这是用户在 2024-12-31 19:13 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Comparative Effectiveness of Virtual Reality (VR) and Augmented Reality (AR) in Virtual Exposure Therapy
虚拟现实 (VR) 和增强现实 (AR) 在虚拟暴露疗法中的效果比较

Abstract
抽象的

This paper explores the applicability of different technologies in treating patients with phobias by comparing the effectiveness of Virtual Reality (VR) and Augmented Reality (AR) in virtual exposure therapy. The study focuses on two classic cases: spider phobia and contamination fears, for which corresponding VR and AR prototypes were developed. A between-subjects experimental design was employed, involving 31 participants who reported their intensity of experience and feedback following virtual exposure therapy using both VR and AR technologies. The study collected both quantitative and qualitative data, with results indicating that the type of technology significantly impacts therapeutic outcomes. Quantitative analysis revealed that VR generally provides a more effective therapeutic experience than AR, though the intensity of this effect varies depending on the type of phobia, particularly in the case of contamination simulation. Combined with qualitative feedback, the findings further demonstrated that VR is more effective in treating contamination fears, while AR showed unique advantages in managing spider phobia. These findings provide empirical support for the selection of technology in virtual exposure therapy and suggest further development of integrated AR and VR virtual exposure therapy to enhance overall treatment outcomes.
本文通过比较虚拟现实(VR)和增强现实(AR)在虚拟暴露疗法中的效果,探讨不同技术在治疗恐惧症患者中的适用性该研究重点关注两个经典案例:蜘蛛恐惧症和污染恐惧症,并为此开发了相应的 VR 和 AR 原型。采用了受试者间实验设计,涉及 31 名参与者,他们报告了使用 VR 和 AR 技术进行虚拟暴露疗法后的体验强度和反馈。该研究收集了定量和定性数据,结果表明技术类型显着影响治疗结果。定量分析表明,VR 通常提供比 AR 更有效的治疗体验,尽管这种效果的强度根据恐惧症的类型而变化,特别是在污染模拟的情况下。结合定性反馈,研究结果进一步证明 VR 在治疗污染恐惧方面更有效,而 AR 在管理蜘蛛恐惧症方面显示出独特的优势。这些研究结果为虚拟暴露疗法技术的选择提供了实证支持,并建议进一步开发集成的AR和VR虚拟暴露疗法以提高整体治疗效果。

Keywords: Virtual Reality (VR), Augmented Reality (AR), Virtual Exposure Therapy (VET), Spider Phobia, Contamination Fears
关键词:虚拟现实 (VR)、增强现实 (AR)、虚拟暴露疗法(VET) 、蜘蛛恐惧症、污染恐惧症

Contents
内容

Abstract1
摘要1

Contents2
内容2

1Introduction4
1简介4

2Literature Review5
2文献综述5

2.1Virtual Exposure Therapy (VET)5
2.1虚拟暴露疗法 (VET) 5

2.2Two Main Technologies of VET: VR and AR6
2.2 VET的两大主要技术:VR和AR 6

2.3Virtual Reality Exposure Therapy (VRET)6
2.3虚拟现实暴露疗法(VRET) 6

2.4Augmented Reality Exposure Therapy (ARET)7
2.4增强现实暴露疗法(ARET) 7

2.5Comparison of VRET and ARET Effectiveness7
2.5 VRET 和 ARET 效果比较7

3Methodology8
3方法论8

3.1Hypotheses and Study Design8
3.1假设和研究设计8

3.1.1Hypotheses8
3.1.1假设8

3.1.2Study Design9
3.1.2研究设计9

3.2Prototype Design9
3.2原型设计9

3.2.1Hardware and Development Engine9
3.2.1硬件和开发引擎9

3.2.2Hand Tracking Technology10
3.2.2手部追踪技术10

3.2.3User Interface and Projects Scenario Design10
3.2.3用户界面和项目场景设计10

3.3Experimental Procedure13
3.3实验步骤13

3.4Data Collection and Processing16
3.4数据收集和处理16

3.4.1Questionnaires16
3.4.1问卷调查16

3.4.2Think-Aloud Protocol19
3.4.2有声思考协议19

3.4.3Follow-up Interview19
3.4.3后续访谈19

3.5Participants20
3.5参与者20

3.5.1Participants Recruitment20
3.5.1参与者招募20

3.5.2Ethical Considerations20
3.5.2道德考虑20

4Results20
4结果20

4.1Quantitative Analysis20
4.1定量分析20

4.1.1Participants20
4.1.1参与者20

4.1.2Scale-Based Questionnaire Analysis21
4.1.2基于量表的问卷分析21

4.1.3Multiple-Choice Questions Analysis24
4.1.3选择题分析24

4.2Qualitative Feedback25
4.2定性反馈25

4.2.1AR vs. VR in Virtual Spider25
4.2.1 Virtual Spider 25中的 AR 与 VR

4.2.2AR vs. VR in Contamination Simulation26
4.2.2污染模拟中的 AR 与 VR 26

5Discussion27
5讨论27

5.1General Applicability for AR and VR in Exposure Therapy27
5.1 AR 和VR在暴露疗法中的普遍适用性27

5.1.1Applicability of AR27
5.1.1 AR 27的适用性

5.1.2Applicability of VR28
5.1.2 VR 28的适用性

5.1.3Development Suggestion: Gradual and Progressive Therapy Combining AR and VR28
5.1.3发展建议:AR与VR相结合的循序渐进疗法28

5.2Limitations29
5.2局限性29

5.2.1Limitations of Prototype Development29
5.2.1原型开发的局限性29

5.2.2Limitations of Research Sample29
5.2.2研究样本29的局限性

5.3Future Work30
5.3未来的工作30

6Conclusion30
6结论30

References32
参考文献32

Introduction
介绍

Exposure therapy, a form of cognitive behavioural therapy, is a psychological intervention for fears and phobias. This therapeutic approach employs the principle of gradual exposure, systematically introducing stimuli that provoke fear to the patient, aiming to reduce intensity of sensations over time. Traditional exposure therapy predominantly involves in vivo exposure therapy (IVET), where therapists guide patients to systematically confront sources of fear, assisting those with phobias to overcome their fears through a habituation process (Foa, Chrestman, and Gilboa-Schechtman 2009). For instance, spider phobia treatment might involve controlled interactions with live spiders. Although traditional exposure therapy has been proven effective, setting up such scenarios in a therapeutic context can be challenging and carries potential safety risks. Moreover, as this method necessitates direct confrontation with fears, it presents emotional challenges to patients, potentially impeding their continued participation due to intense anxiety responses (Gunter and Whittal 2010)
暴露疗法是认知行为疗法的一种形式,是针对恐惧和恐惧症的心理干预方法。这种治疗方法采用逐渐暴露的原则,系统地引入引起患者恐惧的刺激,旨在随着时间的推移降低感觉强度。传统的暴露疗法主要涉及体内暴露疗法(IVET),其中治疗师引导患者系统地面对恐惧的来源,帮助恐惧症患者通过习惯过程克服恐惧(Foa,Chrestman和Gilboa-Schechtman 2009)。例如,蜘蛛恐惧症的治疗可能涉及与活蜘蛛的受控互动。尽管传统的暴露疗法已被证明是有效的,但在治疗环境中设置此类场景可能具有挑战性,并且存在潜在的安全风险。此外,由于这种方法需要直接面对恐惧,它给患者带来了情感挑战,可能会由于强烈的焦虑反应而阻碍他们继续参与(Gunter 和 Whittal 2010)
.

Given the inherent drawbacks of traditional exposure therapy, the emergence of Virtual Reality (VR) and Augmented Reality (AR) technologies has provided a new approach to exposure therapy. These technologies can simulate various fear-inducing environments, providing comparable exposure experiences. Empirical studies have supported the efficacy of VR and AR in exposure therapy, demonstrating their ability to reduce fear responses and anxiety levels, and to elicit emotional feedback similar to real-world scenarios (Elphinston et al. 2023; Kothgassner et al. 2019; Krzystanek et al. 2021). This suggests that virtual exposure may be as effective as traditional methods, potentially serving as a feasible alternative.
鉴于传统暴露疗法的固有缺陷,虚拟现实(VR)和增强现实(AR)技术的出现为暴露疗法提供了新的方法。这些技术可以模拟各种引起恐惧的环境,提供可比较的暴露体验。实证研究支持了 VR 和 AR 在暴露疗法中的功效,证明了它们能够减少恐惧反应和焦虑水平,并引发类似于现实世界场景的情绪反馈(Elphinston 等人,2023 年;Kothgassner 等人,2019 年;Krzystanek)等人,2021) 这表明虚拟曝光可能与传统方法一样有效,有可能成为一种可行的替代方案。

The development of virtual exposure therapy (VET) prototypes using VR and AR raises questions about technology selection. VR immerses users in entirely virtual environments, while AR overlays virtual elements onto the real world, offering distinct sensory experiences (Li et al. 2014). This difference suggests that these technologies might yield varied effects in exposure treatment. VR may be more suitable for scenarios benefiting from complete immersion, potentially enhancing therapeutic outcomes, while AR might be more appropriate for situations requiring integration with real environments.
使用 VR 和 AR开发虚拟暴露疗法(VET)原型引发了有关技术选择的问题。 VR 让用户沉浸在完全虚拟的环境中,而 AR 将虚拟元素叠加到现实世界上,提供独特的感官体验(Li et al. 2014) 。这种差异表明这些技术可能在暴露治疗中产生不同的效果。 VR 可能更适合受益于完全沉浸的场景,可能增强治疗效果,而 AR 可能更适合需要与真实环境集成的情况。

Previous research on digital technology in exposure therapy has typically focused on developing and testing either VR or AR independently, aiming to understand how each technology could enhance phobia treatment interventions. VR's fully immersive environment allows clinicians to create controlled, realistic scenarios without real-world risks, making it suitable for phobias difficult to replicate in traditional settings (Carvalho, Freire, and Nardi 2010; North, North, and Coble 1998), such as fear of flying or heights (Freeman et al. 2018; Tortella-Feliu et al. 2011). AR has been explored for integrating digital objects into the real world, offering a unique blend of real and virtual elements, and has been primarily used in animal phobia treatment prototypes (Juan et al. 2005; Yang et al. 2022)
之前关于暴露疗法中数字技术的研究通常集中于独立开发和测试 VR 或 AR,旨在了解每种技术如何增强恐惧症治疗干预措施。 VR 的完全沉浸式环境使临床医生能够创建受控的、现实的场景,而没有现实世界的风险,使其适合于传统环境中难以复制的恐惧症(Carvalho、Freire 和 Nardi 2010;North、North 和 Coble 1998),例如恐惧飞行或高度(Freeman et al. 2018;Tortella-Feliu et al. 2011)。 AR 已被探索用于将数字对象集成到现实世界中,提供真实和虚拟元素的独特融合,并主要用于动物恐惧症治疗原型(Juan 等人,2005 年;Yang 等人,2022 年)
.

However, there is a notable gap in comparative research between VR and AR in exposure therapy, leading to a lack of theoretical guidance for technology selection in prototype development. To address this, a comparative investigation of VR and AR in virtual exposure therapy is conducted in this study. Two classic cases were selected: contamination fears and spider phobia. These cases were chosen because both have been proven effective in previous research using VR and AR technologies for virtual exposure therapy (Fajnerová et al. 2023; Garcia-Palacios et al. 2002; Jurcik et al. 2024; Lohse et al. 2023), making them suitable for comparing technological characteristics based on known efficacy. For comparative testing, prototype projects were developed for each case, evaluating participants' sense of immersion, realism, as well as motor and emotional responses across different prototypes.
然而,VR与AR在暴露疗法方面的对比研究存在显着差距,导致原型开发中的技术选择缺乏理论指导。为了解决这个问题,本研究对虚拟暴露疗法中的 VR 和 AR 进行了比较研究。选取了两个经典案例:污染恐惧症和蜘蛛恐惧症。选择这些案例是因为在之前的研究中,使用 VR 和 AR 技术进行虚拟暴露疗法已被证明是有效的(Fajnerová 等人,2023 年;Garcia-Palacios 等人,2002 年;Jurcik 等人,2024 年;Lohse 等人,2023 年) ,使它们适合根据已知功效比较技术特征。为了进行比较测试,针对每个案例开发了原型项目,评估参与者在不同原型中的沉浸感、真实感以及运动和情绪反应。

The study focuses on two main questions:
该研究集中于两个主要问题:

Q1. Is there a difference in effectiveness between AR and VR when used as technologies for virtual exposure therapy?
Q1.当AR和VR用作虚拟暴露疗法技术时,效果是否存在差异?

Q2. If a difference exists, is one generally better than the other, or do the results vary depending on the specific task?
Q2。如果存在差异,那么一个总体上是否比另一个更好,或者结果是否因具体任务而异?

By directly comparing AR and VR technologies in two distinct projects, this study aims to determine which technology may be more effective overall, or whether one may be more suited to treating specific phobias. In doing so, it explores the potential for these technologies to cater to different types of patients or therapeutic goals. The research seeks to offer evidence-based guidance on the optimal use of AR and VR technologies in exposure therapy. These findings could contribute to a theoretical understanding of how different immersive technologies influence fear extinction and provide practical insights for application development and clinicians in selecting appropriate digital tools based on individual patient requirements.
通过直接比较两个不同项目中的 AR 和 VR 技术,本研究旨在确定哪种技术总体上更有效,或者是否更适合治疗特定的恐惧症。在此过程中,它探索了这些技术满足不同类型患者或治疗目标的潜力。该研究旨在为暴露疗法中 AR 和 VR 技术的最佳使用提供循证指导。这些发现有助于从理论上理解不同的沉浸式技术如何影响恐惧消退,并为应用程序开发和临床医生根据患者个体需求选择适当的数字工具提供实用见解

Literature Review
文献综述

The literature relevant to this study encompasses two key areas: virtual exposure therapy, as well as the comparative effectiveness of VR and AR technologies. The development from traditional exposure therapy to virtual methods is discussed, followed by an examination of the two primary technologies, VR and AR, along with an overview of past studies comparing their effectiveness. A review of research on virtual reality exposure therapy and augmented reality exposure therapy is then presented, identifying a research gap in comparing the effectiveness of VR and AR within the context of exposure therapy.
与本研究相关的文献涵盖两个关键领域:虚拟暴露疗法以及 VR 和 AR 技术的有效性比较。讨论了从传统暴露疗法到虚拟方法的发展,随后对 VR 和 AR 两种主要技术进行了检查,并概述了过去比较其有效性的研究。然后对虚拟现实暴露疗法和增强现实暴露疗法的研究进行了回顾,确定了在暴露疗法背景下比较VR 和 AR有效性的研究差距

Virtual Exposure Therapy (VET)
虚拟暴露疗法(VET)

Exposure Therapy is an effective method for treating phobias and has been widely applied in the field of psychotherapy. The therapy’s core mechanism involves repeated exposure experiences, where the brain learns not to associate fear-inducing situations with negative emotional responses, thereby reducing phobia symptoms (Wolitzky-Taylor et al. 2008). This therapy is grounded in classical behaviourist theories, particularly the concepts of conditioned reflexes and learned helplessness.
暴露疗法是治疗恐惧症的有效方法,在心理治疗领域得到广泛应用。该疗法的核心机制涉及重复的暴露经历,大脑学会不将引起恐惧的情况与负面情绪反应联系起来,从而减少恐惧症症状(Wolitzky-Taylor et al. 2008) 这种疗法基于经典行为主义理论,特别是条件反射和习得性无助的概念。

In traditional vivo exposure therapy (IVET), therapists help patients face their feared objects or situations in a safe environment. The process of exposure therapy typically includes several steps. Initially, the therapist and patient create an exposure hierarchy, listing situations from the least to the most fear-inducing. The patient then gradually encounters these situations under the therapist’s guidance (Schumacher et al. 2015). For instance, a patient with a specific phobia might be gradually exposed to the source of their fear, progressing from images and videos to real-life situations, with increasing levels of exposure intensity. In each step, the patient remains in the situation until their fear gradually diminishes, a process known as "extinction" (Abramowitz 2013). The effectiveness of exposure therapy has been validated in numerous studies. Research has shown that exposure therapy significantly benefits specific phobias, such as social anxiety, agoraphobia, and spider phobia (Krzystanek et al. 2021)
在传统的体内暴露疗法(IVET)中,治疗师帮助患者在安全的环境中面对他们害怕的物体或情况。暴露疗法的过程通常包括几个步骤。最初,治疗师和患者创建一个暴露层次,从最不引起恐惧到最引起恐惧的情况列出。然后患者在治疗师的指导下逐渐遇到这些情况(Schumacher et al. 2015)。例如,患有特定恐惧症的患者可能会逐渐暴露于恐惧的来源,从图像和视频发展到现实生活中的情况,并且暴露强度不断增加。在每一步中,患者都会保持在这种情况下,直到他们的恐惧逐渐减少,这个过程称为“消退”(Abramowitz 2013)暴露疗法的有效性已在大量研究中得到验证。研究表明,暴露疗法对特定的恐惧症有显着疗效,例如社交焦虑症、广场恐惧症和蜘蛛恐惧症(Krzystanek et al. 2021)
.

However, traditional exposure therapy faces some challenges. First, the recreation of these situations during therapy can be constrained by time, location, and resources, potentially reducing the therapy’s efficacy (Foa et al. 2009). Additionally, the realism and intensity of fear-inducing situations are limited in therapeutic settings, which may affect the therapy’s effectiveness (Meuret et al. 2012). Moreover, for some patients, direct exposure to fear-inducing situations can be too intense, making it difficult for them to persevere with the treatment, thus affecting the outcomes (Culver, Stoyanova, and Craske 2012)
然而,传统的暴露疗法面临一些挑战。首先,治疗过程中这些情境的重现可能会受到时间、地点和资源的限制,可能会降低治疗的效果(Foa et al. 2009)。此外,在治疗环境中,引起恐惧的情况的真实性和强度受到限制,这可能会影响治疗的有效性(Meuret et al. 2012)。此外,对于某些患者来说,直接暴露于引起恐惧的情况可能过于强烈,使他们难以坚持治疗,从而影响结果(Culver、Stoyanova 和 Craske 2012)
.

To address the issues present in traditional exposure therapy, several attempts to improve the method have emerged in recent years. With the advancement of related technologies, Virtual Exposure Therapy (VET) has become an important supplement to traditional exposure therapy. It allows for more flexible control and reproduction of fear-inducing situations, providing a safer therapeutic environment (Kim et al. 2016)
为了解决传统暴露疗法中存在的问题,近年来出现了一些改进该方法的尝试。随着相关技术的进步,虚拟暴露疗法(VET)已成为传统暴露疗法的重要补充。它可以更灵活地控制和再现引起恐惧的情况,提供更安全的治疗环境(Kim et al. 2016)
.

The first notable advantage of VET is its safety. There is no need for patients to be physically exposed to the objects or places they fear, which reduces potential safety risks. For some patients, directly facing real-world fear-inducing objects or situations may be too overwhelming, making it difficult for them to continue with traditional exposure therapy. By offering a virtual alternative, patients can engage in exposure therapy with lower psychological stress, which improves adherence and effectiveness (Powers and Emmelkamp 2008)
VET 第一个显着的优势是它的安全性。患者无需身体接触他们害怕的物体或地方,从而减少了潜在的安全风险。对于一些患者来说,直接面对现实世界中引起恐惧的物体或情况可能会让人难以承受,使他们难以继续传统的暴露疗法。通过提供虚拟替代方案,患者可以在较低的心理压力下进行暴露疗法,从而提高依从性和有效性(Powers 和 Emmelkamp 2008)
.

Secondly, the controllability of Virtual Exposure Therapy is significant. With virtual reality technology, therapists can precisely adjust the details of fear-inducing situations based on the patient’s specific needs. For example, when treating acrophobia, the virtual environment can gradually increase in height, helping the patient slowly adapt and overcome their fear (Emmelkamp et al. 2002; Rothbaum et al. 1995). It also allows therapists to control multiple variables in the virtual environment, such as background sounds, lighting, and the distance to the feared object, providing a personalised therapeutic experience (Bouchard et al. 2014). Another important advantage is its flexibility. Virtual exposure offers a flexible alternative treatment method, where patients can conduct exposure exercises at home or in their daily environment, following guidelines or their experience, with just the necessary equipment. This flexibility is particularly beneficial for patients who are unable to regularly visit therapy centres due to time, location constraints, or severe fear.
其次,虚拟暴露治疗的可控性显着。借助虚拟现实技术,治疗师可以根据患者的具体需求精确调整引起恐惧的情况的细节。例如,在治疗恐高症时,虚拟环境可以逐渐增加高度,帮助患者慢慢适应并克服恐惧(Emmelkamp et al. 2002;Rothbaum et al. 1995)。它还允许治疗师控制虚拟环境中的多个变量,例如背景声音、照明以及与恐惧对象的距离,提供个性化的治疗体验(Bouchard et al. 2014)另一个重要的优势是它的灵活性。虚拟暴露提供了一种灵活的替代治疗方法,患者可以按照指南或他们的经验,在家里或日常环境中进行暴露练习,只需使用必要的设备。这种灵活性对于因时间、地点限制或严重恐惧而无法定期前往治疗中心的患者特别有益。

In conclusion, exposure therapy, as an effective treatment for phobias, has shown significant results in clinical practice. Its advantages in flexibility, controllability, and patient experience make it a valuable complement to traditional exposure therapy. However, as technology advances and demands for therapeutic efficacy increase, further research is needed to optimise and enhance exposure therapy
综上所述,暴露疗法作为治疗恐惧症的有效方法,在临床实践中已显示出显着的效果。其在灵活性、可控性和患者体验方面的优势使其成为传统暴露疗法的宝贵补充。然而,随着技术的进步和对治疗效果的要求的提高,需要进一步的研究来优化和增强暴露疗法
.

