这是用户在 2024-5-14 20:34 为 https://pubs.acs.org/doi/10.1021/acsapm.0c00209 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
Energy Harvesting Applications from Poly(ε-caprolactone) Electrospun Membranes
聚(ε-己内酯)静电纺丝膜的能量收集应用
My Activity 我的活动
CONTENT TYPES
RETURN TO ISSUEPREVLetterNEXT
返回问题上一页下一页

Energy Harvesting Applications from Poly(ε-caprolactone) Electrospun Membranes
聚(ε-己内酯)静电纺丝膜的能量收集应用

  • Vitor Sencadas* 维托·森卡达斯*
    Vitor Sencadas
    School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, New South Wales 2522, Australia
    ARC Center of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2522, Australia
    Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
    *Email: victors@uow.edu.au or vsencadas@gmail.com
Cite this: ACS Appl. Polym. Mater. 2020, 2, 6, 2105–2110
引用: ACS Appl. Polym.材料.2020, 2, 6, 2105–2110
Publication Date (Web):April 14, 2020
发布日期 :2020年4月14日
https://doi.org/10.1021/acsapm.0c00209
Copyright © 2020 American Chemical Society
版权所有 © 2020 美国化学学会
  • Subscribed

Article Views 文章浏览量

934

Altmetric

-

Citations 引文

LEARN ABOUT THESE METRICS
了解这些指标
PDF (4 MB)  PDF格式 (4 MB)OpenURL ZHENGZHOU UNIV
Supporting Info (2)» 支持信息 (2)»
SUBJECTS: 科目:

Abstract 抽象

Piezoelectricity is associated with crystalline materials that have noncentrosymmetric crystal units. This work reports the electroactive properties of poly(ε-caprolactone) (PCL) membranes produced by electrospinning. The individual PCL fiber shows an apparent piezoelectric constant of 5 ± 2 pm·V–1 with a longitudinal piezoelectric voltage coefficient of 0.25 Vm·N1–. Further, the PCL flexible electronic skin device exhibited superior mechano-sensitivity of 0.098 V·kPa–1, had the ability to measure small forces (1 mN), presents a remarkable output voltage stability (>16 000 cycles), and could accurately monitor human gait. The overall electroactive properties create opportunities in the development of environmentally friendly and low-cost energy nanoharvesting and wearable devices for human gait applications.
压电与具有非中心对称晶体单元的晶体材料有关。本工作报道了静电纺丝生产的聚(ε-己内酯)(PCL)膜的电活性。单个PCL光纤的表观压电常数为5 ± 2 pm·V –1 ,纵向压电电压系数为0.25 Vm·N 1– 。此外,PCL柔性电子皮肤器件具有0.098 V·kPa的优异机械灵敏度 –1 ,能够测量小力(1 mN),具有显著的输出电压稳定性(>16 000次循环),并能准确监测人体步态。整体电活性特性为开发用于人类步态应用的环保和低成本能源纳米采集和可穿戴设备创造了机会。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。请求重用权限。

Piezoelectricity and triboelectricity have been explored for the development of new sensors and energy scavenging and harvesting devices to recover energy from all sorts of vibrational sources such as ocean waves, (1) wind, (2) rain, (3) human motion, and heart beats. (4−6) All of these vibration sources contain a tremendous amount of mechanical energy that can be potentially transformed into electrical energy to power portable electronic devices.
压电和摩擦电已被探索用于开发新的传感器和能量清除和收集装置,以从各种振动源中回收能量,例如海浪,(1)风,(2)雨,(3)人体运动和心跳。(4−6) 所有这些振动源都含有大量的机械能,这些机械能有可能转化为电能,为便携式电子设备供电。

The fast advancement in micro- and nanotechnology is contributing to the development of new materials, architectures, and technological solutions to recover the vibrational mechanical energy into useful electrical power with minimal environmental impact and high noise reduction. (1,3) The intrinsic properties of piezoelectric materials, where a mechanical deformation results in a charge separation and an electrical output voltage is obtained, or vice versa, (7,8) make these materials ideal candidates for energy harvesting applications.
微纳米技术的快速发展正在促进新材料、架构和技术解决方案的发展,以将振动机械能回收为有用的电能,同时将环境影响降至最低,降噪效果高。(1,3) 压电材料的固有特性,其中机械变形导致电荷分离并获得电输出电压,反之亦然,(7,8) 使这些材料成为能量收集应用的理想候选者。

The piezoelectricity is a phenomenon found in polar crystals with a noncentrosymmetric crystallographic unit. Synthetic poly(vinylidene fluoride) (PVDF) and vinylidene fluoride (VDF) copolymers are widely explored for nanoharvesting applications (9) due to its electroactive response. However, PVDF and VDF copolymers are chemically stable, and their environmental degradation after usage takes several decades, leaving behind an important environmental footprint.
压电性是在极性晶体中发现的一种现象,具有非中心对称晶体学单元。合成聚偏氟乙烯 (PVDF) 和偏氟乙烯 (VDF) 共聚物因其电活性响应而被广泛探索用于纳米收获应用 (9)。然而,PVDF和VDF共聚物具有化学稳定性,使用后它们的环境降解需要几十年的时间,从而留下了重要的环境足迹。

With the advent of nanotechnology, many efforts are being made to create new materials with outstanding piezoelectric properties. However, some existing polymers could be piezoelectric, and this property is still to be reported and explored.
随着纳米技术的出现,人们正在努力创造具有出色压电性能的新材料。然而,一些现有的聚合物可能是压电的,这种特性仍有待报道和探索。

Poly(ε-caprolactone) (PCL) is a biocompatible and biodegradable polymer with applications as scaffolds for tissue engineering, (10) drug delivery devices, (11) and packing. (12) PCL is a semicrystalline polymer that crystallizes in an orthorhombic crystalline unit with a space group P212121, and the unit cell contains two chains in the opposite orientation (“up” and “down”). (13) Furthermore, the crystallinity degree of PCL can reach 70%, depending on the processing history. (14)
聚(ε-己内酯)(PCL)是一种生物相容性和可生物降解的聚合物,可用作组织工程、(10)药物输送装置、(11)和包装的支架。(12) PCL是一种半结晶聚合物,在空间群P2 1 2 1 2 1 的斜方晶单元中结晶,晶胞包含两条方向相反的链(“向上”和“向下”)。(13)此外,PCL的结晶度可以达到70%,这取决于加工历史。(14)

