IFR 飞机。但是,VFR 飞机可以根据需要使用 MON。在大多数情况下,配备 DME/DME 导航系统的飞机将使用 DME/DME 继续使用 RNAV 飞行到目的地。但是,这些飞机当然可以使用 MON。
      1. Distance to a MON airport. The VOR MON will ensure that regardless of an aircraft's position in the contiguous United States (CONUS), a MON airport (equipped with legacy ILS or VOR approaches)  will be within 100 nautical miles. These airports are referred to as “MON airports” and will have an ILS approach or a VOR approach if an ILS is not available. VORs to support these approaches will be retained in the VOR MON. MON airports are charted on low-altitude en route charts and are contained in the Chart Supplement U.S. and other appropriate publications.
        到 MON 机场的距离。VOR MON 将确保无论飞机在美国本土 (CONUS) 的位置如何,MON 机场(配备传统的 ILS 或 VOR 进近)都将在 100 海里以内。这些机场被称为“MON 机场”,如果没有 ILS,将采用 ILS 进近或 VOR 进近。支持这些进近的 VOR 将保留在 VOR MON 中。MON 机场绘制在低空航路图上,并包含在美国海图增补和其他适当的出版物中。

        NOTE- 注意-

        Any suitable airport can be used to land in the event of a VOR outage. For example, an airport with a DME-required ILS approach may be available and could be used by aircraft that are equipped with DME. The intent of the MON airport is to provide an approach that can be used by aircraft without ADF or DME when radar may not be available.
        在 VOR 中断的情况下,任何合适的机场都可以用于降落。例如,可能提供 DME 要求的 ILS 方法的机场,并且可以由配备 DME 的飞机使用。MON 机场的目的是提供一种当雷达可能不可用时,没有 ADFDME 的飞机可以使用的方法。

      2. Navigating to an airport. The VOR MON will retain sufficient VORs and increase VOR service volume to ensure that pilots will have nearly continuous signal reception of a VOR when flying at 5,000 feet AGL. A key concept of the MON is to ensure that an aircraft will always be within 100 NM of an airport with an instrument approach that is not dependent on GPS. (See paragraph 1-1-8.) If the pilot encounters a GPS outage, the pilot will be able to proceed via VOR-to-VOR navigation at 5,000 feet AGL through the GPS outage area or to a safe landing at a MON airport or another suitable airport, as appropriate. Nearly all VORs inside of the WUSMA and outside the CONUS are being retained. In these areas, pilots use the existing (Victor and Jet) route structure and VORs to proceed through a GPS outage or to a landing.
        导航到机场。VOR MON 将保留足够的 VOR 并增加 VOR 服务量,以确保飞行员在 5,000 英尺 AGL 飞行时几乎连续地接收 VOR 信号。MON 的一个关键概念是确保飞机始终在机场的 100 海里范围内,其仪表进近不依赖于 GPS。(见第 1-1-8 段。如果飞行员遇到 GPS 中断,飞行员将能够在 5,000 英尺 AGL 通过 VOR 到 VOR 导航通过 GPS 中断区域或安全降落在 MON 机场或其他合适的机场(视情况而定)。WUSMA 内部和 CONUS 外部的几乎所有 VOR 都被保留。在这些区域,飞行员使用现有的(Victor 和 Jet)航线结构和 VOR 来通过 GPS 中断或着陆。
      3. Using the VOR MON. 使用 VOR MON.
        1. In the case of a planned GPS outage (for example, one that is in a published NOTAM), pilots may plan to fly through the outage using the MON as appropriate and as cleared by ATC. Similarly, aircraft not equipped with GPS may plan to fly and land using the MON, as appropriate and as cleared by ATC.
          在计划内 GPS 中断的情况下(例如,在已发布的 NOTAM 中),飞行员可以计划在适当且经 ATC 批准的情况下使用 MON 飞行。同样,未配备 GPS 的飞机可以计划在适当且经 ATC 批准的情况下使用 MON 飞行和降落。

          NOTE- 注意-

          In many cases, flying using the MON may involve a more circuitous route than flying GPS-enabled RNAV.
          在许多情况下,使用 MON 飞行可能比飞行启用 GPSRNAV 涉及更迂回的路线。

        2. In the case of an unscheduled GPS outage, pilots and ATC will need to coordinate the best outcome for all aircraft. It is possible that a GPS outage could be disruptive, causing high workload and demand for ATC service. Generally, the VOR MON concept will enable pilots to navigate through the GPS outage or land at a MON airport or at another airport that may have an appropriate approach or may be in visual conditions.
          在计划外 GPS 中断的情况下,飞行员和 ATC 需要协调所有飞机的最佳结果。GPS 中断可能会造成中断,从而导致对 ATC 服务的大量工作负载和需求。通常,VOR MON 概念将使飞行员能够在 GPS 中断期间导航或降落在 MON 机场或其他可能具有适当进近或可能处于视觉条件下的机场。
          1. The VOR MON is a reversionary service provided by the FAA for use by aircraft that are unable to continue RNAV during a GPS disruption. The FAA has not mandated that preflight or inflight planning include provisions for GPS- or WAAS-equipped aircraft to carry sufficient fuel to proceed to a MON airport in case of an unforeseen GPS outage. Specifically, flying to a MON airport as a filed alternate will not be explicitly required. Of course, consideration for the possibility of a GPS outage is prudent during flight planning as is maintaining proficiency with VOR navigation.
            VOR MON 是 FAA 提供的一项回归服务,供在 GPS 中断期间无法继续 RNAV 的飞机使用。FAA 并未强制要求飞行前或机上计划包括配备 GPSWAAS 的飞机携带足够的燃料,以便在发生不可预见的 GPS 中断时前往 MON 机场。具体来说,没有明确要求作为备案的替代航班飞往 MON 机场。当然,在飞行计划期间考虑 GPS 中断的可能性是谨慎的,保持 VOR 导航的熟练程度也是如此。
          2. Also, in case of a GPS outage, pilots may coordinate with ATC and elect to continue through the outage or land. The VOR MON is designed to ensure that an aircraft is within 100 NM of an airport, but pilots may decide to proceed to any appropriate airport where a landing can be made. WAAS users flying under Part 91 are not required to carry VOR avionics. These users do not have the ability or requirement to use the VOR MON. Prudent flight planning, by these WAAS-only aircraft, should consider the possibility of a GPS outage.
            此外,如果 GPS 中断,飞行员可以与 ATC 协调并选择继续度过中断或降落。VOR MON 旨在确保飞机在机场 100 海里范围内,但飞行员可以决定前往任何可以着陆的适当机场。根据第 91 部分飞行的 WAAS 用户不需要携带 VOR 航空电子设备。这些用户没有能力或要求使用 VOR MON。这些仅限 WAAS 的飞机的谨慎飞行计划应考虑 GPS 中断的可能性。

            NOTE- 注意-

            The FAA recognizes that non-GPS-based approaches will be reduced when VORs are eliminated, and that most airports with an instrument approach may only have GPS- or WAAS-based approaches. Pilots flying GPS- or WAAS-equipped aircraft that also have VOR/ILS avionics should be diligent to maintain proficiency in VOR and ILS approaches in the event of a GPS outage.
            FAA 认识到,当 VOR 被消除时,非基于 GPS 的方法将减少,并且大多数采用仪表进近的机场可能只有基于 GPSWAAS 的方法。驾驶配备 GPSWAAS 且同时具有 VOR/ILS 航空电子设备的飞机的飞行员应努力在 GPS 中断的情况下保持对 VOR 和 ILS 进近的熟练程度。

  4. VOR Receiver Check VOR 接收器检查
    1. The FAA VOR test facility (VOT) transmits a test signal which provides users a convenient means to determine the operational status and accuracy of a VOR receiver while on the ground where a VOT is located. The airborne use of VOT is permitted; however, its use is strictly limited to those areas/altitudes specifically authorized in the Chart Supplement or appropriate supplement.
      FAA VOR 测试设施 (VOT) 传输测试信号,为用户提供了一种便捷的方法来确定 VOR 接收器在 VOT 所在地面上的运行状态和准确性。允许在空中使用 VOT;但是,其使用严格限于图表补充或适当补充中特别授权的区域/海拔。
    2. To use the VOT service, tune in the VOT frequency on your VOR receiver. With the Course Deviation Indicator (CDI) centered, the omni-bearing selector should read 0 degrees with the to/from indication showing “from” or the omni-bearing selector should read 180 degrees with the to/from indication showing “to.” Should the VOR receiver operate an RMI (Radio Magnetic Indicator), it will indicate 180 degrees on any omni-bearing selector (OBS) setting. Two means of identification are used. One is a series of dots and the other is a continuous tone. Information concerning an individual test signal can be obtained from the local FSS.
      要使用 VOT 服务,请在 VOR 接收器上调到 VOT 频率。在航向偏差指示器 (CDI) 居中的情况下,全向方位选择器应读数为 0 度,至/起指示显示“从”,或全向方位选择器应读数为 180 度,至/起指示显示“至”。如果 VOR 接收器操作 RMI(无线电磁指示器),它将在任何全向轴承选择器 (OBS) 设置上指示 180 度。使用两种识别方式。一个是一系列点,另一个是连续的音调。有关单个测试信号的信息可以从本地 FSS 获得。
    3. Periodic VOR receiver calibration is most important. If a receiver's Automatic Gain Control or modulation circuit deteriorates, it is possible for it to display acceptable accuracy and sensitivity close into the VOR or VOT and display out-of-tolerance readings when located at greater distances where weaker signal areas exist. The likelihood of this deterioration varies between receivers, and is generally considered a function of time. The best assurance of having an accurate receiver is periodic calibration. Yearly intervals are recommended at which time an authorized repair facility should recalibrate the receiver to the manufacturer's specifications.
      定期 VOR 接收器校准是最重要的。如果接收器的自动增益控制或调制电路恶化,它可能会在接近 VOR 或 VOT 时显示可接受的精度和灵敏度,而当位于存在较弱信号区域的较远距离时,它可能会显示超出容差的读数。这种恶化的可能性因接收者而异,通常被认为是时间的函数。拥有准确接收器的最佳保证是定期校准。建议每年一次,此时授权维修机构应根据制造商的规格重新校准接收器。
    4. Federal Aviation Regulations (14 CFR Section 91.171) provides for certain VOR equipment accuracy checks prior to flight under instrument flight rules. To comply with this requirement and to ensure satisfactory operation of the airborne system, the FAA has provided pilots with the following means of checking VOR receiver accuracy:
      联邦航空条例(14 CFR 第 91.171 节)规定了根据仪表飞行规则,在飞行前进行某些 VOR 设备精度检查。为了遵守这一要求并确保机载系统令人满意地运行,FAA 为飞行员提供了以下检查 VOR 接收器精度的方法:
      1. VOT or a radiated test signal from an appropriately rated radio repair station.
        VOT 或来自适当额定无线电维修站的辐射测试信号。
      2. Certified airborne checkpoints and airways.
        经认证的机载检查站和航线。
      3. Certified checkpoints on the airport surface.
        机场表面的认证检查站。
      4. If an airborne checkpoint is not available, select an established VOR airway. Select a prominent ground point, preferably more than 20 NM from the VOR ground facility and maneuver the aircraft directly over the point at a reasonably low altitude above terrain and obstructions.
        如果没有可用的机载检查站,请选择已建立的 VOR 航道。选择一个突出的地面点,最好距离 VOR 地面设施 20 海里以上,并在地形和障碍物上方合理较低的高度直接操纵飞机在该点上空。
    5. A radiated VOT from an appropriately rated radio repair station serves the same purpose as an FAA VOR signal and the check is made in much the same manner as a VOT with the following differences:
      来自适当评级的无线电维修站的辐射 VOT 与 FAA VOR 信号的作用相同,检查方式与 VOT 大致相同,但有以下区别:
      1. The frequency normally approved by the Federal Communications Commission is 108.0 MHz.
        通常由联邦通信委员会批准的频率为 108.0 MHz。
      2. Repair stations are not permitted to radiate the VOR test signal continuously; consequently, the owner or operator must make arrangements with the repair station to have the test signal transmitted. This service is not provided by all radio repair stations. The aircraft owner or operator must determine which repair station in the local area provides this service. A representative of the repair station must make an entry into the aircraft logbook or other permanent record certifying to the radial accuracy and the date of transmission. The owner, operator or representative of the repair station may accomplish the necessary checks in the aircraft and make a logbook entry stating the results. It is necessary to verify which test radial is being transmitted and whether you should get a “to” or “from” indication.
        维修站不允许连续辐射 VOR 测试信号;因此,所有者或运营商必须与维修站安排传输测试信号。并非所有无线电维修站都提供这项服务。飞机所有者或运营商必须确定当地的哪个维修站提供这项服务。维修站的代表必须在飞机日志或其他永久记录中记录,证明径向精度和传输日期。维修站的所有者、运营商或代表可以在飞机上完成必要的检查,并制作日志条目,说明结果。有必要验证正在传输的测试径向,以及您应该获得“to”还是“from”指示。
    6. Airborne and ground check points consist of certified radials that should be received at specific points on the airport surface or over specific landmarks while airborne in the immediate vicinity of the airport.
      机载和地面检查点由经过认证的径向组成,当在机场附近飞行时,应在机场表面的特定点或特定地标上空接收这些子午线。
      1. Should an error in excess of plus or minus 4 degrees be indicated through use of a ground check, or plus or minus 6 degrees using the airborne check, Instrument Flight Rules (IFR) flight must not be attempted without first correcting the source of the error.
        如果通过地面检查显示误差超过正负 4 度,或使用机载检查显示误差超过正负 6 度,则在未首先纠正错误来源的情况下,不得尝试仪表飞行规则 (IFR) 飞行。

        CAUTION- 谨慎-

        No correction other than the correction card figures supplied by the manufacturer should be applied in making these VOR receiver checks.
        在进行这些 VOR 接收器检查时,除了制造商提供的校正卡数字外,不应使用任何其他校正。

      2. Locations of airborne check points, ground check points and VOTs are published in the Chart Supplement.
        空中检查点、地面检查点和 VOT的位置发布在图表补充中。
      3. If a dual system VOR (units independent of each other except for the antenna) is installed in the aircraft, one system may be checked against the other. Turn both systems to the same VOR ground facility and note the indicated bearing to that station. The maximum permissible variations between the two indicated bearings is 4 degrees.
        如果飞机上安装了双系统 VOL(除天线外彼此独立的单元),则可以将一个系统与另一个系统进行检查。将两个系统转到同一个 VOR 地面设施,并记下该站的指示方位。两个指示方位角之间的最大允许变化为 4 度。
  5. Tactical Air Navigation (TACAN)
    战术空中导航 (TACAN)
    1. For reasons peculiar to military or naval operations (unusual siting conditions, the pitching and rolling of a naval vessel, etc.) the civil VOR/Distance Measuring Equipment (DME) system of air navigation was considered unsuitable for military or naval use. A new navigational system, TACAN, was therefore developed by the military and naval forces to more readily lend itself to military and naval requirements. As a result, the FAA has integrated TACAN facilities with the civil VOR/DME program. Although the theoretical, or technical principles of operation of TACAN equipment are quite different from those of VOR/DME facilities, the end result, as far as the navigating pilot is concerned, is the same. These integrated facilities are called VORTACs.
      由于军事或海军行动特有的原因(不寻常的选址条件、海军舰艇的俯仰和滚动等),民用空中导航 VOR/测距设备 (DME) 系统被认为不适合军事或海军使用。因此,陆军和海军开发了一种新的导航系统 TACAN,以更容易满足军事和海军的要求。因此,FAA 已将 TACAN 设施与民用 VOR/DME 计划相结合。尽管 TACAN 设备操作的理论或技术原理与 VOR/DME 设施完全不同,但就导航飞行员而言,最终结果是相同的。这些集成设施称为 VORTAC。
    2. TACAN ground equipment consists of either a fixed or mobile transmitting unit. The airborne unit in conjunction with the ground unit reduces the transmitted signal to a visual presentation of both azimuth and distance information. TACAN is a pulse system and operates in the Ultrahigh Frequency (UHF) band of frequencies. Its use requires TACAN airborne equipment and does not operate through conventional VOR equipment.
      TACAN 地面设备由固定或移动发射单元组成。机载单元与地面单元相结合,将传输的信号简化为方位角和距离信息的视觉呈现。TACAN 是一种脉冲系统,在超高频 (UHF) 频段内工作。它的使用需要 TACAN 机载设备,并且不通过传统的 VOR 设备运行。
  6. VHF Omni-directional Range/Tactical Air Navigation (VORTAC)
    VHF 全向测距/战术空中导航 (VORTAC)
    1. A VORTAC is a facility consisting of two components, VOR and TACAN, which provides three individual services: VOR azimuth, TACAN azimuth and TACAN distance (DME) at one site. Although consisting of more than one component, incorporating more than one operating frequency, and using more than one antenna system, a VORTAC is considered to be a unified navigational aid. Both components of a VORTAC are envisioned as operating simultaneously and providing the three services at all times.
      VORTAC 是一个设施,由 VOR 和 TACAN 两个部分组成,在一个站点提供三种单独的服务:VOR 方位角、TACAN 方位角和 TACAN 距离 (DME)。尽管 VORTAC 由多个组件组成,包含多个工作频率,并使用多个天线系统,但 VORTAC 被认为是一种统一的导航辅助设备。VORTAC 的两个组件被设想为同时运行并始终提供这三种服务。
    2. Transmitted signals of VOR and TACAN are each identified by three-letter code transmission and are interlocked so that pilots using VOR azimuth with TACAN distance can be assured that both signals being received are definitely from the same ground station. The frequency channels of the VOR and the TACAN at each VORTAC facility are “paired” in accordance with a national plan to simplify airborne operation.
      VOR 和 TACAN 的发射信号分别由三个字母的代码传输标识,并且是互锁的,因此使用具有 TACAN 距离的 VOR 方位角的飞行员可以确保接收到的两个信号肯定来自同一个地面站。每个 VORTAC 设施的 VOR 和 TACAN 的频道都根据简化机载操作的国家计划进行“配对”。
  7. Distance Measuring Equipment (DME)
    测距设备 (DME)
    1. In the operation of DME, paired pulses at a specific spacing are sent out from the aircraft (this is the interrogation) and are received at the ground station. The ground station (transponder) then transmits paired pulses back to the aircraft at the same pulse spacing but on a different frequency. The time required for the round trip of this signal exchange is measured in the airborne DME unit and is translated into distance (nautical miles) from the aircraft to the ground station.
      DME 的操作中,以特定间距的成对脉冲从飞机发出(这是询问)并在地面站接收。然后,地面站(应答器)以相同的脉冲间隔但频率不同,将成对的脉冲传回飞机。此信号交换的往返时间在机载 DME 单元中测量,并转换为从飞机到地面站的距离(海里)。
    2. Operating on the line-of-sight principle, DME furnishes distance information with a very high degree of accuracy. Reliable signals may be received at distances up to 199 NM at line-of-sight altitude with an accuracy of better than 1/2 mile or 3 percent of the distance, whichever is greater. Distance information received from DME equipment is SLANT RANGE distance and not actual horizontal distance.
      DME 根据视线原理运行,以非常高的精度提供距离信息。在视距高度,可在最远 199 海里的距离内接收到可靠的信号,精度优于 1/2 英里或距离的 3%,以较大者为准。从 DME 设备接收的距离信息是 SLANT RANGE 距离,而不是实际的水平距离。
    3. Operating frequency range of a DME according to ICAO Annex 10 is from 960 MHz to 1215 MHz. Aircraft equipped with TACAN equipment will receive distance information from a VORTAC automatically, while aircraft equipped with VOR must have a separate DME airborne unit.
      根据国际民航组织附件 10,DME 的工作频率范围为 960 MHz 至 1215 MHz。配备 TACAN 设备的飞机将自动接收来自 VORTAC 的距离信息,而配备 VOR 的飞机必须有一个单独的 DME 机载单元。
    4. VOR/DME, VORTAC, Instrument Landing System (ILS)/DME, and localizer (LOC)/DME navigation facilities established by the FAA provide course and distance information from collocated components under a frequency pairing plan. Aircraft receiving equipment which provides for automatic DME selection assures reception of azimuth and distance information from a common source when designated VOR/DME, VORTAC, ILS/DME, and LOC/DME are selected.
      FAA 建立的 VOR/DME、VORTAC、仪表着陆系统 (ILS)/DME 和定位器 (LOC)/DME 导航设施根据频率配对计划提供来自并置组件的航向和距离信息。提供自动 DME 选择的飞机接收设备可确保在选择指定的 VOR/DME、VORTAC、ILS/DME 和 LOC/DME 时接收来自公共源的方位角和距离信息。
    5. Due to the limited number of available frequencies, assignment of paired frequencies is required for certain military noncollocated VOR and TACAN facilities which serve the same area but which may be separated by distances up to a few miles.
      由于可用频率的数量有限,某些军用非并置的 VOR 和 TACAN 设施需要分配成对频率,这些设施服务于同一区域,但可能相距几英里。
    6. VOR/DME, VORTAC, ILS/DME, and LOC/DME facilities are identified by synchronized identifications which are transmitted on a time share basis. The VOR or localizer portion of the facility is identified by a coded tone modulated at 1020 Hz or a combination of code and voice. The TACAN or DME is identified by a coded tone modulated at 1350 Hz. The DME or TACAN coded identification is transmitted one time for each three or four times that the VOR or localizer coded identification is transmitted. When either the VOR or the DME is inoperative, it is important to recognize which identifier is retained for the operative facility. A single coded identification with a repetition interval of approximately 30 seconds indicates that the DME is operative.
      VOR/DME、VORTAC、ILS/DME 和 LOC/DME 设施通过同步识别来识别,这些识别是在分时的基础上传输的。该设施的 VOR 或定位器部分由调制为 1020 Hz 的编码音调或代码和语音的组合来识别。TACANDME 由调制为 1350 Hz 的编码音调标识。DME 或 TACAN 编码标识每传输 3 次或 4 次,就会传输一次 VORTACAN 编码标识。当 VOR 或 DME 不起作用时,重要的是要识别为手术设施保留的标识符。重复间隔约为 30 秒的单个编码标识表明 DME 正在运行。
    7. Aircraft equipment which provides for automatic DME selection assures reception of azimuth and distance information from a common source when designated VOR/DME, VORTAC and ILS/DME navigation facilities are selected. Pilots are cautioned to disregard any distance displays from automatically selected DME equipment when VOR or ILS facilities, which do not have the DME feature installed, are being used for position determination.
      提供自动 DME 选择的飞机设备可确保在选择指定的 VOR/DME、VORTAC 和 ILS/DME 导航设施时从公共源接收方位角和距离信息。当使用未安装 DME 功能的 VOR 或 ILS 设施进行位置确定时,飞行员应注意忽略自动选择的 DME 设备的任何距离显示。
  8. NAVAID Service Volumes NAVAID 服务量
    1. The FAA publishes Standard Service Volumes (SSVs) for most NAVAIDs. The SSV is a three-dimensional volume within which the FAA ensures that a signal can be received with adequate signal strength and course quality, and is free from interference from other NAVAIDs on similar frequencies (e.g., co-channel or adjacent-channel interference). However, the SSV signal protection does not include potential blockage from terrain or obstructions. The SSV is principally intended for off-route navigation, such as proceeding direct to or from a VOR when not on a published instrument procedure or route. Navigation on published instrument procedures (e.g., approaches or departures) or routes (e.g., Victor routes) may use NAVAIDs outside of the SSV, when Extended Service Volume (ESV) is approved, since adequate signal strength, course quality, and freedom from interference are verified by the FAA prior to the publishing of the instrument procedure or route.
      FAA 发布了大多数 NAVAID 的标准服务卷 (SSV)。SSV 是一个三维体积,FAA 确保可以在该体积内以足够的信号强度和航向质量接收信号,并且不受类似频率上其他 NAVAID 的干扰(例如,同信道或相邻信道干扰)。但是,SSV 信号保护不包括地形或障碍物的潜在阻塞。SSV 主要用于非航线导航,例如在不在已发布的仪器程序或路线上时直接前往或从 VOR 出发。当延长服务量 (ESV) 获得批准时,在已发布的仪表程序(例如,进近或出发)或路线(例如,Victor 路线)上的导航可以在 SSV 之外使用 NAVAID,因为在发布仪表程序或路线之前,FAA 已经验证了足够的信号强度、航向质量和无干扰。

      NOTE- 注意-

      A conical area directly above the NAVAID is generally not usable for navigation.
      NAVAID 正上方的圆锥形区域通常不可用于导航。

    2. A NAVAID will have service volume restrictions if it does not conform to signal strength and course quality standards throughout the published SSV. Service volume restrictions are first published in Notices to Air Missions (NOTAMs) and then with the alphabetical listing of the NAVAIDs in the Chart Supplement. Service volume restrictions do not generally apply to published instrument procedures or routes unless published in NOTAMs for the affected instrument procedure or route.
      如果 NAVAID 在整个发布的 SSV 中不符合信号强度和课程质量标准,它将受到服务量限制。服务量限制首先发布在空中任务通知 (NOTAMs) 中,然后在图表补充中与 NAVAID 的字母顺序列表一起发布。服务量限制通常不适用于已发布的仪器程序或路径,除非在 NOTAM中针对受影响的仪器程序或路径发布。
    3. VOR/DME/TACAN Standard Service Volumes (SSV).
      VOR/DME/TACAN 标准服务卷 (SSV)。
      1. The three original SSVs are shown in FIG 1-1-1 and are designated with three classes of NAVAIDs: Terminal (T), Low (L), and High (H). The usable distance of the NAVAID depends on the altitude Above the Transmitter Height (ATH) for each class. The lower edge of the usable distance when below 1,000 feet ATH is shown in FIG 1-1-2 for Terminal NAVAIDs and in FIG 1-1-3 for Low and High NAVAIDs.
        三个原始 SSV 显示在图 1-1-1 中,并被指定为三类 NAVAID:终端 (T)、低 (L) 和高 (H)。NAVAID 的可用距离取决于每个等级的发射机高度 (ATH) 以上高度。当 ATH 低于 1,000 英尺时,可用距离的下边缘显示在图 1-1-2 中,用于终端 NAVAID,在图 1-1-3 中显示了低和高 NAVAID。

        FIG 1-1-1 图 1-1-1
        Original Standard Service Volumes
        原始标准服务卷

        A graphic depicting the three original SSVs;  Terminal, Low, and High.

        FIG 1-1-2 图 1-1-2
        Lower Edge of the Terminal Service Volume (in altitude ATH)
        终端服务卷的下边缘(以海拔 ATH 为单位)

        Graphic depicting the service volume lower edge terminal.