Two Main Technologies of VET: VR and AR
VET的两大主要技术:VR和AR

The primary tools of Virtual Exposure Therapy include Virtual Reality (VR) and Augmented Reality (AR) technologies
虚拟暴露疗法的主要工具包括虚拟现实(VR)和增强现实(AR)技术
.

VR is a technology that can create real-world or imagined scenarios, immersing users so deeply that they cannot distinguish it from reality. Additionally, Virtual Reality can develop artificial experiences, making human-computer interaction applicable to all human senses. The presence function provided by VR and AR gives users a sense of immersion, opening up many potential pathways for psychology (Diemer, Pauli, and Mühlberger 2015). VR experiences require specific hardware known as headsets (e.g., Meta Quest, Apple Vision Pro).
VR是一种可以创造真实世界或想象场景的技术,让用户沉浸其中,无法区分现实。此外,虚拟现实可以开发人工体验,使人机交互适用于所有人类感官。 VR和AR提供的临场感功能给用户一种沉浸感,为心理学开辟了许多潜在的途径(Diemer、Pauli和Mühlberger 2015)。 VR 体验需要称为耳机的特定硬件(例如 Meta Quest、Apple Vision Pro)。

AR is a technology that enriches the real world with digital data. AR allows the integration of virtual objects into the real world by calculating the correct position of the camera. Furthermore, AR supports overlaying digital content, including 3D models, videos, images, etc., onto real-world objects. AR devices, such as Microsoft HoloLens, are generally more affordable and portable than those with VR functions, and AR can even be implemented on mobile devices.
AR是一项利用数字数据丰富现实世界的技术。 AR 通过计算相机的正确位置,允许将虚拟对象集成到现实世界中。此外,AR 支持将数字内容(包括 3D 模型、视频、图像等)叠加到现实世界的物体上。 AR设备,如微软HoloLens,通常比具有VR功能的设备更便宜、更便携,而且AR甚至可以在移动设备上实现。

VR and AR technologies show different strengths in various settings. VR usually provides a more immersive and realistic experience, while AR's interactive features offer more flexibility and accessibility. Some comparative studies of these technologies have found that tasks are completed more quickly and with greater immersion under VR conditions, whereas AR conditions lead to more physiological arousal and activity (Chicchi Giglioli, Bermejo Vidal, and Alcañiz Raya 2019). VR has a more significant impact on perceived realism, whilst AR's interactivity has a stronger direct effect on presence than VR (Guo et al. 2024). A comparative study of Haptic Perception of Stiffness in the two technologies found that objects in AR feel softer than those in VR, suggesting that the presence of the real environment in AR may influence the perception of virtual objects (Gaffary et al. 2017). In the field of neuroscience, research indicates that VR and AR have different effects on neurodominant cognition, with each technology having unique advantages in various neuroscientific applications, further supporting the need to explore their relative effectiveness in clinical treatment (Antoniou, Athanasiou, and Bamidis 2020)
VR和AR技术在不同的环境下表现出不同的优势。 VR通常提供更加身临其境和真实的体验,而AR的交互功能则提供更大的灵活性和可访问性。对这些技术的一些比较研究发现,在 VR 条件下,任务完成得更快,沉浸感更强,而 AR 条件会导致更多的生理唤醒和活动(Chicchi Giglioli、Bermejo Vidal 和 Alcañiz Raya 2019)VR 的影响更显着与 VR 相比,AR 的交互性对存在感具有更强的直接影响(Guo et al. 2024)。对两种技术中的触觉感知刚度的比较研究发现,AR 中的物体比 VR 中的物体感觉更柔软,这表明 AR 中真实环境的存在可能会影响虚拟物体的感知(Gaffary et al. 2017)。在神经科学领域,研究表明 VR 和 AR 对神经主导认知有不同的影响,每种技术在各种神经科学应用中都具有独特的优势,进一步支持探索其在临床治疗中的相对有效性的需要(Antoniou、Athanasiou 和 Bamidis 2020 )
.

In the field of virtual exposure therapy, VR and AR are the primary technologies, corresponding to Virtual Reality Exposure Therapy (VRET) and Augmented Reality Exposure Therapy (ARET). These differences between the two technologies may also influence their effectiveness in virtual exposure therapy.
在虚拟暴露疗法领域,VR和AR是主要技术,对应虚拟现实暴露疗法(VRET)和增强现实暴露疗法(ARET)。两种技术之间的这些差异也可能会影响它们在虚拟暴露疗法中的有效性。

Virtual Reality Exposure Therapy (VRET)
虚拟现实暴露疗法(VRET)

Virtual Reality Exposure Therapy (VRET) is the application of VR in virtual exposure therapy, using VR technology to create immersive environments. It allows patients to be gradually exposed to the objects or situations they fear within a virtual setting. VRET has been used to treat various situational phobias, such as obsessive-compulsive disorder, including contamination fears (Fajnerová et al. 2023),driving phobia (Elphinston et al. 2023), acrophobia (Emmelkamp et al. 2001, 2002; Rothbaum et al. 1995), and fear of flying (Rothbaum et al. 2006; Tortella-Feliu et al. 2011). It has also been used in the treatment of animal phobias, such as fear of spiders (Garcia-Palacios et al. 2002)
虚拟现实暴露疗法(VRET)是VR在虚拟暴露疗法中的应用,利用VR技术创造沉浸式环境。它允许患者在虚拟环境中逐渐接触他们害怕的物体或情况。 VRET已被用于治疗各种情境恐惧症,例如强迫症,包括污染恐惧症(Fajnerová等人,2023年)、驾驶恐惧症(Elphinston等人,2023年)、恐高症(Emmelkamp等人,2001年、2002年;Rothbaum等人,2023年)。 1995)和对飞行的恐惧(Rothbaum 等人,1995) 2006;托特拉-费柳等人,2011)。它还被用于治疗动物恐惧症,例如对蜘蛛的恐惧(Garcia-Palacios et al. 2002)
.

Several meta-analyses indicate that for most such disorders, VRET is as effective as traditional IVET (Rothbaum et al. 2006), (Suso-Ribera et al. 2019).The advantage of VRET lies in its ability to create hyper-realistic environments, allowing patients to face and gradually overcome their fears in a safe virtual space. VRET can precisely simulate the fear-inducing situations of patients, providing a highly controlled exposure experience through a fully immersive virtual environment (Boeldt et al. 2019). Research indicates that VRET has shown comparable, if not superior, effectiveness to traditional exposure therapy in treating phobia, obsessive-compulsive disorder, and other conditions (Carl et al. 2019; Kothgassner et al. 2019). Additionally, the immersion provided by VRET is considered a significant factor in enhancing effectiveness, as it can elicit strong emotional and cognitive responses, thereby accelerating the therapeutic process (Riva 2022). Nevertheless, the high level of immersion in VRET can also present challenges. For instance, some patients may feel uncomfortable or experience motion sickness in a completely virtual environment (Mevlevioğlu, Tabirca, and Murphy 2022). Moreover, VRET’s equipment and technical requirements are higher, increasing the complexity and cost of the treatment (Washburn, Parrish, and Bordnick 2020)
多项荟萃分析表明,对于大多数此类疾病,VRET 与传统的 IVET 一样有效(Rothbaum 等人,2006 年),(Suso-Ribera 等人,2019 年)VRET 的优势在于其能够创建超现实环境,让患者在安全的虚拟空间中面对并逐渐克服恐惧。 VRET 可以精确模拟患者产生恐惧的情况,通过完全沉浸式的虚拟环境提供高度受控的暴露体验(Boeldt et al. 2019)。研究表明,在治疗恐惧症、强迫症和其他疾病方面,VRET 与传统暴露疗法的效果即使不是更好,也相当(Carl 等人,2019 年;Kothgassner 等人,2019 年)。此外,VRET 提供的沉浸感被认为是提高疗效的重要因素,因为它可以引发强烈的情绪和认知反应,从而加速治疗过程 (Riva 2022)。然而,高度沉浸于 VRET 也可能带来挑战。例如,一些患者可能会在完全虚拟的环境中感到不舒服或出现晕动病(Mevlevioğlu、Tabirca 和 Murphy 2022)。而且,VRET对设备和技术要求更高,增加了治疗的复杂性和成本(Washburn、Parrish和Bordnick 2020)
.

Augmented Reality Exposure Therapy (ARET)
增强现实暴露疗法(ARET)

Similarly, Augmented Reality Exposure Therapy (ARET) involves the use of AR for virtual exposure. AR combines real-world environments with virtual elements, allowing patients to confront fear stimuli through the presentation of virtual objects within their real surroundings. As a relatively new approach compared to VRET, ARET has also demonstrated significant potential, particularly in situations where a high degree of realism is required. ARET has been used in various studies to treat small animal phobias, such as spiders (Botella et al. 2016; Jurcik et al. 2024), cockroaches (Wrzesien et al. 2015), and moths (Abate, Nappi, and Ricciardi 2011). It has also been applied in exposure therapy research for contamination fear (Lohse et al. 2023), demonstrating its therapeutic potential in exposure therapy.
同样,增强现实暴露疗法(ARET)涉及使用 AR 进行虚拟暴露。 AR 将现实世界环境与虚拟元素相结合,让患者通过在真实环境中呈现虚拟物体来面对恐惧刺激。与 VRET 相比,作为一种相对较新的方法,ARET 也表现出了巨大的潜力,特别是在需要高度真实性的情况下。 ARET 已被用于治疗小动物恐惧症的各种研究,例如蜘蛛(Botella 等人,2016 年;Jurcik 等人,2024 年)、蟑螂(Wrzesien 等人,2015 年)和飞蛾(Abate、Nappi 和 Ricciardi,2011 年)。也被应用于针对污染恐惧的暴露疗法研究(Lohse 等人,2023),证明了其暴露疗法的治疗潜力。

Studies have shown that AR-based exposure therapy can be as effective as IVET or VRET (Suso-Ribera et al. 2019). AR technology allows patients to undergo exposure therapy in the real world, rather than in a fully virtual environment. By integrating virtual elements into the actual surroundings and enabling direct 'bodily' perception of this environment, the ecological validity of the scenario is enhanced (Dünser, Grasset, and Farrant 2011). In past research and applications, ARET has primarily been used to treat animal phobias. Because AR retains the sense of the physical environment, patients can interact with the fear-inducing stimuli in a real and natural setting, enhancing the ecological validity of the therapeutic process (Baus and Bouchard 2014). Additionally, one notable advantage of ARET is that exposure can occur directly within the real-world environments where the patient typically faces challenges (Horigome et al. 2020). This characteristic makes ARET more practical in daily life and better integrated into patients' life contexts, improving adherence and effectiveness. It has also been found that in some cases, the virtual objects in AR can provide a gentler psychological experience compared to completely virtual scenarios, which can be beneficial for long-term treatment (Juan et al. 2005). ARET, however, also faces some limitations. Since AR technology operates in the real world, it may not provide as comprehensive environmental control and high immersion as VRET in certain complex or extreme scenarios (Baus and Bouchard 2014). In addition, AR technology still requires further development, particularly in optimising the seamless integration of virtual and real elements.
研究表明,基于 AR 的暴露疗法可以与 IVET 或 VRET 一样有效(Suso-Ribera 等人,2019) AR技术允许患者在现实世界中接受暴露疗法,而不是在完全虚拟的环境中。通过将虚拟元素集成到实际环境中并实现对该环境的直接“身体”感知,场景的生态有效性得到增强(Dünser、Grasset 和 Farrant 2011) 在过去的研究和应用中,ARET主要用于治疗动物恐惧症。由于 AR 保留了物理环境的感觉,患者可以在真实自然的环境中与引起恐惧的刺激互动,从而增强治疗过程的生态有效性(Baus 和 Bouchard 2014) 此外,ARET 的一个显着优点是暴露可以直接发生在患者通常面临挑战的现实环境中(Horigome 等人,2020) 。这一特性使得 ARET 在日常生活中更加实用,更好地融入患者的生活环境,提高依从性和有效性。研究还发现,在某些情况下,与完全虚拟的场景相比,AR 中的虚拟物体可以提供更温和的心理体验,这可能有利于长期治疗(Juan et al. 2005) 然而,ARET 也面临一些限制。 由于AR技术在现实世界中运行,在某些复杂或极端场景下,它可能无法提供像VRET那样全面的环境控制和高沉浸感(Baus和Bouchard 2014) 。此外 AR技术还需要进一步发展,特别是在优化虚拟现实元素的无缝集成方面。

Comparison of VRET and ARET Effectiveness
VR ET和 AR ET效果比较

VR and AR technologies share many of the same advantages when applied in virtual exposure therapy, such as total control over the way the exposure is conducted, easier access to the threatening stimuli, no risk of real danger to the patient, the possibility of going beyond reality, and confidentiality (Botella et al. 2016). At the same time, they also show distinct characteristics. VR's high level of immersion and complete control over the environment make it particularly effective for exposure therapy in extreme or highly specific scenarios. In contrast, ARET provides a more adaptive and natural therapeutic experience by allowing users to see their own bodies interacting with virtual elements, which may be better suited for patients who need gradual integration into their daily lives. This suggests that their effectiveness may vary depending on the specific context.
VR和AR技术在虚拟暴露疗法中应用时具有许多相同的优点,例如完全控制暴露的方式、更容易获得威胁性刺激、对患者没有真正危险的风险、超越的可能性现实性和保密性(Botella 等人,2016 年) 同时,他们也表现出鲜明的特点。 VR 的高度沉浸感和对环境的完全控制使其对于极端或高度特定场景中的暴露疗法特别有效。相比之下,ARET 通过允许用户看到自己的身体与虚拟元素交互,提供了更具适应性和自然的治疗体验,这可能更适合需要逐渐融入日常生活的患者。这表明它们的有效性可能会根据具体情况而有所不同。

However, previous research in this field has primarily focused on examining the unique features and effectiveness of VR and AR technologies as standalone approaches. While this has improved the understanding of VR and AR individually, there has been limited attention to comparing their effectiveness or exploring how they might be combined to enhance therapeutic outcomes. A review on the transition from VRET to ARET also failed to mention any direct comparative studies, instead only focusing on the advantages of AR, such as lower development costs and increased bodily awareness compared to VR (Baus and Bouchard 2014). This highlights a clear research gap in existing studies and prototype developments regarding the comparative effectiveness of AR and VR in exposure therapy.
然而,该领域之前的研究主要集中于研究 VR 和 AR 技术作为独立方法的独特功能和有效性。虽然这单独提高了对 VR 和 AR 的理解,但人们对比较它们的有效性或探索如何将它们结合起来以增强治疗效果的关注有限。关于从 VRET 到 ARET 过渡的评论也没有提及任何直接的比较研究,而是关注 AR 的优势,例如与 VR 相比,开发成本更低,身体意识增强(Baus 和 Bouchard 2014) 。这凸显了现有研究和原型开发中关于 AR 和 VR 在暴露疗法中的比较有效性的明显研究差距。

To address this gap, the aim of this study is to directly compare the use of VR and AR in virtual exposure therapy. Two themes - spiders and contamination - that have been proven effective in VRET and ARET efficacy studies are selected. Corresponding prototypes are developed for each theme, designed to evaluate both technologies under comparable exposure therapy conditions.
为了解决这一差距,本研究的目的是直接比较 VR 和 AR 在虚拟暴露疗法中的使用。选择了在 VRET 和 ARET 功效研究中已被证明有效的两个主题-蜘蛛和污染为每个主题开发了相应的原型,旨在在可比较的暴露治疗条件下评估这两种技术。

Methodology
方法

The study primarily centres on two key questions: whether there is a technology that is more effective (Q1), and whether one is better suited to treating specific phobias (Q2). Hypotheses are formulated for these questions, and to test them, a within-subjects comparative experiment is designed. A testing prototype is developed, allowing participants to experience virtual spider and contamination simulations in both AR and VR environments. Participants engage in a series of tasks, and their emotional and experiential responses are measured using both quantitative (questionnaires) and qualitative (think-aloud protocols and follow-up interview) methods for subsequent hypothesis testing and qualitative analysis.
该研究主要集中在两个关键问题上:是否有更有效的技术(Q1 ,以及是否更适合治疗特定的恐惧症(Q2) 。针对这些问题提出了假设,并设计了受试者内比较实验来检验这些假设。开发了一个测试原型,让参与者可以在 AR 和 VR 环境中体验虚拟蜘蛛和污染模拟。参与者参与一系列任务,并使用定量(问卷)和定性(出声思考协议和后续访谈)方法来测量他们的情绪和体验反应,以进行后续的假设检验和定性分析。

Hypotheses and Study Design
假设研究设计

Hypotheses
假设

Based on the above questions, the following hypotheses are proposed:
基于上述问题,提出以下假设:

Primary Hypothesis
主要假设

1. Main Effect of Technology Type (AR vs. VR):
1. 技术类型的主要影响(AR vs. VR):

It is hypothesised that there will be a significant difference in the intensity of experience provided by AR and VR technologies. The null hypothesis (H0) posits that there is no significant main effect of the type of technology on the intensity of experience, suggesting that AR and VR deliver comparable levels of experience intensity. The alternative hypothesis (H1) contends that there is a significant main effect of technology type on experience intensity, indicating that AR and VR provide disparate levels of experience intensity.
假设AR和VR技术提供的体验强度会有显着差异。原假设 (H 0 ) 假设技术类型对体验强度没有显着的主效应,这表明 AR 和 VR 提供的体验强度水平相当。另类假设 (H 1 ) 认为技术类型对体验强度有显着的主效应,表明 AR 和 VR 提供不同水平的体验强度。

This hypothesis corresponds to Q1 and serves as the primary hypothesis, based on the differing immersive nature and sensory engagement of AR and VR. It can be assumed that these differences will result in varying levels of emotional and cognitive responses during exposure therapy. Specifically, the hypothesis suggests that one technology will elicit a more intense therapeutic experience than the other, which may be reflected in participants' sense of immersion, perceived realism, avoidance of the feared stimuli, and emotional or behavioural feedback.
该假设对应于Q1 ,并作为主要假设,基于 AR 和 VR 的不同沉浸式本质和感官参与。可以假设,这些差异将导致暴露疗法期间不同程度的情绪和认知反应。具体来说,该假设表明,一种技术将比另一种技术带来更强烈的治疗体验,这可能反映在参与者的沉浸感、感知的现实感、对恐惧刺激的回避以及情绪或行为反馈上。

If the primary hypothesis demonstrates that there is indeed a significant difference between the effectiveness of AR and VR, the secondary hypothesis further investigates whether this difference is consistent across different types of phobias:
如果主要假设证明 AR 和 VR有效性确实存在显着差异,则次要假设进一步研究这种差异在不同类型的恐惧症中是否一致:

Secondary Hypothesis (Conditional on AR and VR Being Different)
次要假设(以AR和VR不同为条件)

2. Main Effect of Project Type (Spider Phobia vs. Contamination Fear):
2. 项目类型的主要影响(蜘蛛恐惧症与污染恐惧症):

It is hypothesised that the type of project (Spider Phobia vs. Contamination Fear) will not significantly influence the intensity of experience. The null hypothesis (H20) states that there is no significant main effect of project type on experience intensity, suggesting that Virtual Spider and Contamination Simulation provide similar experience intensity. Conversely, the alternative hypothesis (H21) posits that there is a significant main effect of project type on experience intensity, indicating that Virtual Spider and Contamination Simulation provide different levels of experience intensity.
假设项目类型(蜘蛛恐惧症与污染恐惧症)不会显着影响体验的强度。原假设( H2 0 )​表明项目类型对体验强度没有显着的主效应,这表明虚拟蜘蛛和污染模拟提供了相似的体验强度。相反,备择假设 H2 1 ​假设项目类型对体验强度有显着的主效应,表明虚拟蜘蛛和污染模拟提供了不同水平的体验强度。

This hypothesis is not a direct extension of the study's primary questions, as previous research has generally shown that both ARET and VRET are similarly effective in treating spider phobia and contamination fear, with no significant difference in the intensity of the experience. However, to minimise the influence of experimental error and ensure proper control of variables, this hypothesis is included as a more rigorous premise for analysis. It implies that AR and VR technologies will independently generate their respective intensities of experience, regardless of the specific phobia being addressed. Therefore, the effectiveness of AR and VR is primarily driven by the technology itself, rather than by the specific nature of the phobia being treated.
这一假设并不是该研究主要问题的直接延伸,因为之前的研究普遍表明,ARET 和 VRET 在治疗蜘蛛恐惧症和污染恐惧症方面的效果相似,而体验强度没有显着差异。然而,为了最大限度地减少实验误差的影响并确保变量的适当控制,该假设被纳入作为更严格的分析前提。这意味着 AR 和 VR 技术将独立产生各自的体验强度,无论所解决的具体恐惧症如何。因此,AR和VR的有效性主要由技术本身驱动,而不是由所治疗的恐惧症的具体性质决定。