Electrospinning is a very versatile technique to manufacture fibers from organic macromolecules and polymer-based composites. Several parameters influence the diameter of the manufactured fibers, e.g. applied electric field, temperature, viscosity, and sample collection, just to mention a few. (15) During electrospinning, the high electric field that is applied to the polymer droplet mechanically draws the solvent and polymer chains inside of the jet, forcing the dipoles to align in the direction of the applied electric field. (15−17) Electrospinning is a promising technique to directly process electrically poled materials without the need of an extra electrical poling step, simplifying the material manufacture. (4,6,17)
静电纺丝是一种非常通用的技术,用于从有机大分子和聚合物基复合材料中制造纤维。有几个参数会影响所制造纤维的直径,例如施加的电场、温度、粘度和样品收集,仅举几例。(15) 在静电纺丝过程中,施加在聚合物液滴上的高电场机械地将溶剂和聚合物链吸引到射流内部,迫使偶极子沿施加电场的方向排列。(15−17) 静电纺丝是一种很有前途的技术,可以直接处理电极化材料,而无需额外的极化步骤,从而简化了材料制造。(4,6,17)

In this work, PCL was electrospun at room temperature and the fibers were collected on top of a static metallic plate. The sample presented a random distribution of smooth fibers, with an average diameter of 117 ± 17 nm (Figure 1a). The FTIR spectra of the PCL electrospun fiber mats present the characteristic stretching absorption band of the C–H between 2800–3000 cm–1. The carbonyl stretching (ν(C═O)) mode is easily detected at 1727 cm–1 (Figure 1b). Moreover, PCL presents an absorption band at 1293 and 1157 cm–1, assigned to C–O and C–C stretching in the crystalline and amorphous phase, (18,19) respectively.
在这项工作中,PCL在室温下静电纺丝,并将纤维收集在静态金属板的顶部。样品呈现出光滑纤维的随机分布,平均直径为117±17nm(图1a)。PCL静电纺丝纤维毡的FTIR光谱呈现出C-H在2800–3000 cm –1 之间的特征拉伸吸收带。羰基拉伸(ν(C═O))模式在1727厘米 –1 处很容易检测到(图1b)。此外,PCL 在 1293 和 1157 cm –1 处呈现吸收带,分别分配给结晶相和无定形相中的 C-O 和 C-C 拉伸 (18,19)。

Figure 1 图1

Figure 1. (a) Morphology of the PCL electrospun fiber mat, (b) FTIR spectroscopy recorded for the PCL membrane, (c) differential scanning calorimetry (DSC) behavior of the PCL electrospun membrane, and (d) WAXD patterns of solvent cast PCL film and electrospun membrane.
图 1.(a)PCL静电纺丝纤维毡的形态,(b)PCL膜的FTIR光谱记录,(c)PCL静电纺丝膜的差示扫描量热法(DSC)行为,以及(d)溶剂浇铸PCL薄膜和静电纺丝膜的蜡模。

It was observed that the melting transition of the PCL membrane presents a double shoulder with maxima at 63 °C (Figure 1c), suggesting a distribution of the size of the crystalline unit or the presence of fragmented crystallites. (20) This phenomenon is probably due to the fast solvent evaporation that occurs during electrospinning that prevents the polymer chains from reorganizing in a more stable fashion. Furthermore, the PCL membrane presented an overall crystallinity degree of 63% (see Figure S2).
观察到PCL膜的熔化转变在63°C时呈现出最大值的双肩(图1c),表明晶体单元大小的分布或碎片微晶的存在。(20)这种现象可能是由于静电纺丝过程中发生的快速溶剂蒸发,阻止了聚合物链以更稳定的方式重组。此外,PCL膜的整体结晶度为63%(见图S2)。

PCL film obtained from solvent casting from the same solution used to electrospun the fiber mats presented two strongest diffraction peaks with 2θ at 21.7° (100) and 24°, which results from the overlapping of the (200), (013), (112), and (104) crystalline planes. (13) Moreover, the diffraction peaks recorded for the electrospun membrane are broader and shifted to higher 2θ (Figure 1d), showing that the crystallites inside the polymeric electrospun fibers present residual microstrains, (21) and are in accordance with those observed in the thermal analysis (Figure 1c).
从用于静电纺丝纤维毡的相同溶液中通过溶剂浇铸获得的PCL薄膜在21.7°(100)和24°处呈现出两个最强的衍射峰,分别为2θ,这是由于(200)、(013)、(112)和(104)晶平面重叠的结果。(13)此外,静电纺丝膜记录的衍射峰更宽,并移向更高的2θ(图1d),表明聚合物静电纺丝纤维内部的微晶存在残留的微应变,(21)并且与热分析中观察到的一致(图1c)。

During electrospinning, the PCL crystallizes in a noncentrosymmetric orthorhombic crystalline unit cell with the potential to present electroactive properties. In this work, the nanoscale electroactive properties of the PCL nanofibers were investigated by depositing a single polymer fiber on top of a gold substrate. The atomic force microscopy (AFM) topography analysis shows a smooth PCL fiber (Figure 2a) with a 200 nm diameter and a height of 150 nm (Figure 2b).
在静电纺丝过程中,PCL在非中心对称的正交晶体晶胞中结晶,具有呈现电活性特性的潜力。在这项工作中,通过在金基板上沉积单根聚合物纤维来研究PCL纳米纤维的纳米级电活性性能。原子力显微镜(AFM)形貌分析显示了直径为200nm,高度为150nm的光滑PCL光纤(图2a)(图2b)。

Figure 2 图2

Figure 2. (a) AFM height image of the PCL electrospun fiber, (b) height profile of the PCL electrospun fiber, (c) PFM phase-voltage, and (d) amplitude–voltage hysteresis loop recorded for the PCL electrospun fiber.
图2.(a) PCL 静电纺丝光纤的 AFM 高度图像,(b) PCL 静电纺丝光纤的高度剖面,(c) PFM 相电压,以及 (d) PCL 静电纺丝光纤的幅压滞回线。