        FIG 1-1-3 图 1-1-3
        Lower Edge of Low and High Service Volumes (in altitude ATH)
        低服务量和高服务量的下边缘(在海拔 ATH 中)

        A graphic depicting the Service Volume Lower Edge Standard High and Low.
      2. With the progression of navigation capabilities to Performance Based Navigation (PBN), additional capabilities for off-route navigation are necessary. For example, the VOR MON (See paragraph 1-1-3 f.) requires the use of VORs at 5,000 feet AGL, which is beyond the original SSV ranges. Additionally, PBN procedures using DME require extended ranges. As a result, the FAA created four additional SSVs. Two of the new SSVs are associated with VORs: VOR Low (VL) and VOR High (VH), as shown in FIG 1-1-4. The other two new SSVs are associated with DME: DME Low (DL) and DME High (DH), as shown in FIG 1-1-5. The SSV at altitudes below 1,000 feet for the VL and VH are the same as FIG 1-1-3. The SSVs at altitudes below 12,900 feet for the DL and DH SSVs correspond to a conservative estimate of the DME radio line of sight (RLOS) coverage at each altitude (not including possible terrain blockage).
        随着导航功能向基于性能的导航 (PBN) 的发展,需要额外的非路线导航功能。例如,VOR MON(参见第 1-1-3f.段)要求在 5,000 英尺 AGL 处使用 VER,这超出了最初的 SSV 范围。此外,使用 DMEPBN 程序需要扩展范围。因此,FAA 创建了另外四个 SSV。其中两个新的 SSV 与 VOR 相关联:VOR 低 (VL) 和 VOR 高 (VH),如图 1-1-4 所示。另外两个新的 SSV 与 DME 相关联:DME 低 (DL) 和 DME 高 (DH),如图 1-1-5 所示。VL 和 VH 在 1,000 英尺以下高度的 SSV 与图 1-1-3 相同。DL 和 DH SSV 在 12,900 英尺以下高度的 SSV 对应于对每个高度(不包括可能的地形阻挡)的 DME 无线电视距 (RLOS) 覆盖范围的保守估计。

        FIG 1-1-4 图 1-1-4
        New VOR Service Volumes 新的 VOR 服务卷

        A graphic depicting Two of the new SSVs associated with VORs: VOR Low (VL) and VOR High (VH).

        FIG 1-1-5 图 1-1-5
        New DME Service Volumes 新的 DME 服务卷

        A graphic depicting Two of the new SSVs associated with DME: DME Low (DL) and DME High (DH).

        NOTE- 注意-

        1. In the past, NAVAIDs at one location typically all had the same SSV. For example, a VORTAC typically had a High (H) SSV for the VOR, the TACAN azimuth, and the TACAN DME, or a Low (L) or Terminal (T) SSV for all three. A VOR/DME typically had a High (H), Low (L), or Terminal (T) for both the VOR and the DME. A common SSV may no longer be the case at all locations. A VOR/DME, for example, could have an SSV of VL for the VOR and DH for the DME, or other combinations.
          过去,一个地点的 NAVAID 通常都具有相同的 SSV。例如,VORTAC 的 VOR、TACAN 方位角和 TACANDME 通常具有高 (H) SSV,或者所有三个都有低 (L) 或终端 (T) SSV。VOR/DME 通常具有 VOR 和 DME 的高 (H)、低 (L) 或末端 (T)。通用的 SSV 可能不再在所有地点出现。例如,VOR/DME 的 VOR 的 SSV 可以是 VL,DME 的 SSV 可以是 DH,或者其他组合
        2. The TACAN azimuth will only be classified as T, L, or H.
          www.faa.gov/air_traffic/publications/atpubs/pcg_html/glossary-t.html#$TACAN”>TACAN 方位角将仅分类为 T、L 或 H。
      3. TBL 1-1-1 is a tabular summary of the VOR, DME, and TACAN NAVAID SSVs, not including altitudes below 1,000 feet ATH for VOR and TACAN Azimuth, and not including ranges for altitudes below 12,900 feet for TACAN and DME.
        TBL 1-1-1 是 VOR、DME 和 TACAN NAVAID SSV 的表格摘要,不包括 VOR 和 TACAN 方位角低于 1,000 英尺 ATH 的高度,也不包括 TACANDME 低于 12,900 英尺的高度范围。

        TBL 1-1-1
        VOR/DME/TACAN Standard Service Volumes
        VOR/DME/TACAN 标准服务卷

        SSV Designator SSV 指示符

        Altitude and Range Boundaries
        高度和范围边界

        T (Terminal) T (端子)

        From 1,000 feet ATH up to and including 12,000 feet ATH at radial distances out to 25 NM.
        从 1,000 英尺 ATH 到 12,000 英尺 ATH,径向距离可达 25 海里。

        L (Low Altitude) L (低海拔)

        From 1,000 feet ATH up to and including 18,000 feet ATH at radial distances out to 40 NM.
        从 1,000 英尺 ATH 到 18,000 英尺 ATH,径向距离可达 40 海里。

        H (High Altitude) H (高海拔)

        From 1,000 feet ATH up to and including 14,500 feet ATH at radial distances out to 40 NM. From 14,500 ATH up to and including 60,000 feet at radial distances out to 100 NM. From 18,000 feet ATH up to and including 45,000 feet ATH at radial distances out to 130 NM.
        从 1,000 英尺 ATH 到 14,500 英尺 ATH,径向距离可达 40 海里。从 14,500 ATH 到 60,000 英尺(包括 100 海里)的径向距离。从 18,000 英尺 ATH 到 45,000 英尺 ATH,径向距离可达 130 海里。

        VL (VOR Low) VL (VOR 低)

        From 1,000 feet ATH up to but not including 5,000 feet ATH at radial distances out to 40 NM. From 5,000 feet ATH up to but not including 18,000 feet ATH at radial distances out to 70 NM.
        从 1,000 英尺 ATH 到 5,000 英尺 ATH,径向距离可达 40 海里。从 5,000 英尺 ATH 到但不包括 18,000 英尺 ATH,径向距离可达 70 海里。

        VH (VOR High) VH (VOR 高)

        From 1,000 feet ATH up to but not including 5,000 feet ATH at radial distances out to 40 NM. From 5,000 feet ATH up to but not including 14,500 feet ATH at radial distances out to 70 NM. From 14,500 ATH up to and including 60,000 feet at radial distances out to 100 NM. From 18,000 feet ATH up to and including 45,000 feet ATH at radial distances out to 130 NM.
        从 1,000 英尺 ATH 到 5,000 英尺 ATH,径向距离可达 40 海里。从 5,000 英尺 ATH 到但不包括 14,500 英尺 ATH,径向距离可达 70 海里。从 14,500 ATH 到 60,000 英尺(包括 100 海里)的径向距离。从 18,000 英尺 ATH 到 45,000 英尺 ATH,径向距离可达 130 海里。

        DL (DME Low) DL (DME 低)

        For altitudes up to 12,900 feet ATH at a radial distance corresponding to the LOS to the NAVAID. From 12,900 feet ATH up to but not including 18,000 feet ATH at radial distances out to 130 NM
        对于高达 12,900 英尺 ATH 的径向距离,对应于 NAVAID 的 LOS。从 12,900 英尺 ATH 到但不包括 18,000 英尺 ATH,径向距离可达 130 海里

        DH (DME High) DH (DME 高)

        For altitudes up to 12,900 feet ATH at a radial distance corresponding to the LOS to the NAVAID. From 12,900 ATH up to and including 60,000 feet at radial distances out to 100 NM. From 12,900 feet ATH up to and including 45,000 feet ATH at radial distances out to 130 NM.
        对于高达 12,900 英尺 ATH 的径向距离,对应于 NAVAID 的 LOS。从 12,900 ATH 到 60,000 英尺(包括 100 英尺),径向距离可达 100 海里。从 12,900 英尺 ATH 到 45,000 英尺 ATH,径向距离可达 130 海里。

    4. Nondirectional Radio Beacon (NDB) SSVs. NDBs are classified according to their intended use. The ranges of NDB service volumes are shown in TBL 1-1-2. The distance (radius) is the same at all altitudes for each class.
      非定向无线电信标 (NDB) SSV。NDB根据其预期用途进行分类。NDB 服务卷的范围显示在 TBL 1-1-2 中。每个类的所有海拔高度的距离 (半径) 都是相同的。

      TBL 1-1-2
      NDB Service Volumes  NDB 服务卷

      Class 

      Distance (Radius) (NM) 距离 (半径) (NM)

      Compass Locator 指南针定位器

      15

      MH

      25

      H

      50*

      HH

      75

      *Service ranges of individual facilities may be less than 50 nautical miles (NM). Restrictions to service volumes are first published as a Notice to Air Missions and then with the alphabetical listing of the NAVAID in the Chart Supplement.
      *个别设施的服务范围可能小于 50 海里 (NM)。对服务量的限制首先作为空中任务通知发布,然后在图表增刊中与 NAVAID 的字母顺序列表一起发布。

  9. Instrument Landing System (ILS)
    仪表着陆系统 (ILS)
    1. General 常规
      1. The ILS is designed to provide an approach path for exact alignment and descent of an aircraft on final approach to a runway.
        ILS 旨在为飞机在最终进近跑道时精确对准和下降提供进近路径。
      2. The basic components of an ILS are the localizer, glide slope, and Outer Marker (OM) and, when installed for use with Category II or Category III instrument approach procedures, an Inner Marker (IM).
        ILS 的基本组件是定位器、下滑坡和外部标记 (OM),当安装用于 II 类或 III 类仪器进近程序时,内部标记 (IM)。
      3. The system may be divided functionally into three parts:
        该系统在功能上可分为三个部分:
        1. Guidance information: localizer, glide slope.
          制导信息:定位器、下滑道。
        2. Range information: marker beacon, DME.
          范围信息:标记信标、DME
        3. Visual information: approach lights, touchdown and centerline lights, runway lights.
          视觉信息:进近灯、着陆和中心线灯、跑道灯。
      4. The following means may be used to substitute for the OM:
        以下方法可用于替代 OM:
        1. Compass locator; or  罗盘定位器;或
        2. Precision Approach Radar (PAR); or
          精确进近雷达 (PAR);
        3. Airport Surveillance Radar (ASR); or
          机场监视雷达 (ASR);或
        4. Distance Measuring Equipment (DME), Very High Frequency Omni-directional Range (VOR), or Nondirectional beacon fixes authorized in the Standard Instrument Approach Procedure; or
          标准仪器进近程序中授权的距离测量设备 (DME)、甚高频全向范围 (VOR) 或无向信标固定;或
        5. Very High Frequency Omni-directional Radio Range (VOR); or
          甚高频全向无线电范围 (VOR);或
        6. Nondirectional beacon fixes authorized in the Standard Instrument Approach Procedure; or
          标准仪器进近程序中授权的无方向信标定位;或
        7. A suitable RNAV system with Global Positioning System (GPS), capable of fix identification on a Standard Instrument Approach Procedure.
          带有全球定位系统 (GPS) 的合适 RNAV 系统,能够在标准仪器进近程序上进行固定识别。
      5. Where a complete ILS system is installed on each end of a runway; (i.e., the approach end of Runway 4 and the approach end of Runway 22) the ILS systems are not in service simultaneously.
        在跑道的每一端都安装了完整的 ILS 系统;(即 4 号跑道的进近端和 22 号跑道的进近端)ILS 系统不能同时投入使用。
    2. Localizer 定位器
      1. The localizer transmitter operates on one of 40 ILS channels within the frequency range of 108.10 to 111.95 MHz. Signals provide the pilot with course guidance to the runway centerline.
        航向仪发射机在 108.10 至 111.95 MHz 频率范围内的 40 个 ILS 频道之一上运行。信号为飞行员提供通往跑道中心线的航向引导。
      2. The approach course of the localizer is called the front course and is used with other functional parts, e.g., glide slope, marker beacons, etc. The localizer signal is transmitted at the far end of the runway. It is adjusted for a course width of (full scale fly-left to a full scale fly-right) of 700 feet at the runway threshold.
        定位器的进近航向称为前航向,与其他功能部件一起使用,例如下滑坡、标志信标等。航向仪信号在跑道的远端传输。在跑道门槛处,它根据 700 英尺的航向宽度(全尺寸左飞到全尺寸右飞)进行了调整。
      3. The course line along the extended centerline of a runway, in the opposite direction to the front course is called the back course.
        沿跑道延伸中心线的航向线,与前航向相反的航向线称为后航向。

        CAUTION- 谨慎-

        Unless the aircraft's ILS equipment includes reverse sensing capability, when flying inbound on the back course it is necessary to steer the aircraft in the direction opposite the needle deflection when making corrections from off-course to on-course. This “flying away from the needle” is also required when flying outbound on the front course of the localizer. Do not use back course signals for approach unless a back course approach procedure is published for that particular runway and the approach is authorized by ATC.
        除非飞机的 ILS 设备包括反向传感功能,否则当在后航道进港飞行时,在从偏离航向到航向修正时,必须将飞机转向与航针偏转相反的方向。当在 Localizer 的前航线上飞行时,也需要这种 “flying away from the needle” 。不要使用返航信号进行进近,除非针对该特定跑道发布了返航进近程序,并且该进近已获得 ATC 的授权。

      4. Identification is in International Morse Code and consists of a three-letter identifier preceded by the letter I (●●) transmitted on the localizer frequency.
        标识采用国际摩尔斯电码,由一个三个字母的标识符组成,前面是定位器频率上传输的字母 I (●●)。

        EXAMPLE- 例-

        I-DIA DIA 平板电脑

      5. The localizer provides course guidance throughout the descent path to the runway threshold from a distance of 18 NM from the antenna between an altitude of 1,000 feet above the highest terrain along the course line and 4,500 feet above the elevation of the antenna site. Proper off-course indications are provided throughout the following angular areas of the operational service volume:
        定位器在距离天线 18 海里的距离到跑道门槛的整个下降路径中提供航向引导,该高度位于沿航向线最高地形上方 1,000 英尺的高度和天线站点海拔上方 4,500 英尺的高度之间。在运营服务量的以下角度区域提供适当的偏离航向指示:
        1. To 10 degrees either side of the course along a radius of 18 NM from the antenna; and
          沿距天线 10 海里半径的路线两侧 18 度;和
        2. From 10 to 35 degrees either side of the course along a radius of 10 NM. (See FIG 1-1-6.)
          沿 10 海里半径的路线两侧 10 至 35 度。(见图 1-1-6

          FIG 1-1-6 图 1-1-6
          Limits of Localizer Coverage
          Localizer 覆盖范围的限制

          A graphic depicting the normal limits of localizer coverage. The same area applies to a back course when provided.
      6. Unreliable signals may be received outside of these areas. ATC may clear aircraft on procedures beyond the service volume when the controller initiates the action or when the pilot requests, and radar monitoring is provided.
        在这些区域之外可能会接收到不可靠的信号。当管制员发起行动或飞行员请求时,ATC 可能会对超出服务量的飞机程序进行许可,并提供雷达监控。
      7. The areas described in paragraph 1-1-9 b5 and depicted in FIG 1-1-6 represent a Standard Service Volume (SSV) localizer. All charted procedures with localizer coverage beyond the 18 NM SSV have been through the approval process for Expanded Service Volume (ESV), and have been validated by flight inspection. (See FIG 1-1-7.)
        1-1-9b5 段中描述的区域和图 1-1-6 中描述的区域代表标准服务量 (SSV) 定位器。所有定位器覆盖范围超过 18 海里 SSV 的图表程序都已通过扩大服务量 (ESV) 的批准程序,并已通过飞行检查验证。(见图 1-1-7

        FIG 1-1-7 图 1-1-7
        ILS Expanded Service Volume
        ILS 扩展服务量

        A graphic depicting ILS Expanded Service Volume.
    3. Localizer Type Directional Aid (LDA)
      定位器类型方向辅助 (LDA
      1. The LDA is of comparable use and accuracy to a localizer but is not part of a complete ILS. The LDA course usually provides a more precise approach course than the similar Simplified Directional Facility (SDF) installation, which may have a course width of 6 or 12 degrees.
        LDA 的用途和准确性与定位器相当,但不是完整 ILS 的一部分。LDA 课程通常提供比类似的简化定向设施 (SDF) 安装更精确的进近路线,后者的路线宽度可能为 6 度或 12 度。
      2. The LDA is not aligned with the runway. Straight-in minimums may be published where alignment does not exceed 30 degrees between the course and runway. Circling minimums only are published where this alignment exceeds 30 degrees.
        LDA 与跑道不对齐。如果航线和跑道之间的对齐角度不超过 30 度,则可以公布直线最小值。仅当此对齐方式超过 30 度时,才会发布环绕最小值。
      3. A very limited number of LDA approaches also incorporate a glideslope. These are annotated in the plan view of the instrument approach chart with a note, “LDA/Glideslope.” These procedures fall under a newly defined category of approaches called Approach with Vertical Guidance (APV) described in paragraph 5-4-5, Instrument Approach Procedure Charts, subparagraph a7(b), Approach with Vertical Guidance (APV). LDA minima for with and without glideslope is provided and annotated on the minima lines of the approach chart as S-LDA/GS and S-LDA. Because the final approach course is not aligned with the runway centerline, additional maneuvering will be required compared to an ILS approach.
        非常有限的 LDA 方法也包含下滑道。这些在仪表进近图的平面图中用注释“LDA/Glideslope”进行注释。这些程序属于新定义的方法类别,称为垂直引导进近 (APV),如第 5-4-5 段,仪器进近程序图表,第 a7(b) 小段,垂直引导进近 (APV) 中所述。提供了有和没有下滑道的 LDA 最小值,并在进近图的最小值线上注释为 S-LDA/GSS-LDA。由于最终进近航线与跑道中心线不一致,因此与 ILS 进近相比,需要额外的机动。
    4. Glide Slope/Glide Path 下滑坡/下滑路径
      1. The UHF glide slope transmitter, operating on one of the 40 ILS channels within the frequency range 329.15 MHz, to 335.00 MHz radiates its signals in the direction of the localizer front course. The term “glide path” means that portion of the glide slope that intersects the localizer.
        UHF 下滑坡发射器在 329.15 MHz 至 335.00 MHz 频率范围内的 40 个 ILS 通道之一上运行,其信号沿航向器前航向方向辐射。术语 “glide path” 是指与 Localizer 相交的下滑坡部分。

        CAUTION- 谨慎-

        False glide slope signals may exist in the area of the localizer back course approach which can cause the glide slope flag alarm to disappear and present unreliable glide slope information. Disregard all glide slope signal indications when making a localizer back course approach unless a glide slope is specified on the approach and landing chart.
        定位器后航道进近区域可能存在错误的下滑坡信号,这可能导致下滑道标志警报消失并提供不可靠的下滑坡信息。在进行定位器后航向进近时忽略所有下滑坡信号指示,除非在进近和着陆图上指定了下滑坡。

      2. The glide slope transmitter is located between 750 feet and 1,250 feet from the approach end of the runway (down the runway) and offset 250 to 650 feet from the runway centerline. It transmits a glide path beam 1.4 degrees wide (vertically). The signal provides descent information for navigation down to the lowest authorized decision height (DH) specified in the approved ILS approach procedure. The glidepath may not be suitable for navigation below the lowest authorized DH and any reference to glidepath indications below that height must be supplemented by visual reference to the runway environment. Glidepaths with no published DH are usable to runway threshold.
        下滑坡发射器位于距离跑道进近端(沿着跑道)750 英尺至 1,250 英尺之间,距离跑道中心线 250 至 650 英尺。它传输 1.4 度宽(垂直)的下滑道光束。该信号提供下降信息,以便导航至批准的 ILS 进近程序中指定的最低授权决策高度 (DH)。下滑道可能不适合低于最低授权 DH 的航行,任何低于该高度的下滑道指示的参考都必须通过对跑道环境的视觉参考来补充。没有公布 DH 的下滑道可用于跑道阈值。
      3. The glide path projection angle is normally adjusted to 3 degrees above horizontal so that it intersects the MM at about 200 feet and the OM at about 1,400 feet above the runway elevation. The glide slope is normally usable to the distance of 10 NM. However, at some locations, the glide slope has been certified for an extended service volume which exceeds 10 NM.
        下滑道投影角度通常调整为水平上方 3 度,使其在跑道高程上方约 200 英尺处与 MM 相交,在 OM 上方约 1,400 英尺处相交。下滑坡通常可用于 10 NM 的距离。然而,在一些地点,下滑道已经被认证为超过 10 海里的延长服务量。
      4. Pilots must be alert when approaching the glidepath interception. False courses and reverse sensing will occur at angles considerably greater than the published path.
        飞行员在接近下滑道拦截时必须保持警惕。错误路线和反向感应将以远大于公布路径的角度发生。
      5. Make every effort to remain on the indicated glide path.
        尽一切努力保持在指示的下滑路径上。

        CAUTION- 谨慎-

        Avoid flying below the glide path to assure obstacle/terrain clearance is maintained.
        避免在下滑道下方飞行,以确保保持障碍物/地形间隙。

      6. The published glide slope threshold crossing height (TCH) DOES NOT represent the height of the actual glide path on-course indication above the runway threshold. It is used as a reference for planning purposes which represents the height above the runway threshold that an aircraft's glide slope antenna should be, if that aircraft remains on a trajectory formed by the four-mile-to-middle marker glidepath segment.
        公布的下滑坡阈值越过高度 (TCH) 并不代表实际下滑道航向指示高于跑道阈值的高度。它用作规划目的的参考,表示如果飞机保持在由 4 英里到中间标记下滑道段形成的轨迹上,则飞机的下滑坡天线应高于跑道阈值的高度。
      7. Pilots must be aware of the vertical height between the aircraft's glide slope antenna and the main gear in the landing configuration and, at the DH, plan to adjust the descent angle accordingly if the published TCH indicates the wheel crossing height over the runway threshold may not be satisfactory. Tests indicate a comfortable wheel crossing height is approximately 20 to 30 feet, depending on the type of aircraft.
        飞行员必须了解飞机下滑坡天线和着陆配置中主起落架之间的垂直高度,并且在 DH 处,如果公布的 TCH 表明超过跑道阈值的车轮穿越高度可能不令人满意,则计划相应地调整下降角度。测试表明,舒适的轮子穿越高度约为 20 至 30 英尺,具体取决于飞机的类型。

        NOTE- 注意-

        The TCH for a runway is established based on several factors including the largest aircraft category that normally uses the runway, how airport layout affects the glide slope antenna placement, and terrain. A higher than optimum TCH, with the same glide path angle, may cause the aircraft to touch down further from the threshold if the trajectory of the approach is maintained until the flare. Pilots should consider the effect of a high TCH on the runway available for stopping the aircraft.
        跑道的 TCH 是根据几个因素确定的,包括通常使用跑道的最大飞机类别、机场布局如何影响下滑道天线的位置以及地形。在相同的下滑道路径角度下,高于最佳 TCH 可能会导致飞机在耀斑之前保持进近轨迹,从而进一步从阈值降落。飞行员应考虑高 TCH 对可用于停止飞机的跑道的影响。

    5. Distance Measuring Equipment (DME)
      测距设备 (DME
      1. When installed with the ILS and specified in the approach procedure, DME may be used:
        当与 ILS 一起安装并在进近过程中指定时,DME 可用于:
        1. In lieu of the OM;
          代替 OM;
        2. As a back course (BC) final approach fix (FAF); and
          作为后备 (BC) 最终方法修复 (FAF);和
        3. To establish other fixes on the localizer course.
          在 Localizer 课程上建立其他修复。
      2. In some cases, DME from a separate facility may be used within Terminal Instrument Procedures (TERPS) limitations:
        在某些情况下,来自单独设施的 DME 可能在终端仪器程序 (TERPS) 限制范围内使用:
        1. To provide ARC initial approach segments;
          提供 ARC 初始进近路段;
        2. As a FAF for BC approaches; and
          随着 BC 的 FAF 临近;和
        3. As a substitute for the OM.
          作为 OM.
    6. Marker Beacon 标记信标
      1. ILS marker beacons have a rated power output of 3 watts or less and an antenna array designed to produce an elliptical pattern with dimensions, at 1,000 feet above the antenna, of approximately 2,400 feet in width and 4,200 feet in length. Airborne marker beacon receivers with a selective sensitivity feature should always be operated in the “low” sensitivity position for proper reception of ILS marker beacons.
        ILS 标记信标的额定功率输出为 3 瓦或更低,天线阵列旨在产生椭圆形图案,其尺寸在天线上方 1,000 英尺处,宽度约为 2,400 英尺,长度约为 4,200 英尺。具有选择性灵敏度功能的机载信标接收器应始终在“低”灵敏度位置运行,以便正确接收 ILS 信标。
      2. ILS systems may have an associated OM. An MM is no longer required. Locations with a Category II ILS also have an Inner Marker (IM). Due to advances in both ground navigation equipment and airborne avionics, as well as the numerous means that may be used as a substitute for a marker beacon, the current requirements for the use of marker beacons are:
        ILS 系统可能具有关联的 OM。不再需要 MM。具有 II 类 ILS 的位置也具有内部标记 (IM)。由于地面导航设备和机载航空电子设备的进步,以及可用作标记信标替代品的众多手段,目前对标记信标的使用要求是:
        1. An OM or suitable substitute identifies the Final Approach Fix (FAF) for nonprecision approach (NPA) operations (for example, localizer only); and
          OM 或合适的替代项标识非精确进近 (NPA) 操作的最终方法修复 (FAF)(例如,仅限定位器);和
        2. The MM indicates a position approximately 3,500 feet from the landing threshold. This is also the position where an aircraft on the glide path will be at an altitude of approximately 200 feet above the elevation of the touchdown zone. A MM is no longer operationally required. There are some MMs still in use, but there are no MMs being installed at new ILS sites by the FAA; and
          MM 表示距离着陆阈值约 3,500 英尺的位置。这也是飞机在下滑道上的位置,其高度将比着陆区的海拔高出约 200 英尺。操作上不再需要 MM。有一些 MM仍在使用,但 FAA 没有在新的 ILS 站点安装 MM;和
        3. An IM, where installed, indicates the point at which an aircraft is at decision height on the glide path during a Category II ILS approach. An IM is only required for CAT II operations that do not have a published radio altitude (RA) minimum.
          IM如果已安装)表示在 II 类 ILS 进近期间飞机在下滑道上处于决策高度的点。只有没有公布无线电高度 (RA) 最小值的 CAT II 操作才需要 IM

          TBL 1-1-3
          Marker Passage Indications
          标志物传代指示

          Marker 标记

          Code 法典

          Light 

          OM

          − − −

          BLUE

          MM

          ● − ● −

          AMBER

          IM

          ● ● ● ●

          WHITE

          BC

          ● ● ● ●

          WHITE

      3. A back course marker normally indicates the ILS back course final approach fix where approach descent is commenced.
        后航向标记通常表示 ILS 后航向最终进近修复,即进近下降开始。
    7. Compass Locator 指南针定位器
      1. Compass locator transmitters are often situated at the MM and OM sites. The transmitters have a power of less than 25 watts, a range of at least 15 miles and operate between 190 and 535 kHz. At some locations, higher powered radio beacons, up to 400 watts, are used as OM compass locators.
        罗盘定位仪发射机通常位于 MMOM 站点。发射器的功率小于 25 瓦,射程至少 15 英里,工作频率在 190 到 535 kHz 之间。在某些位置,使用更高功率的无线电信标(高达 400 瓦)作为 OM 罗盘定位器。
      2. Compass locators transmit two letter identification groups. The outer locator transmits the first two letters of the localizer identification group, and the middle locator transmits the last two letters of the localizer identification group.
        罗盘定位器传输两个字母标识组。外部定位器传输定位器标识组的前两个字母,中间定位器传输定位器标识组的最后两个字母。
    8. ILS Frequency (See TBL 1-1-4.)
      ILS 频率(参见 TBL 1-1-4