3. Interaction Effect Between Technology Type and Project Type:
3、技术类型与项目类型的互动效应:

The effectiveness of AR versus VR will vary depending on the specific project type (Spider Phobia vs. Contamination Fear). The null hypothesis (H30) states that there is no significant interaction effect between technology type and project type on experience intensity. Conversely, the alternative hypothesis (H31) that there is a significant interaction effect between technology type and project type on experience intensity, meaning the difference in experience intensity between AR and VR will depend on the specific project context (Spider vs. Contamination).
AR 与 VR 的效果将根据具体项目类型(蜘蛛恐惧症与污染恐惧症)而有所不同。原假设 H3 0 ​表明技术类型和项目类型对体验强度没有显着的交互作用。相反,备择假设 H3 1 ​技术类型和项目类型对体验强度存在显着的交互作用,这意味着AR和VR之间的体验强度差异将取决于具体的项目背景(蜘蛛与污染) 。

This hypothesis addresses Q2. The interaction effect suggests that the relative advantages of AR and VR may depend on the specific phobia being treated. This hypothesis implies that a particular phobia may respond more effectively to one technology over the other. VR may be more effective in treating one phobia, while AR might be better suited for another, leading to variations in the intensity of the experience based on the combination of technology type and phobia type.
这个假设解决了问题 2。交互效应表明 AR 和 VR 的相对优势可能取决于所治疗的特定恐惧症。这一假设意味着特定的恐惧症可能对一种技术的反应比另一种技术更有效。 VR 可能更有效地治疗一种恐惧症,而 AR 可能更适合另一种恐惧症,从而根据技术类型和恐惧症类型的组合导致体验强度的变化。

Study Design
研究设计

To address the research questions and test the hypotheses, this study employs a within-subjects experimental design to compare the effectiveness of VR and AR in virtual exposure therapy. Each participant experiences both AR and VR environments, allowing for a direct comparison of the two technologies in addressing two specific phobias.
为了解决研究问题并检验假设,本研究采用受试者内实验设计来比较 VR 和 AR 在虚拟暴露疗法中的有效性。每个参与者都会体验 AR 和 VR 环境,从而可以直接比较两种技术在解决两种特定恐惧症方面的效果。

The experimental design includes two independent variables (IVs) and one dependent variable (DV) as follows:
实验设计包括两个自变量 (IV) 和一个因变量 (DV),如下所示:

Factor 1 (A): Independent Variable 1 (IV1) pertains to Technology, with two levels: AR and VR.
因素1(A):自变量1(IV1)属于技术,有两个层次: AR和VR。

Factor 2 (B): Independent Variable 2 (IV2) concerns the type of Project, also with two levels: Spider Phobia and Contamination Fear.
因素2(B):自变量2(IV2)涉及项目类型,也有两个级别:蜘蛛恐惧症和污染恐惧症。

Dependent Variable (DV): The Effectiveness of Exposure, evaluated both quantitatively through questionnaire scales and qualitatively through participant feedback to measure the therapeutic impact of the exposure sessions.
因变量(DV):暴露的有效性,通过问卷量表进行定量评估,并通过参与者反馈进行定性评估,以衡量暴露课程的治疗影响。

Participants engage in a series of tasks in both AR and VR environments for Project 1 and Project 2 (spider and contamination), experiencing four experimental conditions and reporting the dependent variable outcomes. This design allows for a comprehensive comparison of the technologies across different phobia contexts
参与者在项目 1 和项目 2(蜘蛛和污染)的 AR 和 VR 环境中参与一系列任务,体验四种实验条件并报告因变量结果。这种设计可以对不同恐惧症背景下的技术进行全面比较
.

Prototype Design
原型设计

To conduct this comparative experiment, customised VRET and ARET prototypes are developed for both spider phobia and contamination fear scenarios. These prototypes are created with reference to relevant previous research and designs.
为了进行这项比较实验,我们针对蜘蛛恐惧症和污染恐惧场景开发了定制的 VRET 和 ARET 原型。这些原型是参考之前的相关研究和设计创建的。

Hardware and Development Engine
硬件开发引擎

The Meta Quest 3 was employed as the primary hardware device for the interactive prototype. Meta Quest 3 is a virtual reality headset that offers features such as high-resolution displays, precise hand tracking, and enhanced processing power. Compared to its predecessor, the Meta Quest 3 includes a colour passthrough function, enabling seamless switching between AR and VR modes. This feature allows for the effective integration of both environments within the prototype.
Meta Quest 3 被用作交互式原型的主要硬件设备。 Meta Quest 3 是一款虚拟现实耳机,具有高分辨率显示屏、精确的手部跟踪和增强的处理能力等功能。与前代产品相比,Meta Quest 3 增加了色彩直通功能,可实现ARVR模式之间的无缝切换。此功能允许在原型中有效集成两种环境。

The VR and AR scenarios were developed using the Unity® Pro game engine (https://unity3d.com/). The Unity engine is a widely adopted platform, known for its compatibility with the Meta Quest 3 and its support for hand tracking and other relevant features, making it well-suited for the development of this project. Additionally, Unity's extensive asset store and flexible scripting environment facilitated the prototyping and iteration necessary to achieve the desired outcomes of this study.
VR 和 AR 场景是使用 Unity® Pro 游戏引擎 ( https://unity3d.com/ ) 开发的。 Unity引擎是一个被广泛采用的平台,以其与Meta Quest 3的兼容性以及对手部跟踪和其他相关功能的支持而闻名,使其非常适合该项目的开发。此外, Unity 广泛的资源存储和灵活的脚本环境促进了实现本研究预期结果所需的原型设计和迭代。

Hand Tracking Technology
手部追踪技术

In the design of this project, hand tracking technology was prioritised over handheld controllers. Although the use of hand tracking may reduce tactile feedback to some extent, it optimises the participant experience, enabling them to engage in fear response training in a more authentic and natural manner.
在该项目的设计中,手部追踪技术优先于手持控制器。虽然手部追踪的使用可能会一定程度上减少触觉反馈,但它优化了参与者的体验,使他们能够以更真实、更自然的方式进行恐惧反应训练。

Firstly, hand tracking technology can simulate direct contact and everyday interactions between participants and fear-inducing stimuli (such as spiders or contaminated objects). In fear treatment, realistically simulating everyday scenarios is a strategy for helping participants overcome their fears. Hand tracking technology can more effectively evoke emotional responses in participants, thereby enhancing the impact of exposure therapy. Secondly, hand tracking technology can reduce the sense of artificiality and game-like feel associated with handheld controllers. In virtual environments, the use of controllers often reinforces a 'gaming mindset' in participants. Even if the virtual scenario is designed to be highly realistic, the presence of controllers may remind participants that they are in a virtual world, thus diminishing the sense of immersion. By introducing hand tracking technology, participants can interact directly using their own hands. This not only enhances the naturalness of interactions but also significantly increases the immersive experience of the scenario, making it easier for participants to blur the boundary between virtual and real, and focus more intently on the current therapeutic task.
首先,手部追踪技术可以模拟参与者与引起恐惧的刺激(例如蜘蛛或受污染的物体)之间的直接接触和日常互动。在恐惧治疗中,真实地模拟日常场景是帮助参与者克服恐惧的策略。手部追踪技术可以更有效地唤起参与者的情绪反应,从而增强暴露疗法的效果。其次,手部追踪技术可以减少手持控制器的人工感和游戏感。在虚拟环境中,控制器的使用通常会强化参与者的“游戏心态”。即使虚拟场景被设计得非常逼真,控制器的存在也可能会提醒参与者他们处于虚拟世界中,从而削弱了沉浸感。通过引入手部追踪技术,参与者可以直接用自己的双手进行互动。这不仅增强了交互的自然度,也显着增加了场景的沉浸式体验,让参与者更容易模糊虚拟与现实的界限,更专注于当前的治疗任务。

User Interface and Projects Scenario Design
用户界面和项目场景设计

In this study, an interactive prototype is designed and developed, comprising four distinct scenarios: an AR virtual spider, a VR virtual spider, an AR contamination scenario, and a VR contamination scenario. These four scenarios are integrated within a single Unity project VR/AR-ET Comparison Trial.’ To enhance immersion and minimise the sense of device usage, hand tracking is utilised for interaction rather than traditional controllers. Users are able to switch freely between different modes within the prototype and can interact with virtual models in each scenario.
在这项研究中,设计和开发了一个交互式原型,包括四个不同的场景:AR虚拟蜘蛛、VR虚拟蜘蛛、AR污染场景和VR污染场景。这四个场景集成在一个 Unity 项目VR AR-ET 比较试验。为了增强沉浸感并最大程度地减少设备使用感,使用手部跟踪而不是传统控制器进行交互。用户可以在原型内的不同模式之间自由切换,并可以在每个场景中与虚拟模型进行交互。

User Interface (UI):
用户界面(UI):

Instruction cards are provided to introduce and initiate the prototype.
提供了说明卡来介绍和启动原型。

Fig.1 Instructions Start Page
1说明起始页

The design also integrates verbal cues from the researcher or a therapist, as would be encountered in real-world applications. Participants are encouraged to use a think-aloud method during the experimental process.
该设计还集成了研究人员或治疗师的口头提示,就像在现实世界的应用中遇到的那样。鼓励参与者在实验过程中使用有声思考的方法。

Fig.2 Instructions End Page
如图 2说明结束页

Users can navigate and control various scenes and settings through a menu that is activated by rotating their right hand.
用户可以通过旋转右手激活的菜单来导航和控制各种场景和设置。

Fig.3 Setting Menu Interfaces
如图 3设置菜单界面

Scenario Projects:
场景项目:

Two distinct projects are developed.
开发了两个不同的项目。

Project 1 focuses on the virtual exposure therapy experience for spider phobia involving virtual spiders.
项目 1重点关注涉及虚拟蜘蛛的蜘蛛恐惧症的虚拟暴露疗法体验

According to a study on individuals with spider phobia, moving animals increase the sense of fear and the effectiveness of exposure therapy compared to static ones (Lindner et al. 2019), the spider model used in this project is designed to have both static and moving states. While static, the spider exhibits minor 'idle' animations; in its moving state, the spider rapidly crawls forward, triggering leg animations. The moving spider can be activated by interacting with the static spider - specifically, when the user touches or picks up the static spider, it triggers the moving state, simulating the typical behaviour of spiders in real life.
根据对患有蜘蛛恐惧症的个体的研究,与静态动物相比,移动的动物会增加恐惧感和暴露疗法的有效性(Lindner et al. 2019),该项目中使用的蜘蛛模型被设计为同时具有静态和移动功能州。当蜘蛛处于静态时,它会表现出轻微的“空闲”动画;在移动状态下,蜘蛛快速向前爬行,触发腿部动画。移动蜘蛛可以通过与静态蜘蛛交互来激活——具体来说,当用户触摸或拿起静态蜘蛛时,它会触发移动状态,模拟现实生活中蜘蛛的典型行为。

In the AR mode, the virtual spider is superimposed onto the real-world environment, such as a table. Users can select a suitable flat surface within their physical surroundings to serve as the area for AR spider presentation. The spider model can be generated at any location on the identified surface, allowing users to set up the AR exposure scenario according to their specific real-world context.
AR模式下,虚拟蜘蛛会叠加到现实世界的环境中,例如桌子。用户可以在其物理环境中选择合适的平坦表面作为 AR 蜘蛛展示的区域。蜘蛛模型可以在识别表面的任何位置生成,允许用户根据其特定的现实世界环境设置 AR 曝光场景。

Fig.4 Virtual Spiders in AR
如图 AR4个虚拟蜘蛛

In the VR mode, a bedroom environment is simulated, featuring a bed, a computer desk, and a chair. Two initially static spiders are pre-placed within this setting to simulate the experience of encountering spiders in everyday environments.
VR模式下,模拟卧室环境,有一张床、一张电脑桌和一把椅子。在此设置中预先放置了两个最初静态的蜘蛛,以模拟在日常环境中遇到蜘蛛的体验。

Fig.5 Virtual Spiders in VR
如图 VR中的5虚拟蜘蛛

Project 2 focuses on the virtual exposure therapy experience for contamination fears
项目 2 重点关注针对污染恐惧的虚拟暴露疗法体验
.

The scenarios are designed to depict scattered rubbish and a dirty rubbish bin. Various types of rubbish models are used, including decaying fruit, cans, and plastic bottles, with a vomit model placed beneath the rubbish. The rubbish can be picked up and moved, and the lid of the rubbish bin, as well as the rubbish bag inside, can also be manipulated.
这些场景旨在描绘散落的垃圾和肮脏的垃圾桶。使用各种类型的垃圾模型,包括腐烂的水果、罐头和塑料瓶,并在垃圾下方放置呕吐物模型。垃圾可以捡起、移动,垃圾桶的盖子以及里面的垃圾袋也可以操作。

In the AR mode, the virtual rubbish and rubbish bin are superimposed onto the real-world environment, with a customisable generation area.
在AR模式下,虚拟垃圾和垃圾箱叠加到现实环境中,具有可定制的生成区域。

Fig.6 Contamination Environment in AR
6 A R污染环境

The VR mode simulates a cluttered street corner, featuring graffiti-covered walls and a dirty ground. The rubbish and rubbish bin are presented within this environment, simulating a realistic scenario.
VR模式模拟杂乱的街角,墙壁上布满涂鸦,地面肮脏。垃圾和垃圾箱都呈现在这个环境中,模拟现实场景。

Fig.7 Contamination Environment in VR
如图 7 VR中的污染环境

Experimental Procedure
实验过程

The experiment procedure is divided into two sections, each corresponding to a different exposure theme: spider phobia and contamination fears. Each experiment starts with an initial questionnaire and is conducted in both AR and VR environments. During the process, participants are asked to think aloud. After completing a section, they fill out the corresponding part of the questionnaire. Once everything is concluded, a follow-up interview supplements any content not previously mentioned. The experiment took around 40 minutes.
实验过程分为两个部分,每个部分对应不同的暴露主题:蜘蛛恐惧症和污染恐惧症。每个实验都从初始问卷开始,并在 AR 和 VR 环境中进行。在此过程中,参与者被要求大声思考。完成一个部分后,他们填写调查问卷的相应部分。一旦一切结束,后续采访将补充之前未提及的任何内容。实验持续了大约4 0 分钟。

To mitigate the potential influence of the order in which technologies or tasks are introduced on participants' perceptions and experiences during the experiment, the sequence of tasks and technology interactions is randomised. This method is employed to avoid the effects of order and exposure duration on the overall data validity.
为了减轻实验过程中引入技术或任务的顺序对参与者的感知和体验的潜在影响,任务和技术交互的顺序是随机的。该方法用于避免顺序和曝光时间对整体数据有效性的影响。

Fig.8 Experimental Procedure
8实验流程

The following is an example of one such randomised sequence of procedures
以下是此类随机过程序列的示例
:

Project One: Virtual Spider Exposure
项目一:虚拟蜘蛛曝光

Step 1: AR Tasks
第 1 步: AR任务

Task 1: Observing a static virtual spider. The participant wears a headset to see a static virtual spider appear in their actual surroundings and is guided to meticulously observe the spider’s appearance and behaviour.
任务 1 观察静态虚拟蜘蛛。参与者戴着耳机看到静态虚拟蜘蛛出现在他们的实际环境中,并被引导仔细观察蜘蛛的外观和行为。

Task 2: Picking up a virtual spider. The participant reaches out and grasps the static virtual spider, activating an animation that simulates the spider's movement.
任务2 捡起一只虚拟蜘蛛参与者伸出手抓住静态的虚拟蜘蛛,激活模拟蜘蛛运动的动画。

Task 3: Observing a moving virtual spider. The participant watches the spider move within the AR environment.
任务 3 观察移动的虚拟蜘蛛。参与者观看蜘蛛在 AR 环境中移动。

Task 4: Increased interaction with the spider. The participant engages in further interactive actions with the moving virtual spider, such as placing the spider on their hand or moving its position.
任务 4 增加与蜘蛛的互动。参与者与移动的虚拟蜘蛛进行进一步的交互动作,例如将蜘蛛放在他们的手上或移动其位置。

Fig.9 Tasks with Virtual Spiders in AR
9 AR 中虚拟蜘蛛任务

Step 2: VR Tasks
第 2 步: VR任务

The participant switches to a VR scene, repeating the tasks of observing, grabbing the static spider, observing the moving spider, and interacting more with the spider.
参与者切换到VR场景,重复观察、抓住静态蜘蛛、观察移动蜘蛛以及与蜘蛛进行更多互动的任务。

Fig.10 Tasks with Virtual Spiders in VR
10 VR 中虚拟蜘蛛任务

Step 3: Questionnaire 1
步骤 3:问卷1

After completing each environment (AR/VR - ET), the participant completes a questionnaire to assess the emotional responses to spider exposure and the different sensations provided by the two virtual exposure environments.
完成每个环境(AR/VR - ET)后,参与者完成一份调查问卷,以评估对蜘蛛暴露的情绪反应以及两个虚拟暴露环境提供的不同感觉。

Project Two: Contamination Fear Exposure
项目二:污染恐惧暴露

Step 4: AR Tasks
4 AR任务

Task 1: Observing rubbish on the ground. In the AR environment, the participant sees a rubbish bin and litter scattered around it and is guided to observe these items.
任务1 观察地面上的垃圾AR环境中,参与者看到垃圾箱和周围散落的垃圾,并被引导观察这些物品。

Task 2: Picking up rubbish. The participant physically picks up virtual rubbish and experiences the sensation of the rubbish’s dirtiness on their hands.
任务2 捡垃圾。参与者亲自捡起虚拟垃圾,并体验垃圾在手上的肮脏感觉。

Task 3: Throwing rubbish into the bin. The participant places the picked-up rubbish into an open green bin on their left, simulating the act of disposing of rubbish in real life.
任务3 把垃圾扔进垃圾桶。参与者将捡起的垃圾放入左侧打开的绿色垃圾箱中,模拟现实生活中扔垃圾的行为。

Task 4: Lifting the bin lid and observing. The participant lifts the lid of a black bin on their right, observes the interior of the bin, and repeats the act of disposing of ground rubbish, simulating a deeper exposure to contamination.
任务 4 提起垃圾箱盖并观察。参与者打开右侧黑色垃圾箱的盖子,观察垃圾箱的内部,并重复处理地面垃圾的动作,模拟更深层次的污染暴露。

Fig.11 Tasks with Contamination Environment in AR
1 1 AR 中污染环境的任务

Step 5: VR Tasks
5 VR任务

The tasks are the same as those in the AR setting. Participants will enter a fully virtual setting and repeat the corresponding tasks, experiencing the feeling of performing the same tasks in a VR environment.
任务与AR场景中的任务相同。参与者将进入完全虚拟的环境并重复相应的任务,体验在VR环境中执行相同任务的感觉。

Fig.12 Tasks with Contamination Environment in VR
12 VR 中污染环境的任务

Step 6: Questionnaire 2
6:问卷2

Completing a questionnaire. After finishing the tasks in both AR and VR settings, the participant fills out a questionnaire to assess their emotional reactions to contamination exposure and the different sensations offered by the two virtual environments.
完成调查问卷。在 AR 和 VR 设置中完成任务后,参与者填写一份调查问卷,以评估他们对污染暴露的情绪反应以及两个虚拟环境提供的不同感觉。

Step 7: Follow-up Interview
第7步:后续访谈

After the experiments, a semi-structured interview is conducted to further explore the participant's subjective experiences in AR and VR settings. The interview aims to supplement quantitative data, providing deeper insights into their emotional changes, levels of fear, and personal feedback on both forms of exposure
实验结束后,进行半结构化访谈,以进一步探索参与者在 AR 和 VR 环境中的主观体验。访谈旨在补充定量数据,更深入地了解他们的情绪变化、恐惧程度以及对两种暴露形式的个人反馈
.