The investigation of the polarization switching features of the PCL fiber was investigated by the piezoresponse phase-voltage hysteresis loop (Figure 2c). The piezoforce microscopy (PFM) measurement showed that is possible to switch the C═O dipole by 180° at both polarities of the tip voltage (±5 V). Furthermore, the presence of butterfly shaped hysteresis loops recorded during the applied dc bias voltage suggests the presence of an electric field-induced strain amplitude behavior (Figure 2d).
通过压电响应相电压磁滞环路研究了PCL光纤的极化开关特性(图2c)。压力显微镜 (PFM) 测量表明,在尖端电压 (±5 V) 的两个极性下,可以将 C═O 偶极子切换 180°。此外,在施加直流偏置电压期间记录的蝶形磁滞回路的存在表明存在电场感应变幅度行为(图2d)。

At +5 V, the dipoles under the AFM conductive cantilever are parallel to the applied electric field. By changing the dc bias voltage polarity, the observed decrease in the amplitude suggests that the fiber started to contract. By decreasing the applied dc bias voltage down to −5 V, the dipoles underneath the AFM cantilever tip switch to the opposite direction (i.e., 180°phase change). At this point, the dipoles and electrical fields are parallel to each other. Therefore, the increase in the dc bias voltage leads to an increase in amplitude due to dipole expansion (Figure 2c and d). From the slope of the amplitude – dc bias voltage hysteresis loop, an apparent piezoelectric constant (dij) of 5 ± 2 pm·V–1 was calculated.
在+5 V时,AFM导电悬臂下方的偶极子平行于施加的电场。通过改变直流偏置电压极性,观察到的幅度降低表明光纤开始收缩。通过将施加的直流偏置电压降低到−5 V,悬臂尖端下方的偶极子切换到相反的方向(即180°相变)。此时,偶极子和电场彼此平行。因此,由于偶极子膨胀,直流偏置电压的增加导致幅度增加(图2c和d)。从振幅-直流偏置电压磁滞回路的斜率来看,视压电常数(d ij )为5±2 pm·计算了 V –1

The obtained apparent longitudinal piezoelectric voltage coefficient (, where ε0 and εr are the vacuum and sample permittivity (Figure S3), respectively) for the electrospun samples had a value of 0.25 Vm·N1–, which is higher than the values reported for lead zirconate titanate (PZT, g33 = 0.02 to 0.026 Vm·N1–) and barium titanate (BaTiO3, g33 = 0.013 Vm·N1–) (22) and is similar to the value reported for β-PVDF (g33 = 0.2787 Vm·N1–). (23)
得到的表观纵向压电电压系数( 其中ε 0 和ε分别 r 是静电纺丝样品的真空度和样品介电常数(图S3),其值为0.25 Vm·N 1– ,高于锆钛酸铅(PZT,g 33 = 0.02至0.026 Vm·N 1– )和钛酸钡(BaTiO,g 3 33 = 0.013 Vm·N 1– ) (22),与报告的 β-PVDF 值 (g 33 = 0.2787 Vm·N 1– ) 相似。(23)

The presence of an electroactive response by the PCL electrospun fiber is due to the crystalline orthorhombic unit with a space group P212121 (Figure 2d), which lacks a center of symmetry and is a necessary condition for the presence of piezoelectricity in a crystal. (24,25) The piezoelectric coefficient matrix for crystals with orthorhombic symmetry (P212121) is presented in the Supporting Information (Figure S4). Furthermore, the high electrical field used to process the polymer fibers leads to a dipolar preferential alignment normal to the longitudinal direction of the fiber axis, creating an electrical poled membrane with remarkable electroactive properties. (16,17) It was demonstrated in other polymer systems that the electrical field used during electrospinning was enough to produce and electrical poling of synthetic PVDF, (26) PLA, (17) or natural polymers like fish gelatin (4) and silk, (6) among other examples.
PCL静电纺丝纤维的电活性响应是由于具有空间群P2 1 2 1 2的晶体斜方单元 1 (图2d),该单元缺乏对称中心,是晶体中存在压电性的必要条件。(24,25)具有正交对称性的晶体的压电系数矩阵( 1 1 P2,2,2 1 )在支持信息(图S4)中给出。此外,用于加工聚合物纤维的高电场导致垂直于纤维轴纵向的偶极优先排列,从而产生具有显着电活性特性的电极膜。(16,17)在其他聚合物体系中证明,静电纺丝过程中使用的电场足以产生合成PVDF,(26)PLA,(17)或天然聚合物,如鱼明胶(4)和丝绸(6)等。

The energy scavenging of PCL electrospun membranes was assessed at macroscale by applying a dynamic oscillatory pressure to the electronic skin (e-skin) device (Figure 3a). The nanoharvester device showed a dependence of the output voltage with the increase of the frequency (Figure 3b). For the same applied mechanical stress, the output voltage increased with increasing the oscillatory load frequency, reaching a maximum output of 6 V for an applied frequency above 10 Hz, and the voltage output decreased to 4 V for frequencies above 20 Hz (Figure 3b). This behavior showed that at higher frequencies, the dipoles inside the polymer chains do not have enough time to recover to the relaxed state position before the next mechanical impact, reducing the dipolar movement amplitude and consequently the voltage output performance. An overall response time (τr) of 14 ms (Figure S5) was determined for the PCL e-skin device, which is in the same range of gelatin electrospun membranes. (4)
通过对电子皮肤(e-skin)设备施加动态振荡压力,在宏观尺度上评估了PCL静电纺丝膜的能量清除(图3a)。纳米收割器装置显示出输出电压随频率增加而产生的依赖性(图3b)。对于相同的施加机械应力,输出电压随着振荡负载频率的增加而增加,当施加频率高于10 Hz时,最大输出为6 V,而当频率高于20 Hz时,电压输出降低到4 V(图3b)。这种行为表明,在较高频率下,聚合物链内的偶极子没有足够的时间在下一次机械冲击之前恢复到松弛状态位置,从而降低了偶极运动幅度,从而降低了电压输出性能。PCL e-skin设备的总响应时间(τ r )为14 ms(图S5),该设备位于明胶静电纺丝膜的相同范围内。(4)