      TBL 1-1-4
      Frequency Pairs Allocated for ILS
      为 ILS 分配的频率对

      Localizer MHz

      Glide Slope 下滑坡

      108.10

      334.70

      108.15

      334.55

      108.3

      334.10

      108.35

      333.95

      108.5

      329.90

      108.55

      329.75

      108.7

      330.50

      108.75

      330.35

      108.9

      329.30

      108.95

      329.15

      109.1

      331.40

      109.15

      331.25

      109.3

      332.00

      109.35

      331.85

      109.50

      332.60

      109.55

      332.45

      109.70

      333.20

      109.75

      333.05

      109.90

      333.80

      109.95

      333.65

      110.1

      334.40

      110.15

      334.25

      110.3

      335.00

      110.35

      334.85

      110.5

      329.60

      110.55

      329.45

      110.70

      330.20

      110.75

      330.05

      110.90

      330.80

      110.95

      330.65

      111.10

      331.70

      111.15

      331.55

      111.30

      332.30

      111.35

      332.15

      111.50

      332.9

      111.55

      332.75

      111.70

      333.5

      111.75

      333.35

      111.90

      331.1

      111.95

      330.95

    9. ILS Minimums
      ILS (ILS)最低
      1. The lowest authorized ILS minimums, with all required ground and airborne systems components operative, are:
        在运行所有必需的地面和机载系统组件的情况下,授权的最低 ILS 最小值为:
        1. Category I. Decision Height (DH) 200 feet and Runway Visual Range (RVR) 2,400 feet (with touchdown zone and centerline lighting, RVR 1,800 feet), or (with Autopilot or FD or HUD, RVR 1,800 feet);
          第一类。决策高度 (DH) 200 英尺和跑道视程 (RVR) 2,400 英尺(带着陆区和中心线照明,RVR 1,800 英尺),或(带自动驾驶仪或 FD 或 HUD,RVR 1,800 英尺);
        2. Special Authorization Category I. DH 150 feet and Runway Visual Range (RVR) 1,400 feet, HUD to DH;
          特别授权类别 I. DH 150 英尺和跑道视程 (RVR) 1,400 英尺,HUD 到 DH;
        3. Category II. DH 100 feet and RVR 1,200 feet (with autoland or HUD to touchdown and noted on authorization, RVR 1,000 feet);
          第二类。DH 100 英尺和 RVR 1,200 英尺(使用自动降落或 HUD 着陆并在授权时注明,RVR 1,000 英尺);
        4. Special Authorization Category II with Reduced Lighting. DH 100 feet and RVR 1,200 feet with autoland or HUD to touchdown and noted on authorization (touchdown zone, centerline lighting, and ALSF-2 are not required);
          特别授权类别 II 带减少照明。DH 100 英尺和 RVR 1,200 英尺,自动降落或 HUD 着陆,并在授权时注明(不需要着陆区、中心线照明和 ALSF-2);
        5. Category IIIa. No DH or DH below 100 feet and RVR not less than 700 feet;
          IIIa 类。没有 DHDH 低于 100 英尺,RVR 不小于 700 英尺;
        6. Category IIIb. No DH or DH below 50 feet and RVR less than 700 feet but not less than 150 feet; and
          类别 IIIb。没有 DHDH 低于 50 英尺,RVR 小于 700 英尺但不小于 150 英尺;和
        7. Category IIIc. No DH and no RVR limitation.
          IIIc 类。DH 和 RVR 限制。

          NOTE- 注意-

          Special authorization and equipment required for Categories II and III.
          II 类和 III 类所需的特殊授权和设备。

    10. Inoperative ILS Components
      不工作的 ILS 组件
      1. Inoperative localizer. When the localizer fails, an ILS approach is not authorized.
        定位器不工作。 当本地化程序失败时,ILS 方法将不被授权。
      2. Inoperative glide slope. When the glide slope fails, the ILS reverts to a non-precision localizer approach.
        不工作的下滑坡。 当下滑道失败时,ILS 将恢复为非精确定位器方法。

        REFERENCE- 参考-

        See the inoperative component table in the U.S. Government Terminal Procedures Publication (TPP), for adjustments to minimums due to inoperative airborne or ground system equipment.
        请参阅美国政府航站楼程序出版物 (TPP) 中的不工作组件表,了解由于机载或地面系统设备不工作而对最低限度的调整。

    11. ILS Course and Glideslope Distortion
      ILS (ILS)航向和下滑道畸变
      1. All pilots should be aware that ILS installations are subject to signal interference by surface vehicles and aircraft (either on the ground or airborne). ILS CRITICAL AREAS are established near each localizer and glide slope antenna. Pilots should be aware of the level of critical area protection they can expect in various weather conditions and understand that signal disturbances may occur as a result of normal airport operations irrespective of the official weather observation.
        所有飞行员都应注意,ILS 装置会受到水面车辆和飞机(地面或空中)的信号干扰。ILS (ILS)在每个定位器和下滑坡天线附近建立关键区域。飞行员应该了解他们在各种天气条件下可以预期的关键区域保护水平,并了解无论官方天气观测如何,机场正常运营都可能发生信号干扰。
      2. ATC is not always required to issue control instructions to avoid interfering operations within ILS critical areas at controlled airports during the hours the Airport Traffic Control Tower (ATCT) is in operation. ATC responsibilities vary depending on the official weather observation and are described as follows:
        在机场交通控制塔 (ATCT) 运行期间,ATC 并不总是需要发布控制指令,以避免干扰受控机场 ILS 关键区域内的操作。ATC 的职责因官方天气观测而异,描述如下:
        1. Weather Conditions. Official weather observation indicates a ceiling of 800 feet or higher and visibility 2 miles or greater, no localizer or glideslope critical area protection is provided by ATC unless specifically requested by the flight crew.
          天气状况。 官方天气观测表明,天花板为 800 英尺或更高,能见度为 2 英里或更高,除非机组人员特别要求,否则 ATC 不提供定位器或下滑道关键区域保护。
        2. Weather Conditions. Official weather observation indicates a ceiling of less than 800 feet or visibility less than 2 miles.
          天气状况。官方天气观测表明,天花板小于 800 英尺或能见度小于 2 英里。
          1. Holding. Aircraft holding below 5,000 feet between the outer marker and the airport may cause localizer signal variations for aircraft conducting the ILS approach. Accordingly, such holding will not be authorized by ATC.
            占有。飞机在外部标记和机场之间的距离低于 5,000 英尺,可能会导致执行 ILS 进近的飞机的航向仪信号发生变化。因此,此类持有将不会得到 ATC 的授权。
          2. Localizer Critical Area. When an arriving aircraft is inside the outer marker (OM) or the fix used in lieu of the OM, vehicles and aircraft will not be authorized in or over the precision approach critical area except:
            定位器关键区域。当到达的飞机位于外部标记 (OM) 内或用于代替 OM 的固定装置内时,车辆和飞机将不得进入或越过精确进近关键区域,但以下情况除外:
            1. A preceding arriving aircraft on the same or another runway may pass over or through the localizer critical area, and;
              同一或另一跑道上先前抵达的飞机可能会经过或穿过航向器关键区域,并且;
            2. A preceding departing aircraft or missed approach on the same or another runway may pass through or over the localizer critical area.
              在相同或另一跑道上,前方起飞的飞机或错过的进近可能会穿过或飞越定位器关键区域。
          3. Glide Slope Critical Area. ATC will not authorize vehicles or aircraft operations in or over the glideslope critical area when an arriving aircraft is inside the outer marker (OM), or the fix used in lieu of the OM, unless the arriving aircraft has reported the runway in sight and is circling or side‐stepping to land on another runway.
            下滑坡关键区域。当到达的飞机位于外标记 (OM) 内时,ATC 不会授权车辆或飞机在下滑道关键区域内或上空运行,或者使用代替 OM 的固定装置,除非到达的飞机已报告视线范围内的跑道,并且正在盘旋或侧身降落在另一条跑道上。
        3. Weather Conditions. Official weather observation indicates a ceiling less than 200 feet or runway visual range (RVR) less than 2000 feet.
          天气状况。官方天气观测表明天花板小于 200 英尺或跑道视程 (RVR) 小于 2000 英尺。
          1. Localizer Critical Area. In addition to the critical area protection described in 1-1-9k2(b) above, when an arriving aircraft is inside the middle marker (MM), or in the absence of a MM, ½ mile final, ATC will not authorize:
            定位器关键区域。除了上述 1-1-9k2(b) 中描述的关键区域保护外,当到达的飞机位于中间标记 (MM) 内时,或者在没有 MM、1/2 英里最终标记的情况下,ATC 将不会授权:
            1. A preceding arriving aircraft on the same or another runway to pass over or through the localizer critical area, or;
              之前到达的飞机位于同一或另一跑道上,以经过或穿过航向器关键区域,或者;
            2. A preceding departing aircraft or missed approach on the same or another runway to pass through or over the localizer critical area.
              前方起飞的飞机或错过在同一或另一跑道上通过或飞越定位器关键区域的进近。
      3. In order to ensure that pilot and controller expectations match with respect to critical area protection for a given approach and landing operation, a flight crew should advise the tower any time it intends to conduct any autoland operation or use an SA CAT I, any CAT II, or any CAT III line of minima anytime the official weather observation is at or above a ceiling of 800 feet and 2 miles visibility. If ATC is unable to protect the critical area, they will advise the flight crew.
        为了确保飞行员和管制员在给定进近和着陆操作的关键区域保护方面的期望相匹配,只要官方天气观测达到或高于 800 英尺和 2 英里的能见度,机组人员就应通知塔台,无论何时打算进行任何自动降落操作或使用 SA CAT I、任何 CAT II 或任何 CAT III 最小值线。 如果 ATC 无法保护关键区域,他们将通知机组人员。

        EXAMPLE- 例-

        Denver Tower, United 1153, Request Autoland (runway) ATC replies with:
        丹佛塔,联合航空 1153,请求 Autoland(跑道)ATC 回复:

        United 1153, Denver Tower, Roger, Critical Areas not protected.
        United 1153, Denver Tower, Roger, 关键区域不受保护。

      4. Pilots are cautioned that even when the critical areas are considered to be protected, unless the official weather observation including controller observations indicates a ceiling less than 200 feet or RVR less than 2000 feet, ATC may still authorize a preceding arriving, departing, or missed approach aircraft to pass through or over the localizer critical area and that this may cause signal disturbances that could result in an undesired aircraft state during the final stages of the approach, landing, and rollout.
        飞行员应注意,即使关键区域被认为受到保护,除非包括管制员观测在内的官方天气观测表明天花板小于 200 英尺或 RVR 小于 2000 英尺,否则 ATC 仍可授权先前到达、离开或错过的进近飞机通过或飞越定位器关键区域,这可能会导致信号干扰,从而导致飞机在最后阶段出现意外状态进近、着陆和转出。
      5. Pilots are cautioned that vehicular traffic not subject to ATC may cause momentary deviation to ILS course or glide slope signals. Also, critical areas are not protected at uncontrolled airports or at airports with an operating control tower when weather or visibility conditions are above those requiring protective measures. Aircraft conducting coupled or autoland operations should be especially alert in monitoring automatic flight control systems and be prepared to intervene as necessary. (See FIG 1-1-8.)
        飞行员应注意,不受 ATC 约束的车辆交通可能会导致 ILS 航向或下滑坡信号短暂偏离。此外,当天气或能见度条件高于需要采取保护措施的条件时,在不受控制的机场或设有运行控制塔的机场,关键区域不会受到保护。进行耦合或自动降落操作的飞机在监控自动飞行控制系统时应特别警惕,并准备好在必要时进行干预。(见图 1-1-8

        NOTE- 注意-

        Unless otherwise coordinated through Flight Standards, ILS signals to Category I runways are not flight inspected below the point that is 100 feet less than the decision altitude (DA). Guidance signal anomalies may be encountered below this altitude.
        除非通过飞行标准另有协调,否则不会在低于决策高度 (DA) 100 英尺的点下对发送到 I 类跑道的 ILS 信号进行飞行检查。低于此高度可能会遇到制导信号异常。

  10. Simplified Directional Facility (SDF)
    简化定向设施 (SDF)
    1. The SDF provides a final approach course similar to that of the ILS localizer. It does not provide glide slope information. A clear understanding of the ILS localizer and the additional factors listed below completely describe the operational characteristics and use of the SDF.
      SDF 提供了类似于 ILS 定位器的最终进近课程。它不提供下滑坡信息。清楚地了解 ILS 定位器以及下面列出的其他因素可以完整地描述 SDF 的操作特性和用途。
    2. The SDF transmits signals within the range of 108.10 to 111.95 MHz.
      SDF 传输 108.10 至 111.95 MHz 范围内的信号。
    3. The approach techniques and procedures used in an SDF instrument approach are essentially the same as those employed in executing a standard localizer approach except the SDF course may not be aligned with the runway and the course may be wider, resulting in less precision.
      SDF 仪表进近中使用的进近技术和程序与执行标准定位器进近时采用的技术和程序基本相同,只是 SDF 航向可能与跑道不对齐,并且航向可能更宽,从而导致精度较低。
    4. Usable off-course indications are limited to 35 degrees either side of the course centerline. Instrument indications received beyond 35 degrees should be disregarded.
      可用的偏离球场指示仅限于球场中心线两侧的 35 度。应忽略超过 35 度的仪器指示。
    5. The SDF antenna may be offset from the runway centerline. Because of this, the angle of convergence between the final approach course and the runway bearing should be determined by reference to the instrument approach procedure chart. This angle is generally not more than 3 degrees. However, it should be noted that inasmuch as the approach course originates at the antenna site, an approach which is continued beyond the runway threshold will lead the aircraft to the SDF offset position rather than along the runway centerline.
      SDF 天线可能会偏离跑道中心线。因此,最终进近航向和跑道方位角之间的收敛角应参考仪表进近程序图来确定。这个角度一般不超过 3 度。然而,应该注意的是,由于进近航向始于天线站点,因此在跑道阈值之外继续进近将导致飞机到达 SDF 偏置位置,而不是沿着跑道中心线。
    6. The SDF signal is fixed at either 6 degrees or 12 degrees as necessary to provide maximum flyability and optimum course quality.
      SDF 信号根据需要固定在 6 度或 12 度,以提供最大的飞行能力和最佳的航向质量。
    7. Identification consists of a three-letter identifier transmitted in Morse Code on the SDF frequency. The appropriate instrument approach chart will indicate the identifier used at a particular airport.
      标识由在 SDF 频率上以摩尔斯电码传输的三个字母标识符组成。相应的仪表进近图将指示特定机场使用的标识符。

      FIG 1-1-8 图 1-1-8
      FAA Instrument Landing Systems
      FAA 仪表着陆系统

      A graphic depicting FAA Instrument Landing Systems.
  11. NAVAID Identifier Removal During Maintenance
    维护期间删除 NAVAID 标识符

    During periods of routine or emergency maintenance, coded identification (or code and voice, where applicable) is removed from certain FAA NAVAIDs. Removal of identification serves as a warning to pilots that the facility is officially off the air for tune-up or repair and may be unreliable even though intermittent or constant signals are received.
    在例行或紧急维护期间,某些 FAA NAVAID 的编码标识(或代码和语音,如适用)将被删除。移除标识可以警告飞行员,该设施已正式停止播出进行调整或维修,即使接收到间歇性或持续信号,也可能不可靠。

    NOTE- 注意-

    During periods of maintenance VHF ranges may radiate a T-E-S-T code (- ● ●●● -).
    在维护期间,VHF 范围可能会辐射 T-E-S-T 代码 (- ● ●●● -)。

    NOTE- 注意-

    DO NOT attempt to fly a procedure that is NOTAMed out of service even if the identification is present. In certain cases, the identification may be transmitted for short periods as part of the testing.
    请勿尝试飞行 NOTAM已停止服务的程序,即使存在身份证明。在某些情况下,作为测试的一部分,身份证明可能会在短时间内传输。

  12. NAVAIDs with Voice 带语音的 NAVAID
    1. Voice equipped en route radio navigational aids are under the operational control of either a Flight Service Station (FSS) or an approach control facility. Facilities with two-way voice communication available are indicated in the Chart Supplement and aeronautical charts.
      配备语音的航路无线电导航设备由飞行服务站 (FSS) 或进近控制设施进行操作控制。提供双向语音通信的设施在图表补充和航空图表中标明。
    2. Unless otherwise noted on the chart, all radio navigation aids operate continuously except during shutdowns for maintenance. Hours of operation of facilities not operating continuously are annotated on charts and in the Chart Supplement.
      除非图表上另有说明,否则所有无线电导航辅助设备都将持续运行,除非在停机维护期间。不连续运营的设施的营业时间在图表和图表补充中进行了注释。
  13. User Reports Requested on NAVAID Outages
    请求有关 NAVAID 中断的用户报告
    1. Users of the National Airspace System (NAS) can render valuable assistance in the early correction of NAVAID malfunctions or GNSS problems and are encouraged to report their observations of undesirable avionics performance. Although NAVAIDs are monitored by electronic detectors, adverse effects of electronic interference, new obstructions, or changes in terrain near the NAVAID can exist without detection by the ground monitors. Some of the characteristics of malfunction or deteriorating performance which should be reported are: erratic course or bearing indications; intermittent, or full, flag alarm; garbled, missing or obviously improper coded identification; poor quality communications reception; or, in the case of frequency interference, an audible hum or tone accompanying radio communications or NAVAID identification. GNSS problems are often characterized by navigation degradation or service loss indications. For instance, pilots conducting operations in areas where there is GNSS interference may be unable to use GPS for navigation, and ADS-B may be unavailable for surveillance. Radio frequency interference may affect both navigation for the pilot and surveillance by the air traffic controller. Depending on the equipment and integration, either an advisory light or message may alert the pilot. Air traffic controllers monitoring ADS-B reports may stop receiving ADS-B position messages and associated aircraft tracks.
      国家空域系统 (NAS) 的用户可以在早期纠正 NAVAID 故障或 GNSS 问题方面提供有价值的帮助,并鼓励报告他们对不良航空电子设备性能的观察结果。尽管 NAVAID 由电子探测器监控,但电子干扰、新障碍物或 NAVAID 附近地形变化的不利影响可能会在地面监测器无法检测到的情况下存在。应报告的故障或性能恶化的一些特征是:不稳定的航向或方位指示;间歇性或完全性国旗警报;乱码、缺失或明显不正确的编码标识;通信接收质量差;或者在频率干扰的情况下,无线电通信或 NAVAID 识别伴随的嗡嗡声或音调。GNSS 问题通常以导航劣化或服务丢失指示为特征。例如,在存在 GNSS 干扰的区域进行操作的飞行员可能无法使用 GPS 进行导航,并且 ADS-B 可能无法进行监视。射频干扰可能会影响飞行员的导航和空中交通管制员的监视。根据设备和集成,建议灯或消息可能会提醒飞行员。监控 ADS-B 报告的空中交通管制员可能会停止接收 ADS-B 位置消息和相关飞机轨迹。
    2. Malfunctioning, faulty, inappropriately installed, operated, or modified GPS re-radiator systems, intended to be used for aircraft maintenance activities, have resulted in unintentional disruption of aviation GPS receivers. This type of disruption could result in unflagged, erroneous position-information output to primary flight displays/indicators and to other aircraft and air traffic control systems. Since Receiver Autonomous Integrity Monitoring (RAIM) is only partially effective against this type of disruption (effectively a “signal spoofing”), the pilot may not be aware of any erroneous navigation indications; ATC may be the only means available to identify these disruptions and detect unexpected aircraft positions while monitoring aircraft for IFR separation.
      旨在用于飞机维护活动的 GPS 散热器系统出现故障、故障、安装、操作或修改,导致航空 GPS 接收器意外中断。这种类型的中断可能导致未标记的错误位置信息输出到主要飞行显示器/指示器以及其他飞机和空中交通管制系统。由于接收器自主完整性监测 (RAIM) 对此类中断(实际上是“信号欺骗”)仅部分有效,因此飞行员可能不知道任何错误的导航指示;ATC 可能是在监控飞机的 IFR 分离时识别这些干扰并检测意外飞机位置的唯一可用方法。
    3. Pilots encountering navigation error events should transition to another source of navigation and request amended clearances from ATC as necessary.
      飞行员遇到导航错误事件时,应过渡到另一个导航来源,并在必要时向 ATC 请求修改许可。
    4. Pilots are encouraged to submit detailed reports of NAVAID or GPS anomaly as soon as practical. Pilot reports of navigation error events should contain the following information:
      鼓励飞行员尽快提交 NAVAID 或 GPS 异常的详细报告。导航错误事件的试点报告应包含以下信息:
      1. Date and time the anomaly was observed, and NAVAID ID (or GPS).
        观察到异常的日期和时间,以及 NAVAID ID(或 GPS)。
      2. Location of the aircraft at the time the anomaly started and ended (e.g., latitude/longitude or bearing/distance from a reference point),
        飞机在异常开始和结束时的位置(例如,纬度/经度或方位角/与参考点的距离),
      3. Heading, altitude, type of aircraft (make/model/call sign),
        航向、高度、飞机类型(品牌/型号/呼号)、
      4. Type of avionics/receivers in use (e.g., make/model/software series or version),
        正在使用的航空电子设备/接收器的类型(例如,品牌/型号/软件系列或版本),
      5. Number of satellites being tracked, if applicable,
        正在跟踪的卫星数(如果适用),
      6. Description of the position/navigation/timing anomaly observed, and duration of the event,
        观察到的位置/导航/计时异常的描述,以及事件的持续时间,
      7. Consequences/operational impact(s) of the NAVAID or GPS anomaly,
        NAVAID 或 GPS 异常的后果/运营影响,
      8. Actions taken to mitigate the anomaly and/or remedy provided by the ATC facility,
        为减轻 ATC 设施提供的异常情况和/或补救措施而采取的行动,
      9. Post flight pilot/maintenance actions taken.
        飞行后飞行员/采取的维护措施。
    5. Pilots operating an aircraft in controlled airspace under IFR shall comply with CFR § 91.187 and promptly report as soon as practical to ATC any malfunctions of navigational equipment occurring in flight; pilots should submit initial reports:
      根据 IFR 在受控空域操作飞机的飞行员应遵守 CFR § 91.187,并尽快向 ATC 报告飞行中发生的任何导航设备故障;飞行员应提交初步报告:
      1. Immediately, by radio to the controlling ATC facility or FSS.
        立即通过无线电向控制 ATC 设施或 FSS 发送。
      2. By telephone to the nearest ATC facility controlling the airspace where the disruption was experienced.
        通过电话联系最近的 ATC 设施,该设施控制发生中断的空域。
      3. Additionally, GPS problems should be reported, post flight, by Internet via the GPS Anomaly Reporting Form at http://www.faa.gov/air_traffic/nas/gps_reports/.
        此外,应在飞行后通过 http://www.faa.gov/air_traffic/nas/gps_reports/ 的 GPS 异常报告表通过互联网报告 GPS 问题。
    6. To minimize ATC workload, GPS anomalies associated with known testing NOTAMs should NOT be reported in-flight to ATC in detail; EXCEPT when:
      为了最大限度地减少 ATC 的工作量,与已知测试 NOTAMs 相关的 GPS 异常不应在飞行中详细报告给 ATC;以下情况除外:
      1. GPS degradation is experienced outside the NOTAMed area,
        NOTAM区域之外经历 GPS 降级,
      2. Pilot observes any unexpected consequences (e.g., equipment failure, suspected spoofing, failure of unexpected aircraft systems, such as TAWS).
        飞行员观察到任何意外后果(例如,设备故障、可疑欺骗、意外飞机系统故障,例如 TAWS)。
  14. LORAN 罗兰

    NOTE- 注意-

    In accordance with the 2010 DHS Appropriations Act, the U.S. Coast Guard (USCG) terminated the transmission of all U.S. LORAN-C signals on 08 Feb 2010. The USCG also terminated the transmission of the Russian American signals on 01 Aug 2010, and the Canadian LORAN-C signals on 03 Aug 2010. For more information, visit http://www.navcen.uscg.gov. Operators should also note that TSO-C60b, AIRBORNE AREA NAVIGATION EQUIPMENT USING LORAN-C INPUTS, has been canceled by the FAA.
    根据 2010 年 DHS 拨款法案,美国海岸警卫队 (USCG) 于 2010 年 2 月 8 日终止了所有美国 LORAN-C 信号的传输。美国海岸警卫队还于 2010 年 8 月 1 日终止了俄罗斯美国信号的传输,并于 2010 年 8 月 3 日终止了加拿大 LORAN-C 信号的传输。有关更多信息,请访问 http://www.navcen.uscg.gov。运营商还应注意,TSO-C60b,使用 LORAN-C 输入的机载区域导航设备,已被 FAA 取消。

  15. Inertial Reference Unit (IRU), Inertial Navigation System (INS), and Attitude Heading Reference System (AHRS)
    惯性参考单元 (IRU)、惯性导航系统 (INS) 和姿态航向参考系统 (AHRS)
    1. IRUs are self-contained systems comprised of gyros and accelerometers that provide aircraft attitude (pitch, roll, and heading), position, and velocity information in response to signals resulting from inertial effects on system components. Once aligned with a known position, IRUs continuously calculate position and velocity. IRU position accuracy decays with time. This degradation is known as “drift.”
      IRU 是由陀螺仪和加速度计组成的独立系统,可提供飞机姿态(俯仰、滚动和航向)、位置和速度信息,以响应系统部件上的惯性效应产生的信号。一旦与已知位置对齐,IRU 就会持续计算位置和速度。IRU 位置精度会随着时间的推移而衰减。这种退化称为 “漂移”。
    2. INSs combine the components of an IRU with an internal navigation computer. By programming a series of waypoints, these systems will navigate along a predetermined track.
      INS将 IRU 的组件与内部导航计算机相结合。通过对一系列航路点进行编程,这些系统将沿着预定的轨迹导航。
    3. AHRSs are electronic devices that provide attitude information to aircraft systems such as weather radar and autopilot, but do not directly compute position information.
      AHRS 是向飞机系统(如天气雷达和自动驾驶仪)提供姿态信息的电子设备,但不直接计算位置信息。
    4. Aircraft equipped with slaved compass systems may be susceptible to heading errors caused by exposure to magnetic field disturbances (flux fields) found in materials that are commonly located on the surface or buried under taxiways and ramps. These materials generate a magnetic flux field that can be sensed by the aircraft's compass system flux detector or “gate,” which can cause the aircraft's system to align with the material's magnetic field rather than the earth's natural magnetic field. The system's erroneous heading may not self-correct. Prior to take off pilots should be aware that a heading misalignment may have occurred during taxi. Pilots are encouraged to follow the manufacturer's or other appropriate procedures to correct possible heading misalignment before take off is commenced.
      配备从属罗盘系统的飞机可能容易受到磁场干扰(磁通场)的影响,这些干扰通常位于表面或埋在滑行道和坡道下的材料中。这些材料会产生一个磁通场,飞机的罗盘系统磁通量检测器或“门”可以感应到该磁通场,这会导致飞机的系统与材料的磁场对齐,而不是与地球的自然磁场对齐。系统的错误标题可能无法自行更正。在起飞之前,飞行员应该意识到在滑行过程中可能会发生航向错位。鼓励飞行员在起飞前遵循制造商或其他适当的程序来纠正可能的航向错位。
  16. Doppler Radar 多普勒雷达