Data Collection and Processing
数据收集和处理

Through the experimental procedure, quantitative data is collected using the initial questionnaire, as well as questionnaire part 1 and part 2. Qualitative data is collected through the think-aloud process during the experience and a semi-structured interview as a follow-up supplement. The data is then processed and analysed, with quantitative analysis focusing on hypothesis testing, while qualitative analysis serves as a comprehensive supplement and support to the quantitative findings.
通过实验过程,使用初始问卷以及问卷第1部分和第2部分收集定量数据。定性数据通过体验过程中的出声思考过程以及作为后续补充的半结构化访谈来收集。然后对数据进行处理和分析,定量分析侧重于假设检验,定性分析则是对定量结果的全面补充和支持。

Questionnaires
问卷调查

Questionnaire Design
问卷设计

The questionnaire used in this study aims to assess participants' experiences and emotional reactions in AR and VR environments for spider phobia and contamination fear scenarios. It is designed to evaluate specific aspects of virtual exposure, ensuring a comprehensive assessment of AR and VR's effectiveness in simulating realistic and emotionally impactful scenarios.
本研究中使用的问卷旨在评估参与者在 AR 和 VR 环境中对蜘蛛恐惧症和污染恐惧场景的体验和情绪反应。它旨在评估虚拟暴露的具体方面,确保全面评估 AR 和 VR 在模拟现实和情感影响力场景方面的有效性。

Initial Questions
最初的问题

The Initial Questions section includes basic demographic information such as age and gender. In particular, it addresses participants' experience with technology, with questions like "Are you familiar with Augmented Reality (AR) technology?" and "How familiar are you with Virtual Reality (VR) technology?". Additionally, it assesses participants' feelings towards spiders and contaminations. These factors may influence the intensity of participants' specific experiences, thereby potentially affecting the overall study results.
初始问题部分包括基本的人口统计信息,例如年龄和性别。特别是,它涉及参与者的技术体验,问题包括“您熟悉增强现实(AR)技术吗? ”和“您对虚拟现实(VR)技术有多熟悉? ”。此外,它还评估参与者对蜘蛛和污染物的感受。这些因素可能会影响参与者特定经历的强度,从而潜在地影响整体研究结果。

Scale Questions
量表问题

The Likert scale serves as the primary source of quantitative data, aimed at providing a structured and standardised assessment of participants' emotional and experiential responses to two different phobia scenarios - spider phobia and contamination fear - in both AR and VR environments. Each participant completes a separate questionnaire for each exposure session, resulting in responses across four conditions (Spider AR, Spider VR, Contamination AR, Contamination VR).
李克特量表是定量数据的主要来源,旨在为参与者在 AR 和 VR 环境中对两种不同恐惧场景蜘蛛恐惧症和污染恐惧的情绪和体验反应提供结构化和标准化的评估。每个参与者针对每次暴露会话完成一份单独的调查问卷,从而在四种条件(Spider AR、Spider VR、Contamination AR、Contamination VR)中做出回应。

The questions for the spider phobia scenario focus on several key elements, including the realism and presence of spiders in the environment (both static and moving), the authenticity of interactions with virtual spiders, and participants' emotional responses. These include sensations of resistance or avoidance, perceived tactile impressions, and overall emotional intensity. The aim is to evaluate how effectively AR and VR environments replicate fear-inducing stimuli and elicit the desired therapeutic emotional responses. Participants rate each question on a Likert scale from 1 (Not at all) to 7 (Extremely) for both AR and VR tasks.
蜘蛛恐惧症场景的问题集中在几个关键要素上,包括蜘蛛在环境中的真实性和存在(静态和移动)、与虚拟蜘蛛互动的真实性以及参与者的情绪反应。这些包括抵抗或回避的感觉、感知的触觉印象以及整体情绪强度。目的是评估 AR 和 VR 环境如何有效地复制引起恐惧的刺激并引发所需的治疗性情绪反应。对于 AR 和 VR 任务,参与者按照李克特量表对每个问题进行评分,从 1(完全不)到 7(非常)。

Perceived Realism
感知现实主义

Sense of real spiders in the environment
真实蜘蛛在环境中的感觉
:

"In the AR and VR tasks, to what extent did you feel that real spiders were actually present in your surroundings?"
“在 AR 和 VR 任务中,您在多大程度上感觉到真正的蜘蛛确实存在于您的周围?”

Realism of static spiders:
静态蜘蛛的真实感:

"How realistic were the static spiders in the AR and VR tasks?"
AR 和 VR 任务中的静态蜘蛛有多真实?”

Realism of moving spiders
移动蜘蛛的真实感
:

"How realistic were the moving spiders in the AR and VR tasks?"
AR 和 VR 任务中移动的蜘蛛有多真实?”

Sense of realism when interacting with virtual spiders
与虚拟蜘蛛互动时的真实感
:

"Did interactions with virtual spiders feel realistic in the AR and VR tasks?"
在 AR 和 VR 任务中与虚拟蜘蛛的互动感觉真实吗?”

Avoidance Behaviour
回避行为

Feelings of resistance or avoidance when interacting with virtual spiders
与虚拟蜘蛛互动时有抵抗或回避的感觉
:

"To what extent did you feel resistance or avoidance when asked to interact with virtual spiders in the AR and VR tasks?"
当被要求在 AR 和 VR 任务中与虚拟蜘蛛互动时,您在多大程度上感到抵制或回避?”

Perceived Sensation
感知的感觉

Perceived tactile sensation when spiders touch your hand:
当蜘蛛触摸你的手时感受到的触觉:

"How strong was the tactile sensation when spiders touched your hand in the AR and VR tasks?"
“在 AR 和 VR 任务中,当蜘蛛触摸你的手时,触觉有多强?”

Emotional Intensity
情绪强度

Emotional response to virtual spiders
对虚拟蜘蛛的情绪反应
:

"How intense was your emotional response (e.g., fear, anxiety) to virtual spiders in the AR and VR tasks?"
“在 AR 和 VR 任务中,您对虚拟蜘蛛的情绪反应(例如恐惧、焦虑)有多强烈?”

For the contamination fear scenario, the questionnaire evaluates perceptions of environmental dirtiness, feelings of contamination when interacting with dirty objects, and related emotional responses such as discomfort and urges for relief. These questions aim to assess the realism of dirty environments, the perceived tactile experience of handling contaminated objects, and participants' psychological reactions, including avoidance and perceived contamination of their hands. Participants also use a Likert scale from 1 (Not at all) to 7 (Extremely) for both AR and VR tasks to rate their experiences
对于污染恐惧情景,调查问卷评估了对环境肮脏的看法、与肮脏物体互动时的污染感觉以及相关的情绪反应,例如不适和寻求缓解的冲动。这些问题旨在评估肮脏环境的真实性、处理受污染物体的感知触觉体验以及参与者的心理反应,包括避免和感知手部污染。参与者还对 AR 和 VR 任务使用从 1(完全不)到 7(非常)的李克特量表来评价他们的体验
.

Perceived Realism
感知现实主义

Perceived level of environmental dirtiness
对环境肮脏程度的感知

"How dirty did you perceive the environment to be in the AR and VR tasks?"
“您认为 AR 和 VR 任务中的环境有多脏?”

Sense of dirtiness when observing scattered rubbish
观察散落的垃圾时有肮脏感
:

"How strong was your sense of dirtiness when observing rubbish scattered on the ground in the AR and VR tasks?"
“在AR和VR任务中观察地上散落的垃圾时,你的肮脏感有多强?”

Sense of dirtiness when touching a banana peel
触摸香蕉皮时有肮脏感
:

"How strong was your sense of dirtiness when grabbing and touching a banana peel in the AR and VR tasks?"
“在 AR 和 VR 任务中,当你抓起并触摸香蕉皮时,你的肮脏感有多强烈?”

Avoidance Behaviour
回避行为

Feelings of resistance or avoidance when interacting with dirty objects
与肮脏物体互动时有抵抗或回避的感觉
:

"To what extent did you feel resistance or avoidance when asked to interact with dirty objects in the AR and VR tasks?"
“当你在 AR 和 VR 任务中被要求与肮脏的物体互动时,你在多大程度上感到抗拒或回避?”

Perceived Sensation
感知的感觉

Sense of hand contamination when touching dirty objects
触摸肮脏物体时手有污染感
:

"How strong was your sense of hand contamination when touching dirty objects in the AR and VR tasks?"
“在AR和VR任务中,当您触摸脏物体时,您的手污染感有多强?”

Emotional Intensity
情绪强度

Sense of relief when discarding dirty objects
丢弃肮脏物品时的轻松感
:

"How strong was your sense of relief when discarding dirty objects in the AR and VR tasks?"
“在 AR 和 VR 任务中丢弃脏东西时,您的如释重负感有多强?”

Discomfort when retrieving dirty objects from a bin
从垃圾箱中取出脏东西时感到不舒服
:

"How uncomfortable did you feel when retrieving dirty objects from a bin in the AR and VR tasks?"
“在 AR 和 VR 任务中从垃圾箱中取出脏东西时,您感觉有多不舒服?”

These scale-based questions aim to comprehensively assess participants' feelings and responses under different virtual exposure therapy conditions, providing quantitative data for hypothesis testing. To test the hypotheses, data is analysed using SPSS Statistics software, focusing on comparing the intensity of experiences in AR and VR across two different project scenarios. Referring to 3.1 Hypotheses and Study Design, the study employs a within-subjects design, with each participant experiencing both AR and VR technologies. The independent variables are technology type (AR vs. VR) and project type (spider phobia vs. contamination fear), while the dependent variable is the effectiveness of exposure, as reported by participants.
这些基于量表的问题旨在全面评估参与者在不同虚拟暴露治疗条件下的感受和反应,为假设检验提供定量数据。为了检验假设,使用 SPSS Statistics 软件对数据进行分析,重点比较两个不同项目场景中 AR 和 VR 的体验强度。参考3.1假设和研究设计,该研究采用受试者内设计,每个参与者同时体验AR和VR技术。自变量是技术类型(AR 与 VR)和项目类型(蜘蛛恐惧症与污染恐惧症),而因变量是参与者报告的暴露有效性

After each session, participants use a standardised scale to report the effectiveness of exposure (DV). The value for each condition is the sum of the scores from all scale items. These ratings are collected for each combination of technology type and project type, resulting in four conditions: Spider _ AR, Spider _ VR, Contamination _ AR, and Contamination _ VR
每次会议结束后,参与者使用标准化量表来报告暴露的有效性(DV)。每个条件的值是所有量表项目的分数之和。这些评级是针对技术类型和项目类型的每种组合收集的,从而产生四种情况:Spider _ AR、Spider _ VR、Contamination _ AR 和 Contamination _ VR
.

The data for these four conditions were analysed using a two-factor analysis of variance (ANOVA) in SPSS Statistics to assess the main effects of technology type (AR vs. VR) and project type (Spider vs. Contamination), as well as their interaction effect on the intensity of experience. This analysis evaluated whether there was a significant difference in experience intensity between AR and VR technologies and examined whether the effectiveness of AR and VR varied depending on the specific project type.
使用 SPSS Statistics 中的双因素方差分析 (ANOVA) 对这四种条件的数据进行分析,以评估技术类型(AR 与 VR)和项目类型(蜘蛛与污染)的主要影响及其交互作用对体验强度的影响。该分析评估了 AR 和 VR 技术之间的体验强度是否存在显着差异,并检验了 AR 和 VR 的有效性是否因具体项目类型而异。

Multiple-Choice Questions
选择题

Each section of the questionnaire includes two multiple-choice questions: one regarding the perceived realism of the virtual spider experience and the preference for technology in spider phobia exposure therapy, and the other regarding the perceived realism of the contamination simulation and the preference for technology in contamination fears exposure therapy.
问卷的每个部分都包括两个多项选择题:一个关于虚拟蜘蛛体验的感知真实性以及对蜘蛛恐惧症暴露疗法技术的偏好,另一个关于污染模拟的感知真实性以及对蜘蛛恐惧症暴露疗法中技术的偏好。污染恐惧暴露疗法。

Perceived Realism
感知现实主义

"How did you feel about the realism of the virtual spiders / dirty things simulation in VR compared to AR?
与 AR 相比,您对 VR 中的虚拟蜘蛛/脏物模拟的真实感有何看法

Technology Preference
技术偏好

"Regarding exposure therapy for spider phobia / contamination fears, based on your experience, do you prefer VR or AR technology?"
“关于蜘蛛恐惧症/污染恐惧症的暴露疗法,根据您的经验,您更喜欢 VR 还是 AR 技术?”

These provide a more intuitive and subjective response to the study's questions, serving as supplementary explanations for the research findings.
这些为研究问题提供了更直观和主观的回应,作为研究结果的补充解释。

Think-Aloud Protocol
有声思考协议

This study employs the Think-Aloud Protocol to gather qualitative insights into participants' cognitive and emotional processes during the AR and VR tasks. As participants engage with the various scenarios, they are encouraged to verbalise their thoughts, feelings, and reactions in real-time. This method allows the researcher to capture the participants' immediate, unfiltered responses to the tasks, providing a deeper understanding of their experiences and the effectiveness of the virtual exposure.
本研究采用大声思考协议来收集参与者在 AR 和 VR 任务期间的认知和情感过程的定性见解。当参与者参与各种场景时,我们鼓励他们实时表达自己的想法、感受和反应。这种方法允许研究人员捕获参与者对任务的即时、未经过滤的反应,从而更深入地了解他们的经历和虚拟暴露的有效性。

Participants' real-time feedback is recorded during the sessions and later transcribed for analysis, providing valuable context to the quantitative results. This process helps to identify specific aspects of the AR and VR environments that contribute to or detract from the participants' sense of realism, immersion, and emotional intensity.
参与者的实时反馈在会议期间被记录下来,随后进行转录以进行分析,为定量结果提供有价值的背景。此过程有助于识别 AR 和 VR 环境中有助于或削弱参与者的真实感、沉浸感和情感强度的特定方面。

Follow-up Interview
后续采访

The follow-up interview is designed to gather deeper insights into participants' experiences with VR and AR during the study. It focuses on comparing emotional responses and levels of realism and immersion between the two technologies, as well as identifying any challenges faced during the tasks. The interview also explores participants' emotional reactions to specific scenarios, such as spiders and contamination, and assesses the suitability of AR and VR for exposure therapy. Additionally, participants are asked about their preferences between AR and VR, offering suggestions for improvements, and providing any further feedback.
后续访谈旨在更深入地了解参与者在研究期间使用 VR 和 AR 的体验。它的重点是比较两种技术之间的情绪反应、真实性和沉浸感水平,以及确定任务期间面临的任何挑战。采访还探讨了参与者对蜘蛛和污染等特定场景的情绪反应,并评估了 AR 和 VR 对于暴露疗法的适用性。此外,参与者还会被询问他们在 AR 和 VR 之间的偏好,提供改进建议,并提供任何进一步的反馈。

Main Feelings in VR vs. AR
VR 与 AR 的主要感受

Comparison of emotional responses during tasks in VR versus AR.
VR 与 AR 任务期间情绪反应的比较。

Realism and immersion between the two technologies.
两种技术之间的真实感和沉浸感。

Difficulties in VR or AR
VR或AR的困难

Challenges or difficulties faced while interacting with VR or AR environments
与 VR 或 AR 环境交互时面临的挑战或困难
.

Emotional Response to Tasks
对任务的情绪反应

Strong emotional reactions during specific tasks
在特定任务期间强烈的情绪反应
.

Comparison of emotional responses between VR and AR technologies.
VR 和 AR 技术之间的情绪反应比较。

Comparison of Scenarios
场景比较

Comparison of emotional and psychological responses to two specific scenarios: spiders and contamination.
比较对两种特定场景的情绪和心理反应:蜘蛛和污染。

Suitability of AR and VR for Exposure Therapy
AR 和 VR 对于暴露疗法的适用性

Effectiveness of AR and VR as tools for exposure therapy.
AR 和 VR 作为暴露疗法工具的有效性。

Advantages and disadvantages of each technology.
每种技术的优点和缺点。

Preference for AR or VR
偏好 AR 或 VR

Preference between AR and VR.
AR和VR之间的P参考。

Reasons why one might be better than the other.
一个可能比另一个更好的原因

Suggestions for Improvement
改进建议

Potential improvements for the prototype or the exposure experience process.
原型或曝光体验过程的潜在改进

Elements that could enhance realism, immersion, or effectiveness.
可以增强真实感、沉浸感或有效性的元素

Additional Feedback
附加反馈

Further feedback or share additional thoughts about the overall experience.
进一步反馈或分享有关整体体验的其他想法。

In the semi-structured interviews, audio recordings are collected and subsequently transcribed into textual data. To ensure the completeness of the data and facilitate a comprehensive analysis, these transcripts are integrated with real-time feedback (think-aloud) transcriptions and behavioural observation notes recorded during the experiment.
在半结构化访谈中,收集录音并随后将其转录为文本数据。为了确保数据的完整性并促进全面分析,这些记录与实验过程中记录的实时反馈(有声思考)记录和行为观察笔记相结合。

Upon the completion of data transcription and integration, an initial analysis is conducted through open coding to identify key themes closely aligned with the research questions. Particular emphasis is placed on participants' subjective perceptions of AR and VR technologies, the relative effectiveness of each in virtual exposure therapy, and their preferences for the technologies in various scenarios
完成数据转录和整合后,通过开放编码进行初步分析,以确定与研究问题密切相关的关键主题。特别强调参与者对 AR 和 VR 技术的主观认知、每种技术在虚拟暴露疗法中的相对有效性以及他们在不同场景下对技术的偏好
.

In the next step, a further analysis is performed to explore the performance differences between AR and VR technologies in each project, as well as participants' experiences and feedback regarding these technologies. Comparative analysis methods are applied to examine the relative strengths and limitations of the technologies in virtual exposure therapy, aiming to uncover potential factors influencing the effectiveness of their application
下一步,我们将进行进一步的分析,探讨每个项目中 AR 和 VR 技术的性能差异,以及参与者对这些技术的体验和反馈。采用比较分析方法来检验虚拟暴露疗法技术的相对优势和局限性,旨在揭示影响其应用有效性的潜在因素
.

Participants
参加

Participants Recruitment
参与者招募

This study recruits participants through voluntary registration. Recruitment is primarily conducted via social media, email, and through distributing posters within student communities, targeting eligible individuals.
本研究通过自愿注册的方式招募参与者。招聘主要通过社交媒体、电子邮件以及在学生社区内分发海报来针对符合条件的个人进行。

Eligible participants meet the following criteria: 1) They are over the age of 18; 2) Participants do not exhibit severe symptoms of spider phobia or contamination fear; 3) Participants do not have any serious psychological disorders or other health conditions that could potentially interfere with the study's outcomes; 4) Participants possess normal or corrected vision, enabling them to use AR and VR devices without difficulty.
符合以下条件的参赛者: 1)年满18周岁; 2)参与者没有表现出严重的蜘蛛恐惧症或污染恐惧症状; 3) 参与者没有任何严重的心理障碍或其他可能干扰研究结果的健康状况; 4)参与者拥有正常或矫正视力,使他们能够毫无困难地使用AR和VR设备。

Ethical Considerations
道德考虑

Participants may experience stress or anxiety when exposed to virtual scenarios involving spiders or contamination, and the use of VR/AR devices may cause physical discomfort such as headaches or nausea. To minimise risks, individuals with severe spider phobia or contamination fears will be excluded from the study. Participants will be fully informed about the research and any potential risks, and they will have the right to withdraw at any time. The duration of the experiment will be carefully controlled to avoid prolonged exposure, and the researcher will provide continuous supervision and emotional support. Participants will also be able to pause or stop the experience at any point and can remove the headset freely. Additionally, a chair and water will be provided to ensure participants' comfort.
参与者在接触涉及蜘蛛或污染的虚拟场景时可能会感到压力或焦虑,而使用 VR/AR 设备可能会导致头痛或恶心等身体不适。为了最大限度地降低风险,患有严重蜘蛛恐惧症或污染恐惧症的个体将被排除在研究之外。参与者将被充分告知研究和任何潜在风险,并有权随时退出。实验的持续时间将被仔细控制,以避免长时间暴露,研究人员将提供持续的监督和情感支持。参与者还可以随时暂停或停止体验,并可以自由摘下耳机。此外,还将提供椅子和水以确保参与者的舒适度。

Results
结果

The results of the experimental study comprise both quantitative analysis and qualitative feedback, with the qualitative insights from participants serving as a complement to the statistical hypothesis testing. By analysing the reported intensity of experiences from 31 participants across different technologies and project settings, the findings highlight the relative effectiveness of VR and AR in treating different types of phobias, addressing the study questions.
实验研究的结果包括定量分析和定性反馈,参与者的定性见解可作为统计假设检验的补充。通过分析 31 名参与者在不同技术和项目环境中报告的体验强度,研究结果强调了 VR 和 AR 在治疗不同类型的恐惧症和解决研究问题方面的相对有效性

Quantitative Analysis
定量分析

The data for the quantitative analysis were entirely collected through questionnaires. The scale-based sections were used for statistical hypothesis testing, while the multiple-choice questions primarily contributed to descriptive analysis of the results.
定量分析的数据完全通过问卷调查收集。基于量表的部分用于统计假设检验,而多项选择题主要用于结果的描述性分析。

Participants
参加者

This study included 31 participants, consisting of 20 females and 11 males. Among these participants, 48% were familiar with VR, and 42% were familiar with AR, with familiarity indicating repeated use of these technologies. The nearly equal distribution of participants familiar and unfamiliar with VR and AR mitigated the potential influence of technological familiarity on the data. The age range of the participants was from 22 to 33 years, with a mean age of 25.41 years (SD = 2.54).
本研究共有 31 名参与者,其中 20 名女性和 11 名男性。在这些参与者中,48%的人熟悉VR,42%的人熟悉AR,熟悉程度表明他们重复使用这些技术。熟悉和不熟悉 VR 和 AR 的参与者的分布几乎相等,减轻了技术熟悉程度对数据的潜在影响。参与者的年龄范围为22至33岁,平均年龄为25.41岁(SD = 2.54)。

Scale-Based Questionnaire Analysis
基于量表的问卷分析

This study utilised a two-factor analysis of variance (ANOVA) to investigate the effectiveness of AR and VR technologies in addressing two specific fears - Spider Phobia and Contamination Fear. The analysis focused on the main effects of the technology type, the main effects of the project type, and their interaction effects.
本研究利用双因素方差分析 (ANOVA) 来调查 AR 和 VR 技术在解决两种特定恐惧蜘蛛恐惧症和污染恐惧)方面的有效性分析重点是技术类型的主效应、项目类型的主效应及其交互作用。

Descriptive Statistics
描述性统计

Descriptive statistics for the intensity of experiences with different technologies and phobias are as follows:
不同技术的体验强度和恐惧症的描述性统计如下:

Conditions
状况

Mean
意思是

SD

N = 31
数 = 31

Spider _ AR
蜘蛛_AR

29.68

9.758

Spider _ VR
蜘蛛_VR

30.71

10.143

Contamination _ AR
污染_AR

26.13

10.941

Contamination _ VR
污染_VR

33.13

11.215

Table 1 Descriptive Statistics Results
1描述性统计结果

Hypothesis Testing
假设检验

The two-factor repeated measures ANOVA was conducted using SPSS to assess the effects of Technology (AR vs VR) and Project (Spider Phobia vs Contamination Fear) on the intensity of experience. The study design followed a within-subjects format where all participants completed tasks in both technology environments and both project conditions. The key results are summarised below
使用 SPSS 进行双因素重复测量方差分析,以评估技术(AR 与 VR)和项目(蜘蛛恐惧症与污染恐惧)对体验强度的影响。研究设计遵循受试者内的格式,所有参与者都在技术环境和项目条件下完成任务。主要结果总结如下
.