Figure 3 图3

Figure 3. (a) Schematic of the mechanical setup for sample oscillatory stimulation. (b) Energy harvesting performance under different frequency conditions (applied force of 10 N). (c) Energy harvesting performance under different applied pressures (4 Hz). (d) Generated voltage and instantaneous power generated by the PCL electrospun harvester under an applied force of 10 N at a frequency of 4 Hz. (e) Calculation of the open-circuit voltage of the electrospun PCL energy harvester. (f) Stability and repeatability test of the energy harvester device under a 10 N force at a frequency of 16 Hz. (g) Walking monitoring. (h) Running monitoring. (i) Output voltage response with different external pressures.
图3.(a) 样品振荡刺激的机械装置示意图。(b) 不同频率条件下的能量收集性能(施加的力为10 N)。(c) 不同施加压力(4 Hz)下的能量收集性能。(d) PCL静电纺丝收割机在10 N的施加力下,频率为4 Hz的产生的电压和瞬时功率。 (e) 静电纺丝PCL能量收集器的开路电压的计算。(f) 能量收集器装置在16赫兹频率下在10 N力下的稳定性和重复性试验。 (g) 行走监测。(h) 运行监测。(i) 不同外部压力下的输出电压响应。

The energy harvesting device shows a linear relationship between the applied stress (Δσ) and the generated output voltage (ΔVoc) for an applied stress up to 63 kPa (Figure 3c). The nanoharvester sensitivity () of 0.098 V·kPa–1 is in the same range of other biological nanoharvester systems like silk fibroin (6) or synthetic PLA. (16)
能量收集装置显示了施加的应力(Δσ)和产生的输出电压(ΔV oc )之间的线性关系,施加的应力高达63 kPa(图3c)。0.098 V·kPa –1 的纳米收获器灵敏度 ( ) 与其他生物纳米收获器系统(如丝素蛋白 (6) 或合成 PLA)处于同一范围。(16)

The generated electric power ( where A is the effective area of contact and V is the voltage generated by the energy harvesting device) was determined by placing loads of different resistances directly connected to the harvesting device (Figure 3d). A maximum instantaneous power density of 13 μW/cm2 at a 30 MΩ was achieved, as shown in Figure 3d. The instantaneous power generated by the PCL nanogenerator is similar to other energy harvesting devices manufactured by mixing a piezoceramic nanofiller with a polymer matrix. (27) However, it shows better performance when compared to PLA (16) (P = 0.07 μW/cm2), PVDF (P = 0.02 μW), or PVDF-TrFE (28) (P = 0.012 μW) polymers.
产生的电力( 其中A是有效接触面积,V是能量收集装置产生的电压)是通过将不同电阻的负载直接连接到收集装置来确定的(图3d)。在30 MΩ下,最大瞬时功率密度为13 μW/cm 2 ,如图3d所示。PCL纳米发电机产生的瞬时功率类似于通过将压电陶瓷纳米填料与聚合物基质混合制造的其他能量收集装置。(27) 然而,与 PLA (16) (P = 0.07 μW/cm 2 )、PVDF (P = 0.02 μW) 或 PVDF-TrFE (28) (P = 0.012 μW) 聚合物相比,它显示出更好的性能。

The PCL energy harvester, as a power source, follows the linear circuit theory (29) with a theoretical output voltage of 11.5 V (Figure 3e, see Supporting Information). Further, the stability and repeatability of the e-skin device were assessed by applying a force of 10 N with a frequency of 16 Hz (Figure 3f) over an extended cycling time (16 000 cycles). The amplitude of the output voltage exhibits negligible variations, and the overall performance of the developed PCL energy harvester showed remarkable stability and repeatability, without noticeable electrical degradation, even after being stored at room conditions for one month (Figure S5).
PCL能量收集器作为电源,遵循线性电路理论(29),理论输出电压为11.5 V(图3e,参见支持信息)。此外,通过在延长的循环时间(16 000次循环)内施加频率为10 N的力(图3f),评估了e-skin设备的稳定性和可重复性。输出电压的幅度变化可以忽略不计,开发的PCL能量收集器的整体性能显示出显着的稳定性和可重复性,即使在室温下储存一个月后也没有明显的电气退化(图S5)。

The energy efficiency η of the nanoharvester can be determined by the ratio between electrical energy output (Eout) and the mechanical energy input (Ein) during the oscillatory mechanical pressure (see Supporting Information). The PCL nanoharvester showed an efficiency of energy conversion of 10% (see Supporting Information). In the literature, a broad range of efficiency values are reported; however, one should acknowledge that the calculation of the individual fiber strain under the applied oscillatory mechanical pressure is difficult to determine with accuracy, and this is one of the reasons for the discrepancies found in the literature.
纳米收割机的能效η可以通过振荡机械压力期间电能输出(E out )和机械能输入(E in )之间的比率来确定(见支持信息)。PCL纳米收割机的能量转换效率为10%(见支持信息)。在文献中,报告了广泛的效率值;然而,人们应该承认,在施加的振荡机械压力下计算单个纤维应变很难准确确定,这也是文献中发现差异的原因之一。

To demonstrate the sensing and energy harvesting capabilities of the PCL fiber membranes, the device was placed on top of an insole of a sports shoe, and the biomechanical energy generated during walking (Figure 3g) and running (Figure 3h) was recorded. The output voltage generated by the energy harvester followed the imparted mechanical pressure applied during the different sport activities, which demonstrates that these devices can be used to accurately monitor the human gait but also generate valuable electrical energy that could be used to drive portable electronic gadgets. Furthermore, when small weights (100 and 400 mg) were dropped from a height of 50 mm on top of the e-skin, a clear output voltage was observed from the device (Figure 3h–i). This result shows that the e-skin has promising pressure sensing features, covering the low detection range of metallic strain gauges. (30,31)
为了演示PCL纤维膜的传感和能量收集能力,将该装置放置在运动鞋的鞋垫顶部,并记录了步行(图3g)和跑步(图3h)期间产生的生物力学能量。能量收集器产生的输出电压跟随在不同体育活动中施加的机械压力,这表明这些设备可用于准确监测人体步态,但也会产生宝贵的电能,可用于驱动便携式电子产品。此外,当小砝码(100 和 400 mg)从 50 mm 的高度掉落到电子皮肤顶部时,从设备观察到清晰的输出电压(图 3h-i)。结果表明,e-skin具有很有前途的压力传感功能,覆盖了金属应变片的低检测范围。(30,31)