    Doppler Radar is a semiautomatic self-contained dead reckoning navigation system (radar sensor plus computer) which is not continuously dependent on information derived from ground based or external aids. The system employs radar signals to detect and measure ground speed and drift angle, using the aircraft compass system as its directional reference. Doppler is less accurate than INS, however, and the use of an external reference is required for periodic updates if acceptable position accuracy is to be achieved on long range flights.
    多普勒雷达是一种半自动、独立的航位推算导航系统(雷达传感器加计算机),它不会持续依赖来自地面或外部辅助设备的信息。该系统采用雷达信号来检测和测量地面速度和漂移角,并使用飞机罗盘系统作为其方向参考。然而,多普勒的精度不如 INS,如果要在长距离飞行中实现可接受的位置精度,则需要使用外部参考进行定期更新。

  17. Global Positioning System (GPS)
    全球定位系统 (GPS)
    1. System Overview 系统概述
      1. System Description. The Global Positioning System is a space-based radio navigation system used to determine precise position anywhere in the world. The 24 satellite constellation is designed to ensure at least five satellites are always visible to a user worldwide. A minimum of four satellites is necessary for receivers to establish an accurate three-dimensional position. The receiver uses data from satellites above the mask angle (the lowest angle above the horizon at which a receiver can use a satellite). The Department of Defense (DoD) is responsible for operating the GPS satellite constellation and monitors the GPS satellites to ensure proper operation. Each satellite's orbital parameters (ephemeris data) are sent to each satellite for broadcast as part of the data message embedded in the GPS signal. The GPS coordinate system is the Cartesian earth-centered, earth-fixed coordinates as specified in the World Geodetic System 1984 (WGS-84).
        系统描述。全球定位系统是一种基于太空的无线电导航系统,用于确定世界上任何地方的精确位置。24 颗卫星星座旨在确保全球用户始终可以看到至少 5 颗卫星。接收器至少需要四颗卫星才能建立准确的三维位置。接收器使用来自掩模角(接收器可以使用卫星的水平线上方的最低角度)以上的卫星的数据。国防部 (DoD) 负责运营 GPS 卫星星座并监控 GPS 卫星以确保正常运行。每颗卫星的轨道参数(星历数据)将作为 GPS 信号中嵌入的数据消息的一部分发送到每颗卫星进行广播。GPS 坐标系是 1984 年世界大地坐标系 (WGS-84) 中指定的笛卡尔地球中心地球固定坐标。
      2. System Availability and Reliability.
        系统可用性和可靠性。
        1. The status of GPS satellites is broadcast as part of the data message transmitted by the GPS satellites. GPS status information is also available by means of the U.S. Coast Guard navigation information service: (703) 313-5907, Internet: http://www.navcen.uscg.gov/. Additionally, satellite status is available through the Notice to Air Missions (NOTAM) system.
          GPS 卫星的状态作为 GPS 卫星传输的数据消息的一部分进行广播。GPS 状态信息也可通过美国海岸警卫队导航信息服务获得:(703) 313-5907,互联网:http://www.navcen.uscg.gov/。此外,卫星状态可通过空中任务通知 (NOTAM) 系统获得。
        2. GNSS operational status depends on the type of equipment being used. For GPS-only equipment TSO-C129 or TSO-C196(), the operational status of non-precision approach capability for flight planning purposes is provided through a prediction program that is embedded in the receiver or provided separately.
          GNSS 运行状态取决于所使用的设备类型。对于纯 GPS 设备 TSO-C129 或 TSO-C196(),用于飞行规划目的的非精确进近能力的运行状态通过嵌入在接收器中或单独提供的预测程序提供。
      3. Receiver Autonomous Integrity Monitoring (RAIM). RAIM is the capability of a GPS receiver to perform integrity monitoring on itself by ensuring available satellite signals meet the integrity requirements for a given phase of flight. Without RAIM, the pilot has no assurance of the GPS position integrity. RAIM provides immediate feedback to the pilot. This fault detection is critical for performance-based navigation (PBN)(see paragraph 1-2-1, Performance-Based Navigation (PBN) and Area Navigation (RNAV), for an introduction to PBN), because delays of up to two hours can occur before an erroneous satellite transmission is detected and corrected by the satellite control segment.
        接收器自主完整性监控 (RAIM)。RAIM 是 GPS 接收器通过确保可用卫星信号满足给定飞行阶段的完整性要求来对自身执行完整性监控的能力。如果没有 RAIM,飞行员就无法保证 GPS 位置的完整性。RAIM 向飞行员提供即时反馈。这种故障检测对于基于性能的导航 (PBN) 至关重要(有关 PBN 的介绍,请参见第 1-2-1 段,基于性能的导航 (PBN) 和区域导航 (RNAV)),因为在卫星控制段检测到并纠正错误的卫星传输之前,可能会发生长达两个小时的延迟。
        1. In order for RAIM to determine if a satellite is providing corrupted information, at least one satellite, in addition to those required for navigation, must be in view for the receiver to perform the RAIM function. RAIM requires a minimum of 5 satellites, or 4 satellites and barometric altimeter input (baro-aiding), to detect an integrity anomaly. Baro-aiding is a method of augmenting the GPS integrity solution by using a non-satellite input source in lieu of the fifth satellite. Some GPS receivers also have a RAIM capability, called fault detection and exclusion (FDE), that excludes a failed satellite from the position solution; GPS receivers capable of FDE require 6 satellites or 5 satellites with baro-aiding. This allows the GPS receiver to isolate the corrupt satellite signal, remove it from the position solution, and still provide an integrity-assured position. To ensure that baro-aiding is available, enter the current altimeter setting into the receiver as described in the operating manual. Do not use the GPS derived altitude due to the large GPS vertical errors that will make the integrity monitoring function invalid.
          为了使 RAIM 确定卫星是否提供损坏的信息,除了导航所需的卫星外,至少必须看到一颗卫星,接收器才能执行 RAIM 功能。RAIM 至少需要 5 颗卫星,或 4 颗卫星和气压高度计输入(气压辅助)才能检测完整性异常。Baro-aiding 是一种通过使用非卫星输入源代替第五颗卫星来增强 GPS 完整性解决方案的方法。一些 GPS 接收器还具有 RAIM 功能,称为故障检测和排除 (FDE),可将故障卫星排除在位置解决方案之外;支持 FDE 的 GPS 接收器需要 6 颗卫星或 5 颗带气压辅助的卫星。这允许 GPS 接收器隔离损坏的卫星信号,将其从位置解决方案中删除,并且仍然提供完整性保证的位置。为确保气压辅助可用,请按照操作手册中的说明在接收器中输入当前高度计设置。请勿使用 GPS 衍生的高度,因为 GPS 垂直误差较大,会使完整性监测功能失效。
        2. There are generally two types of RAIM fault messages. The first type of message indicates that there are not enough satellites available to provide RAIM integrity monitoring. The GPS navigation solution may be acceptable, but the integrity of the solution cannot be determined. The second type indicates that the RAIM integrity monitor has detected a potential error and that there is an inconsistency in the navigation solution for the given phase of flight. Without RAIM capability, the pilot has no assurance of the accuracy of the GPS position.
          通常有两种类型的 RAIM 错误消息。第一种类型的消息表示没有足够的卫星来提供 RAIM 完整性监控。GPS 导航解决方案可能是可接受的,但无法确定解决方案的完整性。第二种类型表示 RAIM 完整性监视器检测到潜在错误,并且给定飞行阶段的导航解决方案不一致。如果没有 RAIM 功能,飞行员就无法保证 GPS 定位的准确性。
      4. Selective Availability. Selective Availability (SA) is a method by which the accuracy of GPS is intentionally degraded. This feature was designed to deny hostile use of precise GPS positioning data. SA was discontinued on May 1, 2000, but many GPS receivers are designed to assume that SA is still active. New receivers may take advantage of the discontinuance of SA based on the performance values in ICAO Annex 10.
        选择性可用性。选择性可用性 (SA) 是一种故意降低 GPS 精度的方法。此功能旨在阻止对精确 GPS 定位数据的恶意使用。SA 已于 2000 年 5 月 1 日停止使用,但许多 GPS 接收器的设计都假定 SA 仍然处于活动状态。根据国际民航组织附件 10 中的绩效值,新的接收机可以利用 SA 的终止。
    2. Operational Use of GPS. U.S. civil operators may use approved GPS equipment in oceanic airspace, certain remote areas, the National Airspace System and other States as authorized (please consult the applicable Aeronautical Information Publication). Equipage other than GPS may be required for the desired operation. GPS navigation is used for both Visual Flight Rules (VFR) and Instrument Flight Rules (IFR) operations.
      GPS 的操作使用。 美国民用运营商可以在海洋空域、某些偏远地区、国家空域系统和经授权的其他州使用经批准的 GPS 设备(请查阅适用的航空信息出版物)。所需操作可能需要 GPS 以外的设备。GPS 导航用于目视飞行规则 (VFR) 和仪表飞行规则 (IFR) 操作。
      1. VFR Operations VFR 操作
        1. GPS navigation has become an asset to VFR pilots by providing increased navigational capabilities and enhanced situational awareness. Although GPS has provided many benefits to the VFR pilot, care must be exercised to ensure that system capabilities are not exceeded. VFR pilots should integrate GPS navigation with electronic navigation (when possible), as well as pilotage and dead reckoning.
          GPS 导航通过提供增强的导航能力和增强的态势感知能力,已成为 VFR 飞行员的资产。尽管 GPS 为 VFR 飞行员提供了许多好处,但必须小心确保不会超出系统能力。VFR 飞行员应将 GPS 导航与电子导航(如果可能)以及引航和航位推算相结合。
        2. GPS receivers used for VFR navigation vary from fully integrated IFR/VFR installation used to support VFR operations to hand-held devices. Pilots must understand the limitations of the receivers prior to using in flight to avoid misusing navigation information. (See TBL 1-1-6.) Most receivers are not intuitive. The pilot must learn the various keystrokes, knob functions, and displays that are used in the operation of the receiver. Some manufacturers provide computer-based tutorials or simulations of their receivers that pilots can use to become familiar with operating the equipment.
          用于 VFR 导航的 GPS 接收器从用于支持 VFR 操作的完全集成的 IFR/VFR 安装到手持设备不等。飞行员在飞行中使用之前必须了解接收器的局限性,以避免滥用导航信息。(参见 TBL 1-1-6。大多数接收器并不直观。飞行员必须学习接收器操作中使用的各种击键、旋钮功能和显示。一些制造商提供基于计算机的教程或接收器模拟,飞行员可以使用这些教程或模拟来熟悉设备的操作。
        3. When using GPS for VFR operations, RAIM capability, database currency, and antenna location are critical areas of concern.
          使用 GPS 进行 VFR 操作时,RAIM 功能、数据库货币和天线位置是需要关注的关键领域。
          1. RAIM Capability. VFR GPS panel mount receivers and hand-held units have no RAIM alerting capability. This prevents the pilot from being alerted to the loss of the required number of satellites in view, or the detection of a position error. Pilots should use a systematic cross-check with other navigation techniques to verify position. Be suspicious of the GPS position if a disagreement exists between the two positions.
            RAIM 功能。VFR GPS 面板安装接收器和手持设备没有 RAIM 警报功能。这可以防止飞行员收到警报,指出视野中所需数量的卫星丢失,或检测到位置错误。飞行员应使用系统性的交叉检查来验证位置。如果两个位置之间存在不一致,请对 GPS 位置持怀疑态度。
          2. Database Currency. Check the currency of the database. Databases must be updated for IFR operations and should be updated for all other operations. However, there is no requirement for databases to be updated for VFR navigation. It is not recommended to use a moving map with an outdated database in and around critical airspace. Pilots using an outdated database should verify waypoints using current aeronautical products; for example, Chart Supplement, Sectional Chart, or En Route Chart.
            数据库货币。检查数据库的货币。必须为 IFR 操作更新数据库,并且应为所有其他操作更新数据库。但是,不要求为 VFR 导航更新数据库。不建议在关键空域及其周围使用带有过时数据库的移动地图。使用过时数据库的飞行员应使用当前的航空产品验证航点;例如,Chart Supplement、Sectional Chart 或 En Route Chart。
          3. Antenna Location. The antenna location for GPS receivers used for IFR and VFR operations may differ. VFR antennae are typically placed for convenience more than performance, while IFR installations ensure a clear view is provided with the satellites. Antennae not providing a clear view have a greater opportunity to lose the satellite navigational signal. This is especially true in the case of hand-held GPS receivers. Typically, suction cups are used to place the GPS antennas on the inside of cockpit windows. While this method has great utility, the antenna location is limited to the cockpit or cabin which rarely provides a clear view of all available satellites. Consequently, signal losses may occur due to aircraft structure blocking satellite signals, causing a loss of navigation capability. These losses, coupled with a lack of RAIM capability, could present erroneous position and navigation information with no warning to the pilot. While the use of a hand-held GPS for VFR operations is not limited by regulation, modification of the aircraft, such as installing a panel- or yoke-mounted holder, is governed by 14 CFR Part 43. Consult with your mechanic to ensure compliance with the regulation and safe installation.
            天线位置。用于 IFR 和 VFR 操作的 GPS 接收器的天线位置可能不同。VFR 天线的放置通常是为了方便而不是性能,而 IFR 安装可确保卫星提供清晰的视野。天线不提供清晰的视野有更大的机会丢失卫星导航信号。对于手持式 GPS 接收器来说尤其如此。通常,吸盘用于将 GPS 天线放置在驾驶舱窗户内侧。虽然这种方法具有很大的实用性,但天线位置仅限于驾驶舱或机舱,很少能清楚地看到所有可用卫星。因此,由于飞机结构阻挡了卫星信号,可能会发生信号损失,从而导致导航能力的丧失。这些损失,再加上缺乏 RAIM 能力,可能会在没有警告的情况下提供错误的位置和导航信息。虽然使用手持式 GPS 进行 VFR 操作不受法规限制,但飞机的改装(例如安装面板或轭式安装支架)受 14 CFR 第 43 部分的约束。请咨询您的机械师,以确保符合法规和安全安装。
        4. Do not solely rely on GPS for VFR navigation. No design standard of accuracy or integrity is used for a VFR GPS receiver. VFR GPS receivers should be used in conjunction with other forms of navigation during VFR operations to ensure a correct route of flight is maintained. Minimize head-down time in the aircraft by being familiar with your GPS receiver's operation and by keeping eyes outside scanning for traffic, terrain, and obstacles.
          不要仅仅依赖 GPS 进行 VFR 导航。VFR GPS 接收器没有使用精度或完整性的设计标准。在 VFR 操作期间,VFR GPS 接收器应与其他形式的导航结合使用,以确保保持正确的飞行路线。通过熟悉 GPS 接收器的操作,并保持眼睛在外面扫描交通、地形和障碍物,最大限度地减少飞机内的低头时间。
        5. VFR Waypoints VFR 航点
          1. VFR waypoints provide VFR pilots with a supplementary tool to assist with position awareness while navigating visually in aircraft equipped with area navigation receivers. VFR waypoints should be used as a tool to supplement current navigation procedures. The uses of VFR waypoints include providing navigational aids for pilots unfamiliar with an area, waypoint definition of existing reporting points, enhanced navigation in and around Class B and Class C airspace, enhanced navigation around Special Use Airspace, and entry points for commonly flown mountain passes. VFR pilots should rely on appropriate and current aeronautical charts published specifically for visual navigation. If operating in a terminal area, pilots should take advantage of the Terminal Area Chart available for that area, if published. The use of VFR waypoints does not relieve the pilot of any responsibility to comply with the operational requirements of 14 CFR Part 91.
            VFR 航路点为 VFR 飞行员提供了一个补充工具,以协助在配备区域导航接收器的飞机中进行视觉导航时进行位置感知。VFR 航路点应用作补充当前导航程序的工具。VFR 航路点的用途包括为不熟悉区域的飞行员提供导航辅助设备、定义现有报告点的航路点、增强 B 类和 C 类空域内和周围的导航、增强特殊用途空域周围的导航以及常见飞行的山口的入口点。VFR 飞行员应依赖专门为目视导航发布的适当和最新的航空图。如果在航站区域操作,飞行员应利用该区域可用的航站区域图(如果已发布)。使用 VFR 航路点并不能免除飞行员遵守 14 CFR 第 91 部分操作要求的任何责任。
          2. VFR waypoint names (for computer entry and flight plans) consist of five letters beginning with the letters “VP” and are retrievable from navigation databases. The VFR waypoint names are not intended to be pronounceable, and they are not for use in ATC communications. On VFR charts, stand-alone VFR waypoints will be portrayed using the same four-point star symbol used for IFR waypoints. VFR waypoints collocated with visual check-points on the chart will be identified by small magenta flag symbols. VFR waypoints collocated with visual check-points will be pronounceable based on the name of the visual check-point and may be used for ATC communications. Each VFR waypoint name will appear in parentheses adjacent to the geographic location on the chart. Latitude/longitude data for all established VFR waypoints may be found in FAA Order JO 7350.9, Location Identifiers.
            VFR 航路点名称(用于计算机输入和飞行计划)由五个以字母“VP”开头的字母组成,可从导航数据库中检索。VFR 航路点名称不是为了可读,也不用于 ATC 通信。在 VFR 图表上,独立的 VFR 航路点将使用与 IFR 航路点相同的四点星号进行描绘。与图表上的视觉检查点并置的 VFR 航路点将由小洋红色旗帜符号标识。与视觉检查点并置的 VFR 航路点将根据视觉检查点的名称进行发音,并可用于 ATC 通信。每个 VFR 航点名称将出现在图表上地理位置旁边的括号中。所有已建立的 VFR 航路点的纬度/经度数据可在 FAA 命令 JO 7350.9 位置标识符中找到。
          3. VFR waypoints may not be used on IFR flight plans. VFR waypoints are not recognized by the IFR system and will be rejected for IFR routing purposes.
            VFR 航点不得用于 IFR 飞行计划。IFR 系统无法识别 VFR 航路点,并且出于 IFR 路线规划目的将被拒绝。
          4. Pilots may use the five-letter identifier as a waypoint in the route of flight section on a VFR flight plan. Pilots may use the VFR waypoints only when operating under VFR conditions. The point may represent an intended course change or describe the planned route of flight. This VFR filing would be similar to how a VOR would be used in a route of flight.
            飞行员可以在 VFR 飞行计划的飞行路线部分使用五个字母的标识符作为航点。飞行员只能在 VFR 条件下操作时使用 VFR 航路点。该点可能代表预期的航线改变或描述计划的飞行路线。此 VFR 申请将类似于在飞行路线中使用 VOR 的方式。
          5. VFR waypoints intended for use during flight should be loaded into the receiver while on the ground. Once airborne, pilots should avoid programming routes or VFR waypoint chains into their receivers.
            用于飞行期间使用的 VFR 航路点应在地面时加载到接收器中。一旦升空,飞行员应避免在他们的接收器中编程路线或 VFR 航路点链。
          6. Pilots should be vigilant to see and avoid other traffic when near VFR waypoints. With the increased use of GPS navigation and accuracy, expect increased traffic near VFR waypoints. Regardless of the class of airspace, monitor the available ATC frequency for traffic information on other aircraft operating in the vicinity. See paragraph 7-6-3, VFR in Congested Areas, for more information.
            飞行员在 VFR 航路点附近时应保持警惕,查看并避开其他交通。随着 GPS 导航和精度的增加,预计 VFR 航路点附近的交通会增加。无论空域等级如何,都应监控可用的 ATC 频率,以获取附近运营的其他飞机的交通信息。有关更多信息,请参阅第 7-6-3 段,拥挤地区的 VFR。
          7. Mountain pass entry points are marked for convenience to assist pilots with flight planning and visual navigation. Do not attempt to fly a mountain pass directly from VFR waypoint to VFR waypoint—they do not create a path through the mountain pass. Alternative routes are always available. It is the pilot in command's responsibility to choose a suitable route for the intended flight and known conditions.
            为方便起见,山口入口处设有标记,以协助飞行员进行飞行规划和视觉导航。不要尝试直接从 VFR 航路点飞行山口到 VFR 航路点 - 它们不会创建穿过山口的路径。其他路线始终可用。机长有责任为预定航班和已知条件选择合适的航线。

            REFERENCE- 参考-

            AIM, Para 7-6-7, Mountain Flying.
            AIM,第 7-6-7 段,山地飞行。

      2. IFR Use of GPS
        IFR GPS 的使用
        1. General Requirements. Authorization to conduct any GPS operation under IFR requires:
          一般要求。 根据 IFR 进行任何 GPS 操作的授权需要:
          1. GPS navigation equipment used for IFR operations must be approved in accordance with the requirements specified in Technical Standard Order (TSO) TSO-C129(), TSO-C196(), TSO-C145(), or TSO-C146(), and the installation must be done in accordance with Advisory Circular AC 20-138, Airworthiness Approval of Positioning and Navigation Systems. Equipment approved in accordance with TSO-C115a does not meet the requirements of TSO-C129. Visual flight rules (VFR) and hand-held GPS systems are not authorized for IFR navigation, instrument approaches, or as a principal instrument flight reference.
            用于 IFR 操作的 GPS 导航设备必须根据技术标准命令 (TSO) TSO-C129()、TSO-C196()、TSO-C145() 或 TSO-C146() 中规定的要求获得批准,并且必须按照咨询通告 AC 20-138,定位和导航系统的适航批准进行安装。根据 TSO-C115a 批准的设备不符合 TSO-C129 的要求。目视飞行规则 (VFR) 和手持式 GPS 系统未被授权用于 IFR 导航、仪表进近或作为主要仪表飞行参考。
          2. Aircraft using un-augmented GPS (TSO-C129() or TSO-C196()) for navigation under IFR must be equipped with an alternate approved and operational means of navigation suitable for navigating the proposed route of flight. (Examples of alternate navigation equipment include VOR or DME/DME/IRU capability). Active monitoring of alternative navigation equipment is not required when RAIM is available for integrity monitoring. Active monitoring of an alternate means of navigation is required when the GPS RAIM capability is lost.
            根据 IFR 使用非增强 GPS(TSO-C129() 或 TSO-C196())进行导航的飞机必须配备适合导航拟议飞行路线的替代经批准和可操作的导航方式。(备用导航设备的示例包括 VOR 或 DME/DME/IRU 功能)。当 RAIM 可用于完整性监控时,不需要主动监控替代导航设备。当 GPS RAIM 功能丢失时,需要主动监控替代导航方式。
          3. Procedures must be established for use in the event that the loss of RAIM capability is predicted to occur. In situations where RAIM is predicted to be unavailable, the flight must rely on other approved navigation equipment, re-route to where RAIM is available, delay departure, or cancel the flight.
            必须建立程序,以便在预测会发生 RAIM 功能损失时使用。在预测 RAIM 不可用的情况下,航班必须依赖其他经批准的导航设备,重新安排航线至 RAIM 可用地点,延迟起飞或取消航班。
          4. The GPS operation must be conducted in accordance with the FAA-approved aircraft flight manual (AFM) or flight manual supplement. Flight crew members must be thoroughly familiar with the particular GPS equipment installed in the aircraft, the receiver operation manual, and the AFM or flight manual supplement. Operation, receiver presentation and capabilities of GPS equipment vary. Due to these differences, operation of GPS receivers of different brands, or even models of the same brand, under IFR should not be attempted without thorough operational knowledge. Most receivers have a built-in simulator mode, which allows the pilot to become familiar with operation prior to attempting operation in the aircraft.
            GPS 操作必须按照 FAA 批准的飞机飞行手册 (AFM) 或飞行手册补充进行。飞行机组人员必须完全熟悉飞机上安装的特定 GPS 设备、接收器操作手册以及 AFM 或飞行手册补充。GPS 设备的操作、接收器表示和功能各不相同。由于这些差异,在没有全面的操作知识的情况下,不应尝试在 IFR 下操作不同品牌甚至同一品牌型号的 GPS 接收器。大多数接收器都有内置的模拟器模式,允许飞行员在尝试在飞机上操作之前熟悉操作。
          5. Aircraft navigating by IFR-approved GPS are considered to be performance-based navigation (PBN) aircraft and have special equipment suffixes. File the appropriate equipment suffix in accordance with Appendix 4, TBL 4-2, on the ATC flight plan. If GPS avionics become inoperative, the pilot should advise ATC and amend the equipment suffix.
            使用 IFR 批准的 GPS 导航的飞机被视为基于性能的导航 (PBN) 飞机,并具有特殊设备后缀。根据 ATC 飞行计划中的附录 4 TBL 4-2 提交适当的设备后缀。如果 GPS 航空电子设备无法正常工作,飞行员应通知 ATC 并修改设备后缀。
          6. Prior to any GPS IFR operation, the pilot must review appropriate NOTAMs and aeronautical information. (See GPS NOTAMs/Aeronautical Information).
            在进行任何 GPS IFR 操作之前,飞行员必须查看适当的 NOTAM和航空信息。(参见 GPS NOTAMs/Aeronautical Information)。
        2. Database Requirements. The onboard navigation data must be current and appropriate for the region of intended operation and should include the navigation aids, waypoints, and relevant coded terminal airspace procedures for the departure, arrival, and alternate airfields.
          数据库要求。 机载导航数据必须是最新的,并且适合预期运营区域,并且应包括出发、到达和备用机场的导航辅助设备、航路点和相关编码终端空域程序。
          1. Further database guidance for terminal and en route requirements may be found in AC 90-100, U.S. Terminal and En Route Area Navigation (RNAV) Operations.
            有关航站楼和航路要求的进一步数据库指南,请参阅 AC 90-100,美国航站楼和航路区域导航 (RNAV) 操作。
          2. Further database guidance on Required Navigation Performance (RNP) instrument approach operations, RNP terminal, and RNP en route requirements may be found in AC 90-105, Approval Guidance for RNP Operations and Barometric Vertical Navigation in the U.S. National Airspace System.
            有关所需导航性能 (RNP) 仪表进近操作、RNP 终端和 RNP 航路要求的进一步数据库指南,请参阅 AC 90-105、美国国家空域系统 RNP 操作批准指南和气压垂直导航。
          3. All approach procedures to be flown must be retrievable from the current airborne navigation database supplied by the equipment manufacturer or other FAA-approved source. The system must be able to retrieve the procedure by name from the aircraft navigation database, not just as a manually entered series of waypoints. Manual entry of waypoints using latitude/longitude or place/bearing is not permitted for approach procedures.
            所有要飞行的进近程序都必须可以从设备制造商或其他 FAA 批准的来源提供的当前机载导航数据库中检索。系统必须能够从飞机导航数据库中按名称检索程序,而不仅仅是手动输入的一系列航路点。进近程序不允许使用纬度/经度或地点/方位手动输入航路点。
          4. Prior to using a procedure or waypoint retrieved from the airborne navigation database, the pilot should verify the validity of the database. This verification should include the following preflight and inflight steps:
            在使用从机载导航数据库中检索到的程序或航路点之前,飞行员应验证数据库的有效性。此验证应包括以下印前检查和飞行中步骤:
            1. Preflight: 飞行前:
              1. Determine the date of database issuance, and verify that the date/time of proposed use is before the expiration date/time.
                确定数据库的发布日期,并验证建议使用的日期/时间是否早于到期日期/时间。
              2. Verify that the database provider has not published a notice limiting the use of the specific waypoint or procedure.
                验证数据库提供商是否未发布限制使用特定航点或程序的通知。
            2. Inflight: 机上:
              1. Determine that the waypoints and transition names coincide with names found on the procedure chart. Do not use waypoints which do not exactly match the spelling shown on published procedure charts.
                确定路径点和转换名称是否与过程图表上找到的名称一致。不要使用与已发布过程图上显示的拼写不完全匹配的航点。
              2. Determine that the waypoints are logical in location, in the correct order, and their orientation to each other is as found on the procedure chart, both laterally and vertically.
                确定航路点的位置是合乎逻辑的,顺序正确,并且它们彼此之间的方向与过程图上的横向和垂直方向相同。