Hypotheses
假设

Analysis Results
分析结果

Interpretation
解释

1. Main Effect of Technology:
一、技术主要作用:

H10: There is no significant main effect of technology type on experience intensity;
H1 0技术类型对体验强度的主效应不显着;

H11: There is a significant main effect of technology type on experience intensity;
H1 1技术类型对体验强度有显着的主效应;

F (1, 30) = 14.358,
F (1, 30) = 14.358,

p < 0.001,
p< 0.001,

η² = 0.324

There was a significant difference in the intensity of experiences provided by AR and VR technologies.
AR 和 VR 技术提供的体验强度存在显着差异。

2. Main Effect of Project Type:
2、项目类型主要影响:

H20: There is no significant main effect of project type on experience intensity;
H2 0项目类型对体验强度主效应不显着;

H21: There is a significant main effect of project type on experience intensity;
H2 1项目类型对体验强度有显着的主效应;

F (1, 30) = 0.09,
F (1, 30) = 0.09,

p = 0.766,
p = 0.766,

η² = 0.003

The main effect of project type on the intensity of experience was not significant.
项目类型对体验强度的主效应并不显着。

3. Interaction Effect (Technology * Project):
3、交互效果(技术*项目):

H30: There is no significant interaction effect between technology type and project type on experience intensity
H30 技术类型与项目类型对体验强度不存在显着交互作用
;

H31: There is a significant interaction effect between technology type and project type on experience intensity
H31 技术类型与项目类型对体验强度存在显着交互作用
.

F (1, 30) = 10.251,
F (1, 30) = 10.251,

p = 0.003,
p = 0.003,

η² = 0.255

The impact of technology on the intensity of experiences differed significantly between the two phobias.
技术对体验强度的影响在两种恐惧症之间存在显着差异。

Table 2 Hypotheses Testing Results (Two-factor ANOVA)
表2假设检验结果(双因素方差分析)

Post-Hoc Analysis of the Interaction Effect
互动效应的事后分析

To further explore the interaction effect, paired samples t-tests were conducted to compare AR and VR within each project:
为了进一步探讨交互效果,我们进行了配对样本 t 检验来比较每个项目中的 AR 和 VR:

Spider Phobia (AR vs VR)
蜘蛛恐惧症(AR 与 VR)
:

t (11) = − 0.73, p = 0.471 (no significant difference)
t (11) = − 0.73,p = 0.471(无显着差异)

Contamination Fear (AR vs VR)
污染恐惧(AR 与 VR)
:

t (11) = − 4.97, p < 0.001 (significant difference)
t (11) = − 4.97, p < 0.001(显着差异)

Fig.13 Interaction Effect of Technology and Project on Experience Intensity
13技术与项目对体验强度的交互影响

The post-hoc comparison confirms that the significant interaction between Technology and Project is driven by the Contamination Fear project, where VR produced a much stronger experience compared to AR. In contrast, there was no significant difference between AR and VR for the Spider Phobia project.
事后比较证实技术和项目之间的重要互动是由“污染恐惧”项目驱动的,其中 VR 产生了比 AR 更强的体验。相比之下,Spider Phobia 项目的 AR 和 VR 之间没有显着差异。

Findings
发现

The statistical analysis of the scale data led to the following conclusions and findings:
对量表数据的统计分析得出以下结论和发现:

For Q1 - "which technology is more effective" - and its corresponding Hypothesis 1 was supported. The main effect of technology had an F-value of 14.358, with a significance level of p < 0.001, indicating a significant difference in the performance of AR and VR technologies across different projects. As the average score for VR was slightly higher than AR within the same projects, it could be concluded that VR provided a slightly stronger exposure effect overall compared to AR.
对于Q1—— 哪种技术更有效” ——及其相应的假设 1 得到了支持。技术主效应的F值为14.358,显着性水平为p< 0.001,表明不同项目中AR和VR技术的表现存在显着差异。由于在相同项目中VR的平均得分略高于AR,因此可以得出结论,与AR相比,VR总体上提供了稍强的曝光效果。

The test result for Hypothesis 2 stated that the type of project itself did not have a significant impact on the intensity of experience. This means that, independent of the technology used, there was little difference in the intensity of experiences between Spider Phobia and Contamination Fear projects. This finding added reliability to the comparative conclusions.
假设2的检验结果表明d ,项目类型本身对体验强度没有显着影响。这意味着,独立于所使用的技术,蜘蛛恐惧症和污染恐惧项目之间的体验强度几乎没有差异。这一发现增加了比较结论的可靠性。

For Q2 - "whether one technology is better suited to treating specific phobias" - the analysis result of Hypothesis 3 on the interaction effect between technology and project type showed an F-value of 10.251, p = 0.003, with an effect size of η² = 0.255, indicating a significant difference in how different technologies impacted different projects. Post-hoc analysis shows that in Project One (Spider), the mean score for AR technology was 29.68 (SD = 9.758), while the mean score for VR technology in the same project was slightly higher at 30.71 (SD = 10.143). In this project, although the intensity of the VR experience was somewhat greater, the difference between AR and VR was small, indicating that both technologies offered relatively similar effectiveness in managing spider phobia. In Project Two (Contamination), the difference was more pronounced. The mean score for AR technology was 26.13 (SD = 10.941), while the mean score for VR technology was significantly higher at 33.13 (SD = 11.215). This difference suggested that VR technology provided a more intense experience when addressing contamination fears.
对于问题2—— 一种技术是否更适合治疗特定恐惧症” ——假设3对技术与项目类型交互作用的分析结果显示, F值为10.251,p = 0.003,效应大小为η² = 0.255,表明不同技术对不同项目的影响存在显着差异。事后分析显示,在项目一(Spider)中,AR 技术的平均得分为 29.68(SD = 9.758),而同一项目中 VR 技术的平均得分略高,为 30.71(SD = 10.143)。在这个项目中,虽然VR体验的强度稍大一些,但AR和VR之间的差异很小,这表明两种技术在管理蜘蛛恐惧症方面提供了相对相似的效果。在项目二(污染)中,差异更为明显。 AR 技术的平均得分为 26.13 (SD = 10.941),而 VR 技术的平均得分明显更高,为 33.13 (SD = 11.215)。这种差异表明,VR 技术在解决污染恐惧时提供了更强烈的体验。

It can also be stated that, although VR technology had higher average scores in both projects, it was more effective in Project Two (Contamination). In contrast, AR technology provided a relatively stronger experience in Project One (Spider). To achieve optimal outcomes in phobia treatment, the most suitable technology should be chosen based on the specific requirements of the project. Therefore, this quantitative conclusion should be combined with findings from other analyses.
可以说,虽然 VR 技术在两个项目中的平均得分较高,但在项目二(污染)中效果更佳。相比之下,AR技术在Project One(Spider)中提供了相对更强的体验。为了达到恐惧症治疗的最佳效果,应根据项目的具体要求选择最合适的技术。因此,这一定量结论与其他分析的结果结合起来。

Multiple-Choice Questions Analysis
选择题分析

The multiple-choice questions provide data on participants' choices regarding perceived realism and technology preference when comparing VR and AR.
多项选择题提供了参与者在比较 VR 和 AR 时关于感知现实性和技术偏好的选择数据。

Descriptive Analysis
描述性分析

Regarding the realism provided by the technologies, participants in both projects predominantly select VR as offering a higher degree of realism, with 52% for virtual spiders and 87% for contamination.
关于技术提供的真实感,两个项目的参与者主要选择 VR 来提供更高程度的真实感,其中 52% 的人选择虚拟蜘蛛,87% 的人选择污染。

Fig.14 Perceived Realism Results
1 4感知现实主义结果

When it comes to selecting a technology for therapeutic purposes, participants prefer AR in Project 1 (spider phobia) and VR in Project 2 (contamination fear). Specifically, 52% of participants express a preference for AR in treating spider phobia, while 68% choose VR for contamination fears.
在选择用于治疗目的的技术时,参与者更喜欢项目 1 中的AR (蜘蛛恐惧症)和项目 2 中的VR (污染恐惧症)。具体来说,52% 的参与者表示更喜欢使用 AR 来治疗蜘蛛恐惧症,而 68% 的参与者则因为担心污染而选择 VR。

Fig.15 Technology Preference Results
图 15 技术偏好结果

Findings
发现

Based on the analysis of the multiple-choice questions described above, we can draw the following two conclusions:
根据上述选择题的分析,我们可以得出以下两个结论:

VR provides participants with a significantly higher sense of realism compared to AR.
与 AR 相比,VR 为参与者提供了明显更高的真实感。

Participants tend to prefer AR for treating spider phobia, while VR is considered more suitable for treating contamination fear.
参与者倾向于选择 AR 来治疗蜘蛛恐惧症,而 VR 被认为更适合治疗污染恐惧症。

It is noteworthy that although participants generally believe VR provides a higher sense of realism in Project 1, they still lean towards AR for spider exposure therapy. From these findings, it can be inferred that the perceived realism of a technology does not directly correlate with its suitability or preference for a specific therapy. In other words, while certain technologies may excel in immersion and emotional engagement, this does not necessarily make them the best choice for developing virtual exposure therapies. The selection of technology must take into account multiple influencing factors.
值得注意的是,尽管参与者普遍认为VR在项目1中提供了更高的真实感,但他们仍然倾向于AR进行蜘蛛暴露疗法从这些发现可以推断,技术的感知现实性与其对特定疗法的适用性或偏好并不直接相关。换句话说,虽然某些技术可能在沉浸感和情感参与方面表现出色,但这并不一定使它们成为开发虚拟暴露疗法的最佳选择。技术的选择必须考虑多种影响因素。

Qualitative Feedback
定性反馈

Analysis of participant feedback on the experiences of AR and VR in both projects, gathered through the think-aloud method and follow-up interviews, supplemented by a few observations of participant behaviour by the experimenters, was used to form a more complete picture of the conclusions and further complement the quantitative discussion above. In this study, participants were assigned codes (P1-P31) to maintain anonymity.
通过有声思考法和后续访谈收集参与者对两个项目中 AR 和 VR 体验的反馈进行分析,并辅以实验者对参与者行为的一些观察,从而形成更完整的图像结论并进一步补充上述定量讨论。在这项研究中,参与者被分配了代码(P1-P31)以保持匿名。

AR vs. VR in Virtual Spider
Virtual Spider 中的 AR 与 VR

In the feedback from the experiment involving virtual spiders, there was no overwhelming preference for any one technology, yet individual preferences were relatively distinct. AR technology demonstrated unique advantages in the feedback from some participants and was consequently favoured. The analysis focuses on the distinctive features of AR, comparing its advantages with VR, with the results outlined as follows:
在虚拟蜘蛛实验的反馈中,没有对任何一种技术有压倒性的偏好,但个体偏好相对不同。从部分参会者的反馈来看,AR技术展现出了独特的优势,因而受到青睐。重点分析AR的特点,对比其与VR的优势,结果概括如下:

Blur and Dynamic Realism: Participants noted that AR technology leverages real-world lighting and rendering effects, creating more convincing and threatening virtual objects by incorporating natural blur during movement. As P9 mentioned in the interview, "When the virtual spider started to move, it appeared somewhat blurry in AR. This blurriness reduced its artificial quality, making it seem more threatening." Similarly, P22 stated, "AR uses real-world lighting and effects to re-render virtual models, so it seems like things, like a virtual spider, can get a bit blurry, which actually makes them look more real." This sense of realism is heightened when the spider moves quickly or unpredictably, mimicking the behaviour of real spiders. The combination of blur and dynamic realism taps into common human reactions to small creatures and objects. Fear of the unknown is a key factor in emotional responses to spiders and other small organisms. In real life, people rarely observe creatures like spiders closely or with focused attention. Instead, they are often perceived through peripheral vision or quick, anxious glances. AR captures this aspect more vividly than VR, presenting the spider with a degree of imperfect clarity that replicates how people typically encounter such threats in reality—fleeting, out of focus, and thus more unnerving. This makes the virtual spider seem even more unpredictable and heightens the participant's anxiety, especially during exposure therapy.
模糊和动态现实主义:参与者指出,AR 技术利用现实世界的照明和渲染效果,通过在运动过程中融入自然模糊来创建更具说服力和威胁性的虚拟对象。正如P9在采访中提到的,“当虚拟蜘蛛开始移动时,它在AR中显得有些模糊。这种模糊降低了它的人工质量,使其看起来更具威胁性。”同样,P22 表示,“AR 使用现实世界的灯光和效果来重新渲染虚拟模型,因此看起来像虚拟蜘蛛这样的东西会变得有点模糊,这实际上使它们看起来更真实。”当蜘蛛快速或不可预测地移动并模仿真实蜘蛛的行为时,这种真实感就会增强。模糊和动态现实主义的结合利用了人类对小生物和物体的常见反应。对未知的恐惧是对蜘蛛和其他小生物的情绪反应的关键因素。在现实生活中,人们很少近距离或集中注意力地观察蜘蛛这样的生物。相反,它们通常是通过余光或快速、焦虑的目光来感知的。 AR 比 VR 更生动地捕捉到了这一点,以一定程度的不完美清晰度呈现蜘蛛,复制了人们通常在现实中遇到此类威胁的方式——转瞬即逝、失焦,因此更令人不安。这使得虚拟蜘蛛看起来更加不可预测,并加剧了参与者的焦虑,尤其是在暴露疗法期间。

Enhanced Sense of Bodily Presence: In AR environments, participants see and feel their real bodies interacting with virtual elements. This sense of "bodily presence" makes it easier for participants to believe they are interacting with a real spider, making the experience more lifelike and intensifying emotional impact, particularly in exposure therapy scenarios involving physical interaction and fear induction. In contrast, while VR excels at creating visually immersive environments, it often fails to represent the participant’s real body. This lack of bodily presence can make the interaction feel less realistic. As P19 pointed out, "In AR, I can see my own hands, which makes it easier to believe that I am actually holding a spider, rather than just controlling a virtual object. This interaction made me feel more afraid because it felt closer to a real-life experience” Moreover, AR allows for interaction with the surrounding physical environment: "In AR, I could touch the table, but in VR, when I tried to touch a chair, there wasn’t actually a chair there. I feel like if the chair had been real, it would have felt more convincing. Otherwise, you know it’s not completely real" (P12). This gap between the virtual and physical in VR disrupts the illusion, reducing emotional intensity and fear responses, especially when dealing with small creatures like spiders.
增强的身体存在感:在 AR 环境中,参与者可以看到并感受到他们的真实身体与虚拟元素的交互。这种“身体存在”的感觉使参与者更容易相信他们正在与真正的蜘蛛互动,从而使体验更加逼真并增强情感影响,特别是在涉及身体互动和恐惧诱导的暴露疗法场景中。相比之下,虽然 VR 擅长创造视觉沉浸式环境,但它往往无法再现参与者的真实身体。缺乏身体存在会让互动感觉不那么真实。正如P 19 所指出的, “在 AR 中,我可以看到自己的手,这让我更容易相信我实际上拿着一只蜘蛛,而不仅仅是控制一个虚拟物体。这种交互让我感到更害怕,因为感觉更近了”此外,AR 允许与周围的物理环境进行交互: 在 AR 中,我可以触摸桌子,但在 VR 中,当我试图触摸椅子时,那里实际上没有椅子。我觉得如果椅子是真的,感觉会更有说服力。否则,你就知道它并不完全真实”(P12)。VR中虚拟与物理之间的这种差距会破坏幻觉,减少情绪强度和恐惧反应,尤其是在处理蜘蛛等小生物时。

Passive Threat Perception: The presence and subtle movements of virtual creatures, such as spiders, can evoke a sense of threat even when the creature does not actively interact with the participant. This sensation may differ depending on the perceived realism and level of immersion within AR and VR environments. In AR, participants can see both the virtual spider and their own physical body within the real-world setting, which can sustain a constant sense of threat from the virtual creature, even when it remains still. As P3 stated, "Even when the spider was completely static, I still sensed a certain level of threat from it, as if it could start moving at any moment. This feeling made me uneasy, as though it were real." This heightened sense of anticipation and realism makes the virtual spider feel more like a genuine threat, tapping into the instinctive human response to real-life creatures, especially fear-inducing ones like spiders. In VR, by contrast, the inability to see one’s own body and the fully simulated environment may lessen the sense of immediate threat. Without the integration of one’s physical presence, participants might not feel as strongly connected to the virtual creature
被动威胁感知:虚拟生物(例如蜘蛛)的存在和微妙动作可以唤起威胁感,即使该生物没有主动与参与者互动。这种感觉可能会有所不同,具体取决于 AR 和 VR 环境中感知的真实感和沉浸程度。在 AR 中,参与者可以在现实世界中看到虚拟蜘蛛和自己的身体,即使虚拟生物保持静止,也能持续感受到来自虚拟生物的威胁感。正如P3所说,“即使蜘蛛完全静止,我仍然从它身上感受到了一定程度的威胁,仿佛它随时都会开始移动。这种感觉让我感到不安,就好像它是真实的一样。”这种高度的期待感和现实感让虚拟蜘蛛感觉更像是真正的威胁,利用了人类对现实生物的本能反应,尤其是像蜘蛛这样会引起恐惧的生物。相比之下,在虚拟现实中,无法看到自己的身体和完全模拟的环境可能会减轻眼前的威胁感。如果没有一个人的物理存在的整合,参与者可能不会感觉到与虚拟生物的紧密联系
.