In summary, this work reports the presence of electroactivity in the PCL that is due to its semicrystalline nature, especially the orthorhombic crystalline unit with a space group P212121. The unique combination of a fast-drying polymer solution under a high electric field during electrospinning promotes the preferential alignment of the polymer chains in the longitudinal direction of the electrospun fiber, and the orientation of the C═O dipoles along the polymer chain lead to a permanent dipolar moment.
总之,这项工作报告了由于其半结晶性质而导致的PCL中存在电活性,特别是具有空间群P2 1 2 1 2的斜方晶体单元 1 。静电纺丝过程中高电场下快干聚合物溶液的独特组合促进了聚合物链在静电纺丝纤维纵向上的优先排列,并且C═O偶极子沿聚合物链的取向导致永久偶极矩。

The PCL electroactive properties and remarkable sensing performance open new opportunities in the development of environmentally friendly and low-cost energy harvester devices, in vitro and in vivo diagnostics and early detection of health conditions, epidermal electronic devices, artificial skins, and intelligent systems for soft robotics.
PCL的电活性特性和卓越的传感性能为开发环保和低成本的能量收集器设备、体外和体内诊断以及健康状况的早期检测、表皮电子设备、人造皮肤和软机器人智能系统开辟了新的机会。

Supporting Information 支持信息

ARTICLE SECTIONS
Jump To
 文章部分J月到

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsapm.0c00209.
支持信息可在 https://pubs.acs.org/doi/10.1021/acsapm.0c00209 免费获得。

  • Figure S1, mechanical behavior recorded for the PCL fiber mat; Figure S2, DSC thermogram for the solvent casted PCL film; Figure S3, dielectric permittivity of PCL electrospun membrane; Figure S4, piezoelectric matrix for the orthorhombic crystal unit (point group 212121); Figure S5, (a) electrical output voltage recorded for the empty PDMS cage, (b) forward and reverse electrical output voltage for the PCL as-spun mat, (c) response time recorded for the PCL nanoharvester, and (d) electrical output voltage collected for the PCL nanoharvester after stored for one month at room conditions; Figure S6, (a) measure the output voltage at an external load of 30 MΩ, (b) the square of the output voltage for integration to obtain the instantaneous electric power output, and (c) the integration part of the time-dependent output voltage (PDF)
    图S1,PCL纤维毡的机械性能记录;图S2,溶剂浇注PCL薄膜的DSC热图;图S3,PCL静电纺丝膜的介电常数;图S4,正交晶体单元的压电矩阵(点组 1 1 1 2,2,2);图S5,(a)记录的空PDMS笼的电输出电压,(b)PCL纺丝垫的正向和反向电输出电压,(c)PCL纳米收割机的响应时间记录,以及(d)在室温下储存一个月后为PCL纳米收割机收集的电输出电压;图S6,(a)测量30MΩ外部负载下的输出电压,(b)输出电压的平方,用于积分以获得瞬时电功率输出,以及(c)瞬态输出电压的积分部分(PDF)

  • Movie S1: PCL nanoharvester performance (MP4)
    电影 S1:PCL 纳米收割机性能 ( MP4)

Energy Harvesting Applications from Poly(ε-caprolactone) Electrospun Membranes
聚(ε-己内酯)静电纺丝膜的能量收集应用

60 views  视图

0 shares  股票

0 downloads  下载

S-5
Crystallinity degree determination
结晶度测定
The PCL degree of crystallinity (
PCL结晶度(
) can be quantified through the DSC experiments using:
)可以通过DSC实验进行定量,使用:
(1)
where  哪里
and
is the material melting and cold crystallization enthalpy, and
是材料熔融和冷结晶焓,以及
(136
J/g
21
) is the melting enthalpy for 100 % crystalline PCL. The overall crystallinity of the
)是100%结晶PCL的熔化焓。 整体结晶度
solvent casted PCL film was 51% (Figure S2), while the electrospun sample presented a
溶剂浇铸的PCL薄膜为51%(图S2),而静电纺丝样品呈现出
of 63 %. 的 63 %。
Figure S3. 图 S3.
Dielectric permittivity of PCL electrospun membrane.
PCL静电纺丝膜的介电常数。
Figure S4. 图 S4.
Piezoelectric matrix for the orthorhombic crystal unit (point group 2
斜方晶体单元的压电矩阵(点群 2
1
2
1
2
1
).
S-6
Figure S5. 图 S5.
a) Electrical output voltage recorded for the empty PDMS cage, b) Forward and
a) 为空 PDMS 笼记录的电输出电压,b) 正向和
reverse electrical output voltage for the PCL as-spun mat, c) Response time recorded for the
PCL 纺丝垫的反向电气输出电压,c) 记录的响应时间
PCL nano-harvester, and d) Electrical output voltage collected for the PCL nano-harvester
PCL纳米收割机,以及d)为PCL纳米收割机收集的电输出电压
after stored for one month at room conditions.
在室温下存放一个月后。
S-7
Figure S6. 图 S6.
a) Measure output voltage at an external load of 30 M
a) 测量输出电压tage 在 30 M 的外部负载下
, b) The square of the
, b) 的平方
output voltage for integration to obtain the instantaneous electric power output, c) The
用于积分的输出电压以获得瞬时电功率输出,c)
integration part of the time dependent output voltage, and d) Variation of the current as a
积分部分与时间相关的输出电压,以及 d) 电流的变化作为
function of the variable external resistances.
可变外部电阻的功能。
S-8
Energy efficiency calculation
The piezoelectric energy conversion efficiency of the PCL nanogenerators can be estimated
as the
ratio of the generated output electrical energy to the applied mechanical
energy:
, where
(10 N) is the force applied to the nanogenerator,
is the
deformation under applied stress
, and
is the membrane Young modulus.
The output energy (
) was obtained Figure S6, and value of 2.09x10
-8
J was recorded.