                NOTE- 注意-

                There is no specific requirement to check each waypoint latitude and longitude, type of waypoint and/or altitude constraint, only the general relationship of waypoints in the procedure, or the logic of an individual waypoint's location.
                没有具体要求检查每个航点的纬度和经度、航点类型和/或高度限制,只有程序中航点的一般关系或单个航点位置的逻辑。

              3. If the cursory check of procedure logic or individual waypoint location, specified in [b] above, indicates a potential error, do not use the retrieved procedure or waypoint until a verification of latitude and longitude, waypoint type, and altitude constraints indicate full conformity with the published data.
                如果对上述 [b] 中指定的过程逻辑或单个航点位置的粗略检查表明存在潜在错误,则在经纬度、航点类型和高度约束的验证表明与已发布的数据完全一致之前,请勿使用检索到的程序或航点。
          5. Air carrier and commercial operators must meet the appropriate provisions of their approved operations specifications.
            航空承运商和商业运营商必须满足其批准的运营规范的适当规定。
            1. During domestic operations for commerce or for hire, operators must have a second navigation system capable of reversion or contingency operations.
              在国内商业或租赁运营期间,运营商必须拥有能够进行归还或应急操作的第二个导航系统。
            2. Operators must have two independent navigation systems appropriate to the route to be flown or one system that is suitable and a second, independent backup system that allows the operator to proceed safely to a suitable airport, complete an instrument approach; and the aircraft must have sufficient fuel (reference 14 CFR 121.349, 125.203, 129.17, and 135.165). These rules ensure the safety of the operation by preventing a single point of failure.
              操作员必须拥有两个适合待飞行路线的独立导航系统,或者一个合适的系统和第二个独立的备用系统,使操作员能够安全地前往合适的机场,完成仪表进近;飞机必须有足够的燃料(参考 14 CFR 121.349、125.203、129.17 和 135.165)。这些规则通过防止单点故障来确保操作的安全性。

              NOTE- 注意-

              An aircraft approved for multi-sensor navigation and equipped with a single navigation system must maintain an ability to navigate or proceed safely in the event that any one component of the navigation system fails, including the flight management system (FMS). Retaining an FMS-independent VOR capability would satisfy this requirement.
              获准进行多传感器导航并配备单一导航系统的飞机必须在导航系统的任何一个组件(包括飞行管理系统 (FMS))发生故障时保持导航或安全前进的能力。保留独立于 FMS 的 VOR 功能将满足此要求。

            3. The requirements for a second system apply to the entire set of equipment needed to achieve the navigation capability, not just the individual components of the system such as the radio navigation receiver. For example, to use two RNAV systems (e.g., GPS and DME/DME/IRU) to comply with the requirements, the aircraft must be equipped with two independent radio navigation receivers and two independent navigation computers (e.g., flight management systems (FMS)). Alternatively, to comply with the requirements using a single RNAV system with an installed and operable VOR capability, the VOR capability must be independent of the FMS.
              第二个系统的要求适用于实现导航功能所需的整套设备,而不仅仅是系统的单个组件,例如无线电导航接收器。例如,要使用两个 RNAV 系统(例如 GPSDME/DME/IRU)来满足要求,飞机必须配备两个独立的无线电导航接收器和两个独立的导航计算机(例如,飞行管理系统 (FMS))。或者,为了满足使用具有已安装和可操作 VOR 功能的单个 RNAV 系统的要求,VOR 功能必须独立于 FMS
            4. Due to low risk of disruption or manipulation of GPS signals beyond 50 NM offshore, FAA differentiates between extended and non-extended over‐water operations. To satisfy the requirement for two independent navigation systems:
              由于离岸 50 海里以外 GPS 信号中断或操纵的风险较低,FAA 区分了扩展和非扩展的水上作业。为了满足两个独立导航系统的要求:
              1. For all extended over‐water operations (defined in 14 CFR Part 1 as greater than 50 NM from the nearest shoreline), operators may consider dual GPS-based systems to meet the “independent” criteria stipulated by regulation, e.g., §121.349, §135.165.
                对于所有延长的水上作业(在 14 CFR 第 1 部分中定义为距最近的海岸线大于 50 海里),运营商可以考虑使用基于 GPS 的双系统来满足法规规定的“独立”标准,例如 §121.349、§135.165。
              2. For all “non-extended overwater” operations, if the primary navigation system is GPS‐based, the second system must be independent of GPS (for example, VOR or DME/DME/IRU). This allows continued navigation in case of failure of the GPS or WAAS services. Recognizing that GPS interference and test events resulting in the loss of GPS services have become more common, the FAA requires operators conducting IFR operations under 14 CFR 121.349, 125.203, 129.17, and 135.65 to retain a non-GPS navigation capability, for example, either DME/DME, IRU, or VOR for en route and terminal operations and VOR and ILS for final approach. Since this system is to be used as a reversionary capability, single equipage is sufficient.
                对于所有“非扩展水上”操作,如果主导航系统基于 GPS,则第二个系统必须独立于 GPS(例如,VOR 或 DME/DME/IRU)。这允许在 GPSWAAS 服务出现故障的情况下继续导航。认识到导致 GPS 服务丢失的 GPS 干扰和测试事件变得越来越普遍,FAA 要求根据 14 CFR 121.349、125.203、129.17 和 135.65 进行 IFR 操作的运营商保留非 GPS 导航功能,例如,用于航路和终端操作的 DME/DME、IRU 或 VOR,以及 VOR 和 ILS对于最终方法。由于该系统将用作回归能力,因此单一设备就足够了。
      3. Oceanic, Domestic, En Route, and Terminal Area Operations
        远洋、国内、航路和码头区运营
        1. Conduct GPS IFR operations in oceanic areas only when approved avionics systems are installed. TSO-C196() users and TSO-C129() GPS users authorized for Class A1, A2, B1, B2, C1, or C2 operations may use GPS in place of another approved means of long-range navigation, such as dual INS. (See TBL 1-1-5 and TBL 1-1-6.) Aircraft with a single installation GPS, meeting the above specifications, are authorized to operate on short oceanic routes requiring one means of long-range navigation (reference AC 20-138, Appendix 1).
          只有在安装了经批准的航空电子系统后,才能在海洋区域进行 GPS IFR 操作。TSO-C196() 用户和 TSO-C129() GPS 用户被授权进行 A1、A2、B1、B2、C1 或 C2 类操作,可以使用 GPS 代替其他经批准的远程导航方式,例如双 INS。(参见 TBL 1-1-5TBL 1-1-6。具有满足上述规格的单一安装 GPS 的飞机被授权在需要一种远程导航方式的短途海洋航线上运行(参考 AC 20-138,附录 1)。
        2. Conduct GPS domestic, en route, and terminal IFR operations only when approved avionics systems are installed. Pilots may use GPS via TSO-C129() authorized for Class A1, B1, B3, C1, or C3 operations GPS via TSO-C196(); or GPS/WAAS with either TSO-C145() or TSO-C146(). When using TSO-C129() or TSO-C196() receivers, the avionics necessary to receive all of the ground-based facilities appropriate for the route to the destination airport and any required alternate airport must be installed and operational. Ground-based facilities necessary for these routes must be operational.
          只有在安装了经批准的航空电子系统后,才能进行 GPS 国内、航路和终端 IFR 操作。飞行员可以通过 TSO-C129() 使用 GPS,授权用于 A1、B1、B3、C1 或 C3 类操作 GPS 通过 TSO-C196() 进行;或 GPS/WAAS 与 TSO-C145() 或 TSO-C146() 一起使用。当使用 TSO-C129() 或 TSO-C196() 接收器时,必须安装并运行必要的航空电子设备,以接收适用于前往目的地机场的航线的所有地面设施和任何所需的备用机场。这些路线所需的地面设施必须正常运行。
          1. GPS en route IFR operations may be conducted in Alaska outside the operational service volume of ground-based navigation aids when a TSO-C145() or TSO-C146() GPS/wide area augmentation system (WAAS) system is installed and operating. WAAS is the U.S. version of a satellite-based augmentation system (SBAS).
            当安装并运行 TSO-C145() 或 TSO-C146() GPS/广域增强系统 (WAAS) 系统时,可以在地面导航辅助设备的运营服务量之外在阿拉斯加进行 GPS 航路 IFR 操作。WAAS 是美国版的卫星增强系统 (SBAS)。
            1. In Alaska, aircraft may operate on GNSS Q-routes with GPS (TSO-C129 () or TSO-C196 ()) equipment while the aircraft remains in Air Traffic Control (ATC) radar surveillance or with GPS/WAAS (TSO-C145 () or TSO-C146 ()) which does not require ATC radar surveillance.
              在阿拉斯加,飞机可以在没有 ATC 雷达监视的 GPS/WAAS(TSO-C145() 或 TSO-C146 ())设备下使用 GPS(TSO-C129 () 或 TSO-C196 ())在 GNSS Q 航线上运行。
            2. In Alaska, aircraft may only operate on GNSS T-routes with GPS/WAAS (TSO-C145 () or TSO-C146 ()) equipment.
              在阿拉斯加,飞机只能使用 GPS/WAAS(TSO-C145 () 或 TSO-C146 ())设备在 GNSS T 航线上运行。
          2. Ground-based navigation equipment is not required to be installed and operating for en route IFR operations when using GPS/WAAS navigation systems. All operators should ensure that an alternate means of navigation is available in the unlikely event the GPS/WAAS navigation system becomes inoperative.
            使用 GPS/WAAS 导航系统时,无需安装和操作地面导航设备即可进行航路 IFR 操作。所有运营商都应确保在 GPS/WAAS 导航系统无法运行的情况下,有替代导航方式可用。
          3. Q-routes and T-routes outside Alaska. Q-routes require system performance currently met by GPS, GPS/WAAS, or DME/DME/IRU RNAV systems that satisfy the criteria discussed in AC 90-100, U.S. Terminal and En Route Area Navigation (RNAV) Operations. T-routes require GPS or GPS/WAAS equipment.
            阿拉斯加以外的 Q 路线和 T 路线。Q 路线要求 GPSGPS/WAASDME/DME/IRU NAV 系统目前满足的系统性能满足 AC 90-100、美国终端和航路区域导航 (RNAV) 操作中讨论的标准。T 路线需要 GPSGPS/WAAS 设备。

            REFERENCE- 参考-

            AIM, Para 5-3-4, Airways and Route Systems.
            AIM,第 5-3-4 段,航空公司和航线系统。

        3. GPS IFR approach/departure operations can be conducted when approved avionics systems are installed and the following requirements are met:
          当安装了经批准的航空电子系统并满足以下要求时,可以进行 GPS IFR 进近/离场操作:
          1. The aircraft is TSO-C145() or TSO-C146() or TSO-C196() or TSO-C129() in Class A1, B1, B3, C1, or C3; and
            飞机为 A1、B1、B3、C1 或 C3 舱位的 TSO-C145() 或 TSO-C146() 或 TSO-C129();和
          2. The approach/departure must be retrievable from the current airborne navigation database in the navigation computer. The system must be able to retrieve the procedure by name from the aircraft navigation database. Manual entry of waypoints using latitude/longitude or place/bearing is not permitted for approach procedures.
            进近/离场必须可从导航计算机中的当前机载导航数据库中检索。系统必须能够从飞机导航数据库中按名称检索过程。进近程序不允许使用纬度/经度或地点/方位手动输入航路点。
          3. The authorization to fly instrument approaches/departures with GPS is limited to U.S. airspace.
            使用 GPS 飞行仪表进近/离场的授权仅限于美国领空。
          4. The use of GPS in any other airspace must be expressly authorized by the FAA Administrator.
            在任何其他空域使用 GPS 必须得到 FAA 管理员的明确授权。
          5. GPS instrument approach/departure operations outside the U.S. must be authorized by the appropriate sovereign authority.
            美国境外的 GPS 仪表进近/离场操作必须得到相应主权机构的授权。
      4. Departures and Instrument Departure Procedures (DPs)
        出发和仪表离境程序 (DP)

        The GPS receiver must be set to terminal (±1 NM) CDI sensitivity and the navigation routes contained in the database in order to fly published IFR charted departures and DPs. Terminal RAIM should be automatically provided by the receiver. (Terminal RAIM for departure may not be available unless the waypoints are part of the active flight plan rather than proceeding direct to the first destination.) Certain segments of a DP may require some manual intervention by the pilot, especially when radar vectored to a course or required to intercept a specific course to a waypoint. The database may not contain all of the transitions or departures from all runways and some GPS receivers do not contain DPs in the database. It is necessary that helicopter procedures be flown at 70 knots or less since helicopter departure procedures and missed approaches use a 20:1 obstacle clearance surface (OCS), which is double the fixed-wing OCS, and turning areas are based on this speed as well.
        GPS 接收器必须设置为终端 (±1 NM) CDI 灵敏度和数据库中包含的导航路线,以便飞行已发布的 IFR 图表出发和 DP。终端 RAIM 应由接收器自动提供。(出发的航站楼 RAIM 可能不可用,除非航点是有效飞行计划的一部分,而不是直接前往第一个目的地。DP 的某些部分可能需要飞行员进行一些手动干预,尤其是当雷达指向航向或需要拦截特定航向到航路点时。数据库可能不包含所有跑道的所有过渡或出发,并且某些 GPS 接收器在数据库中不包含 DP。 直升机程序必须以 70 节或更低的速度飞行,因为直升机起飞程序和错过进近使用 20:1 的越障面 (OCS),这是固定翼 OCS 的两倍,转弯区域也基于这个速度。
      5. GPS Instrument Approach Procedures
        全球定位系统仪器进近程序
        1. GPS overlay approaches are designated non-precision instrument approach procedures that pilots are authorized to fly using GPS avionics. Localizer (LOC), localizer type directional aid (LDA), and simplified directional facility (SDF) procedures are not authorized. Overlay procedures are identified by the “name of the procedure” and “or GPS” (e.g., VOR/DME or GPS RWY 15) in the title. Authorized procedures must be retrievable from a current onboard navigation database. The navigation database may also enhance position orientation by displaying a map containing information on conventional NAVAID approaches. This approach information should not be confused with a GPS overlay approach (see the receiver operating manual, AFM, or AFM Supplement for details on how to identify these approaches in the navigation database).
          GPS 叠加进近是指定的非精密仪器进近程序,飞行员有权使用 GPS 航空电子设备进行飞行。Localizer (LOC)、Localizer type directional aid (LDA) 和简化定向设施 (SDF) 程序未获得授权。叠加程序由标题中的“程序名称”和“或 GPS”(例如,VOR/DMEGPS RWY 15)标识。授权程序必须可从当前的船上导航数据库中检索。导航数据库还可以通过显示包含常规 NAVAID 方法信息的地图来增强位置方向。此进近信息不应与 GPS 叠加进近相混淆(有关如何在导航数据库中识别这些进近的详细信息,请参阅接收机操作手册、AFM 或 AFM 补充)。

          NOTE- 注意-

          Overlay approaches do not adhere to the design criteria described in paragraph 5-4-5m, Area Navigation (RNAV) Instrument Approach Charts, for stand-alone GPS approaches. Overlay approach criteria is based on the design criteria used for ground-based NAVAID approaches.
          对于独立的 GPS 进近,叠加进近不符合第 5-4-5m 段,区域导航 (RNAV) 仪器进近图中描述的设计标准。叠加进近标准基于用于地面 NAVAID 进近的设计标准。