Influence of VR Gaming Experience: Some participants mentioned that their familiarity with VR games made it easier for them to adopt a player mindset, perceiving the virtual spider as more of a game challenge than a real threat. P5 mentioned, "As I play a lot of games, during the VR experience I was very aware that it was completely detached from reality. I approached it with a gamer's mindset, so I didn't focus as much on my feelings, but rather on my curiosity about the VR experience and how the game would progress." Similarly, P29 stated, "In VR, I approached the spider more with a gaming mindset, feeling like it was more of a challenge than an actual threat." Referring to the initial questionnaire, participants were highly familiar with VR technology. This suggests that prior VR gaming experience can influence how individuals perceive threats in a virtual environment, shifting the focus from fear to curiosity or problem-solving. The initial questionnaire indicated that many participants were highly familiar with VR technology, which further supports the idea that previous gaming experience can alter how individuals interact with the virtual environment. Instead of being immersed in the emotional intensity of the experience, participants with gaming backgrounds may be more inclined to approach it from a perspective of curiosity or technical engagement, focusing on exploring the environment rather than confronting their fears.
VR游戏体验的影响:一些参与者提到,他们对VR游戏的熟悉使他们更容易采取玩家心态,将虚拟蜘蛛更多地视为游戏挑战而不是真正的威胁。 P5提到 “因为我玩的游戏比较多,在体验VR的过程中我很清楚它与现实完全脱离,我是用一个游戏玩家的心态去接触它的,所以我并没有太注重自己的感受,但是相反,我对 VR 体验以及游戏将如何进展感到好奇。”同样, P 29 表示, “在 VR 中,我更多地以游戏心态来对待蜘蛛,感觉它更像是一种挑战,而不是真正的威胁。”从最初的调查问卷来看,参与者对VR技术非常熟悉。这表明之前的 VR 游戏体验可以影响个人如何感知虚拟环境中的威胁,将注意力从恐惧转移到好奇心或解决问题上。最初的调查问卷表明,许多参与者对 VR 技术非常熟悉,这进一步支持了这样的观点:以前的游戏体验可以改变个人与虚拟环境的交互方式。有游戏背景的参与者可能更倾向于从好奇心或技术参与的角度来对待它,而不是沉浸在体验的情感强度中,专注于探索环境而不是面对他们的恐惧。

AR vs. VR in Contamination Simulation
污染模拟中的 AR 与 VR

In the experiment addressing contamination fear, VR technology demonstrates unique advantages, particularly in creating an immersive environmental atmosphere. Participants' feedback indicates that VR is more effective in eliciting strong emotional and fear responses in this context. Therefore, this section focuses on analysing VR’s characteristics in simulating contamination, comparing its advantages with those of AR. The results can be summarised as follows:
在解决污染恐惧的实验中,VR技术展示了独特的优势,特别是在营造沉浸式环境氛围方面。参与者的反馈表明,虚拟现实在这种情况下更能有效地引发强烈的情绪和恐惧反应。因此,本节重点分析VR在模拟污染方面的特点,并比较其与AR的优势。结果可总结如下:

Environmental Atmosphere: The immersive nature of VR allows for the creation of a detailed and intense environment that deeply engages participants and makes them feel as though they are physically present in that space. In the contamination simulation project, VR successfully created a dirty and chaotic virtual environment, fully immersing participants in an entirely simulated setting. Many participants expressed that they genuinely felt as though they were in an unclean, uncomfortable space. For instance, P11 noted, "The dirty and oppressive atmosphere of the VR environment made me want to leave immediately." Similarly, P20 said that, "You feel a bit unsafe, especially with the graffiti-covered walls - it feels like I’m trapped in a strange place." This indicates that the VR environment successfully triggered their internal emotional responses and heightened their sense of immersion. The intensity of the atmosphere is vital in evoking fear rooted in the environment. The realistic and unsettling settings created in VR can elicit reactions such as fear, discomfort, and the urge to escape, which are essential for addressing and overcoming phobias or anxiety.
环境氛围 VR 的沉浸式特性允许创建一个详细而激烈的环境,深深地吸引参与者,让他们感觉自己身临其境。在污染模拟项目中,VR成功创建了一个肮脏、混乱的虚拟环境,让参与者完全沉浸在一个完全模拟的环境中。许多参与者表示,他们真的感觉自己身处一个不干净、不舒服的空间。例如, P 11指出, “VR环境肮脏、压抑的气氛让我想立即离开。”同样, P 20 也表示,“你会感觉有点不安全,尤其是满是涂鸦的墙壁感觉就像被困在一个陌生的地方。”这表明VR环境成功触发了他们的内心情绪反应,增强了他们的沉浸感。气氛的强度对于唤起根植于环境的恐惧至关重要。 VR 中创造的现实且令人不安的环境可能会引发恐惧、不适和逃跑的冲动等反应,这对于解决和克服恐惧症或焦虑症至关重要。

Multi-Sensory Illusions: Beyond visual stimuli, contamination fear involves multiple senses. VR creates a fully immersive environment where visual stimuli are so realistic that they can trigger psychological responses in other senses, such as smell and touch, even when these senses are not directly stimulated. For example, P21 remarked, "The visuals in the VR trash task were so realistic that I could almost smell the garbage. While the smell was only in my mind, it heightened my discomfort." While P31 described that, "In VR, when the contaminated liquid was under my feet, it felt incredibly real, as if I were stepping on something sticky. I became much more conscious of where I was stepping." This sensory "illusion," though purely psychological, influenced how participants interacted with and perceived the virtual environment, further amplifying their discomfort and awareness of the contamination. These sensory illusions are particularly effective in VR because the immersive nature of the environment engages participants' senses in ways that go beyond visual stimuli alone. The brain "fills in the gaps" for the missing sensory information, which in turn intensifies emotional responses and makes participants more conscious of their surroundings, increasing the effectiveness of the therapy.
多感官错觉除了视觉刺激之外,污染恐惧还涉及多种感官。 VR 创造了一个完全身临其境的环境,视觉刺激非常逼真,可以触发其他感官的心理反应,例如嗅觉和触觉,即使这些感官没有直接受到刺激。例如, P 21 表示 “VR 垃圾任务中的视觉效果非常逼真,我几乎可以闻到垃圾的味道。虽然气味只存在于我的脑海中,但它加剧了我的不适感。” P 31 描述道,VR 中,当受污染的液体在我脚下时,感觉非常真实,就好像我踩在一些粘性的东西上。我变得更加清楚自己踩在哪里。”这种感官“幻觉”虽然纯粹是心理上的,但却影响了参与者如何与虚拟环境互动和感知虚拟环境,进一步加剧了他们的不适感和对污染的认识。这些感官错觉在虚拟现实中特别有效,因为环境的沉浸式本质以超越视觉刺激的方式吸引参与者的感官。大脑“填补了缺失的感官信息的空白”,这反过来又强化了情绪反应,使参与者更加了解周围的环境,从而提高了治疗的有效性。

Memory Triggering: Through visual and virtual multi-sensory atmosphere creation, virtual environments, particularly virtual reality, have the ability to evoke real-life memories. This enhances emotional responses and makes the therapeutic experience more impactful. Some mention that the VR garbage dump scene reminds them of real-life experiences: "This reminds me of the corner of the narrow space beneath my accommodation, where there was a huge, dirty, and cluttered rubbish bin." (P7). By recreating familiar or memory-linked environments, VR has the potential to tap into deeper layers of emotional response, making the therapy more effective, as the emotional engagement is key to overcoming phobias or anxieties.
记忆触发通过视觉和虚拟的多感官氛围营造,虚拟环境,特别是虚拟现实,具有唤起现实生活记忆的能力。这增强了情绪反应并使治疗体验更具影响力。有人提到VR垃圾场的场景让他们想起了现实生活中的经历 我想起了我住处下面狭窄空间的一角,那里有一个又大又脏又乱的垃圾箱。 (P7)。通过重建熟悉或与记忆相关的环境,虚拟现实有潜力挖掘更深层次的情绪反应,使治疗更加有效,因为情绪参与是克服恐惧症或焦虑症的关键。

Environmental Coherence: This refers to how well the virtual or augmented elements blend with the physical environment to create a believable and immersive experience. In VR, the environment is fully controlled and designed, which allows for coherent and consistent scenarios, making it easier for the brain to accept the scenario, thereby enhancing immersion and emotional reactions. In AR, however, there is a disconnect between the real physical world and the virtual elements. As P8 mentioned, "When I was in the classroom, it was easy to tell that the AR elements were fake because things like that wouldn’t exist in a classroom. The physical environment really influenced how real it felt, and it didn’t seem as dirty." This lack of coherence made it harder for the participant to accept the AR elements as real, reducing the emotional impact and immersion. This lack of coherence made it harder for the participant to accept the AR elements as real, reducing the emotional impact and immersion. On the other hand, spiders—being more universal and adaptable—can fit naturally into various environments. As P13 explained, "For things that are closer to real-life situations, using AR for everyday treatment would be easier." So, the application of AR in Project 1 does not impact the sense of realism.
环境连贯性:这是指虚拟或增强元素与物理环境融合的程度,以创造可信和身临其境的体验。在VR中,环境是完全控制和设计的,可以实现连贯一致的场景,使大脑更容易接受场景,从而增强沉浸感和情绪反应。然而,在 AR 中,真实物理世界和虚拟元素之间存在脱节。正如 P8 提到的,“当我在教室里时,很容易看出 AR 元素是假的,因为教室里不会存在这样的东西。物理环境确实影响了感觉的真实程度,而且它并没有看起来一样脏。”这种缺乏连贯性使得参与者更难接受 AR 元素的真实性,从而降低了情感影响和沉浸感。这种缺乏连贯性使得参与者更难接受 AR 元素的真实性,从而降低了情感影响和沉浸感。另一方面,蜘蛛具有更强的通用性和适应性,可以自然地适应各种环境。正如 P13 所解释的那样,“对于更接近现实生活情况的事情,使用 AR 进行日常治疗会更容易。”所以,项目1中AR的应用并不会影响真实感。

Influence on Stimulus Avoidance Capabilities: This refers to how different technologies influence the participant's ability or inability to avoid certain stimuli. Contaminated objects, such as rubbish, do not move on their own, requiring participants to actively engage with them to feel the dirtiness. In AR, participants have the ability to avoid interacting with these unpleasant stimuli, and this level of control can reduce the intensity of their emotional responses and fear. In contrast, the immersive nature of VR removes the possibility of avoidance. Participants are compelled to confront and interact with the stimuli (e.g., dirty environments), which significantly amplifies their emotional reactions and discomfort (P5). This comparison highlights how the different levels of immersion in AR and VR influence the emotional response to simulated contamination. AR offers a degree of control and detachment, allowing users to bypass unpleasant stimuli, while VR immerses users fully, compelling them to engage directly, thereby enhancing the emotional impact.
对刺激回避能力的影响是指不同的技术如何影响参与者回避某些刺激的能力或无能力。被污染的物体,例如垃圾,不会自行移动,需要参与者积极地与它们接触,以感受到肮脏在 AR 中,参与者有能力避免与这些不愉快的刺激互动,这种程度的控制可以减少他们的情绪反应和恐惧的强度。相比之下,VR 的沉浸式特性消除了回避的可能性。参与者被迫面对刺激(例如,肮脏的环境并与之互动,这显着放大了他们的情绪反应和不适(P5)。这种比较突出了 AR 和 VR 的不同沉浸程度如何影响对模拟污染的情绪反应。 AR 提供一定程度的控制和超脱,让用户绕过不愉快的刺激,而 VR 则让用户完全沉浸其中,迫使他们直接参与,从而增强情感影响。

Discussion
讨论

Based on the qualitative and quantitative analysis results presented above, this chapter further explores the general applicability of AR and VR in exposure therapy, aiming to summarise their unique advantages and optimal use in therapeutic settings
基于上述定性和定量分析结果,本章进一步探讨了AR和VR在暴露疗法中的普遍适用性,旨在总结其独特的优势和在治疗环境中的最佳使用
.

General Applicability for AR and VR in Exposure Therapy
ARVR在暴露疗法中普遍适用性

Based on the experimental results, this section examines the unique strengths and limitations of both technologies in treating different types of phobias. It discusses how to select the most suitable technology according to individual patient needs and explores the potential of combining AR and VR to gradually enhance the effectiveness of exposure therapy.
根据实验结果,本节探讨了这两种技术在治疗不同类型的恐惧症方面的独特优势和局限性。讨论了如何根据患者个体需求选择最合适的技术,并探索结合AR和VR的潜力,逐步增强暴露疗法的有效性。

Applicability of AR
A R的适用性

The findings indicate that AR is particularly suitable for simulating living entities as sources of fear, and can serve as a preliminary method for exposure and adaptation in exposure therapy.
研究结果表明, AR特别适合模拟生物体作为恐惧来源,可以作为暴露疗法中暴露和适应的初步方法。

AR technology is especially appropriate for treating phobias of living organisms, such as small animal phobias. These fears typically involve passive perceptions; even without active contact, individuals may experience intense fear and a sense of threat from these uncontrollable living entities, as they cannot predict whether these creatures will approach or cause harm.
AR技术特别适合治疗生物体恐惧症,例如小动物恐惧症。这些恐惧通常涉及被动的感知;即使没有主动接触,个人也可能会感受到来自这些无法控制的生物体的强烈恐惧和威胁感,因为他们无法预测这些生物是否会接近或造成伤害。

The core advantage of AR lies in its ability to place patients in an environment that combines elements of the real world with virtual fear-inducing elements. This setup enhances patients' embodiment, allowing them to see their bodies in the same space as these living entities within a familiar real environment, thus intensifying their perception of threat. This effect is particularly significant when facing dynamic sources of fear that patients feel they 'cannot control'. Furthermore, AR technology, under real-world lighting conditions, can reduce the 'model-like' quality of living entities (especially small animals) by decreasing their 'fuzziness'. When combined with motion animation, it can provide a more authentic sensory experience.
AR 的核心优势在于它能够将患者置于一个将现实世界元素与虚拟恐惧诱发元素相结合的环境中。这种设置增强了患者的具体化,使他们能够在熟悉的真实环境中看到自己的身体与这些生物体处于同一空间,从而强化他们对威胁的感知。当面对患者感觉“无法控制”的动态恐惧源时,这种效应尤其显着。此外,AR技术在现实世界的照明条件下,可以通过减少生物体(尤其是小动物)的“模糊性”来降低其“模型般”的质量。当与运动动画结合时,它可以提供更真实的感官体验。

It is important to note that AR is more suited to virtual exposure therapy conducted within real-world scenarios that do not create a strong sense of dissonance. However, AR may struggle to fully integrate into the user's real environment when recreating certain specific contexts, making it difficult for participants to experience an immersive sense of fear. This unnatural feeling can weaken the effectiveness of exposure therapy, rendering AR less effective in treatment scenarios that require a high degree of contextualisation.
值得注意的是,AR 更适合在现实场景中进行的虚拟暴露疗法,不会产生强烈的不和谐感。然而,AR在重建某些特定情境时可能难以完全融入用户的真实环境,导致参与者难以体验身临其境的恐惧感。这种不自然的感觉会削弱暴露疗法的有效性,使得 AR 在需要高度情境的治疗场景中效果较差

Excluding the influence of the fear source, participants generally felt a greater sense of safety in AR environments. This is because AR incorporates real-world environments, allowing users to gradually adapt to therapeutic tasks in familiar surroundings. Additionally, participants can see psychotherapists or others in the environment, providing more comfort and reassurance, which to some extent alleviates the sense of fear in exposure therapy, avoiding excessive anxiety or discomfort. Therefore, AR is particularly suitable for phobia patients who are new to exposure therapy, serving as a method of adaptation to this type of treatment. It is especially useful in the initial stages of treatment, helping patients build confidence and reduce fear through a gradual adaptation process.
排除恐惧源的影响,参与者普遍在 AR 环境中感受到更大的安全感。这是因为 AR 融入了现实世界环境,让用户能够逐渐适应熟悉环境中的治疗任务。此外,参与者可以在环境中看到心理治疗师或其他人,提供更多的舒适感和安心感,这在一定程度上缓解了暴露疗法中的恐惧感,避免了过度的焦虑或不适。因此,AR特别适合刚接触暴露疗法的恐惧症患者,作为适应此类治疗的一种方法。它在治疗的初始阶段特别有用,可以帮助患者通过逐步适应过程建立信心并减少恐惧。

Applicability of VR
VR的适用性

The findings show that VR is particularly effective in addressing fears triggered by multi-sensory stimuli, especially those shaped by environmental factors and atmosphere. For instance, VR is well-suited for treating fears that require active engagement, typically involving stationary, inanimate, and controllable objects, such as fear of contaminated environments or heights. In these scenarios, VR can construct a powerful environmental atmosphere, eliciting deeper levels of fear or discomfort in users.
研究结果表明, VR在解决多感官刺激引发的恐惧方面特别有效,尤其是那些由环境因素和气氛形成的恐惧。例如,VR 非常适合治疗需要主动参与的恐惧,通常涉及静止、无生命和可控的物体,例如对受污染的环境或高度的恐惧。在这些场景中,VR可以构建出强大的环境氛围,引发用户更深层次的恐惧或不适。

Moreover, VR is especially applicable for treating specific environmental phobias that are challenging to replicate using AR, such as fear of dirty surroundings or acrophobia. As these fears are often closely tied to specific environmental contexts, AR may struggle to adequately adapt to these scenarios, potentially failing to evoke sufficient emotional responses from participants, thus compromising treatment efficacy. Consequently, employing VR to simulate these particular situations is more likely to achieve the desired therapeutic outcomes.
此外,VR 特别适用于治疗使用 AR 难以复制的特定环境恐惧症,例如对肮脏环境的恐惧或恐高症。由于这些恐惧往往与特定的环境背景密切相关,AR 可能难以充分适应这些场景,可能无法唤起参与者足够的情绪反应,从而影响治疗效果。因此,利用 VR 来模拟这些特定情况更有可能达到预期的治疗效果。

Beyond fears directly triggered by the source of phobia, the immersive nature of VR technology can induce a sense of isolation and helplessness in participants within the virtual environment, creating a form of "VR environmental fear". In VR, the virtual environment completely replaces real-world visual and spatial perception, making participants feel as if they have left familiar surroundings and entered an unfamiliar setting, further disconnecting them from reality. This sense of detachment may exacerbate feelings of isolation and vulnerability, compounding the fear of the exposure object.
除了恐惧症根源直接引发的恐惧之外,VR技术的沉浸式特性还可以让参与者在虚拟环境中产生孤立感和无助感,从而产生一种“VR环境恐惧”。在VR中,虚拟环境完全取代了现实世界的视觉和空间感知,让参与者感觉仿佛离开了熟悉的环境,进入了一个陌生的环境,进一步脱离了现实。这种脱离感可能会加剧孤立感和脆弱感,加剧对暴露对象的恐惧。

Therefore, for patients who have never undergone exposure therapy, initiating treatment directly with VR may not be appropriate, as this approach might hinder proper simulation of the fear source itself. In contrast, VR is better suited for users who are already familiar with the therapy and technology, or for later stages of exposure therapy to increase stimulus intensity and treatment challenges.
因此,对于从未接受过暴露疗法的患者来说,直接用VR开始治疗可能并不合适,因为这种方法可能会妨碍对恐惧源本身的正确模拟。相比之下,VR 更适合已经熟悉疗法和技术的用户,或者适合暴露疗法的后期阶段,以增加刺激强度和治疗挑战。

Development Suggestion: Gradual and Progressive Therapy Combining AR and VR
发展建议 AR与VR相结合的渐进式治疗

Based on participant feedback and the principles of traditional exposure therapy - gradual progression and stepwise fear reduction - it is recommended to combine VR and AR technologies in the development process. This integrated approach allows for the use of the most suitable technology at different exposure stages. The following are specific development recommendations:
根据参与者的反馈以及传统暴露疗法的原则——循序渐进、逐步减少恐惧——建议在开发过程中结合VRAR技术。这种集成方法允许在不同的曝光阶段使用最合适的技术。以下是具体的发展建议:

Adaptation Period: Use of AR in the Initial Stage. During this phase, AR serves as an entry-level for exposure therapy, helping users establish psychological expectations and gradually adapt to virtual exposure therapy in familiar environments. The advantage of AR lies in providing a safer, more controllable experience, allowing participants to slowly accept the challenges of virtual exposure whilst maintaining their perception of the real world.
适应期: AR使用初期。这一阶段,AR作为暴露疗法的入门级,帮助用户建立心理预期,逐渐适应熟悉环境中的虚拟暴露疗法。 AR的优势在于提供更安全、更可控的体验,让参与者慢慢接受虚拟暴露的挑战,同时保持对现实世界的感知。

Intensification Period: Introduction of Virtual Reality as the Treatment Progresses. VR can provide a more intense sense of immersion and sensory stimulation, suitable for the enhancement stage of exposure treatment. Its main advantage is the ability to completely replace reality perception by creating entirely new, fully fictitious environments, amplifying fear responses and further strengthening the therapeutic effect.
强化期:随着治疗的进展引入虚拟现实。 VR可以提供更强烈的沉浸感和感官刺激,适合暴露治疗的增强阶段。其主要优点是能够通过创造全新的、完全虚拟的环境、放大恐惧反应并进一步强化治疗效果来完全取代现实感知。

Dynamic Period: Combining AR and VR to Adjust and Deepen Exposure Treatment. Previous research on exposure therapy has found that repeated exposure in various contexts can reduce the risk of fear reoccurrence (Bandarian-Balooch, Neumann, and Boschen 2015). After patients have gradually adapted to the initial exposure treatment, different types of scenarios and tasks can be designed to further adjust and deepen the therapeutic effect. This stage allows for flexible scenario settings to adapt to patients' individual needs, such as adding dynamic objects or increasing scene complexity in the VR environment, thereby improving the precision and effectiveness of treatment and achieving more comprehensive desensitisation to fear.
动态期:结合AR和VR调整和深化暴露治疗。先前关于暴露疗法的研究发现,在各种情况下重复暴露可以降低恐惧再次发生的风险(Bandarian-Balooch、Neumann 和 Boschen 2015)。当患者逐渐适应最初的暴露治疗后,可以设计不同类型的场景和任务,进一步调整和深化治疗效果。该阶段可以灵活的场景设置,适应患者的个体需求,例如在VR环境中添加动态物体或增加场景复杂性,从而提高治疗的精准度和有效性,实现更全面的恐惧脱敏。

Overall, by combining AR and VR technologies, a more complete and effective virtual exposure treatment plan can be provided that gradually deepens according to the treatment needs at different stages. This strategy not only considers the respective advantages and disadvantages of the two technologies but also adjusts according to specific project conditions and characteristics, offering a novel solution for treating various types of phobias.
总体而言,通过结合AR和VR技术,可以提供更完整、更有效的虚拟暴露治疗方案,并根据不同阶段的治疗需求逐步深化。该策略既考虑了两种技术各自的优缺点,又根据具体的项目条件和特点进行调整,为治疗各类恐惧症提供了一种新颖的解决方案。