Terms & Conditions  条款及细则

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS Web Editions 即可获得。此类文件可以按文章下载以供研究使用(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过RightsLink权限系统向ACS获得其他用途的许可:http://pubs.acs.org/page/copyright/permissions.html。

Author Information 作者信息

ARTICLE SECTIONS
Jump To
 文章部分J月到

  • Corresponding Author 通讯作者
    • Vitor Sencadas - School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, New South Wales 2522, AustraliaARC Center of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2522, AustraliaIllawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, AustraliaOrcidhttp://orcid.org/0000-0003-1986-1348 Email: victors@uow.edu.au vsencadas@gmail.com
      Vitor Sencadas - 卧龙岗大学机械、材料、机电一体化和生物医学工程学院,澳大利亚新南威尔士州卧龙岗 2522;ARC电材料科学卓越中心,卧龙岗大学,卧龙岗,新南威尔士州,2522,澳大利亚;伊拉瓦拉健康与医学研究所,卧龙岗大学,卧龙岗,新南威尔士州,2522,澳大利亚; Orcid http://orcid.org/0000-0003-1986-1348;电子邮件: victors@uow.edu.auvsencadas@gmail.com
    • Notes 笔记
      The author declares no competing financial interest.
      提交人声明没有相互竞争的经济利益。

    Acknowledgments 确认

    ARTICLE SECTIONS
    Jump To
     文章部分J月到

    The author acknowledges the University of Wollongong for the Major Equipment Grant 2018.
    作者感谢卧龙岗大学提供 2018 年主要设备补助金。

    This article references 31 other publications.
    本文参考了其他 31 篇出版物。

    1. 1
      Kim, H.-M. Electroactive polymers for ocean kinetic energy harvesting: literature review and research needs. Journal of Ocean Engineering and Marine Energy 2018, 4 (4), 343365,  DOI: 10.1007/s40722-018-0121-2

      1Kim, H.-M.用于海洋动能收集的电活性聚合物:文献综述和研究需求。海洋工程与海洋能源学报 2018, 4 (4), 343– 365, DOI: 10.1007/s40722-018-0121-2
    2. 2
      Feng, Y.; Zhang, L.; Zheng, Y.; Wang, D.; Zhou, F.; Liu, W. Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 2019, 55, 260268,  DOI: 10.1016/j.nanoen.2018.10.075

      2冯,Y.;张,L.;郑彦;王,D.;周,F.;Liu, W.Leaves 基摩擦电纳米发电机 (TENG) 和 TENG 树用于风能收集.纳米能源 2019, 55, 260– 268, DOI: 10.1016/j.nanoen.2018.10.075
    3. 3
      Mariello, M.; Guido, F.; Mastronardi, V. M.; Todaro, M. T.; Desmaële, D.; De Vittorio, M. Nanogenerators for harvesting mechanical energy conveyed by liquids. Nano Energy 2019, 57, 141156,  DOI: 10.1016/j.nanoen.2018.12.027

      3玛丽埃洛,M.;圭多,F.;马斯特罗纳迪,V.M.;托达罗,MT;德斯梅尔,D.;De Vittorio, M.用于收集液体输送的机械能的纳米发电机。纳米能源 2019, 57, 141– 156, DOI: 10.1016/j.nanoen.2018.12.027
    4. 4
      Ghosh, S. K.; Adhikary, P.; Jana, S.; Biswas, A.; Sencadas, V.; Gupta, S. D.; Tudu, B.; Mandal, D. Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring. Nano Energy 2017, 36, 166175,  DOI: 10.1016/j.nanoen.2017.04.028

      4戈什,SK;阿迪卡里,P.;贾娜,S.;比斯瓦斯,A.;森卡达斯,V.;古普塔,S.D.;图杜,B.;Mandal, D.基于静电纺丝明胶纳米纤维的自供电生物电子皮肤,用于医疗保健监测。纳米能源 2017, 36, 166– 175, DOI: 10.1016/j.nanoen.2017.04.028
    5. 5
      Guerin, S.; Tofail, S. A. M.; Thompson, D. Longitudinal Piezoelectricity in Orthorhombic Amino Acid Crystal Films. Cryst. Growth Des. 2018, 18 (9), 48444848,  DOI: 10.1021/acs.cgd.8b00835