        2. Stand-alone approach procedures specifically designed for GPS systems have replaced many of the original overlay approaches. All approaches that contain “GPS” in the title (e.g., “VOR or GPS RWY 24,” “GPS RWY 24,” or “RNAV (GPS) RWY 24”) can be flown using GPS. GPS-equipped aircraft do not need underlying ground-based NAVAIDs or associated aircraft avionics to fly the approach. Monitoring the underlying approach with ground-based NAVAIDs is suggested when able. Existing overlay approaches may be requested using the GPS title; for example, the VOR or GPS RWY 24 may be requested as “GPS RWY 24.” Some GPS procedures have a Terminal Arrival Area (TAA) with an underlining RNAV approach.
          专为 GPS 系统设计的独立进近程序已经取代了许多原始的叠加进近。标题中包含“GPS”的所有进近(例如,“VOR GPS RWY 24”、“GPS RWY 24”或“RNAVGPS) RWY 24”)都可以使用 GPS 飞行。配备 GPS 的飞机不需要底层的地面 NAVAID 或相关的飞机航空电子设备即可进行进近飞行。如果可能,建议使用地面 NAVAID 监测基本方法。可以使用 GPS 标题请求现有叠加方法;例如,VOR 或 GPS RWY 24 可能被请求为“GPS RWY 24”。一些 GPS 程序具有终端到达区域 (TAA),并带有下划线 RNAV 方法。
        3. For flight planning purposes, TSO-C129() and TSO-C196()-equipped users (GPS users) whose navigation systems have fault detection and exclusion (FDE) capability, who perform a preflight RAIM prediction for the approach integrity at the airport where the RNAV (GPS) approach will be flown, and have proper knowledge and any required training and/or approval to conduct a GPS-based IAP, may file based on a GPS-based IAP at either the destination or the alternate airport, but not at both locations. At the alternate airport, pilots may plan for:
          出于飞行规划目的,配备 TSO-C129() 和 TSO-C196() 的用户(GPS 用户),其导航系统具有故障检测和排除 (FDE) 功能,在将要飞行 RNAVGPS) 进近的机场对进近完整性执行飞行前 RAIM 预测,并拥有适当的知识和任何必要的培训和/或批准来执行基于 GPS 的 IAP, 可以在目的地或备用机场根据基于 GPSIAP 提交申请,但不能同时在这两个地点提交申请。在备用机场,飞行员可以安排:
          1. Lateral navigation (LNAV) or circling minimum descent altitude (MDA);
            横向导航 (LNAV) 或盘旋最低下降高度 (MDA);
          2. LNAV/vertical navigation (LNAV/VNAV) DA, if equipped with and using approved barometric vertical navigation (baro-VNAV) equipment;
            LNAV/垂直导航 (LNAV/VNAV) DA,如果配备并使用经批准的气压垂直导航 (baro-VNAV) 设备;
          3. RNP 0.3 DA on an RNAV (RNP) IAP, if they are specifically authorized users using approved baro-VNAV equipment and the pilot has verified required navigation performance (RNP) availability through an approved prediction program.
            如果飞行员是使用经批准的 baro-VNAV 设备的专门授权用户,并且飞行员已通过经批准的预测计划验证了所需导航性能 (RNP) 的可用性,则 RNAV (RNP) IAP 上的 RNP 为 0.3 DA。
        4. If the above conditions cannot be met, any required alternate airport must have an approved instrument approach procedure other than GPS-based that is anticipated to be operational and available at the estimated time of arrival, and which the aircraft is equipped to fly.
          如果无法满足上述条件,任何所需的备用机场都必须具有经批准的仪表进近程序,而不是基于 GPS 的仪表进近程序,该程序预计在预计到达时间可运行并可用,并且飞机具备飞行设备。
        5. Procedures for Accomplishing GPS Approaches
          完成 GPS 进近的程序
          1. An RNAV (GPS) procedure may be associated with a Terminal Arrival Area (TAA). The basic design of the RNAV procedure is the “T” design or a modification of the “T” (See Paragraph 5-4-5d, Terminal Arrival Area (TAA), for complete information).
            RNAVGPS) 程序可能与终端到达区 (TAA) 相关联。RNAV 程序的基本设计是“T”型设计或“T”型的修改(有关完整信息,请参阅第 5-4-5d 段,终端到达区 (TAA))。
          2. Pilots cleared by ATC for an RNAV (GPS) approach should fly the full approach from an Initial Approach Waypoint (IAWP) or feeder fix. Randomly joining an approach at an intermediate fix does not assure terrain clearance.
            经 ATC 批准进行 RNAVGPS) 进近的飞行员应从初始进近航点 (IAWP) 或支线定位进行全程进近飞行。在中间定位点随机加入进近并不能保证地形间隙。
          3. When an approach has been loaded in the navigation system, GPS receivers will give an “arm” annunciation 30 NM straight line distance from the airport/heliport reference point. Pilots should arm the approach mode at this time if not already armed (some receivers arm automatically). Without arming, the receiver will not change from en route CDI and RAIM sensitivity of ±5 NM either side of centerline to ±1 NM terminal sensitivity. Where the IAWP is inside this 30 mile point, a CDI sensitivity change will occur once the approach mode is armed and the aircraft is inside 30 NM. Where the IAWP is beyond 30 NM from the airport/heliport reference point and the approach is armed, the CDI sensitivity will not change until the aircraft is within 30 miles of the airport/heliport reference point. Feeder route obstacle clearance is predicated on the receiver being in terminal (±1 NM) CDI sensitivity and RAIM within 30 NM of the airport/heliport reference point; therefore, the receiver should always be armed (if required) not later than the 30 NM annunciation.
            当导航系统中加载了进近时,GPS 接收器将在距离机场/直升机场参考点 30 海里直线距离处发出“臂”通告。如果飞行员还没有布防,此时应该布防进近模式(一些接收器会自动布防)。如果不布防,接收器不会从中心线两侧的途中 CDI 和 RAIM 灵敏度 ±5 NM 变为 ±1 NM 末端灵敏度。如果 IAWP 位于该 30 英里点内,一旦部署进近模式并且飞机在 30 海里范围内,就会发生 CDI 灵敏度变化。如果 IAWP 距离机场/直升机场参考点超过 30 海里并且进近已布防,则 CDI 灵敏度不会改变,直到飞机距离机场/直升机场参考点 30 英里以内。馈线路线越障前提条件是接收器处于终端 (±1 NM) CDI 灵敏度和 RAIM 在机场/直升机场参考点 30 海里以内;因此,接收器应始终在不迟于 30 海里信号通告的情况下(如果需要)。
          4. The pilot must be aware of what bank angle/turn rate the particular receiver uses to compute turn anticipation, and whether wind and airspeed are included in the receiver's calculations. This information should be in the receiver operating manual. Over or under banking the turn onto the final approach course may significantly delay getting on course and may result in high descent rates to achieve the next segment altitude.
            飞行员必须了解特定接收器用于计算转弯预期的倾斜角度/转弯速率,以及接收器的计算中是否包括风和空速。此信息应包含在接收器操作手册中。在转弯到最后进近航线时,过度或不足可能会显着延迟进入路线,并可能导致达到下一段高度的高下降率。
          5. When within 2 NM of the Final Approach Waypoint (FAWP) with the approach mode armed, the approach mode will switch to active, which results in RAIM and CDI changing to approach sensitivity. Beginning 2 NM prior to the FAWP, the full scale CDI sensitivity will smoothly change from ±1 NM to ±0.3 NM at the FAWP. As sensitivity changes from ±1 NM to ±0.3 NM approaching the FAWP, with the CDI not centered, the corresponding increase in CDI displacement may give the impression that the aircraft is moving further away from the intended course even though it is on an acceptable intercept heading. Referencing the digital track displacement information (cross track error), if it is available in the approach mode, may help the pilot remain position oriented in this situation. Being established on the final approach course prior to the beginning of the sensitivity change at 2 NM will help prevent problems in interpreting the CDI display during ramp down. Therefore, requesting or accepting vectors which will cause the aircraft to intercept the final approach course within 2 NM of the FAWP is not recommended.
            当在准备进近模式的情况下,距离最终进近航点 (FAWP) 不到 2 海里时,进近模式将切换到主动模式,这会导致 RAIM 和 CDI 变为进近灵敏度。从 FAWP 前 2 nm 开始,FAWP 的满量程 CDI 灵敏度将从 ±1 NM 平滑变为 ±0.3 NM。当灵敏度从 ±1 海里变为 ±0.3 海里接近 FAWP 时,CDI 位移没有居中,CDI 位移的相应增加可能会给人一种印象,即飞机正在远离预定航线,即使它处于可接受的拦截航向。参考数字航迹位移信息(交叉航迹误差),如果在进近模式下可用,可能有助于飞行员在这种情况下保持位置导向。在 2 nm 灵敏度变化开始之前确定最终进近路线将有助于防止在斜坡下降期间解释 CDI 显示时出现问题。因此,不建议请求或接受将导致飞机在 FAWP 2 海里范围内拦截最终进近航向的矢量。
          6. When receiving vectors to final, most receiver operating manuals suggest placing the receiver in the non-sequencing mode on the FAWP and manually setting the course. This provides an extended final approach course in cases where the aircraft is vectored onto the final approach course outside of any existing segment which is aligned with the runway. Assigned altitudes must be maintained until established on a published segment of the approach. Required altitudes at waypoints outside the FAWP or stepdown fixes must be considered. Calculating the distance to the FAWP may be required in order to descend at the proper location.
            当接收矢量到最终时,大多数接收机操作手册建议将接收机置于 FAWP 上的非排序模式并手动设置航向。这为飞机在与跑道对齐的任何现有航段之外的最终进近航向提供矢量化到最终进近航向的情况下提供了扩展的最终进近航向。在进近的已发布部分建立之前,必须保持指定的高度。必须考虑 FAWP 或下行距定位之外的航点所需的高度。可能需要计算到 FAWP 的距离才能在正确的位置下降。
          7. Overriding an automatically selected sensitivity during an approach will cancel the approach mode annunciation. If the approach mode is not armed by 2 NM prior to the FAWP, the approach mode will not become active at 2 NM prior to the FAWP, and the equipment will flag. In these conditions, the RAIM and CDI sensitivity will not ramp down, and the pilot should not descend to MDA, but fly to the MAWP and execute a missed approach. The approach active annunciator and/or the receiver should be checked to ensure the approach mode is active prior to the FAWP.
            在接近期间覆盖自动选择的敏感度将取消接近模式通知。如果在 FAWP 之前没有 2 海里为进近模式配备,则进近模式不会在 FAWP 之前的 2 海里处激活,并且设备将出现标志。在这些情况下,RAIM 和 CDI 灵敏度不会下降,飞行员不应下降到 MDA,而是飞往 MAWP 并执行错过的进近。应检查进近主动信号器和/或接收器,以确保进近模式在 FAWP 之前处于活动状态。
          8. Do not attempt to fly an approach unless the procedure in the onboard database is current and identified as “GPS” on the approach chart. The navigation database may contain information about non-overlay approach procedures that enhances position orientation generally by providing a map, while flying these approaches using conventional NAVAIDs. This approach information should not be confused with a GPS overlay approach (see the receiver operating manual, AFM, or AFM Supplement for details on how to identify these procedures in the navigation database). Flying point to point on the approach does not assure compliance with the published approach procedure. The proper RAIM sensitivity will not be available and the CDI sensitivity will not automatically change to ±0.3 NM. Manually setting CDI sensitivity does not automatically change the RAIM sensitivity on some receivers. Some existing non-precision approach procedures cannot be coded for use with GPS and will not be available as overlays.
            除非机载数据库中的程序是最新的并且在进近图上标识为“GPS”,否则不要尝试飞行进近。导航数据库可能包含有关非叠加进近程序的信息,这些程序通常通过提供地图来增强位置方向,同时使用传统的 NAVAID 飞行这些进近。该进近信息不应与 GPS 叠加进近混淆(有关如何在导航数据库中识别这些程序的详细信息,请参阅接收机操作手册、AFM 或 AFM 补充)。在进近上点对点飞行并不能保证遵守已发布的进近程序。将无法获得适当的 RAIM 灵敏度,并且 CDI 灵敏度不会自动更改为 ±0.3 NM。手动设置 CDI 灵敏度不会自动更改某些接收机上的 RAIM 灵敏度。一些现有的非精确进近程序无法编码以用于 GPS,并且不能作为叠加层使用。
          9. Pilots should pay particular attention to the exact operation of their GPS receivers for performing holding patterns and in the case of overlay approaches, operations such as procedure turns. These procedures may require manual intervention by the pilot to stop the sequencing of waypoints by the receiver and to resume automatic GPS navigation sequencing once the maneuver is complete. The same waypoint may appear in the route of flight more than once consecutively (for example, IAWP, FAWP, MAHWP on a procedure turn). Care must be exercised to ensure that the receiver is sequenced to the appropriate waypoint for the segment of the procedure being flown, especially if one or more fly-overs are skipped (for example, FAWP rather than IAWP if the procedure turn is not flown). The pilot may have to sequence past one or more fly-overs of the same waypoint in order to start GPS automatic sequencing at the proper place in the sequence of waypoints.
            飞行员应特别注意其 GPS 接收器的确切操作,以执行保持模式,在叠加进近的情况下,还应注意程序转弯等操作。这些程序可能需要飞行员进行手动干预,以停止接收器对航路点的排序,并在机动完成后恢复自动 GPS 导航排序。相同的航点可能会连续多次出现在飞行路线中(例如,IAWPFAWPMAHWP 在程序转弯时)。必须小心确保接收器被排序到正在飞行的程序部分的适当航路点,尤其是在跳过一个或多个飞行时(例如,如果程序转弯未飞行,则使用 FAWP 而不是 IAWP)。飞行员可能必须对同一航路点的一个或多个飞越进行排序,以便在航路点序列中的适当位置启动 GPS 自动排序。
          10. Incorrect inputs into the GPS receiver are especially critical during approaches. In some cases, an incorrect entry can cause the receiver to leave the approach mode.
            在进近过程中,GPS 接收器的错误输入尤为严重。在某些情况下,不正确的输入可能会导致接收器离开进近模式。
          11. A fix on an overlay approach identified by a DME fix will not be in the waypoint sequence on the GPS receiver unless there is a published name assigned to it. When a name is assigned, the along track distance (ATD) to the waypoint may be zero rather than the DME stated on the approach chart. The pilot should be alert for this on any overlay procedure where the original approach used DME.
            DME 定位标识的叠加进近的定位将不会出现在 GPS 接收器的航路点序列中,除非为其分配了已发布的名称。分配名称后,到航点的沿航迹距离 (ATD) 可能为零,而不是进近图上注明的 DME。飞行员应在原始方法使用 DME 的任何叠加程序中对此保持警惕。
          12. If a visual descent point (VDP) is published, it will not be included in the sequence of waypoints. Pilots are expected to use normal piloting techniques for beginning the visual descent, such as ATD.
            如果发布了目视下降点 (VDP),则不会包含在航点序列中。飞行员应使用正常的驾驶技术开始目视下降,例如 ATD
          13. Unnamed stepdown fixes in the final approach segment may or may not be coded in the waypoint sequence of the aircraft's navigation database and must be identified using ATD. Stepdown fixes in the final approach segment of RNAV (GPS) approaches are being named, in addition to being identified by ATD. However, GPS avionics may or may not accommodate waypoints between the FAF and MAP. Pilots must know the capabilities of their GPS equipment and continue to identify stepdown fixes using ATD when necessary.
            最终进近段中未命名的下行距定位可能在飞机导航数据库的航路点序列中编码,也可能不编码,并且必须使用 ATD 进行识别。除了由 ATD 识别外,RNAVGPS) 进近的最后一个进近段中的下移修复也被命名。但是,GPS 航空电子设备可能会也可能不会容纳 FAFMAP 之间的航点。飞行员必须了解其 GPS 设备的能力,并在必要时继续使用 ATD 确定下放修复。
        6. Missed Approach 错过了进场
          1. A GPS missed approach requires pilot action to sequence the receiver past the MAWP to the missed approach portion of the procedure. The pilot must be thoroughly familiar with the activation procedure for the particular GPS receiver installed in the aircraft and must initiate appropriate action after the MAWP. Activating the missed approach prior to the MAWP will cause CDI sensitivity to immediately change to terminal (±1NM) sensitivity and the receiver will continue to navigate to the MAWP. The receiver will not sequence past the MAWP. Turns should not begin prior to the MAWP. If the missed approach is not activated, the GPS receiver will display an extension of the inbound final approach course and the ATD will increase from the MAWP until it is manually sequenced after crossing the MAWP.
            GPS 错过进近需要飞行员采取行动,将接收器通过 MAWP 排序到程序的错过进近部分。飞行员必须完全熟悉安装在飞机上的特定 GPS 接收器的激活程序,并且必须在 MAWP 之后采取适当的行动。在 MAWP 之前激活错过的进近将导致 CDI 灵敏度立即变为终端 (±1NM) 灵敏度,接收器将继续导航到 MAWP。接收器不会通过 MAWP 进行序列。转弯不应在 MAWP 之前开始。如果未激活错过的进近,GPS 接收器将显示入站最终进近航向的扩展,并且 ATD 将从 MAWP 开始增加,直到在越过 MAWP 后手动排序。
          2. Missed approach routings in which the first track is via a course rather than direct to the next waypoint require additional action by the pilot to set the course. Being familiar with all of the inputs required is especially critical during this phase of flight.
            错过的进近路线,其中第一条航迹是通过航向而不是直接到下一个航路点,飞行员需要采取额外的措施来设置航向。熟悉所需的所有输入在飞行的这个阶段尤为重要。
        7. Receiver Autonomous Integrity Monitoring (RAIM)
          接收器自主完整性监测 (RAIM)
          1. RAIM outages may occur due to an insufficient number of satellites or due to unsuitable satellite geometry which causes the error in the position solution to become too large. Loss of satellite reception and RAIM warnings may occur due to aircraft dynamics (changes in pitch or bank angle). Antenna location on the aircraft, satellite position relative to the horizon, and aircraft attitude may affect reception of one or more satellites. Since the relative positions of the satellites are constantly changing, prior experience with the airport does not guarantee reception at all times, and RAIM availability should always be checked.
            RAIM 中断可能是由于卫星数量不足或卫星几何结构不合适导致位置解中的误差变得太大。由于飞机动力学(俯仰角或倾斜角的变化),可能会出现卫星接收丢失和 RAIM 警告。飞机上的天线位置、卫星相对于地平线的位置以及飞机姿态可能会影响一个或多个卫星的接收。由于卫星的相对位置不断变化,因此之前在机场的经验并不能保证始终接收到,应始终检查 RAIM 的可用性。
          2. Civilian pilots may obtain GPS RAIM availability information for nonprecision approach procedures by using a manufacturer-supplied RAIM prediction tool, or using the Service Availability Prediction Tool (SAPT) on the FAA en route and terminal RAIM prediction website. Pilots can also request GPS RAIM aeronautical information from a flight service station during preflight briefings. GPS RAIM aeronautical information can be obtained for a period of 3 hours (for example, if you are scheduled to arrive at 1215 hours, then the GPS RAIM information is available from 1100 to 1400 hours) or a 24-hour timeframe at a particular airport. FAA briefers will provide RAIM information for a period of 1 hour before to 1 hour after the ETA hour, unless a specific timeframe is requested by the pilot. If flying a published GPS departure, a RAIM prediction should also be requested for the departure airport.
            民用飞行员可以通过使用制造商提供的 RAIM 预测工具,或使用 FAA 航路和终端 RAIM 预测网站上的服务可用性预测工具 (SAPT) 来获取非精确进近程序的 GPS RAIM 可用性信息。飞行员还可以在飞行前简报期间向飞行服务站请求 GPS RAIM 航空信息。在特定机场,可以在 3 小时内(例如,如果您计划在 1215 小时到达,则 GPS RAIM 信息在 1100 到 1400 小时内可用)或 24 小时。FAA 简报员将在 ETA 时间之前 1 小时至之后 1 小时内提供 RAIM 信息,除非飞行员要求特定时间范围。如果飞行的是已发布的 GPS 出发地,还应请求出发机场的 RAIM 预测。
          3. The military provides airfield specific GPS RAIM NOTAMs for nonprecision approach procedures at military airfields. The RAIM outages are issued as M-series NOTAMs and may be obtained for up to 24 hours from the time of request.
            军方为军用机场的非精确进近程序提供机场特定的 GS RAIM NOTAM。RAIM 中断以 M 系列 NOTAM的形式发布,自请求之日起最多 24 小时内可用。
          4. Receiver manufacturers and/or database suppliers may supply “NOTAM” type information concerning database errors. Pilots should check these sources when available, to ensure that they have the most current information concerning their electronic database.
            接收机制造商和/或数据库供应商可能会提供有关数据库错误的 “NOTAM” 类型信息。飞行员应在可用时检查这些来源,以确保他们拥有有关其电子数据库的最新信息。
          5. If RAIM is not available, use another type of navigation and approach system; select another route or destination; or delay the trip until RAIM is predicted to be available on arrival. On longer flights, pilots should consider rechecking the RAIM prediction for the destination during the flight. This may provide an early indication that an unscheduled satellite outage has occurred since takeoff.
            如果 RAIM 不可用,请使用其他类型的导航和进近系统;选择其他路线或目的地;或延迟行程,直到预计 RAIM 在抵达时可用。在长途飞行中,飞行员应考虑在飞行期间重新检查目的地的 RAIM 预测。这可能提供自起飞以来发生计划外卫星中断的早期指示。
          6. If a RAIM failure/status annunciation occurs prior to the final approach waypoint (FAWP), the approach should not be completed since GPS no longer provides the required integrity. The receiver performs a RAIM prediction by 2 NM prior to the FAWP to ensure that RAIM is available as a condition for entering the approach mode. The pilot should ensure the receiver has sequenced from “Armed” to “Approach” prior to the FAWP (normally occurs 2 NM prior). Failure to sequence may be an indication of the detection of a satellite anomaly, failure to arm the receiver (if required), or other problems which preclude flying the approach.
            如果 RAIM 故障/状态通告发生在最终进近航点 (FAWP) 之前,则不应完成进近,因为 GPS 不再提供所需的完整性。接收器在 FAWP 之前执行 2 NM 的 RAIM 预测,以确保 RAIM 可用作进入进近模式的条件。飞行员应确保接收器在 FAWP 之前已从“武装”排序到“进近”(通常发生在 2 海里之前)。未能进行测序可能表明检测到卫星异常、未能布防接收器(如果需要)或其他妨碍飞行进近的问题。
          7. If the receiver does not sequence into the approach mode or a RAIM failure/status annunciation occurs prior to the FAWP, the pilot must not initiate the approach nor descend, but instead, proceed to the missed approach waypoint (MAWP) via the FAWP, perform a missed approach, and contact ATC as soon as practical. The GPS receiver may continue to operate after a RAIM flag/status annunciation appears, but the navigation information should be considered advisory only. Refer to the receiver operating manual for specific indications and instructions associated with loss of RAIM prior to the FAF.
            如果接收机没有排序进入进近模式,或者在 FAWP 之前发生 RAIM 故障/状态通知,飞行员不得开始进近或下降,而是通过 FAWP 继续前往错过的进近航点 (MAWP),执行错过的进近,并尽快联系 ATC。在出现 RAIM 标志/状态通知后,GPS 接收器可以继续运行,但导航信息应仅被视为建议信息。请参阅 Receiver 操作手册,了解在 FAF 之前丢失 RAIM 的具体指示和说明。
          8. If the RAIM flag/status annunciation appears after the FAWP, the pilot should initiate a climb and execute the missed approach. The GPS receiver may continue to operate after a RAIM flag/status annunciation appears, but the navigation information should be considered advisory only. Refer to the receiver operating manual for operating mode information during a RAIM annunciation.
            如果 RAIM 标志/状态通知出现在 FAWP 之后,飞行员应开始爬升并执行错过的进近。在出现 RAIM 标志/状态通知后,GPS 接收器可以继续运行,但导航信息应仅被视为建议信息。请参阅 接收机操作手册,了解 RAIM 通知期间的操作模式信息。
        8. Waypoints 航点
          1. GPS receivers navigate from one defined point to another retrieved from the aircraft's onboard navigational database. These points are waypoints (5-letter pronounceable name), existing VHF intersections, DME fixes with 5-letter pronounceable names and 3-letter NAVAID IDs. Each waypoint is a geographical location defined by a latitude/longitude geographic coordinate. These 5-letter waypoints, VHF intersections, 5-letter pronounceable DME fixes and 3-letter NAVAID IDs are published on various FAA aeronautical navigation products (IFR Enroute Charts, VFR Charts, Terminal Procedures Publications, etc.).
            GPS 接收器从一个定义的点导航到从飞机的机载导航数据库中检索到的另一个定义点。这些点是航路点(5 个字母的可发音名称)、现有的 VHF 交叉点、具有 5 个字母的可发音名称和 3 个字母的 NAVAID ID 的 DME 修复。每个航点都是由纬度/经度地理坐标定义的地理位置。这些 5 个字母的航路点、VHF 交叉点、5 个字母的可发音 DME 修复点和 3 个字母的 NAVAID ID 发布在各种 FAA 航空导航产品(IFR 航路图、VFR 图、终端程序出版物等)上。
          2. A Computer Navigation Fix (CNF) is also a point defined by a latitude/longitude coordinate and is required to support Performance-Based Navigation (PBN) operations. The GPS receiver uses CNFs in conjunction with waypoints to navigate from point to point. However, CNFs are not recognized by ATC. ATC does not maintain CNFs in their database and they do not use CNFs for any air traffic control purpose. CNFs may or may not be charted on FAA aeronautical navigation products, are listed in the chart legends, and are for advisory purposes only. Pilots are not to use CNFs for point to point navigation (proceed direct), filing a flight plan, or in aircraft/ATC communications. CNFs that do appear on aeronautical charts allow pilots increased situational awareness by identifying points in the aircraft database route of flight with points on the aeronautical chart. CNFs are random five-letter identifiers, not pronounceable like waypoints and placed in parenthesis. Eventually, all CNFs will begin with the letters “CF” followed by three consonants (for example, CFWBG). This five-letter identifier will be found next to an “x” on enroute charts and possibly on an approach chart. On instrument approach procedures (charts) in the terminal procedures publication, CNFs may represent unnamed DME fixes, beginning and ending points of DME arcs, and sensor (ground-based signal i.e., VOR, NDB, ILS) final approach fixes on GPS overlay approaches. These CNFs provide the GPS with points on the procedure that allow the overlay approach to mirror the ground-based sensor approach. These points should only be used by the GPS system for navigation and should not be used by pilots for any other purpose on the approach. The CNF concept has not been adopted or recognized by the International Civil Aviation Organization (ICAO).
            计算机导航修复 (CNF) 也是由纬度/经度坐标定义的点,是支持基于性能的导航 (PBN) 操作所必需的。GPS 接收器将 CNF 与航路点结合使用,从一个点导航到另一个点。但是,ATC 无法识别 CNF。ATC 不在其数据库中维护 CNF,他们也不会将 CNF 用于任何空中交通管制目的。CNF 可能在 FAA 航空导航产品上绘制,也可能不绘制,列在图表图例中,仅用于咨询目的。飞行员不得将 CNF 用于点对点导航(直接进行)、提交飞行计划或用于飞机/ATC 通信。航空图上出现的 CNF 允许飞行员通过识别飞机数据库中的点、飞行路线中的点和航空图上的点来提高态势感知能力。CNF 是随机的 5 个字母标识符,不像航点那样发音,并放在括号中。最终,所有 CNF 都将以字母 “CF” 开头,后跟三个辅音 (例如 CFWBG) 。这个 5 个字母的标识符可以在航路图上的“x”旁边找到,也可能在进近图上找到。在终端程序出版物的仪表进近程序(图表)上,CNF 可能表示未命名的 DME 定位、DME 弧的起点和终点,以及传感器(地面信号,即 VOR、NDB、ILS)对 GPS 叠加进近的最终进近定位。这些 CNF 为GPS提供了程序上的点,这些点允许叠加方法镜像基于地面的传感器方法。 这些点只能由 GPS 系统用于导航,飞行员不应将其用于进近时的任何其他目的。CNF 概念尚未被国际民用航空组织 (ICAO) 采用或认可。
          3. GPS approaches use fly-over and fly-by waypoints to join route segments on an approach. Fly-by waypoints connect the two segments by allowing the aircraft to turn prior to the current waypoint in order to roll out on course to the next waypoint. This is known as turn anticipation and is compensated for in the airspace and terrain clearances. The missed approach waypoint (MAWP) will always be a fly-over waypoint. A holding waypoint will always be designed as a fly-over waypoint in the navigational database but may be charted as a fly-by event unless the holding waypoint is used for another purpose in the procedure and both events require the waypoint to be a fly-over event. Some waypoints may have dual use; for example, as a fly-by waypoint when used as an IF for a NoPT route and as a fly-over waypoint when the same waypoint is also used as an IAF/IF hold-in-lieu of PT. Since the waypoint can only be charted one way, when this situation occurs, the fly-by waypoint symbol will be charted in all uses of the waypoint.
            GPS 方法使用飞越和飞越航路点来连接进近时的路线段。飞越航路点通过允许飞机在当前航路点之前转弯来连接两个航段,以便按航线滚向下一个航路点。这称为转弯预期,并在空域和地形间隙中进行补偿。错过的进近航点 (MAWP) 将始终是飞越航点。在导航数据库中,保持航路点将始终设计为飞越航路点,但可以绘制为飞越事件,除非保持航路点在程序中用于其他目的,并且两个事件都要求航路点为飞越事件。某些航点可能具有双重用途;例如,当用作无PT 路线的 IF 时,作为飞越航点,当同一航点也用作 PTIAF/IF 保持时,用作飞越航点。由于航点只能以一种方式绘制,因此当这种情况发生时,飞越航点符号将在航点的所有使用中绘制。
          4. Unnamed waypoints for each airport will be uniquely identified in the database. Although the identifier may be used at different airports (for example, RW36 will be the identifier at each airport with a runway 36), the actual point, at each airport, is defined by a specific latitude/longitude coordinate.
            每个机场的未命名航点将在数据库中唯一标识。尽管标识符可能在不同的机场使用(例如,RW36 将是每个有 36 号跑道的机场的标识符),但每个机场的实际点由特定的纬度/经度坐标定义。
          5. The runway threshold waypoint, normally the MAWP, may have a five-letter identifier (for example, SNEEZ) or be coded as RW## (for example, RW36, RW36L). MAWPs located at the runway threshold are being changed to the RW## identifier, while MAWPs not located at the threshold will have a five-letter identifier. This may cause the approach chart to differ from the aircraft database until all changes are complete. The runway threshold waypoint is also used as the center of the Minimum Safe Altitude (MSA) on most GPS approaches.
            跑道阈值航路点(通常是 MAWP)可能具有五个字母的标识符(例如,SNEEZ)或编码为 RW##(例如,RW36、RW36L)。位于跑道入口处的 MAWP将更改为 RW## 标识符,而不位于阈值处的 MAWP将具有五个字母的标识符。这可能会导致进近图与飞机数据库不同,直到所有更改都完成。在大多数 GPS 进近中,跑道阈值航路点也用作最低安全高度 (MSA) 的中心。
        9. Position Orientation. Pilots should pay particular attention to position orientation while using GPS. Distance and track information are provided to the next active waypoint, not to a fixed navigation aid. Receivers may sequence when the pilot is not flying along an active route, such as when being vectored or deviating for weather, due to the proximity to another waypoint in the route. This can be prevented by placing the receiver in the non-sequencing mode. When the receiver is in the non-sequencing mode, bearing and distance are provided to the selected waypoint and the receiver will not sequence to the next waypoint in the route until placed back in the auto sequence mode or the pilot selects a different waypoint. The pilot may have to compute the ATD to stepdown fixes and other points on overlay approaches, due to the receiver showing ATD to the next waypoint rather than DME to the VOR or ILS ground station.
          位置方向。 飞行员在使用 GPS 时应特别注意位置方向。距离和航迹信息将提供给下一个活动航点,而不是固定导航辅助设备。当飞行员没有沿着活动路线飞行时,例如由于靠近路线中的另一个航路点,当被矢量化或因天气而偏离时,接收器可能会进行排序。这可以通过将接收器置于非排序模式来防止。当接收器处于非排序模式时,方位和距离将提供给所选航点,接收器不会排序到航线中的下一个航点,直到回到自动排序模式或飞行员选择不同的航路点。飞行员可能必须计算 ATD 到下移定位和叠加进近的其他点,因为接收器显示的是下一个航路点的 ATD,而不是 VOR 或 ILS 地面站的 DME
        10. Impact of Magnetic Variation on PBN Systems
          磁变化对 PBN 系统的影响
          1. Differences may exist between PBN systems and the charted magnetic courses on ground-based NAVAID instrument flight procedures (IFP), enroute charts, approach charts, and Standard Instrument Departure/Standard Terminal Arrival (SID/STAR) charts. These differences are due to the magnetic variance used to calculate the magnetic course. Every leg of an instrument procedure is first computed along a desired ground track with reference to true north. A magnetic variation correction is then applied to the true course in order to calculate a magnetic course for publication. The type of procedure will determine what magnetic variation value is added to the true course. A ground-based NAVAID IFP applies the facility magnetic variation of record to the true course to get the charted magnetic course. Magnetic courses on PBN procedures are calculated two different ways. SID/STAR procedures use the airport magnetic variation of record, while IFR enroute charts use magnetic reference bearing. PBN systems make a correction to true north by adding a magnetic variation calculated with an algorithm based on aircraft position, or by adding the magnetic variation coded in their navigational database. This may result in the PBN system and the procedure designer using a different magnetic variation, which causes the magnetic course displayed by the PBN system and the magnetic course charted on the IFP plate to be different. It is important to understand, however, that PBN systems, (with the exception of VOR/DME RNAV equipment) navigate by reference to true north and display magnetic course only for pilot reference. As such, a properly functioning PBN system, containing a current and accurate navigational database, should fly the correct ground track for any loaded instrument procedure, despite differences in displayed magnetic course that may be attributed to magnetic variation application. Should significant differences between the approach chart and the PBN system avionics' application of the navigation database arise, the published approach chart, supplemented by NOTAMs, holds precedence.
            PBN 系统与地面 NAVAID 仪表飞行程序 (IFP)、航路图、进近图和标准仪表出发/标准终端到达 (SID/STAR) 图上的磁航向图可能存在差异。这些差异是由于用于计算磁路线的磁方差造成的。首先,参考正北沿所需的接地轨迹计算仪器程序的每条边。然后将磁变化校正应用于真实航向,以计算用于发布的磁航向。程序类型将决定将什么磁变化值添加到真实路线中。地面 NAVAID IFP 将设施磁记录的变化应用于真实航向,以获得绘制的磁航向。PBN 程序上的磁课程有两种不同的计算方式。SID/STAR 程序使用机场磁变化记录,而 IFR 航路图使用磁参考方位。PBN 系统通过添加使用基于飞机位置的算法计算的磁变化,或通过在其导航数据库中添加编码的磁变化来校正真北。这可能会导致 PBN 系统和程序设计者使用不同的磁性变化,从而导致 PBN 系统显示的磁程与 IFP 板上绘制的磁程不同。 然而,重要的是要理解 PBN 系统(VOR/DME RNAV 设备除外)参考真北导航,并显示磁航向仅供飞行员参考。因此,一个正常运行PBN 系统,包含最新和准确的导航数据库,应该为任何加载的仪器程序飞行正确的地面轨道,尽管显示的磁航向可能归因于磁变化应用。如果进近图和 PBN 系统航空电子设备对导航数据库的应用出现显着差异,则以已发布的进近图(由 NOTAM补充)优先。
          2. The course into a waypoint may not always be 180 degrees different from the course leaving the previous waypoint, due to the PBN system avionics' computation of geodesic paths, distance between waypoints, and differences in magnetic variation application. Variations in distances may also occur since PBN system distance-to-waypoint values are ATDs computed to the next waypoint and the DME values published on underlying procedures are slant-range distances measured to the station. This difference increases with aircraft altitude and proximity to the NAVAID.
            由于 PBN 系统航空电子设备对测地线路径、航路点之间的距离以及磁变化应用的差异,进入航路点的航向可能并不总是与离开前一个航路点的航向相差 180 度。由于 PBN 系统到航路点的距离值是计算到下一个航路点的 ATD,而基础程序上发布的 DME 值是到站点测量的倾斜距离,因此也可能发生距离变化。这种差异随着飞机高度和与 NAVAID 的接近程度而增加。
        11. GPS Familiarization
          全球定位系统熟悉

          Pilots should practice GPS approaches in visual meteorological conditions (VMC) until thoroughly proficient with all aspects of their equipment (receiver and installation) prior to attempting flight in instrument meteorological conditions (IMC). Pilots should be proficient in the following areas:
          飞行员应在视觉气象条件 (VMC) 中练习 GPS 进近,直到完全熟练掌握其设备(接收器和安装)的各个方面,然后再尝试在仪表气象条件 (IMC) 中飞行。飞行员应精通以下领域:
          1. Using the receiver autonomous integrity monitoring (RAIM) prediction function;
            使用接收机自主完整性监测 (RAIM) 预测功能;
          2. Inserting a DP into the flight plan, including setting terminal CDI sensitivity, if required, and the conditions under which terminal RAIM is available for departure;
            在飞行计划中插入 DP,包括设置终端 CDI 灵敏度(如有需要)以及终端 RAIM 可起飞的条件;
          3. Programming the destination airport;
            对目的地机场进行编程;
          4. Programming and flying the approaches (especially procedure turns and arcs);
            对进近进行编程和飞行(尤其是程序转弯和圆弧);
          5. Changing to another approach after selecting an approach;
            选择方法后更改为其他方法;
          6. Programming and flying “direct” missed approaches;
            编程和飞行“直接”错过的进近;
          7. Programming and flying “routed” missed approaches;
            编程和飞行 “路由 ”错过的进近;
          8. Entering, flying, and exiting holding patterns, particularly on approaches with a second waypoint in the holding pattern;
            进入、飞行和退出保持模式,尤其是在保持模式中具有第二个航点的进近时;
          9. Programming and flying a “route” from a holding pattern;
            从保持模式编程和飞行 “路线”;
          10. Programming and flying an approach with radar vectors to the intermediate segment;
            使用雷达矢量对进近进行编程和飞行,以到达中间段;
          11. Indication of the actions required for RAIM failure both before and after the FAWP; and
            指示 FAWP 之前和之后 RAIM 失败所需的操作;和
          12. Programming a radial and distance from a VOR (often used in departure instructions).
            对 VOR 的径向和距离进行编程(通常用于出发指令)。

            TBL 1-1-5
            GPS IFR Equipment Classes/Categories
            GPS IFR 设备类别/类别

            TSO-C129

            Equipment Class 设备类

            RAIM

            Int. Nav. Sys. to Prov. RAIM Equiv.
            Int. Nav. Sys. 到 Prov. RAIM 等效。

            Oceanic 海洋的

            En Route 途中

            Terminal 终端

            Non-precision Approach Capable
            支持非精确方法

            Class A - GPS sensor and navigation capability.
            A 类 - GPS 传感器和导航能力。

            A1

            yes 是的

             

            yes 是的

            yes 是的

            yes 是的

            yes 是的

            A2

            yes 是的

             

            yes 是的

            yes 是的

            yes 是的

            no 

            Class B - GPS sensor data to an integrated navigation system (i.e., FMS, multi-sensor navigation system, etc.).
            B 类 - 将 GPS 传感器数据传输到组合导航系统(即 FMS、多传感器导航系统等)。

            B1

            yes 是的

             

            yes 是的

            yes 是的

            yes 是的

            yes 是的

            B2

            yes 是的

             

            yes 是的

            yes 是的

            yes 是的

            no 

            B3

             

            yes 是的

            yes 是的

            yes 是的

            yes 是的

            yes 是的

            B4

             

            yes 是的

            yes 是的

            yes 是的

            yes 是的

            no 

            Class C - GPS sensor data to an integrated navigation system (as in Class B) which provides enhanced guidance to an autopilot, or flight director, to reduce flight tech. errors. Limited to 14 CFR Part 121 or equivalent criteria.
            C 类 - 将 GPS 传感器数据传输到组合导航系统(如 B 类),为自动驾驶仪或飞行指挥官提供增强的指导,以减少飞行技术错误。仅限于 14 CFR Part 121 或等效标准。

            C1

            yes 是的

             

            yes 是的

            yes 是的

            yes 是的

            yes 是的

            C2

            yes 是的

             

            yes 是的

            yes 是的

            yes 是的

            no 

            C3

             

            yes 是的

            yes 是的

            yes 是的

            yes 是的

            yes 是的

            C4

             

            yes 是的

            yes 是的

            yes 是的

            yes 是的

            no 

            TBL 1-1-6 接线端子 TBL 1-1-6
            GPS Approval Required/Authorized Use
            需要 GPS 批准/授权使用

            Equipment Type1 设备类型1

            Installation Approval Required
            需要安装批准

            Operational Approval Required
            需要运营批准

            IFR 国际金融报告
            En Route2 路线2

            IFR Terminal2 IFR2 号航站楼

            IFR Approach3 IFR 方法3

            Oceanic Remote Oceanic 遥控器

            In Lieu of ADF and/or DME3
            代替 ADF 和/或 DME3

            Hand held4 手持4

            X5

             

             

             

             

             

             

            VFR Panel Mount4
            VFR 面板安装4

            X

             

             

             

             

             

             

            IFR En Route and Terminal
            IFR 航路和终点站

            X

            X

            X

            X

             

             

            X

            IFR Oceanic/
            Remote 远程

            X

            X

            X

            X

             

            X

            X

            IFR En Route, Terminal, and Approach
            IFR 航路、终点和进近

            X

            X

            X

            X

            X

             

            X

            NOTE- 注意-

            1To determine equipment approvals and limitations, refer to the AFM, AFM supplements, or pilot guides.
            1要确定设备批准和限制,请参阅 AFM、AFM 补充或飞行员指南。

            2Requires verification of data for correctness if database is expired.
            阿拉伯数字如果数据库过期,则需要验证数据的正确性。

            3Requires current database or verification that the procedure has not been amended since the expiration of the database.
            3需要当前数据库或验证自数据库到期后未修改程序。

            4VFR and hand-held GPS systems are not authorized for IFR navigation, instrument approaches, or as a primary instrument flight reference. During IFR operations they may be considered only an aid to situational awareness.
            4VFR 和手持式 GPS 系统未被授权用于 IFR 导航、仪表进近或作为主要仪表飞行参考。在 IFR 操作期间,它们可能仅被视为对态势感知的辅助。

            5Hand-held receivers require no approval. However, any aircraft modification to support the hand-held receiver; i.e., installation of an external antenna or a permanent mounting bracket, does require approval.
            5手持式接收器不需要批准。但是,任何为支持手持接收器而进行的飞机改装;即,安装外部天线或永久安装支架确实需要获得批准。

  18. Wide Area Augmentation System (WAAS)
    广域增强系统 (WAAS)
    1. General 常规
      1. The FAA developed the WAAS to improve the accuracy, integrity and availability of GPS signals. WAAS will allow GPS to be used, as the aviation navigation system, from takeoff through approach when it is complete. WAAS is a critical component of the FAA's strategic objective for a seamless satellite navigation system for civil aviation, improving capacity and safety.
        FAA 开发了 WAAS 以提高 GPS 信号的准确性、完整性和可用性。WAAS 将允许将 GPS 用作航空导航系统,从起飞到进近。WAAS 是 FAA 战略目标的关键组成部分,旨在为民用航空构建无缝卫星导航系统,从而提高容量和安全性。
      2. The International Civil Aviation Organization (ICAO) has defined Standards and Recommended Practices (SARPs) for satellite-based augmentation systems (SBAS) such as WAAS. India and Europe are building similar systems: EGNOS, the European Geostationary Navigation Overlay System; and India's GPS and Geo-Augmented Navigation (GAGAN) system. The merging of these systems will create an expansive navigation capability similar to GPS, but with greater accuracy, availability, and integrity.
        国际民用航空组织 (ICAO) 为 WAAS 等星基增强系统 (SBAS) 定义了标准和推荐实践 (SARP)。印度和欧洲正在建设类似的系统:EGNOS,欧洲地球静止导航叠加系统;以及印度的 GPS 和地理增强导航 (GAGAN) 系统。这些系统的合并将创建类似于 GPS 的广泛导航功能,但具有更高的准确性、可用性和完整性。
      3. Unlike traditional ground-based navigation aids, WAAS will cover a more extensive service area. Precisely surveyed wide-area reference stations (WRS) are linked to form the U.S. WAAS network. Signals from the GPS satellites are monitored by these WRSs to determine satellite clock and ephemeris corrections and to model the propagation effects of the ionosphere. Each station in the network relays the data to a wide-area master station (WMS) where the correction information is computed. A correction message is prepared and uplinked to a geostationary earth orbit satellite (GEO) via a GEO uplink subsystem (GUS) which is located at the ground earth station (GES). The message is then broadcast on the same frequency as GPS (L1, 1575.42 MHz) to WAAS receivers within the broadcast coverage area of the WAAS GEO.
        与传统的地面导航设备不同,WAAS 将覆盖更广泛的服务区域。精确测量的广域参考站 (WRS) 连接起来,形成美国 WAAS 网络。这些 WRS 监测来自 GPS 卫星的信号,以确定卫星时钟和星历校正,并模拟电离层的传播效应。网络中的每个工作站都将数据中继到广域主工作站 (WMS),在那里计算校正信息。准备校正消息,并通过位于地面地球站 (GES) 的 GEO 上行链路子系统 (GUS) 上行链路到对地静止地球轨道卫星 (GEO)。然后,该消息以与 GPS(L1,1575.42 MHz)相同的频率广播到 WAAS GEO 广播覆盖区域内的 WAAS 接收器。
      4. In addition to providing the correction signal, the WAAS GEO provides an additional pseudorange measurement to the aircraft receiver, improving the availability of GPS by providing, in effect, an additional GPS satellite in view. The integrity of GPS is improved through real-time monitoring, and the accuracy is improved by providing differential corrections to reduce errors. The performance improvement is sufficient to enable approach procedures with GPS/WAAS glide paths (vertical guidance).
        除了提供校正信号外,WAAS GEO 还为飞机接收器提供额外的伪距测量,实际上通过提供额外的 GPS 卫星来提高 GPS 的可用性。通过实时监控提高 GPS 的完整性,并通过提供差分校正以减少误差来提高准确性。性能改进足以实现 GPS/WAAS 下滑道(垂直引导)的进近程序。
      5. The FAA has completed installation of 3 GEO satellite links, 38 WRSs, 3 WMSs, 6 GES, and the required terrestrial communications to support the WAAS network including 2 operational control centers. Prior to the commissioning of the WAAS for public use, the FAA conducted a series of test and validation activities. Future dual frequency operations are planned.
        FAA 已完成 3 个 GEO 卫星链路、38 个 WRS、3 个 WMS、6 个 GES 以及支持 WAAS 网络(包括 2 个运营控制中心)所需的地面通信的安装。在 WAAS 投入使用供公众使用之前,FAA 进行了一系列测试和验证活动。未来的双频操作正在计划中。
      6. GNSS navigation, including GPS and WAAS, is referenced to the WGS-84 coordinate system. It should only be used where the Aeronautical Information Publications (including electronic data and aeronautical charts) conform to WGS-84 or equivalent. Other countries' civil aviation authorities may impose additional limitations on the use of their SBAS systems.
        GNSS 导航(包括 GPSWAAS)以 WGS-84 坐标系为参考。它只应在航空信息出版物(包括电子数据和航空图表)符合 WGS-84 或同等标准的情况下使用。其他国家的民航当局可能会对其 SBAS 系统的使用施加额外的限制。
    2. Instrument Approach Capabilities
      仪器进近功能
      1. A class of approach procedures which provide vertical guidance, but which do not meet the ICAO Annex 10 requirements for precision approaches has been developed to support satellite navigation use for aviation applications worldwide. These procedures are not precision and are referred to as Approach with Vertical Guidance (APV), are defined in ICAO Annex 6, and include approaches such as the LNAV/VNAV and localizer performance with vertical guidance (LPV). These approaches provide vertical guidance, but do not meet the more stringent standards of a precision approach. Properly certified WAAS receivers will be able to fly to LPV minima and LNAV/VNAV minima, using a WAAS electronic glide path, which eliminates the errors that can be introduced by using Barometric altimetry.
        已经开发了一类提供垂直制导但不满足国际民航组织附件 10 对精确进近要求的方法程序,以支持全球航空应用中的卫星导航使用。这些程序并不精确,被称为垂直制导进近 (APV),在 ICAO 附件 6 中定义,包括 LNAV/VNAV 和垂直制导定位器性能 (LPV) 等方法。这些方法提供垂直引导,但不符合精度方法的更严格标准。经过适当认证的 WAAS 接收器将能够使用 WAAS 电子下滑道飞行到 LPV 最小值和 LNAV/VNAV 最小值,从而消除了使用气压测高可能引入的误差。
      2. LPV minima takes advantage of the high accuracy guidance and increased integrity provided by WAAS. This WAAS generated angular guidance allows the use of the same TERPS approach criteria used for ILS approaches. LPV minima may have a decision altitude as low as 200 feet height above touchdown with visibility minimums as low as 1/2 mile, when the terrain and airport infrastructure support the lowest minima. LPV minima is published on the RNAV (GPS) approach charts (see paragraph 5-4-5, Instrument Approach Procedure Charts).
        LPV minima 利用了 WAAS 提供的高精度制导和更高的完整性。WAAS 生成的这种角度制导允许使用与 ILS 方法相同的 TERPS 方法标准。当地形和机场基础设施支持最低最小值时,LPV 最小值的决策高度可能低至着陆上方 200 英尺高度,能见度最小值低至 1/2 英里。LPV 最小值公布在 RNAVGPS) 进近图上(参见第 5-4-5 段,仪器进近程序图)。
      3. A different WAAS-based line of minima, called Localizer Performance (LP) is being added in locations where the terrain or obstructions do not allow publication of vertically guided LPV minima. LP takes advantage of the angular lateral guidance and smaller position errors provided by WAAS to provide a lateral only procedure similar to an ILS Localizer. LP procedures may provide lower minima than a LNAV procedure due to the narrower obstacle clearance surface.
        在地形或障碍物不允许发布垂直引导的 LPV 最小值的位置,正在添加一条不同的基于 WAAS 的最小值线,称为定位器性能 (LP)。LP 利用 WAAS 提供的角度横向引导和较小的位置误差,提供类似于 ILS 定位器的仅横向程序。由于障碍物间隙较窄,LP 手术可能提供比 LNAV 手术更低的最小值。

        NOTE- 注意-

        WAAS receivers certified prior to TSO-C145b and TSO-C146b, even if they have LPV capability, do not contain LP capability unless the receiver has been upgraded. Receivers capable of flying LP procedures must contain a statement in the Aircraft Flight Manual (AFM), AFM Supplement, or Approved Supplemental Flight Manual stating that the receiver has LP capability, as well as the capability for the other WAAS and GPS approach procedure types.
        在 TSO-C145b 和 TSO-C146b 之前认证的 WAAS 接收器,即使它们具有 LPV 功能,也不包含 LP 功能,除非接收器已升级。能够飞行 LP 程序的接收器必须在飞机飞行手册 (AFM)、AFM 补充或批准的补充飞行手册中包含声明,说明接收器具有 LP 功能,以及其他 WAASGPS 进近程序类型的能力。

      4. WAAS provides a level of service that supports all phases of flight, including RNAV (GPS) approaches to LNAV, LP, LNAV/VNAV, and LPV lines of minima, within system coverage. Some locations close to the edge of the coverage may have a lower availability of vertical guidance.
        WAAS 提供支持飞行所有阶段的服务水平,包括系统覆盖范围内对 LNAV、LP、LNAV/VNAV 和 LPV 最小线路的 RNAVGPS) 进近。一些靠近覆盖边缘的位置的垂直引导的可用性可能较低。
    3. General Requirements 一般要求
      1. WAAS avionics must be certified in accordance with Technical Standard Order (TSO) TSO-C145(), Airborne Navigation Sensors Using the (GPS) Augmented by the Wide Area Augmentation System (WAAS); or TSO-C146(), Stand-Alone Airborne Navigation Equipment Using the Global Positioning System (GPS) Augmented by the Wide Area Augmentation System (WAAS), and installed in accordance with AC 20-138, Airworthiness Approval of Positioning and Navigation Systems.
        WAAS 航空电子设备必须根据技术标准命令 (TSO) TSO-C145(),使用广域增强系统 (WAAS) 增强的 (GPS) 的机载导航传感器进行认证;或 TSO-C146(),使用全球定位系统 (GPS) 的独立机载导航设备,由广域增强系统 (WAAS) 增强,并根据 AC 20-138,定位和导航系统的适航批准进行安装。
      2. GPS/WAAS operation must be conducted in accordance with the FAA-approved aircraft flight manual (AFM) and flight manual supplements. Flight manual supplements will state the level of approach procedure that the receiver supports. IFR approved WAAS receivers support all GPS only operations as long as lateral capability at the appropriate level is functional. WAAS monitors both GPS and WAAS satellites and provides integrity.
        GPS/WAAS 操作必须按照 FAA 批准的飞机飞行手册 (AFM) 和飞行手册补充进行。飞行手册补充将说明接收器支持的进近程序级别。IFR 批准的 WAAS 接收器支持所有仅 GPS 操作,只要适当级别的横向能力有效。WAAS 监控 GPSWAAS 卫星并提供完整性。
      3. GPS/WAAS equipment is inherently capable of supporting oceanic and remote operations if the operator obtains a fault detection and exclusion (FDE) prediction program.
        如果操作员获得故障检测和排除 (FDE) 预测程序,GPS/WAAS 设备本身就能够支持海洋和远程操作。
      4. Air carrier and commercial operators must meet the appropriate provisions of their approved operations specifications.
        航空承运商和商业运营商必须满足其批准的运营规范的适当规定。
      5. Prior to GPS/WAAS IFR operation, the pilot must review appropriate Notices to Air Missions (NOTAMs) and aeronautical information. This information is available on request from a Flight Service Station. The FAA will provide NOTAMs to advise pilots of the status of the WAAS and level of service available.
        GPS/WAAS IFR 操作之前,飞行员必须查看适当的空中任务通知 (NOTAM) 和航空信息。此信息可应航班服务站的要求提供。FAA 将提供 NOTAM向飞行员告知 WAAS 的状态和可用的服务水平。
        1. The term MAY NOT BE AVBL is used in conjunction with WAAS NOTAMs and indicates that due to ionospheric conditions, lateral guidance may still be available when vertical guidance is unavailable. Under certain conditions, both lateral and vertical guidance may be unavailable. This NOTAM language is an advisory to pilots indicating the expected level of WAAS service (LNAV/VNAV, LPV, LP) may not be available.
          术语 MAY NOT BE AVBL 与 WAASNOTAMs 结合使用,表示由于电离层条件,当垂直引导不可用时,横向引导可能仍然可用。在某些情况下,横向和垂直引导可能不可用。此 NOTAM 语言是向飞行员提供的建议,表明 WAAS 服务的预期级别(LNAV/VNAV、LPV、LP)可能不可用。

          EXAMPLE- 例-

          !FDC FDC NAV WAAS VNAV/LPV/LP MINIMA MAY NOT BE AVBL 1306111330-1306141930EST
          !FDC FDC NAV WAAS VNAV/LPV/LP 最小值可能不是 AVBL 1306111330-1306141930EST

          or  

          !FDC FDC NAV WAAS VNAV/LPV MINIMA NOT AVBL, WAAS LP MINIMA MAY NOT BE AVBL 1306021200-1306031200EST
          !FDC FDC NAV WAAS VNAV/LPV 最小值不是 AVBL,WAAS LP 最小值可能不是 AVBL 1306021200-1306031200EST

          WAAS MAY NOT BE AVBL NOTAMs are predictive in nature and published for flight planning purposes. Upon commencing an approach at locations NOTAMed WAAS MAY NOT BE AVBL, if the WAAS avionics indicate LNAV/VNAV or LPV service is available, then vertical guidance may be used to complete the approach using the displayed level of service. Should an outage occur during the approach, reversion to LNAV minima or an alternate instrument approach procedure may be required. When GPS testing NOTAMS are published and testing is actually occurring, Air Traffic Control will advise pilots requesting or cleared for a GPS or RNAV (GPS) approach that GPS may not be available and request intentions. If pilots have reported GPS anomalies, Air Traffic Control will request the pilot's intentions and/or clear the pilot for an alternate approach, if available and operational.
          WAAS可能不是 AVBL NOTAM 本质上是预测性的,发布用于飞行计划目的。在通知 WAAS 可能不是 AVBL 的位置开始进近时,如果 WAAS 航空电子设备显示 LNAV/VNAV 或 LPV 服务可用,则可以使用垂直引导使用显示的服务级别完成进近。如果在进近过程中发生中断,则可能需要恢复到 LNAV 最小值或替代仪器进近程序。当 GPS 测试 NOTAMS 发布并实际进行测试时,空中交通管制将通知请求或获准进行 GPSRNAVGPS) 进近的飞行员 GPS 可能不可用并请求意图。如果飞行员报告了 GPS 异常情况,空中交通管制将询问飞行员的意图和/或允许飞行员使用替代进近(如果可用且可操作)。
        2. WAAS area-wide NOTAMs are originated when WAAS assets are out of service and impact the service area. Area-wide WAAS NOT AVAILABLE (AVBL) NOTAMs indicate loss or malfunction of the WAAS system. In flight, Air Traffic Control will advise pilots requesting a GPS or RNAV (GPS) approach of WAAS NOT AVBL NOTAMs if not contained in the ATIS broadcast.
          WAAS 区域范围的 NOTAM是在 WAAS 资产停止服务并影响服务区域时发起的。区域范围的 WAAS 不可用 (AVBL) NOTAM表示 WAAS 系统的丢失或故障。在飞行中,如果 ATIS 广播中未包含,空中交通管制将建议飞行员请求 WAAS 而不是 AVBL 通告的 GPSRNAVGPS) 进近。

          EXAMPLE- 例-

          For unscheduled loss of signal or service, an example NOTAM is: !FDC FDC NAV WAAS NOT AVBL 1311160600- 1311191200EST.
          对于计划外的信号或服务丢失,示例 NOTAM 为:!FDC FDC NAV WAAS 不是 AVBL 1311160600- 1311191200EST.

          For scheduled loss of signal or service, an example NOTAM is: !FDC FDC NAV WAAS NOT AVBL 1312041015- 1312082000EST.
          对于计划的信号或服务丢失,示例 NOTAM 为:!FDC FDC NAV WAAS 不是 AVBL 1312041015- 1312082000EST.

        3. Site-specific WAAS MAY NOT BE AVBL NOTAMs indicate an expected level of service; for example, LNAV/VNAV, LP, or LPV may not be available. Pilots must request site-specific WAAS NOTAMs during flight planning. In flight, Air Traffic Control will not advise pilots of WAAS MAY NOT BE AVBL NOTAMs.
          特定于站点的 WAAS 可能不是 AVBL NOTAM 表示预期的服务水平;例如,LNAV/VNAV、LP 或 LPV 可能不可用。飞行员必须在飞行计划期间请求特定于站点的 WAAS NOTAM。在飞行中,空中交通管制不会建议飞行员 WAAS 可能不是 AVBL 通告。

          NOTE- 注意-

          Though currently unavailable, the FAA is updating its prediction tool software to provide this site-service in the future.
          虽然目前不可用,但 FAA 正在更新其预测工具软件,以便将来提供此站点服务。

        4. Most of North America has redundant coverage by two or more geostationary satellites. One exception is the northern slope of Alaska. If there is a problem with the satellite providing coverage to this area, a NOTAM similar to the following example will be issued:
          北美的大部分地区都有两颗或多颗对地静止卫星的冗余覆盖。阿拉斯加的北坡是一个例外。如果为该区域提供覆盖的卫星出现问题,将发出类似于以下示例的 NOTAM

          EXAMPLE- 例-

          !FDC 4/3406 (PAZA A0173/14) ZAN NAV WAAS SIGNAL MAY NOT BE AVBL NORTH OF LINE FROM 7000N150000W TO 6400N16400W. RMK WAAS USERS SHOULD CONFIRM RAIM AVAILABILITY FOR IFR OPERATIONS IN THIS AREA. T-ROUTES IN THIS SECTOR NOT AVBL. ANY REQUIRED ALTERNATE AIRPORT IN THIS AREA MUST HAVE AN APPROVED INSTRUMENT APPROACH PROCEDURE OTHER THAN GPS THAT IS ANTICIPATED TO BE OPERATIONAL AND AVAILABLE AT THE ESTIMATED TIME OF ARRIVAL AND WHICH THE AIRCRAFT IS EQUIPPED TO FLY. 1406030812-1406050812EST .
          !FDC 4/3406 (PAZA A0173/14) ZAN NAV WAAS 信号可能不在 7000N150000W 至 6400N16400W 线路以北的 AVBL。RMK WAAS 用户应确认 RAIM 可用于此区域的 IFR 操作。该航段的 T 路线不是 AVBL。该区域任何必需的备用机场都必须具有经批准的仪表进近程序,但 GPS 除外,该程序预计在预计到达时间运行并可用,并且飞机配备飞行设备。1406030812-1406050812东部标准

      6. When GPS-testing NOTAMS are published and testing is actually occurring, Air Traffic Control will advise pilots requesting or cleared for a GPS or RNAV (GPS) approach that GPS may not be available and request intentions. If pilots have reported GPS anomalies, Air Traffic Control will request the pilot's intentions and/or clear the pilot for an alternate approach, if available and operational.
        GPS 测试 NOTAMS 发布并实际进行测试时,空中交通管制将通知请求或获准进行 GPSRNAVGPS) 进近的飞行员 GPS 可能不可用并请求意图。如果飞行员报告了 GPS 异常情况,空中交通管制将询问飞行员的意图和/或允许飞行员使用替代进近(如果可用且可操作)。

        EXAMPLE- 例-

        Here is an example of a GPS testing NOTAM:
        以下是 GPS 测试 NOTAM 的示例:

        !GPS 06/001 ZAB NAV GPS (INCLUDING WAAS, GBAS, AND ADS-B) MAY NOT BE AVAILABLE WITHIN A 468NM RADIUS CENTERED AT 330702N1062540W (TCS 093044) FL400-UNL DECREASING IN AREA WITH A DECREASE IN ALTITUDE DEFINED AS: 425NM RADIUS AT FL250, 360NM RADIUS AT 10000FT, 354NM RADIUS AT 4000FT AGL, 327NM RADIUS AT 50FT AGL. 1406070300-1406071200.
        !GPS06/001 ZAB NAV GPS(包括 WAAS、GBAS 和 ADS-B)在以 330702N1062540W(TCS 093044)为中心的 468 海里半径内可能无法使用,FL400-UNL 的面积随着高度的降低而减少,定义为:FL250 处半径为 425 海里,10000 英尺处半径为 360 海里,4000 英尺处半径为 354 海里,50 英尺 AGL 处半径为 327 海里。1406070300-1406071200.

      7. When the approach chart is annotated with the A negative W symbol. symbol, site-specific WAAS MAY NOT BE AVBL NOTAMs or Air Traffic advisories are not provided for outages in WAAS LNAV/VNAV and LPV vertical service. Vertical outages may occur daily at these locations due to being close to the edge of WAAS system coverage. Use LNAV or circling minima for flight planning at these locations, whether as a destination or alternate. For flight operations at these locations, when the WAAS avionics indicate that LNAV/VNAV or LPV service is available, then the vertical guidance may be used to complete the approach using the displayed level of service. Should an outage occur during the procedure, reversion to LNAV minima may be required.
        当进近图用 A negative W symbol. 符号注释时,特定于站点的 WAAS 可能不是 AVBL 通告,或者不为 WAAS LNAV/VNAV 和 LPV 垂直服务中的中断提供空中交通公告。由于靠近 WAAS 系统覆盖的边缘,这些位置每天都可能发生垂直中断。在这些位置使用 LNAV 或盘旋最小值进行飞行规划,无论是作为目的地还是备用目的地。对于这些位置的飞行操作,当 WAAS 航空电子设备指示 LNAV/VNAV 或 LPV 服务可用时,可以使用垂直引导来使用显示的服务级别完成进近。如果在手术过程中发生中断,则可能需要恢复到 LNAV 最小值。

        NOTE- 注意-

        Area-wide WAAS NOT AVBL NOTAMs apply to all airports in the WAAS NOT AVBL area designated in the NOTAM, including approaches at airports where an approach chart is annotated with the A negative W symbol. symbol.
        区域范围的 WAAS NOT AVBL NOTAM 适用于 NOTAM 中指定的 WAAS NOT AVBL 区域内的所有机场,包括进近图上标有符号的 A negative W symbol. 机场的进近。

      8. GPS/WAAS was developed to be used within GEO coverage over North America without the need for other radio navigation equipment appropriate to the route of flight to be flown. Outside the WAAS coverage or in the event of a WAAS failure, GPS/WAAS equipment reverts to GPS-only operation and satisfies the requirements for basic GPS equipment. (See paragraph 1-1-17 for these requirements).
        GPS/WAAS 的开发目的是在北美的 GEO 覆盖范围内使用,而无需适合飞行路线的其他无线电导航设备。在 WAAS 覆盖范围之外或 WAAS 发生故障时,GPS/WAAS 设备将恢复为仅 GPS 操作,并满足基本 GPS 设备的要求。(有关这些要求,请参见第 1-1-17 段)。
      9. Unlike TSO-C129 avionics, which were certified as a supplement to other means of navigation, WAAS avionics are evaluated without reliance on other navigation systems. As such, installation of WAAS avionics does not require the aircraft to have other equipment appropriate to the route to be flown. (See paragraph 1-1-17 d for more information on equipment requirements.)
        与被认证为其他导航方式补充的 TSO-C129 航空电子设备不同,WAAS 航空电子设备的评估不依赖于其他导航系统。因此,安装 WAAS 航空电子设备不需要飞机配备适合要飞行路线的其他设备。(有关设备要求的更多信息,请参见第 1-1-17 d 段。
        1. Pilots with WAAS receivers may flight plan to use any instrument approach procedure authorized for use with their WAAS avionics as the planned approach at a required alternate, with the following restrictions. When using WAAS at an alternate airport, flight planning must be based on flying the RNAV (GPS) LNAV or circling minima line, or minima on a GPS approach procedure, or conventional approach procedure with “or GPS” in the title. Code of Federal Regulation (CFR) Part 91 non-precision weather requirements must be used for planning. Upon arrival at an alternate, when the WAAS navigation system indicates that LNAV/VNAV or LPV service is available, then vertical guidance may be used to complete the approach using the displayed level of service. The FAA has begun removing the The symbol for Alternate Minimums. NA (Alternate Minimums Not Authorized) symbol from select RNAV (GPS) and GPS approach procedures so they may be used by approach approved WAAS receivers at alternate airports. Some approach procedures will still require the The symbol for Alternate Minimums. NA for other reasons, such as no weather reporting, so it cannot be removed from all procedures. Since every procedure must be individually evaluated, removal of the The symbol for Alternate Minimums. NA from RNAV (GPS) and GPS procedures will take some time.
          拥有 WAAS 接收器的飞行员可以飞行计划使用任何授权用于其 WAAS 航空电子设备的仪表进近程序作为所需替代方案的计划进近,但有以下限制。在备用机场使用 WAAS 时,飞行计划必须基于飞行 RNAVGPS) LNAV 或盘旋最小值线,或 GPS 进近程序中的最小值,或标题中带有“或 GPS”的常规进近程序。必须使用美国联邦法规 (CFR) 第 91 部分非精确天气要求进行规划。到达备选站点后,当 WAAS 导航系统指示 LNAV/VNAV 或 LPV 服务可用时,可以使用垂直引导使用显示的服务级别完成进近。FAA 已开始从选定的 RNAVGPS) 和 GPS 进近程序中删除 The symbol for Alternate Minimums. NA(未授权替代最小值)符号,以便备用机场的进近批准 WAAS 接收器可以使用它们。由于其他原因(例如没有天气预报),某些进近程序仍需要 The symbol for Alternate Minimums. NA,因此无法从所有程序中删除 NA。由于每个程序都必须单独评估,因此从 RNAVGPS) 和 GPS 程序中去除 The symbol for Alternate Minimums. NA 需要一些时间。

          NOTE- 注意-

          Properly trained and approved, as required, TSO-C145() and TSO-C146() equipped users (WAAS users) with and using approved baro-VNAV equipment may plan for LNAV/VNAV DA at an alternate airport. Specifically authorized WAAS users with and using approved baro-VNAV equipment may also plan for RNP 0.3 DA at the alternate airport as long as the pilot has verified RNP availability through an approved prediction program.
          配备 TSO-C145() 和 TSO-C146() 的用户(WAAS 用户)拥有并根据需要获得批准,可以在备用机场规划 LNAV/VNAV DA。特别授权的 WAAS 用户使用经批准的 baro-VNAV 设备,也可以在备用机场规划 RNP 0.3 DA,前提是飞行员已通过批准的预测计划验证了 RNP 的可用性。

    4. Flying Procedures with WAAS
      WAAS 的飞行程序
      1. WAAS receivers support all basic GPS approach functions and provide additional capabilities. One of the major improvements is the ability to generate glide path guidance, independent of ground equipment or barometric aiding. This eliminates several problems such as hot and cold temperature effects, incorrect altimeter setting, or lack of a local altimeter source. It also allows approach procedures to be built without the cost of installing ground stations at each airport or runway. Some approach certified receivers may only generate a glide path with performance similar to Baro-VNAV and are only approved to fly the LNAV/VNAV line of minima on the RNAV (GPS) approach charts. Receivers with additional capability (including faster update rates and smaller integrity limits) are approved to fly the LPV line of minima. The lateral integrity changes dramatically from the 0.3 NM (556 meter) limit for GPS, LNAV, and LNAV/VNAV approach mode, to 40 meters for LPV. It also provides vertical integrity monitoring, which bounds the vertical error to 50 meters for LNAV/VNAV and LPVs with minima of 250' or above, and bounds the vertical error to 35 meters for LPVs with minima below 250'.
        WAAS 接收机支持所有基本的 GPS 进近功能并提供附加功能。主要改进之一是能够独立于地面设备或气压辅助生成下滑道引导。这消除了几个问题,例如热和冷温度影响、高度计设置不正确或缺少本地高度计源。它还允许在不在每个机场或跑道安装地面站的成本的情况下构建进近程序。一些经过进近认证的接收器可能只能产生性能类似于 Baro-VNAV 的下滑路径,并且仅被批准在 RNAVGPS) 进近图上飞行 LNAV/VNAV 最小值线。具有附加功能(包括更快的更新速率和更小的完整性限制)的接收器被批准在 LPV 最小值线飞行。横向完整性从 GPS、LNAV 和 LNAV/VNAV 进近模式的 0.3 海里(556 米)限制到 LPV 的 40 米,发生了巨大变化。它还提供垂直完整性监测,对于最小值为 250 英尺或以上的 LNAV/VNAV 和 LPV,将垂直误差限制为 50 米,对于最小值低于 250 英尺的 LPV,将垂直误差限制为 35 米。
      2. When an approach procedure is selected and active, the receiver will notify the pilot of the most accurate level of service supported by the combination of the WAAS signal, the receiver, and the selected approach, using the naming conventions on the minima lines of the selected approach procedure. For example, if an approach is published with LPV minima and the receiver is only certified for LNAV/VNAV, the equipment would indicate “LNAV/VNAV available,” even though the WAAS signal would support LPV. If flying an existing LNAV/VNAV procedure with no LPV minima, the receiver will notify the pilot “LNAV/VNAV available,” even if the receiver is certified for LPV and the signal supports LPV. If the signal does not support vertical guidance on procedures with LPV and/or LNAV/VNAV minima, the receiver annunciation will read “LNAV available.” On lateral only procedures with LP and LNAV minima the receiver will indicate “LP available” or “LNAV available” based on the level of lateral service available. Once the level of service notification has been given, the receiver will operate in this mode for the duration of the approach procedure, unless that level of service becomes unavailable. The receiver cannot change back to a more accurate level of service until the next time an approach is activated.
        当一个进近程序被选择并激活时,接收机将使用所选进近程序的最小值行上的命名约定,通知飞行员WAAS信号、接收机和所选进近的组合所支持的最准确服务水平。例如,如果以 LPV 最小值发布一种方法,并且接收器仅经过 LNAV/VNAV 认证,则设备将显示“LNAV/VNAV 可用”,即使 WAAS 信号支持 LPV。如果飞行没有 LPV 最小值的现有 LNAV/VNAV 程序,则接收机将通知飞行员“LNAV/VNAV 可用”,即使接收机已获得 LPV 认证并且信号支持 LPV。如果信号不支持对具有 LPV 和/或 LNAV/VNAV 最小值的程序进行垂直引导,则接收器通告将显示“LNAV available”。在具有 LP 和 LNAV 最小值的仅侧向手术中,接收器将根据可用的侧向服务水平指示“LP 可用”或“LNAV 可用”。一旦给出了服务级别通知,接收器将在进近程序期间以此模式运行,除非该服务级别变得不可用。接收机在下次激活进近之前无法切换回更准确的服务级别。

        NOTE- 注意-

        Receivers do not “fail down” to lower levels of service once the approach has been activated. If only the vertical off flag appears, the pilot may elect to use the LNAV minima if the rules under which the flight is operating allow changing the type of approach being flown after commencing the procedure. If the lateral integrity limit is exceeded on an LP approach, a missed approach will be necessary since there is no way to reset the lateral alarm limit while the approach is active.
        一旦激活了该方法,接收机就不会 “失败” 到较低的服务级别。如果只出现垂直关闭标志,如果航班运行所依据的规则允许在程序开始后更改正在飞行的进近类型,飞行员可以选择使用 LNAV 最小值。如果在 LP 进近上超过了横向完整性限制,则必须错过进近,因为在进近处于活动状态时无法重置横向警报限制。

      3. Another additional feature of WAAS receivers is the ability to exclude a bad GPS signal and continue operating normally. This is normally accomplished by the WAAS correction information. Outside WAAS coverage or when WAAS is not available, it is accomplished through a receiver algorithm called FDE. In most cases this operation will be invisible to the pilot since the receiver will continue to operate with other available satellites after excluding the “bad” signal. This capability increases the reliability of navigation.
        WAAS 接收器的另一个附加功能是能够排除不良的 GPS 信号并继续正常运行。这通常由 WAAS 校正信息完成。在 WAAS 覆盖范围之外或 WAAS 不可用时,它是通过称为 FDE 的接收器算法完成的。在大多数情况下,飞行员看不到此操作,因为在排除“坏”信号后,接收器将继续与其他可用卫星一起操作。此功能提高了导航的可靠性。
      4. Both lateral and vertical scaling for the LNAV/VNAV and LPV approach procedures are different than the linear scaling of basic GPS. When the complete published procedure is flown, ±1 NM linear scaling is provided until two (2) NM prior to the FAF, where the sensitivity increases to be similar to the angular scaling of an ILS. There are two differences in the WAAS scaling and ILS: 1) on long final approach segments, the initial scaling will be ±0.3 NM to achieve equivalent performance to GPS (and better than ILS, which is less sensitive far from the runway); 2) close to the runway threshold, the scaling changes to linear instead of continuing to become more sensitive. The width of the final approach course is tailored so that the total width is usually 700 feet at the runway threshold. Since the origin point of the lateral splay for the angular portion of the final is not fixed due to antenna placement like localizer, the splay angle can remain fixed, making a consistent width of final for aircraft being vectored onto the final approach course on different length runways. When the complete published procedure is not flown, and instead the aircraft needs to capture the extended final approach course similar to ILS, the vector to final (VTF) mode is used. Under VTF, the scaling is linear at ±1 NM until the point where the ILS angular splay reaches a width of ±1 NM regardless of the distance from the FAWP.
        LNAV/VNAV 和 LPV 进近程序的横向和垂直缩放都不同于基本 GPS 的线性缩放。当完整公布的程序飞行时,提供 ±1 NM 线性缩放,直到 FIF 前两 (2) NM,此时灵敏度增加,类似于 ILS 的角度缩放。WAAS 缩放和 ILS 有两个区别:1) 在较长的最终进近段上,初始缩放将为 ±0.3 NM,以实现与 GPS 相当的性能(并且优于 ILS,后者在远离跑道的地方不太敏感);2) 接近跑道阈值时,缩放变为线性,而不是继续变得更加敏感。最终进近路线的宽度经过定制,因此在跑道入口处的总宽度通常为 700 英尺。由于天线放置(如定位器),决赛角度部分的横向张开的原点不是固定的,因此张开角度可以保持固定,从而为在不同长度跑道上矢量化到最终进近航线上的飞机提供一致的决赛宽度。当未飞行完整的已发布程序,而是飞机需要捕获类似于 ILS 的扩展最终进近航向时,将使用矢量到最终 (VTF) 模式。在 VTF 下,缩放在 ±1 NM 处是线性的,直到 ILS 角张开达到 ±1 NM 的宽度,而不管与 FAWP 的距离如何。
      5. The WAAS scaling is also different than GPS TSO-C129() in the initial portion of the missed approach. Two differences occur here. First, the scaling abruptly changes from the approach scaling to the missed approach scaling, at approximately the departure end of the runway or when the pilot selects missed approach guidance rather than ramping as GPS does. Second, when the first leg of the missed approach is a Track to Fix (TF) leg aligned within 3 degrees of the inbound course, the receiver will change to 0.3 NM linear sensitivity until the turn initiation point for the first waypoint in the missed approach procedure, at which time it will abruptly change to terminal (±1 NM) sensitivity. This allows the elimination of close in obstacles in the early part of the missed approach that may otherwise cause the DA to be raised.
        WAAS 缩放也不同于错过进近的初始部分的 GPS TSO-C129()。这里有两个不同之处。首先,在大约跑道的出发端,或者当飞行员选择错过进近引导而不是像 GPS 那样斜坡时,缩放突然从进近缩放变为错过进近缩放。其次,当错过进近的第一段是与入站航向 3 度以内的航迹修复 (TF) 段对齐时,接收机将更改为 0.3 NM 线性灵敏度,直到错过进近程序中第一个航路点的转弯起点,此时它将突然变为终端 (±1 NM) 灵敏度。这允许在错过的进近的早期部分消除 close in 障碍,否则可能会导致 DA 升高。
      6. There are two ways to select the final approach segment of an instrument approach. Most receivers use menus where the pilot selects the airport, the runway, the specific approach procedure and finally the IAF, there is also a channel number selection method. The pilot enters a unique 5-digit number provided on the approach chart, and the receiver recalls the matching final approach segment from the aircraft database. A list of information including the available IAFs is displayed and the pilot selects the appropriate IAF. The pilot should confirm that the correct final approach segment was loaded by cross checking the Approach ID, which is also provided on the approach chart.
        有两种方法可以选择工具进场的最终进场段。大多数接收器使用菜单,飞行员选择机场、跑道、具体进近程序,最后是 IAF,还有一种频道号选择方法。飞行员输入进近图上提供的唯一 5 位数字,接收器从飞机数据库中调用匹配的最终进近航段。将显示包括可用 IAF在内的信息列表,飞行员将选择合适的 IAF。飞行员应通过交叉检查进近 ID 来确认加载了正确的最终进近航段,进近图上也提供了该 ID。
      7. The Along-Track Distance (ATD) during the final approach segment of an LNAV procedure (with a minimum descent altitude) will be to the MAWP. On LNAV/VNAV and LPV approaches to a decision altitude, there is no missed approach waypoint so the along-track distance is displayed to a point normally located at the runway threshold. In most cases, the MAWP for the LNAV approach is located on the runway threshold at the centerline, so these distances will be the same. This distance will always vary slightly from any ILS DME that may be present, since the ILS DME is located further down the runway. Initiation of the missed approach on the LNAV/VNAV and LPV approaches is still based on reaching the decision altitude without any of the items listed in 14 CFR Section 91.175 being visible, and must not be delayed while waiting for the ATD to reach zero. The WAAS receiver, unlike a GPS receiver, will automatically sequence past the MAWP if the missed approach procedure has been designed for RNAV. The pilot may also select missed approach prior to the MAWP; however, navigation will continue to the MAWP prior to waypoint sequencing taking place.
        在 LNAV 程序的最后进近段(具有最小下降高度)期间,沿跟踪距离 (ATD) 将是到 MAWP。在 LNAV/VNAV 和 LPV 进近决策高度时,没有错过进近航点,因此沿航迹距离显示到通常位于跑道阈值的点。在大多数情况下,LNAV 进近的 MAWP 位于中心线的跑道阈值上,因此这些距离是相同的。此距离始终与可能存在的任何 ILS DME 略有不同,因为 ILS DME 位于跑道下方较远的位置。在 LNAV/VNAV 和 LPV 进近上开始错过进近仍然基于在看不到 14 CFR 第 91.175 节中列出的任何项目的情况下达到决策高度,并且在等待 ATD 达到零时不得延迟。与 GPS 接收器不同,如果错过进近程序是为 RNAV 设计的,WAAS 接收器将自动通过 MAWP 进行排序。飞行员也可以在 MAWP 之前选择错过的进近;但是,在航路点排序之前,将继续导航到 MAWP
  19. Ground Based Augmentation System (GBAS) Landing System (GLS)
    地基增强系统 (GBAS) 着陆系统 (GLS)
    1. A GBAS ground installation at an airport can provide localized, differential augmentation to the Global Positioning System (GPS) signal-in-space enabling an aircraft's GLS precision approach capability. Through the GBAS service and the aircraft's GLS installation a pilot may complete an instrument approach offering three-dimensional angular, lateral, and vertical guidance for exact alignment and descent to a runway. The operational benefits of a GLS approach are similar to the benefits of an ILS or LPV approach operation.
      机场的 GBAS 地面安装可以为全球定位系统 (GPS) 空间信号提供局部差分增强,从而实现飞机的 GLS 精确进近能力。通过 GBAS 服务和飞机的 GLS 安装,飞行员可以完成仪表进近,提供三维角度、横向和垂直引导,以便精确对准和下降到跑道。GLS 方法的运营优势与 ILS 或 LPV 方法运营的优势相似。

      NOTE- 注意-

      To remain consistent with international terminology, the FAA will use the term GBAS in place of the former term Local Area Augmentation System (LAAS).
      为了与国际术语保持一致,FAA 将使用术语 GBAS 代替以前的术语局部区域增强系统 (LAAS)。

    2. An aircraft's GLS approach capability relies on the broadcast from a GBAS Ground Facility (GGF) installation. The GGF installation includes at least four ground reference stations near the airport's runway(s), a corrections processor, and a VHF Data Broadcast (VDB) uplink antenna. To use the GBAS GGF output and be eligible to conduct a GLS approach, the aircraft requires eligibility to conduct RNP approach (RNP APCH) operations and must meet the additional, specific airworthiness requirements for installation of a GBAS receiver intended to support GLS approach operations. When the aircraft achieves GLS approach eligibility, the aircraft's onboard navigation database may then contain published GLS instrument approach procedures.
      飞机的 GLS 进近能力依赖于 GBAS 地面设施 (GGF) 装置的广播。GGF 装置包括机场跑道附近的至少四个地面参考站、一个校正处理器和一个 VHF 数据广播 (VDB) 上行链路天线。要使用 GBAS GGF 输出并有资格执行 GLS 进近,飞机需要有资格进行 RNP 进近 (RNP APCH) 操作,并且必须满足安装旨在支持 GLS 进近操作的 GBAS 接收器的额外特定适航要求。当飞机获得 GLS 进近资格时,飞机的机载导航数据库可能包含已发布的 GLS 仪表进近程序。
    3. During a GLS instrument approach procedure, the installation of an aircraft's GLS capability provides the pilot three-dimensional (3D) lateral and vertical navigation guidance much like an ILS instrument approach. GBAS corrections augment the GPS signal-in-space by offering position corrections, ensures the availability of enhanced integrity parameters, and then transmits the actual approach path definition over the VDB uplink antenna. A single GBAS ground station can support multiple GLS approaches to one or more runways.
      在 GLS 仪表进近过程中,飞机的 GLS 功能的安装为飞行员提供三维 (3D) 横向和垂直导航引导,这与 ILS 仪表进近非常相似。GBAS 校正通过提供位置校正来增强 GPS 空间信号,确保增强完整性参数的可用性,然后通过 VDB 上行链路天线传输实际的进近路径定义。单个 GBAS 地面站可以支持对一条或多条跑道的多个 GLS 进近。
    4. Through the GBAS ground station, a GLS approach offers a unique operational service volume distinct from the traditional ILS approach service volume (see FIG 1-1-9). However, despite the unique service volume, in the final approach segment, a GLS approach provides precise 3D angular lateral and vertical guidance mimicking the precision guidance of an ILS approach.
      通过 GBAS 地面站,GLS 方法提供了不同于传统 ILS 方法服务量的独特业务服务量(见图 1-1-9)。然而,尽管服务量独特,但在最后的进近部分,GLS 方法提供精确的 3D 角度、横向和垂直制导,模仿 ILS 进近的精确制导。
    5. Transitions to and segments of the published GLS instrument approach procedures may rely on use of RNAV 1 or RNP 1 prior to an IAF. Then, during the approach procedure, prior to the aircraft entering the GLS approach mode, a GLS approach procedure design uses the RNP APCH procedure design criteria to construct the procedural path (the criteria used to publish procedures titled “RNAV (GPS)” in the US). Thus, a GLS approach procedure may include paths requiring turns after the aircraft crosses the IAF, prior to the aircraft's flight guidance entering the GLS approach flight guidance mode. Likewise, the missed approach procedure for a GLS approach procedure relies exclusively on the same missed approach criteria supporting an RNP APCH.
      已发布的 GLS 仪器方法程序的过渡和部分可能依赖于在 IAF 之前使用 RNAV 1 或 RNP 1。然后,在进近过程中,在飞机进入 GLS 进近模式之前,GLS 进近程序设计使用 RNP APCH 程序设计标准来构建程序路径(用于在美国发布标题为“RNAVGPS)”的程序的标准)。因此,GLS 进近程序可能包括在飞机穿过 IAF 后,在飞机的飞行引导进入 GLS 进近飞行引导模式之前需要转弯的路径。同样,GLS 进路程序的漏路程序完全依赖于支持 RNP APCH 的相同漏路标准。
    6. When maneuvering the aircraft in compliance with an ATC clearance to intercept a GLS approach prior to the final approach segment (e.g. “being vectored”), the pilot should adhere to the clearance and ensure the aircraft intercepts the extended GLS final approach course within the specified service volume. Once on the GLS final approach course, the pilot should ensure the aircraft is in the GLS approach mode prior to reaching the procedure's glidepath intercept point. Once the aircraft is in the GLS flight guidance mode and captures the GLS glidepath, the pilot should fly the GLS final approach segment using the same pilot techniques they use to fly an ILS final approach or the final approach of an RNAV (GPS) approach flown to LPV minimums. See also the Instrument Procedures Handbook for more information on how to conduct a GLS instrument approach procedure.
      当根据 ATC 许可操纵飞机以在最终进近段之前拦截 GLS 进近(例如“被矢量化”)时,飞行员应遵守许可并确保飞机在指定的服务量内拦截延长的 GLS 最终进近航线。一旦进入 GLS 最终进近航线,飞行员应确保飞机在到达程序的下滑道拦截点之前处于 GLS 进近模式。一旦飞机进入 GLS 飞行制导模式并捕获 GLS 下滑道,飞行员应使用与飞行 ILS 最终进近或 RNAVGPS) 进近的最终进近飞行相同的飞行员技术飞行 GLS 最终进近航段飞行到 LPV 最小值。有关如何执行 GLS 仪器进路程序的更多信息,另请参阅仪器程序手册。

      FIG 1-1-9 图 1-1-9
      GLS Standard Approach Service Volume
      GLS 标准进场服务量

      A graphic depicting the GLS standard approach service volume.
  20. Precision Approach Systems other than ILS and GLS
    除 ILS 和 GLS 以外的精确进近系统
    1. General 常规
      Approval and use of precision approach systems other than ILS and GLS require the issuance of special instrument approach procedures.
      批准和使用除 ILS 和 GLS 以外的精确进近系统需要发布特殊的仪器进近程序。
    2. Special Instrument Approach Procedure
      特殊仪器进近程序
      1. Special instrument approach procedures must be issued to the aircraft operator if pilot training, aircraft equipment, and/or aircraft performance is different than published procedures. Special instrument approach procedures are not distributed for general public use. These procedures are issued to an aircraft operator when the conditions for operations approval are satisfied.
        如果飞行员培训、飞机设备和/或飞机性能与公布的程序不同,则必须向飞机运营商发布特殊仪表进近程序。特殊仪器进近程序不分发给公众使用。当满足运营批准条件时,这些程序将颁发给飞机运营商。
      2. General aviation operators requesting approval for special procedures should contact the local Flight Standards District Office to obtain a letter of authorization. Air carrier operators requesting approval for use of special procedures should contact their Certificate Holding District Office for authorization through their Operations Specification.
        申请批准特殊程序的通用航空运营商应联系当地飞行标准地区办公室以获取授权书。请求批准使用特殊程序的航空承运商运营商应通过其操作规范联系其持有证书的地区办公室以获得授权。

        REFERENCE- 参考-

        AIM, Para 5-4-7, Instrument Approach Procedures, Subpara j.
        AIM,第 5-4-7 段,仪器进近程序,第 .