Limitations
局限性

This section outlines the primary constraints encountered during the study, which include both the limitations of the prototype development and the characteristics of the research sample.
本节概述了研究过程中遇到的主要限制,包括原型开发的局限性和研究样本的特征。

Limitations of Prototype Development
原型开发的局限性

The prototype development in this study was constrained by development cycles and experimental requirements. As the experimental objectives did not necessitate a fully mature application, the current prototype's functionality remains incomplete. Future development could incorporate additional features, such as an improved user interface (UI) and more detailed user guidance. Moreover, if the application were to be deployed in actual exposure therapy, a multi-user environment could be established, allowing patients and therapists to access the application platform simultaneously, thereby enhancing guidance for patients during treatment tasks. This multi-user environment could even facilitate remote psychological therapy, reducing patient burden and expanding treatment possibilities.
本研究中的原型开发受到开发周期和实验要求的限制。由于实验目标并不需要完全成熟的应用程序,因此当前原型的功能仍然不完整。未来的开发可能会包含更多功能,例如改进的用户界面 (UI) 和更详细的用户指南。此外,如果将该应用程序部署在实际的暴露治疗中,可以建立一个多用户环境,允许患者和治疗师同时访问该应用程序平台,从而增强在治疗任务期间对患者的指导。这种多用户环境甚至可以促进远程心理治疗,减轻患者负担并扩大治疗可能性。

The virtual exposure scenarios designed for this study also presented certain issues. Some participants reported that the virtual reality environment was overly cartoonish, leading to insufficient immersion and feeling more like a game than a therapeutic environment. Additionally, the size of models and textures in the virtual reality scenes may affect overall visual fluidity. Excessively large textures could result in lag and frame rate drops, potentially inducing physiological dizziness (motion sickness) and discomfort. Therefore, future designs should optimise textures and rendering to create more realistic environments whilst compressing textures to reduce lag, thereby enhancing user comfort.
为本研究设计的虚拟暴露场景也提出了某些问题。一些参与者反映,虚拟现实环境过于卡通化,导致沉浸感不足,感觉更像是游戏而不是治疗环境。此外,虚拟现实场景中模型和纹理的大小可能会影响整体视觉流动性。过大的纹理可能会导致延迟和帧速率下降,从而可能引发生理性头晕(晕动病)和不适。因此,未来的设计应该优化纹理和渲染,以创建更真实的环境,同时压缩纹理以减少延迟,从而提高用户舒适度。

Limitations of Research Sample
研究样本的局限性

This study faced certain diversity issues in participant recruitment and selection. The ratio of male to female participants was approximately 2:1, and this gender imbalance may influence the research outcomes. Furthermore, participants' ages were primarily concentrated between 20 and 30 years, lacking representation from other age cohorts. This may fail to account for age-related differences in responses to virtual exposure therapy.
这项研究在参与者招募和选择方面面临一定的多样性问题。男性与女性参与者的比例约为2:1,这种性别失衡可能会影响研究结果。此外,参与者的年龄主要集中在20岁至30岁之间,缺乏其他年龄段的代表性。这可能无法解释虚拟暴露疗法反应中与年龄相关的差异。

The educational background of the participants was predominantly characterised by highly educated university students. While this group may provide valuable insights, it potentially limits the applicability of results to broader populations with diverse educational backgrounds. The homogeneity of the sample in terms of educational attainment may overlook important variations in response to the therapy that could be present in a more diverse population.
参与者的教育背景主要是受过高等教育的大学生。虽然这个群体可能提供有价值的见解,但它可能限制了结果对具有不同教育背景的更广泛人群的适用性。样本在教育程度方面的同质性可能会忽视更多样化的人群中可能存在的对治疗反应的重要差异。

Moreover, the study recruited only 31 participants, a sample size that may be insufficient. The limited sample size could potentially affect the overall reliability and statistical power of the data analysis.
此外,该研究仅招募了 31 名参与者,样本量可能还不够。有限的样本量可能会影响数据分析的整体可靠性和统计能力。

Future Work
未来的工作

Future research efforts should focus on a multifaceted approach to address current limitations and advance the field of virtual exposure therapy. It is advised that future studies refine their designs, giving priority to leveraging the unique features of AR and VR technologies. This may facilitate the development of more comprehensive applications suited to various therapeutic schemes and user needs.
未来的研究工作应该集中在多方面的方法上,以解决当前的局限性并推进虚拟暴露疗法领域的发展。建议未来的研究完善其设计,优先考虑利用 AR 和 VR 技术的独特功能。这可能有助于开发适合各种治疗方案和用户需求的更全面的应用程序。

Moreover, it is necessary to expand and diversify participant samples to include a wider range of ages and educational backgrounds, thereby enhancing the generalisability of the research findings. The experimental procedures should also be further refined. For example, by increasing the diversity of experimental tasks and enriching the prototype scenarios used. Incorporating longitudinal studies to assess long-term therapeutic effects, as well as comparative analyses with traditional exposure therapy methods, could yield valuable insights into the relative advantages of virtual interventions. These improvements will enhance the robustness of the experimental outcomes and provide a stronger foundation for the development of virtual exposure therapy.
此外,有必要扩大参与者样本并使其多样化,以涵盖更广泛的年龄教育背景,从而增强研究结果的普遍性。实验程序也应进一步细化。例如,通过增加实验任务的多样性和丰富所使用的原型场景。结合纵向研究来评估长期治疗效果,以及与传统暴露疗法方法的比较分析,可以对虚拟干预的相对优势产生有价值的见解。这些改进将增强实验结果的稳健性,并为虚拟暴露疗法的发展提供更坚实的基础。

Optimising user experience should remain a focal point, potentially involving further iterations in user experience design to create more immersive and realistic environments, while maintaining technical performance. With technological advancements, greater attention needs to be paid to the ethical implications of virtual exposure therapy, including considerations of privacy, data security, and the potential psychological impacts of highly realistic virtual environments
优化用户体验应该仍然是一个焦点,可能涉及用户体验设计的进一步迭代,以创建更加身临其境和现实的环境,同时保持技术性能。随着技术的进步,需要更加关注虚拟暴露疗法的伦理影响,包括隐私、数据安全以及高度逼真的虚拟环境的潜在心理影响的考虑
.

Conclusion
结论

This study presents an empirical investigation into the comparative effectiveness of virtual reality (VR) and augmented reality (AR) within the domain of virtual exposure therapy (VET), focusing specifically on two distinct phobias: spider phobia and contamination fears. The findings address two research questions. The conclusion for Q1 is that there are differences in efficacy between AR and VR as technologies for virtual exposure therapy, with VR proving to be more effective than AR because of its greater exposure intensity and more pronounced sense of realism. Consequently, Q2 is further explored, with the results indicating that the effectiveness of these technologies varies depending on the specific characteristics of the phobia being treated. Although VR technology had higher average scores in both cases, it was particularly effective for contamination fears. AR technology, in contrast, provides a relatively stronger exposure experience for spider phobia.
研究虚拟现实(VR 增强现实AR )在虚拟暴露疗法(VET)领域内的比较有效性进行了实证研究,特别关注两种不同的恐惧症:蜘蛛恐惧症和污染恐惧症。研究结果解决了两个研究问题。第一季度结论是,AR 和 VR 作为虚拟暴露疗法技术的功效存在差异,VR 被证明比 AR 更有效,因为它的暴露强度更大,真实感更明显。因此,对 Q2 进行了进一步探讨,结果表明这些技术的有效性根据所治疗的恐惧症的具体特征而有所不同。尽管 VR 技术在这两种情况下的平均得分都较高,但它对于消除污染恐惧特别有效。相比之下,AR技术为蜘蛛恐惧症提供了相对更强的暴露体验。

Based on participant feedback data, VR appears more suitable for simulating contamination fears due to its provision of a more immersive therapeutic environment. Beyond the virtual setting, VR offers participants a powerful atmospheric experience, significantly enhancing the emotional and sensory engagement necessary for effective treatment in such scenarios. This can be understood as conducive to eliciting more pronounced fear and anxiety responses
根据参与者的反馈数据,VR 似乎更适合模拟污染恐惧,因为它提供了更加身临其境的治疗环境。除了虚拟环境之外,VR 还为参与者提供了强大的氛围体验,显着增强了在此类场景中进行有效治疗所需的情感和感官参与。这可以理解为有利于引发更明显的恐惧和焦虑反应
.

AR, on the other hand, has been found to have unique efficacy in managing spider phobia. AR integrates virtual elements into the real world, blending real environments and lighting to create a distinctive 're-rendering'. This approach lends a fascinating sense of liveliness to simulated animals. Furthermore, AR environments do not separate the physical body from the scene, making them more suitable for fears that arise from contact or interaction.
另一方面,AR 被发现在控制蜘蛛恐惧症方面具有独特的功效。 AR 将虚拟元素融入现实世界,融合真实环境和灯光,创造出独特的“重新渲染”。这种方法给模拟动物带来了一种迷人的活泼感。此外,AR 环境不会将身体与场景分开,这使得它们更适合应对因接触或互动而产生的恐惧。

Furthermore, a more general discussion on the characteristics of both technologies was conducted, providing a broader perspective on the types of phobia simulations most suited to each technology. Although VR generally scores highly, its effectiveness is mainly concentrated in fear scenarios that require a strong environmental atmosphere and multi-sensory stimulation, such as contamination fears. In contrast, AR, due to its integration with and interactivity in the real world, is more suited to fears involving dynamic entities, such as arachnophobia. The difference in the effectiveness of these two technologies across different types of fear highlights their unique value in exposure therapy. It is suggested that a mixed treatment model combining AR and VR technologies be adopted, integrating principles of gradual exposure with the specific strengths of each technology to enhance treatment outcomes. For example, early-stage therapy might utilise AR to provide a gentle introduction to exposure, while transitioning to VR as treatment progresses to intensify the exposure. This model also allows therapists to adjust the intensity of exposure and tailor the treatment to the patient’s evolving needs
此外,对这两种技术的特征进行了更广泛的讨论,为最适合每种技术的恐惧症模拟类型提供了更广泛的视角。虽然VR普遍得分较高,但其有效性主要集中在需要强烈环境氛围和多感官刺激的恐惧场景,例如污染恐惧。相比之下,AR由于其与现实世界的集成和交互性,更适合涉及动态实体的恐惧,例如蜘蛛恐惧症。这两种技术针对不同类型的恐惧的有效性差异凸显了它们在暴露疗法中的独特价值。建议采用AR和VR技术相结合的混合治疗模式,将逐步暴露的原则与每种技术的具体优势相结合,以提高治疗效果。例如,早期治疗可能会利用 AR 来提供温和的暴露介绍,同时随着治疗的进展过渡到 VR 以加强暴露。该模型还允许治疗师调整暴露强度并根据患者不断变化的需求定制治疗方案
.

This study contributes to a theoretical understanding of how immersive technologies impact fear reduction differently and offers practical insights to assist clinicians in selecting the most appropriate digital tools for exposure therapy. It is also hoped that, based on these findings, more refined and effective virtual exposure therapy applications will be developed.
这项研究有助于从理论上理解沉浸式技术如何以不同的方式减少恐惧,并提供实用的见解,帮助临床医生选择最合适的暴露疗法数字工具。还希望基于这些发现,开发出更精细、更有效的虚拟暴露治疗应用。

References
参考

Abate, Andrea F., Michele Nappi, and Stefano Ricciardi. 2011. ‘AR Based Environment for Exposure Therapy to Mottephobia’. Pp. 3–11 in Virtual and Mixed Reality - New Trends. Vol. 6773, Lecture Notes in Computer Science, edited by R. Shumaker. Berlin, Heidelberg: Springer Berlin Heidelberg.
安德里亚·F·阿巴特、米歇尔·纳皮和斯特凡诺·里恰尔迪。 2011.“基于 AR 的环境,用于 Mottephobia 暴露疗法”。页码。 3-11虚拟和混合现实 - 新趋势。卷。 6773,计算机科学讲义,由 R. Shumaker 编辑。柏林、海德堡:施普林格柏林海德堡。

Abramowitz, Jonathan S. 2013. ‘The Practice of Exposure Therapy: Relevance of Cognitive-Behavioral Theory and Extinction Theory’. Behavior Therapy 44(4):548–58. doi: 10.1016/j.beth.2013.03.003.
Abramowitz, Jonathan S. 2013。“暴露疗法的实践:认知行为理论和灭绝理论的相关性”。行为治疗44(4):548–58。 doi:10.1016/j.beth.2013.03.003。

Antoniou, Panagiotis E., Alkinoos Athanasiou, and Panagiotis D. Bamidis. 2020. ‘Virtual and Augmented Reality in Neuroscience’. Pp. 69–96 in Neurotechnology: Methods, advances and applications, edited by V. H. De Albuquerque, A. Athanasiou, and S. Ribeiro. Institution of Engineering and Technology.
Antoniou、Panagiotis E.、Alkinoos Athanasiou 和 Panagiotis D. Bamidis。 2020。“神经科学中的虚拟和增强现实”。页码。 《神经技术:方法、进展和应用第 69-96 页,由 VH De Albuquerque、A. Athanasiou 和 S. Ribeiro 编辑。工程技术研究所。

Bandarian-Balooch, Siavash, David L. Neumann, and Mark J. Boschen. 2015. ‘Exposure Treatment in Multiple Contexts Attenuates Return of Fear via Renewal in High Spider Fearful Individuals’. Journal of Behavior Therapy and Experimental Psychiatry 47:138–44. doi: 10.1016/j.jbtep.2014.12.006.
Bandarian-Balooch、Siavash、David L. Neumann 和 Mark J. Boschen。 2015.“多种环境下的暴露治疗可通过更新高蜘蛛恐惧个体来减轻恐惧的回归”。行为治疗和实验精神病学杂志四十七:138-44。 doi:10.1016/j.jbtep.2014.12.006。

Baus, Oliver, and Stéphane Bouchard. 2014. ‘Moving from Virtual Reality Exposure-Based Therapy to Augmented Reality Exposure-Based Therapy: A Review’. Frontiers in Human Neuroscience 8. doi: 10.3389/fnhum.2014.00112.
鲍斯、奥利弗和史蒂芬·布沙尔。 2014年。“从基于虚拟现实暴露的治疗转向增强现实基于暴露的治疗:回顾”。人类神经科学前沿8。doi:10.3389/fnhum.2014.00112。

Boeldt, Debra, Elizabeth McMahon, Mimi McFaul, and Walter Greenleaf. 2019. ‘Using Virtual Reality Exposure Therapy to Enhance Treatment of Anxiety Disorders: Identifying Areas of Clinical Adoption and Potential Obstacles’. Frontiers in Psychiatry 10:773. doi: 10.3389/fpsyt.2019.00773.
博尔特、黛布拉、伊丽莎白·麦克马洪、咪咪·麦克福尔和沃尔特·格林利夫。 2019。“使用虚拟现实暴露疗法加强焦虑症的治疗:确定临床采用领域和潜在障碍”。精神病学前沿10:773。 doi:10.3389/fpsyt.2019.00773。

Botella, Cristina, M. Ángeles Pérez-Ara, Juana Bretón-López, Soledad Quero, Azucena García-Palacios, and Rosa María Baños. 2016. ‘In Vivo versus Augmented Reality Exposure in the Treatment of Small Animal Phobia: A Randomized Controlled Trial’ edited by I. H. A. Franken. PLOS ONE 11(2):e0148237. doi: 10.1371/journal.pone.0148237.
博特拉、克里斯蒂娜、M.安赫莱斯·佩雷斯-阿拉、胡安娜·布雷东-洛佩斯、索莱达·奎罗、阿苏塞纳·加西亚-帕拉西奥斯和罗莎·玛丽亚·巴尼奥斯。 2016.“体内与增强现实暴露治疗小动物恐惧症:随机对照试验”由 IHA Franken 编辑。 PLOS ONE 11(2):e0148237。 doi:10.1371/journal.pone.0148237。

Bouchard, Stéphane, François Bernier, Éric Boivin, Tanya Guitard, Mylène Laforest, Stéphanie Dumoulin, and Geneviève Robillard. 2014. ‘Modes of Immersion and Stress Induced by Commercial (off-the-Shelf) 3D Games’. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 11(4):339–52. doi: 10.1177/1548512912446359.
布沙尔、史蒂芬、弗朗索瓦·贝尔尼尔、埃里克·博伊文、坦尼娅·吉塔德、迈琳·拉福雷斯特、史蒂芬妮·杜穆兰和吉纳维芙·罗比拉德。 2014。“商业(现成)3D 游戏引起的沉浸和压力模式”。国防建模与仿真杂志:应用、方法、技术11(4):339–52。号码:10.1177/1548512912446359。

Carl, Emily, Aliza T. Stein, Andrew Levihn-Coon, Jamie R. Pogue, Barbara Rothbaum, Paul Emmelkamp, Gordon J. G. Asmundson, Per Carlbring, and Mark B. Powers. 2019. ‘Virtual Reality Exposure Therapy for Anxiety and Related Disorders: A Meta-Analysis of Randomized Controlled Trials’. Journal of Anxiety Disorders 61:27–36. doi: 10.1016/j.janxdis.2018.08.003.
Carl、Emily、Aliza T. Stein、Andrew Levihn-Coon、Jamie R. Pogue、Barbara Rothbaum、Paul Emmelkamp、Gordon JG Asmundson、Per Carlbring 和 Mark B. Powers。 2019.“焦虑和相关疾病的虚拟现实暴露疗法:随机对照试验的荟萃分析”。焦虑症杂志61:27-36。 doi:10.1016/j.janxdis.2018.08.003。

Carvalho, Marcele Regine De, Rafael C. Freire, and Antonio Egidio Nardi. 2010. ‘Virtual Reality as a Mechanism for Exposure Therapy’. The World Journal of Biological Psychiatry 11(2–2):220–30. doi: 10.3109/15622970802575985.
卡瓦略、马塞莱·雷吉娜·德、拉斐尔·C·弗莱雷和安东尼奥·埃吉迪奥·纳尔迪。 2010。“虚拟现实作为暴露疗法的机制”。世界生物精神病学杂志11(2-2):220-30。号码:10.3109/15622970802575985。

Chicchi Giglioli, Irene Alice, Cristina Bermejo Vidal, and Mariano Alcañiz Raya. 2019. ‘A Virtual Versus an Augmented Reality Cooking Task Based-Tools: A Behavioral and Physiological Study on the Assessment of Executive Functions’. Frontiers in Psychology 10:2529. doi: 10.3389/fpsyg.2019.02529.
Chicchi Giglioli、Irene Alice、Cristina Bermejo Vidal 和 Mariano Alcañiz Raya。 2019年。“基于工具的虚拟与增强现实烹饪任务:执行功能评估的行为和生理学研究”。心理学前沿10:2529。 doi:10.3389/fpsyg.2019.02529。

Culver, Najwa C., Milena Stoyanova, and Michelle G. Craske. 2012. ‘Emotional Variability and Sustained Arousal during Exposure’. Journal of Behavior Therapy and Experimental Psychiatry 43(2):787–93. doi: 10.1016/j.jbtep.2011.10.009.
卡尔弗 (Najwa C.)、米莱娜·斯托亚诺娃 (Milena Stoyanova) 和米歇尔·克拉斯克 (Michelle G. Craske)。 2012。“暴露期间的情绪变化和持续唤醒”。行为治疗和实验精神病学杂志43(2):787–93。 doi:10.1016/j.jbtep.2011.10.009。

Diemer, Julia, Paul Pauli, and Andreas Mühlberger. 2015. ‘Virtual Reality in Psychotherapy’. Pp. 138–46 in International Encyclopedia of the Social & Behavioral Sciences. Elsevier.
迪默、朱莉娅、保罗·泡利和安德烈亚斯·米尔伯格。 2015.“心理治疗中的虚拟现实”。页码。 《国际社会与行为科学百科全书》第138–46 页。爱思唯尔。

Dünser, Andreas, Raphaël Grasset, and Hamish Farrant. 2011. ‘Towards Immersive and Adaptive Augmented Reality Exposure Treatment’. Studies in Health Technology and Informatics 167:37–41.
邓瑟、安德烈亚斯、拉斐尔·格拉塞特和哈米什·法兰特。 2011.“迈向沉浸式和自适应增强现实暴露治疗”。卫生技术和信息学研究167:37-41。

Elphinston, Rachel A., Atiyeh Vaezipour, James A. Fowler, Trevor G. Russell, and Michele Sterling. 2023. ‘Psychological Therapy Using Virtual Reality for Treatment of Driving Phobia: A Systematic Review’. Disability and Rehabilitation 45(10):1582–94. doi: 10.1080/09638288.2022.2069293.
Elphinston、Rachel A.、Atiyeh Vaezipour、James A. Fowler、Trevor G. Russell 和 Michele Sterling。 2023.“利用虚拟现实治疗驾驶恐惧症的心理疗法:系统评价”。残疾与康复45(10):1582–94。 DOI:10.1080/09638288.2022.2069293。

Emmelkamp, P. M. G., M. Krijn, A. M. Hulsbosch, S. De Vries, M. J. Schuemie, and C. A. P. G. Van Der Mast. 2002. ‘Virtual Reality Treatment versus Exposure in Vivo: A Comparative Evaluation in Acrophobia’. Behaviour Research and Therapy 40(5):509–16. doi: 10.1016/S0005-7967(01)00023-7.
Emmelkamp、PMG、M. Krijn、AM Hulsbosch、S. De Vries、MJ Schuemie 和 CAPG Van Der Mast。 2002.“虚拟现实治疗与体内暴露:恐高症的比较评估”。行为研究与治疗40(5):509–16。 doi:10.1016/S0005-7967(01)00023-7。

Emmelkamp, Paul M. G., Mary Bruynzeel, Leonie Drost, and Charles A. P. G. Van Der Mast. 2001. ‘Virtual Reality Treatment in Acrophobia: A Comparison with Exposure in Vivo’. CyberPsychology & Behavior 4(3):335–39. doi: 10.1089/109493101300210222.
Emmelkamp、Paul MG、Mary Bruynzeel、Leonie Drost 和 Charles APG Van Der Mast。 2001.“恐高症的虚拟现实治疗:与体内暴露的比较”。网络心理学与行为4(3):335–39。号码:10.1089/109493101300210222。

Fajnerová, Iveta, Anna Francová, Kateřina Taranzová, Barbora Darmová, Eliška Kosová, and Pavla Stopková. 2023. ‘Virtual Reality Environment for Exposure Therapy in Obsessive–Compulsive Disorder: A Validation Study’. Virtual Reality 27(3):2691–2701. doi: 10.1007/s10055-023-00837-5.
Fajnerová、Iveta、Anna Francová、Kateřina Taranzová、Barbora Darmová、Eliška Kosová 和 Pavla Stopková。 2023.“强迫症暴露疗法的虚拟现实环境:验证研究”。虚拟现实27(3):2691–2701。 DOI:10.1007/s10055-023-00837-5。

Foa, Edna B., Kelly R. Chrestman, and Eva Gilboa-Schechtman. 2009. Prolonged Exposure Therapy for Adolescents with PTSD: [Emotional Processing of Traumatic Experiences]: Therapist Guide. Oxford ; New York: Oxford University Press.
Foa,Edna B.,Kelly R. Chrestman,Eva Gilboa-Schechtman。 2009.患有 PTSD 的青少年的长期暴露疗法:[创伤经历的情绪处理]:治疗师指南。牛津;纽约:牛津大学出版社。

Freeman, Daniel, Polly Haselton, Jason Freeman, Bernhard Spanlang, Sameer Kishore, Emily Albery, Megan Denne, Poppy Brown, Mel Slater, and Alecia Nickless. 2018. ‘Automated Psychological Therapy Using Immersive Virtual Reality for Treatment of Fear of Heights: A Single-Blind, Parallel-Group, Randomised Controlled Trial’. The Lancet Psychiatry 5(8):625–32. doi: 10.1016/S2215-0366(18)30226-8.
弗里曼、丹尼尔、波莉·哈瑟尔顿、杰森·弗里曼、伯恩哈德·斯潘朗、萨米尔·基肖尔、艾米丽·阿尔伯里、梅根·丹尼、波比·布朗、梅尔·斯莱特和阿莱西亚·尼克利斯。 2018.“使用沉浸式虚拟现实的自动心理治疗治疗恐高症:单盲、平行组、随机对照试验”。柳叶刀精神病学5(8):625–32。 doi:10.1016/S2215-0366(18)30226-8。

Gaffary, Yoren, Benoit Le Gouis, Maud Marchal, Ferran Argelaguet, Bruno Arnaldi, and Anatole Lecuyer. 2017. ‘AR Feels “Softer” than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality’. IEEE Transactions on Visualization and Computer Graphics 23(11):2372–77. doi: 10.1109/TVCG.2017.2735078.
加法里、尤伦、伯努瓦·勒古伊斯、莫德·马夏尔、费兰·阿尔杰拉盖、布鲁诺·阿纳尔迪和阿纳托尔·勒库耶。 2017 年。“AR 感觉比 VR 更“柔软”:增强现实与虚拟现实中僵硬的触觉感知”。 IEEE 可视化和计算机图形学汇刊23(11):2372–77。 doi:10.1109/TVCG.2017.2735078。

Garcia-Palacios, A., H. Hoffman, A. Carlin, T. A. Furness, and C. Botella. 2002. ‘Virtual Reality in the Treatment of Spider Phobia: A Controlled Study’. Behaviour Research and Therapy 40(9):983–93. doi: 10.1016/S0005-7967(01)00068-7.
Garcia-Palacios, A.、H. Hoffman、A. Carlin、TA Furness 和 C. Botella。 2002.“虚拟现实治疗蜘蛛恐惧症:一项对照研究”。行为研究与治疗40(9):983–93。 doi:10.1016/S0005-7967(01)00068-7。

Gunter, Raymond W., and Maureen L. Whittal. 2010. ‘Dissemination of Cognitive-Behavioral Treatments for Anxiety Disorders: Overcoming Barriers and Improving Patient Access’. Clinical Psychology Review 30(2):194–202. doi: 10.1016/j.cpr.2009.11.001.
冈特、雷蒙德·W. 和莫林·L. 惠塔尔。 2010年。“焦虑症认知行为治疗的传播:克服障碍并改善患者的可及性”。临床心理学评论30(2):194–202。 doi:10.1016/j.cpr.2009.11.001。

Guo, Yuqing, Shizhu Lu, Min Shen, Wei Huang, Xiaolie Yi, and Jifa Zhang. 2024. ‘Differences in Heritage Tourism Experience between VR and AR: A Comparative Experimental Study Based on Presence and Authenticity’. Journal on Computing and Cultural Heritage 17(2):1–21. doi: 10.1145/3648001.
郭玉清、陆世柱、沉敏、黄伟、易小烈、张继发。 2024.“VR和AR遗产旅游体验的差异:基于存在性和真实性的比较实验研究”。计算与文化遗产杂志17(2):1–21。 doi:10.1145/3648001。

Horigome, Toshiro, Shunya Kurokawa, Kyosuke Sawada, Shun Kudo, Kiko Shiga, Masaru Mimura, and Taishiro Kishimoto. 2020. ‘Virtual Reality Exposure Therapy for Social Anxiety Disorder: A Systematic Review and Meta-Analysis’. Psychological Medicine 50(15):2487–97. doi: 10.1017/S0033291720003785.
堀込、敏郎、黑川俊也、泽田恭介、工藤俊、志贺纪子、三村胜、岸本大四郎。 2020.“社交焦虑症的虚拟现实暴露疗法:系统回顾和荟萃分析”。心理医学50(15):2487–97。编号:10.1017/S0033291720003785。

Juan, M. C., M. Alcaniz, C. Monserrat, C. Botella, R. M. Banos, and B. Guerrero. 2005. ‘Using Augmented Reality to Treat Phobias’. IEEE Computer Graphics and Applications 25(6):31–37. doi: 10.1109/MCG.2005.143.
Juan, MC、M. Alcaniz、C. Monserrat、C. Botella、RM Banos 和 B. Guerrero。 2005.“使用增强现实治疗恐惧症”。 IEEE 计算机图形学和应用25(6):31–37。 doi:10.1109/MCG.2005.143。

Jurcik, Tomas, Svetlana Zaremba-Pike, Vladimir Kosonogov, Abdul-Raheem Mohammed, Yulia Krasavtseva, Tadamasa Sawada, Irina Samarina, Nilufar Buranova, Peter Adu, Nikita Sergeev, Andrei Skuratov, Anastasia Demchenko, and Yakov Kochetkov. 2024. ‘The Efficacy of Augmented Reality Exposure Therapy in the Treatment of Spider Phobia—a Randomized Controlled Trial’. Frontiers in Psychology 15:1214125. doi: 10.3389/fpsyg.2024.1214125.
Jurcik、Tomas、Svetlana Zaremba-Pike、Vladimir Kosonogov、Abdul-Raheem Mohammed、Yulia Krasavtseva、Tadamasa Sawada、Irina Samarina、Nilufar Buranova、Peter Adu、Nikita Sergeev、Andrei Skuratov、Anastasia Demchenko 和 Yakov Kochetkov。 2024.“增强现实暴露疗法治疗蜘蛛恐惧症的功效——一项随机对照试验”。心理学前沿15:1214125。 doi:10.3389/fpsyg.2024.1214125。

Kim, Byeol, Warren Schwartz, Danny Catacora, and Monifa Vaughn-Cooke. 2016. ‘Virtual Reality Behavioral Therapy’. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 60(1):356–60. doi: 10.1177/1541931213601081.
Kim、Byeol、沃伦·施瓦茨、丹尼·卡塔科拉和莫尼法·沃恩-库克。 2016.“虚拟现实行为疗法”。人为因素和人体工程学协会年会记录60(1):356–60。号码:10.1177/1541931213601081。

Kothgassner, Oswald D., Andreas Goreis, Johanna X. Kafka, Rahel L. Van Eickels, Paul L. Plener, and Anna Felnhofer. 2019. ‘Virtual Reality Exposure Therapy for Posttraumatic Stress Disorder (PTSD): A Meta-Analysis’. European Journal of Psychotraumatology 10(1):1654782. doi: 10.1080/20008198.2019.1654782.
Kothgassner、Oswald D.、Andreas Goreis、Johanna X. Kafka、Rahel L. Van Eickels、Paul L. Plener 和 Anna Felnhofer。 2019.“创伤后应激障碍(PTSD)的虚拟现实暴露疗法:荟萃分析”。欧洲精神创伤学杂志10(1):1654782。 DOI:10.1080/20008198.2019.1654782。

Krzystanek, Marek, Stanisław Surma, Małgorzata Stokrocka, Monika Romańczyk, Jacek Przybyło, Natalia Krzystanek, and Mariusz Borkowski. 2021. ‘Tips for Effective Implementation of Virtual Reality Exposure Therapy in Phobias—A Systematic Review’. Frontiers in Psychiatry 12:737351. doi: 10.3389/fpsyt.2021.737351.
Krzystanek、Marek、Stanisław Surma、Małgorzata Stokrocka、Monika Romańczyk、Jacek Przybyło、Natalia Krzystanek 和 Mariusz Borkowski。 2021年。“有效实施虚拟现实暴露疗法治疗恐惧症的技巧——系统评价”。精神病学前沿12:737351。 doi:10.3389/fpsyt.2021.737351。

Li, Xiao, Bo Xu, Yue Teng, Yi-tian Ren, and Zhu-min Hu. 2014. ‘Comparative Research of AR and VR Technology Based on User Experience’. Pp. 1820–27 in 2014 International Conference on Management Science & Engineering 21th Annual Conference Proceedings. Helsinki: IEEE.
李、肖、徐波、滕跃、任益田、胡朱民。 2014.“基于用户体验的AR与VR技术比较研究”。页码。 1820-27 2014年国际管理科学与工程第21届年会论文集。赫尔辛基:IEEE。

Lindner, Philip, Alexander Miloff, Lena Reuterskiöld, Gerhard Andersson, and Per Carlbring. 2019. ‘What Is so Frightening about Spiders? Self‐rated and Self‐disclosed Impact of Different Characteristics and Associations with Phobia Symptoms’. Scandinavian Journal of Psychology 60(1):1–6. doi: 10.1111/sjop.12508.
菲利普·林德纳、亚历山大·米洛夫、莉娜·路透斯基尔德、格哈德·安德森和佩尔·卡尔布林。 2019.“蜘蛛有什么可怕的?不同特征的自我评价和自我披露的影响以及与恐惧症症状的关联。斯堪的纳维亚心理学杂志60(1):1–6。 doi:10.1111/sjop.12508。

Lohse, Luzie, Lena Jelinek, Steffen Moritz, Jannik Blömer, Lara Bücker, and Franziska Miegel. 2023. ‘Efficacy of Exposure and Response Prevention Therapy in Mixed Reality for Patients with Obsessive-Compulsive Disorder: Study Protocol for a Randomized Controlled Trial’. BMC Psychology 11(1):113. doi: 10.1186/s40359-023-01116-3.
Lohse、Luzie、Lena Jelinek、Steffen Moritz、Jannik Blömer、Lara Bücker 和 Franziska Miegel。 2023.“混合现实中暴露和反应预防疗法对强迫症患者的功效:随机对照试验的研究方案”。 BMC 心理学11(1):113。 DOI:10.1186/s40359-023-01116-3。

Meuret, Alicia E., Anke Seidel, Benjamin Rosenfield, Stefan G. Hofmann, and David Rosenfield. 2012. ‘Does Fear Reactivity during Exposure Predict Panic Symptom Reduction?’ Journal of Consulting and Clinical Psychology 80(5):773–85. doi: 10.1037/a0028032.
默雷、艾丽西亚 E.、安克·塞德尔、本杰明·罗森菲尔德、斯特凡·G·霍夫曼和大卫·罗森菲尔德。 2012.“暴露期间的恐惧反应是否预示恐慌症状减轻?”咨询和临床心理学杂志80(5):773–85。 doi:10.1037/a0028032。

Mevlevioğlu, Deniz, Sabin Tabirca, and David Murphy. 2022. ‘Research Proposal: Real-Time Anxiety Prediction in Virtual Reality Therapy’.
梅夫莱维奥卢、德尼兹、萨宾·塔比尔卡和大卫·墨菲。 2022.“研究提案:虚拟现实治疗中的实时焦虑预测”。

North, M. M., S. M. North, and J. R. Coble. 1998. ‘Virtual Reality Therapy: An Effective Treatment for Phobias’. Studies in Health Technology and Informatics 58:112–19.
诺斯、MM、SM 诺斯和 JR 科布尔。 1998.“虚拟现实疗法:恐惧症的有效治疗方法”。卫生技术和信息学研究五十八:112-19。

Powers, Mark B., and Paul M. G. Emmelkamp. 2008. ‘Virtual Reality Exposure Therapy for Anxiety Disorders: A Meta-Analysis’. Journal of Anxiety Disorders 22(3):561–69. doi: 10.1016/j.janxdis.2007.04.006.
鲍尔斯 (Mark B.) 和保罗 MG 埃梅尔坎普 (Paul MG Emmelkamp)。 2008.“焦虑症的虚拟现实暴露疗法:荟萃分析”。焦虑症杂志22(3):561–69。 doi:10.1016/j.janxdis.2007.04.006。

Riva, Giuseppe. 2022. ‘Virtual Reality in Clinical Psychology’. Pp. 91–105 in Comprehensive Clinical Psychology. Elsevier.
里瓦,朱塞佩。 2022.“临床心理学中的虚拟现实”。页码。综合临床心理学91–105 。爱思唯尔。

Rothbaum, Barbara Olasov, Page Anderson, Elana Zimand, Larry Hodges, Delia Lang, and Jeff Wilson. 2006. ‘Virtual Reality Exposure Therapy and Standard (in Vivo) Exposure Therapy in the Treatment of Fear of Flying’. Behavior Therapy 37(1):80–90. doi: 10.1016/j.beth.2005.04.004.
罗斯鲍姆、芭芭拉·奥拉索夫、佩吉·安德森、埃拉娜·齐曼德、拉里·霍奇斯、迪莉娅·朗和杰夫·威尔逊。 2006年。“虚拟现实暴露疗法和标准(体内)暴露疗法治疗飞行恐惧”。行为治疗37(1):80–90。 doi:10.1016/j.beth.2005.04.004。

Rothbaum, Barbara Olasov, Larry F. Hodges, Rob Kooper, Dan Opdyke, James S. Williford, and Max North. 1995. ‘Virtual Reality Graded Exposure in the Treatment of Acrophobia: A Case Report’. Behavior Therapy 26(3):547–54. doi: 10.1016/S0005-7894(05)80100-5.
罗斯鲍姆、芭芭拉·奥拉索夫、拉里·F·霍奇斯、罗布·库珀、丹·奥普戴克、詹姆斯·S·威利福德和马克斯·诺斯。 1995.“虚拟现实分级暴露治疗恐高症:病例报告”。行为治疗26(3):547–54。 doi:10.1016/S0005-7894(05)80100-5。

Schumacher, Sarah, Robert Miller, Lydia Fehm, Clemens Kirschbaum, Thomas Fydrich, and Andreas Ströhle. 2015. ‘Therapists’ and Patients’ Stress Responses during Graduated versus Flooding in Vivo Exposure in the Treatment of Specific Phobia: A Preliminary Observational Study’. Psychiatry Research 230(2):668–75. doi: 10.1016/j.psychres.2015.10.020.
舒马赫、莎拉、罗伯特·米勒、莉迪亚·费姆、克莱门斯·科什鲍姆、托马斯·费德里希和安德烈亚斯·斯特勒。 2015.“在治疗特定恐惧症时,治疗师和患者在体内分级暴露与洪水暴露期间的应激反应:初步观察研究”。精神病学研究230(2):668–75。 doi:10.1016/j.psychres.2015.10.020。

Suso-Ribera, Carlos, Javier Fernández-Álvarez, Azucena García-Palacios, Hunter G. Hoffman, Juani Bretón-López, Rosa M. Baños, Soledad Quero, and Cristina Botella. 2019. ‘Virtual Reality, Augmented Reality, and In Vivo Exposure Therapy: A Preliminary Comparison of Treatment Efficacy in Small Animal Phobia’. Cyberpsychology, Behavior, and Social Networking 22(1):31–38. doi: 10.1089/cyber.2017.0672.
Suso-Ribera、Carlos、Javier Fernández-Álvarez、Azucena García-Palacios、Hunter G. Hoffman、Juani Bretón-López、Rosa M. Baños、Soledad Quero 和 Cristina Botella。 2019.“虚拟现实、增强现实和体内暴露疗法:小动物恐惧症治疗效果的初步比较”。网络心理学、行为和社交网络22(1):31–38。 doi:10.1089/cyber.2017.0672。

Tortella-Feliu, Miquel, Cristina Botella, Jordi Llabrés, Juana María Bretón-López, Antonio Riera Del Amo, Rosa M. Baños, and Joan M. Gelabert. 2011. ‘Virtual Reality Versus Computer-Aided Exposure Treatments for Fear of Flying’. Behavior Modification 35(1):3–30. doi: 10.1177/0145445510390801.
Tortella-Feliu、Miquel、Cristina Botella、Jordi Llabrés、Juana María Bretón-López、Antonio Riera Del Amo、Rosa M. Baños 和 Joan M. Gelabert。 2011。“虚拟现实与计算机辅助暴露治疗恐惧飞行”。行为矫正35(1):3–30。号码:10.1177/0145445510390801。

Washburn, Micki, Danielle E. Parrish, and Patrick S. Bordnick. 2020. ‘Virtual Patient Simulations for Brief Assessment of Mental Health Disorders in Integrated Care Settings’. Social Work in Mental Health 18(2):121–48. doi: 10.1080/15332985.2017.1336743.
米基·沃什伯恩、丹妮尔·E·帕里什和帕特里克·S·博德尼克。 2020。“用于简要评估综合护理环境中心理健康障碍的虚拟患者模拟”。心理健康中的社会工作18(2):121–48。 DOI:10.1080/15332985.2017.1336743。

Wolitzky-Taylor, Kate B., Jonathan D. Horowitz, Mark B. Powers, and Michael J. Telch. 2008. ‘Psychological Approaches in the Treatment of Specific Phobias: A Meta-Analysis’. Clinical Psychology Review 28(6):1021–37. doi: 10.1016/j.cpr.2008.02.007.
沃利茨基-泰勒、凯特 B.、乔纳森 D. 霍洛维茨、马克 B. 鲍尔斯和迈克尔 J. 特尔奇。 2008.“治疗特定恐惧症的心理方法:荟萃分析”。临床心理学评论28(6):1021–37。 doi:10.1016/j.cpr.2008.02.007。

Wrzesien, Maja, Cristina Botella, Juana Bretón-López, Eva Del Río González, Jean-Marie Burkhardt, Mariano Alcañiz, and María Ángeles Pérez-Ara. 2015. ‘Treating Small Animal Phobias Using a Projective-Augmented Reality System: A Single-Case Study’. Computers in Human Behavior 49:343–53. doi: 10.1016/j.chb.2015.01.065.
Wrzesien、Maja、Cristina Botella、Juana Bretton-López、Eva Del Río González、Jean-Marie Burkhardt、Mariano Alcañiz 和 María Ángeles Pérez-Ara。 2015。“使用投影增强现实系统治疗小动物恐惧症:单例研究”。计算机在人类行为中的应用49:343–53。 doi:10.1016/j.chb.2015.01.065。

Yang, Min-Jeong, Karen O. Brandon, Steven K. Sutton, Marloes Kleinjan, Leslie E. Sawyer, Thomas H. Brandon, and Christine Vinci. 2022. ‘Augmented Reality as a Novel Approach for Addiction Treatment: Development of a Smoking Cessation App’. Annals of Medicine 54(1):3095–3105. doi: 10.1080/07853890.2022.2140451.
Yang,Min-Jeong,Karen O. Brandon,Steven K. Sutton,Marloes Kleinjan,Leslie E. Sawyer,Thomas H. Brandon 和 Christine Vinci。 2022 年。“增强现实作为成瘾治疗的新方法:戒烟应用程序的开发”。医学年鉴54(1):3095–3105。 DOI:10.1080/07853890.2022.2140451。