      5盖林,S.;托法尔,S.A.M.;Thompson, D.斜方氨基酸晶体薄膜中的纵向压电性。Cryst. 增长 Des. 2018, 18 (9), 4844– 4848, DOI: 10.1021/acs.cgd.8b00835
    6. 6
      Sencadas, V.; Garvey, C.; Mudie, S.; Kirkensgaard, J. J. K.; Gouadec, G.; Hauser, S. Electroactive properties of electrospun silk fibroin for energy harvesting applications. Nano Energy 2019, 66, 104106,  DOI: 10.1016/j.nanoen.2019.104106
    7. 7
      Nalwa, H. S. Ferroelectric Polymers: Chemistry: Physics, and Applications; Taylor & Francis: 1995.
    8. 8
      Uchino, K. Chapter 1 - The Development of Piezoelectric Materials and the New Perspective. In Advanced Piezoelectric Materials (Second Edition); Uchino, K., Ed.; Woodhead Publishing : 2017; pp 192.
    9. 9
      Mishra, S.; Unnikrishnan, L.; Nayak, S. K.; Mohanty, S. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromol. Mater. Eng. 2019, 304 (1), 1800463,  DOI: 10.1002/mame.201800463
    10. 10
      Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D. S.; Mehrotra, D. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. Journal of Oral Biology and Craniofacial Research 2020, 10, 381,  DOI: 10.1016/j.jobcr.2019.10.003
    11. 11
      Chang, S. H.; Lee, H. J.; Park, S.; Kim, Y.; Jeong, B. Fast Degradable Polycaprolactone for Drug Delivery. Biomacromolecules 2018, 19 (6), 23022307,  DOI: 10.1021/acs.biomac.8b00266
    12. 12
      Cesur, S.; Köroğlu, C.; Yalçın, H. T. Antimicrobial and biodegradable food packaging applications of polycaprolactone/organo nanoclay/chitosan polymeric composite films. J. Vinyl Addit. Technol. 2018, 24 (4), 376387,  DOI: 10.1002/vnl.21607
    13. 13
      Bittiger, H.; Marchessault, R. H.; Niegisch, W. D. Crystal structure of poly-[epsilon]-caprolactone. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1970, 26 (12), 19231927,  DOI: 10.1107/S0567740870005198
    14. 14
      Labet, M.; Thielemans, W. Synthesis of polycaprolactone: a review. Chem. Soc. Rev. 2009, 38 (12), 34843504,  DOI: 10.1039/b820162p
    15. 15
      Seeram, R.; Teik-cheng, L.; Kazutoshi, F. An Introduction To Electrospinning and Nanofibers; World Scientific Publishing Company: 2005.
    16. 16
      Sultana, A.; Ghosh, S. K.; Sencadas, V.; Zheng, T.; Higgins, M. J.; Middya, T. R.; Mandal, D. Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-l-lactic acid nanofibers for non-invasive physiological signal monitoring. J. Mater. Chem. B 2017, 5 (35), 73527359,  DOI: 10.1039/C7TB01439B
    17. 17
      Sencadas, V.; Ribeiro, C.; Heredia, A.; Bdikin, I. K.; Kholkin, A. L.; Lanceros-Mendez, S. Local piezoelectric activity of single poly(L-lactic acid) (PLLA) microfibers. Appl. Phys. A: Mater. Sci. Process. 2012, 109 (1), 5155,  DOI: 10.1007/s00339-012-7095-z
    18. 18
      Elzein, T.; Nasser-Eddine, M.; Delaite, C.; Bistac, S.; Dumas, P. FTIR study of polycaprolactone chain organization at interfaces. J. Colloid Interface Sci. 2004, 273 (2), 381387,  DOI: 10.1016/j.jcis.2004.02.001
    19. 19
      Kossack, W.; Seidlitz, A.; Thurn-Albrecht, T.; Kremer, F. Molecular Order in Cold Drawn, Strain-Recrystallized Poly(ε-caprolactone). Macromolecules 2017, 50 (3), 10561065,  DOI: 10.1021/acs.macromol.6b02714
    20. 20
      Sencadas, V.; Costa, C. M.; Botelho, G.; Caparrós, C.; Ribeiro, C.; Gómez-Ribelles, J. L.; Lanceros-Mendez, S. Thermal Properties of Electrospun Poly(Lactic Acid) Membranes. J. Macromol. Sci., Part B: Phys. 2012, 51 (3), 411424,  DOI: 10.1080/00222348.2011.597325
    21. 21
      Jenkins, R.; Snyder, R. L. Introduction to X-ray powder diffractometry; Wiley: 1996.
    22. 22
      Uchino, K. Ferroelectric Devices, 2nd ed.; CRC Press: 2009.
    23. 23
      Li, M.; Wondergem, H. J.; Spijkman, M.-J.; Asadi, K.; Katsouras, I.; Blom, P. W. M.; de Leeuw, D. M. Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. Nat. Mater. 2013, 12, 433,  DOI: 10.1038/nmat3577
    24. 24
      Ballato, A. Piezoelectricity: Venerable Effect, Modern Thrusts; Defense Technical Information Center: 1994.
    25. 25
      Kholkin, A. L.; Pertsev, N. A.; Goltsev, A. V. Piezoelectricity and Crystal Symmetry. In Piezoelectric and Acoustic Materials for Transducer Applications; Safari, A.; Akdoğan, E. K., Eds.; Springer US: Boston, MA, 2008; pp 1738.
    26. 26
      Sencadas, V.; Ribeiro, C.; Bdikin, I. K.; Kholkin, A. L.; Lanceros-Mendez, S. Local piezoelectric response of single poly(vinylidene fluoride) electrospun fibers. Phys. Status Solidi A 2012, 209 (12), 2605,  DOI: 10.1002/pssa.201228136
    27. 27
      Karan, S. K.; Bera, R.; Paria, S.; Das, A. K.; Maiti, S.; Maitra, A.; Khatua, B. B. An Approach to Design Highly Durable Piezoelectric Nanogenerator Based on Self-Poled PVDF/AlO-rGO Flexible Nanocomposite with High Power Density and Energy Conversion Efficiency. Adv. Energy Mater. 2016, 6 (20), 1601016,  DOI: 10.1002/aenm.201601016
    28. 28
      Nunes-Pereira, J.; Sencadas, V.; Correia, V.; Rocha, J. G.; Lanceros-Méndez, S. Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites. Sens. Actuators, A 2013, 196, 5562,  DOI: 10.1016/j.sna.2013.03.023
    29. 29
      Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5 (5), 366373,  DOI: 10.1038/nnano.2010.46
    30. 30
      Stefanescu, D. M. Handbook of Force Transducers: Principles and Components; Springer: Berlin Heidelberg, 2011.
    31. 31
      Qiu, A.; Li, P.; Yang, Z.; Yao, Y.; Lee, I.; Ma, J. A Path Beyond Metal and Silicon:Polymer/Nanomaterial Composites for Stretchable Strain Sensors. Adv. Funct. Mater. 2019, 0 (0), 1806306,  DOI: 10.1002/adfm.201806306

    Cited By

    ARTICLE SECTIONS
    Jump To
    Citation Statements
    • Supporting
      Supporting0
    • Mentioning
      Mentioning9
    • Contrasting
      Contrasting0
    Explore this article's citation statements on scite.ai

    This article is cited by 18 publications.

    1. Liping Tang, Zhiqiang Lei, Yankang Wu, Jian Chen, Wei Jiao. SIS-Based Electrostatic Spinning High-Safety Lithium-Ion Battery Separators. Langmuir 2023, 39 (38) , 13459-13465. https://doi.org/10.1021/acs.langmuir.3c01121
    2. M. Borrego, J. E. Martín-Alfonso, C. Valencia, María del Carmen Sánchez Carrillo, J. M. Franco. Developing Electrospun Ethylcellulose Nanofibrous Webs: An Alternative Approach for Structuring Castor Oil. ACS Applied Polymer Materials 2022, 4 (10) , 7217-7227. https://doi.org/10.1021/acsapm.2c01090
    3. Xuemei Chu, Rui Wang, Hui Zhao, Minxuan Kuang, Jiao Yan, Bin Wang, Huiling Ma, Meng Cui, Xiuqin Zhang. Cross-Links–Entanglements Integrated Networks Contributing to Highly Resilient, Soft, and Self-Adhesive Elastomers with Low Hysteresis for Green Wearable Electronics. ACS Applied Materials & Interfaces 2022, 14 (14) , 16631-16640. https://doi.org/10.1021/acsami.2c00828
    4. Junling Lu, Sanming Hu, Wenru Li, Xuefang Wang, Xiwei Mo, Xuetian Gong, Huan Liu, Wei Luo, Wen Dong, Chaotan Sima, Yaojin Wang, Guang Yang, Jing-Ting Luo, Shenglin Jiang, Zhijun Shi, Guangzu Zhang. A Biodegradable and Recyclable Piezoelectric Sensor Based on a Molecular Ferroelectric Embedded in a Bacterial Cellulose Hydrogel. ACS Nano 2022, 16 (3) , 3744-3755. https://doi.org/10.1021/acsnano.1c07614
    5. Xinyue Yang, Huiling Guo, Chongxiao Yuan, Yuanhui Li, Huajun Sun. Enhancing output current in degradable flexible piezoelectric nanogenerators through internal electrode construction. Journal of Colloid and Interface Science 2024, 667 , 640-649. https://doi.org/10.1016/j.jcis.2024.04.116
    6. Gang Lu, Tao Tian, Yuting Wang. Advanced Electrospinning Technology Applied to Polymer-Based Sensors in Energy and Environmental Applications. Polymers 2024, 16 (6) , 839. https://doi.org/10.3390/polym16060839
    7. Qianjun Yin, Weiyi Wang, Yaqi Hu, Kongyi Zhu, Xinyi Liu, Tong Wan, Biao Wang, Shaoyu Wang, Bowen Xu. Review—Electrostatic Spinning for Manufacturing Sensitive Layers of Flexible Sensors and Their Structural Design. Journal of The Electrochemical Society 2024, 171 (2) , 027524. https://doi.org/10.1149/1945-7111/ad2643
    8. Yao Chen, Kaixuan Teng, Qi An. Medical applications of flexible piezoelectric composites. SCIENTIA SINICA Chimica 2023, 53 (7) , 1147-1171. https://doi.org/10.1360/SSC-2023-0009
    9. Luiza A. Mercante, Rafaela S. Andre, Murilo H.M. Facure, Daniel S. Correa, Luiz H.C. Mattoso. Recent progress in conductive electrospun materials for flexible electronics: Energy, sensing, and electromagnetic shielding applications. Chemical Engineering Journal 2023, 465 , 142847. https://doi.org/10.1016/j.cej.2023.142847
    10. Breno F. Ferreira, Marcus V. do Prado, Liziane Marçal, Katia J. Ciuffi, Miguel A. Vicente, Antonio Gil, Emerson H. de Faria. Manganese-sulfonato porphyrin adsorbed on amino kaolinite as heterogeneous catalyst for oxidation and polymerization reactions. Applied Clay Science 2023, 235 , 106871. https://doi.org/10.1016/j.clay.2023.106871
    11. Liping Tang, Yankang Wu, Dan He, Zhiqiang Lei, Naiqiang Liu, Yu He, Manuel Reyes De Guzman, Jian Chen. Electrospun PAN membranes toughened and strengthened by TPU/SHNT for high-performance lithium-ion batteries. Journal of Electroanalytical Chemistry 2023, 931 , 117181. https://doi.org/10.1016/j.jelechem.2023.117181
    12. Xiaoquan Shi, Yazhou Sun, Dekai Li, Haitao Liu, Wenkun Xie, Xichun Luo. Advances in wearable flexible piezoelectric energy harvesters: materials, structures, and fabrication. Journal of Materials Science: Materials in Electronics 2023, 34 (3) https://doi.org/10.1007/s10854-022-09536-4
    13. Mario Marini, Amirbahador Zeynali, Maddalena Collini, Margaux Bouzin, Laura Sironi, Laura D'Alfonso, Francesco Mantegazza, Valeria Cassina, Giuseppe Chirico. Proteinaceous microstructure in a capillary: a study of non-linear bending dynamics. Lab on a Chip 2022, 22 (24) , 4917-4932. https://doi.org/10.1039/D2LC00697A
    14. Vu Viet Linh Nguyen, Gia Quynh Nhu Pham, Thi Hong Anh Nguyen, Van Cuong Nguyen. Fabrication and Characterization of Alginate Hydrogels for Control Release System of Catechin-Derived Tea Leave Extract. Journal of Biomimetics, Biomaterials and Biomedical Engineering 2022, 58 , 97-107. https://doi.org/10.4028/p-63176q
    15. Mina Abbasipour, Ramin Khajavi, Abdol Hamid Akbarzadeh. A Comprehensive Review on Piezoelectric Polymeric and Ceramic Nanogenerators. Advanced Engineering Materials 2022, 24 (6) https://doi.org/10.1002/adem.202101312
    16. Farsa Ram, Kadhiravan Shanmuganathan. Non-fluorinated piezoelectric polymers and their composites for energy harvesting applications. 2022, 129-157. https://doi.org/10.1016/B978-0-12-824155-4.00005-3
    17. Mina Abbasipour, Ramin Khajavi. Electrospun Nanofibers for Energy Harvesting. 2022, 721-736. https://doi.org/10.1007/978-3-030-99958-2_25
    18. Nikhita Joy, R. Anuraj, Amartya Viravalli, Harish N. Dixit, Satyavrata Samavedi. Coupling between voltage and tip-to-collector distance in polymer electrospinning: Insights from analysis of regimes, transitions and cone/jet features. Chemical Engineering Science 2021, 230 , 116200. https://doi.org/10.1016/j.ces.2020.116200

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect