这是用户在 2024-4-24 24:01 为 https://app.immersivetranslate.com/pdf-pro/1a1fb615-06a3-4bdb-8c59-d6b62b775e45 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_04_24_136d585b41bfb96641ffg

Effective connectivity relates seizure outcome to electrode placement in responsive neurostimulation
有效连接将癫痫发作结果与反应性神经刺激中的电极位置联系起来

(1)Katsuya Kobayashi,' Kenneth N. Taylor,' (C)Hossein Shahabi, (1)Balu Krishnan,'
(1)Katsuya Kobayashi,' Kenneth N. Taylor,' (C)Hossein Shahabi, (1)Balu Krishnan,'
Anand Joshi, Michael J. Mackow, ' Lauren Feldman, ' Omar Zamzam, Takfarinas Medani,
Anand Joshi, Michael J. Mackow, ' Lauren Feldman, ' Omar Zamzam, Takfarinas Medani、
Juan Bulacio,' (1)Andreas V. Alexopoulos,' Imad Najm,' (1)William Bingaman,'
Juan Bulacio、' (1)Andreas V. Alexopoulos、' Imad Najm、' (1)William Bingaman
Richard M. Leahy and (1)Dileep R. Nair'
Richard M. Leahy 和 (1)Dileep R. Nair'

Abstract 摘要

Responsive neurostimulation is a closed-loop neuromodulation therapy for drug resistant focal epilepsy. Responsive neurostimulation electrodes are placed near ictal onset zones so as to enable detection of epileptiform activity and deliver electrical stimulation. There is no standard approach for determining the optimal placement of responsive neurostimulation electrodes. Clinicians make this determination based on presurgical tests, such as MRI, EEG, magnetoencephalography, ictal single-photon emission computed tomography and intracranial EEG. Currently functional connectivity measures are not being used in determining the placement of responsive neurostimulation electrodes. Cortico-cortical evoked potentials are a measure of effective functional connectivity. Cortico-cortical evoked potentials are generated by direct single-pulse electrical stimulation and can be used to investigate cortico-cortical connections in vivo. We hypothesized that the presence of high amplitude cortico-cortical evoked potentials, recorded during intracranial EEG monitoring, near the eventual responsive neurostimulation contact sites is predictive of better outcomes from its therapy. We retrospectively reviewed 12 patients in whom cortico-cortical evoked potentials were obtained during stereoelectroencephalography evaluation and subsequently underwent responsive neurostimulation therapy. We studied the relationship between cortico-cortical evoked potentials, the eventual responsive neurostimulation electrode locations and seizure reduction. Directional connectivity indicated by corticocortical evoked potentials can categorize stereoelectroencephalography electrodes as either receiver nodes/in-degree (an area of greater inward connectivity) or projection nodes/out-degree (greater outward connectivity). The follow-up period for seizure reduction ranged from 1.3-4.8 years (median 2.7) after responsive neurostimulation therapy started. Stereoelectroencephalography electrodes closest to the eventual responsive neurostimulation contact site tended to show larger in-degree cortico-cortical evoked potentials, especially for the early latency cortico-cortical evoked potentials period (10-60 ms period) in six out of 12 patients. Stereoelectroencephalography electrodes closest to the responsive neurostimulation contacts also had greater significant out-degree in the early corticocortical evoked potentials latency period than those further away . Additionally, significant correlation was noted between in-degree cortico-cortical evoked potentials and greater seizure reduction with responsive neurostimulation therapy at its most effective period . These findings suggest that functional connectivity determined by cortico-cortical evoked potentials may provide additional information that could help guide the optimal placement of responsive neurostimulation electrodes.
反应性神经刺激是一种治疗耐药性局灶性癫痫的闭环神经调节疗法。反应性神经刺激电极放置在癫痫发作区附近,以便检测癫痫样活动并进行电刺激。目前还没有标准方法来确定反应性神经刺激电极的最佳位置。临床医生根据手术前的检查,如核磁共振成像、脑电图、脑磁图、发作期单光子发射计算机断层扫描和颅内脑电图等,来确定最佳位置。目前,在确定神经刺激电极的位置时并未使用功能连接测量。皮层诱发电位是一种有效的功能连接测量方法。皮层诱发电位由直接单脉冲电刺激产生,可用于研究体内皮层与皮层的连接。我们假设,在颅内脑电图监测期间记录到的高振幅皮质-皮质诱发电位出现在最终有反应的神经刺激接触点附近,可预测其治疗效果。我们对在立体脑电图评估中获得皮质-皮质诱发电位并随后接受反应性神经刺激治疗的 12 名患者进行了回顾性研究。我们研究了皮质-皮质诱发电位、最终反应性神经刺激电极位置和癫痫发作减少之间的关系。皮质诱发电位显示的定向连通性可将立体脑电图电极划分为接收节点/内度(内向连通性较强的区域)或投射节点/外度(外向连通性较强的区域)。响应性神经刺激治疗开始后,癫痫发作减少的随访期为 1.3-4.8 年(中位数为 2.7 年)。最靠近最终反应性神经刺激接触点的立体脑电图电极往往显示出更大的皮质-皮质诱发电位内度,尤其是在皮质-皮质诱发电位早期潜伏期(10-60 毫秒),12 名患者中有 6 人显示出更大的皮质-皮质诱发电位内度。在皮质诱发电位早期潜伏期,距离神经刺激反应触点最近的立体脑电图电极 也比距离较远的电极有更大的显著偏离度 。此外,在反应性神经刺激疗法的最有效期内,皮质皮层诱发电位的内度与癫痫发作的减少程度之间存在明显的相关性 。 这些研究结果表明,由皮层-皮层诱发电位确定的功能连通性可提供更多信息,有助于指导神经刺激电极的最佳位置。

1 Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
1 美国俄亥俄州克利夫兰 44195 克利夫兰诊所基金会查尔斯-肖尔癫痫中心
2 Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90007, USA
2 Ming Hsieh 美国加利福尼亚州洛杉矶市 90007 南加州大学电子与计算机工程系
Correspondence to: Dileep R. Nair, MD
通讯作者:Dileep R. Nair,医学博士Dileep R. Nair,医学博士
Charles Shor Epilepsy Center, Cleveland Clinic Foundation
查尔斯-肖癫痫中心,克利夫兰诊所基金会
9500 Euclid Avenue 欧几里得大道 9500 号
Cleveland, OH 44195, USA
美国俄亥俄州克利夫兰 44195
E-mail: naird@ccf.org 电子邮件: naird@ccf.org
Keywords: cortico-cortical evoked potential; single-pulse electrical stimulation; responsive neurostimulation; effective connectivity; drug resistant focal epilepsy
关键词: 皮层-皮层诱发电位;单脉冲电刺激;反应性神经刺激;有效连接;耐药性局灶性癫痫

Graphical Abstract 图表摘要

Introduction 导言

Approximately of patients with epilepsy are drug resistant. Although epilepsy surgery is the most effective therapy for drug resistant focal epilepsy, not all are candidates for surgery. Patients with poorly localized epilepsy, multifocal epilepsy or epileptic foci that overlap with eloquent cortex are usually excluded from surgical resection. In addition, only of patients who undergo a resection attain seizure freedom.
约有 的癫痫患者具有耐药性。 虽然癫痫手术是治疗耐药性局灶性癫痫最有效的方法,但 ,并非所有患者都适合手术治疗。定位不清的癫痫患者、多灶性癫痫患者或癫痫灶与大脑皮质重叠的患者通常不能接受手术切除。 此外,只有 接受切除手术的患者能够摆脱癫痫发作。
Over the last two decades, neuromodulation therapies have been introduced for the treatment of epilepsy, including vagus nerve stimulation (VNS), responsive neurostimulation (RNS) and deep brain stimulation (DBS). RNS is a closed-loop neuromodulation therapy that delivers electrical stimuli directly to the ictal onset zone (IOZ) when epileptiform activity is detected. The RNS System has been proven safe and effective in drug resistant focal epilepsy. However, unlike VNS or DBS, RNS electrode placement is tailored to each patient's IOZ. Placement of RNS leads can be guided by several factors including MRI, EEG, magnetoencephalography (MEG), and ictal singlephoton emission computed tomography as well as intracranial EEG. RNS therapy can be directed to the IOZ, near the IOZ or target-relevant propagation networks. Functional connectivity (FC) measures are increasingly being studied to investigate epileptogenic brain networks. Some recent studies have introduced related strategies to identify biomarkers to prognosticate outcomes with RNS therapy, including network synchronizability (measured
在过去二十年里,神经调控疗法被引入癫痫治疗,包括迷走神经刺激(VNS)、 responsive neurostimulation (RNS) 和脑深部刺激(DBS)。 RNS 是一种闭环神经调控疗法,可在检测到癫痫样活动时直接向发作起始区 (IOZ) 输送电刺激。事实证明,RNS 系统对耐药性局灶性癫痫安全有效。 然而,与 VNS 或 DBS 不同的是,RNS 电极的放置是根据每位患者的 IOZ 量身定制的。RNS 导联的放置可由多种因素引导,包括核磁共振成像、脑电图、脑磁图(MEG)、发作期单光子发射计算机断层扫描以及颅内脑电图。RNS 治疗可针对 IOZ、IOZ 附近或目标相关传播网络。 功能连通性(FC)测量正越来越多地被用于研究致痫性大脑网络。 最近的一些研究引入了相关策略,以确定生物标志物来预示 RNS 治疗的结果,其中包括网络同步性(测量结果为

via intracranial EEG), functional connectivity (measured via MEG), structural connectivity (measured via tractography and the ability of brain networks to functionally reorganize (measured via chronic intracranial EEG). Khambhati et al. reported that the connectivity of interictal spikes may also play a role in predicting outcome of RNS therapy, suggesting that the mechanism for RNS involves network plasticity. However, FC measures using intracranial evoked responses are not currently being used to determine RNS lead location.
通过颅内脑电图测量)、 功能连通性(通过 MEG 测量)、 结构连通性(通过 tractography 测量) 以及大脑网络的功能重组能力(通过慢性颅内脑电图测量)。 Khambhati 等人 报告称,发作间期尖峰的连通性也可能在预测 RNS 治疗结果方面发挥作用,这表明 RNS 的机制涉及网络可塑性。然而,目前还没有使用颅内诱发反应的 FC 测量来确定 RNS 导联位置。
Several studies have shown disruption in connectivity and changes in network topology in patients with epilepsy. More recently, investigators suggested that FC, based on resting state functional MRI (rs-fMRI), could be used as a tool to impact decision-making for epilepsy surgery. analysis, assessed by rs-fMRI pre-treatment connectivity, was shown to predict response to repetitive transcranial magnetic stimulation (rTMS) in patients with drug resistant depression. is defined as a statistical dependency in neurophysiologic measurements between spatially remote areas. Effective functional connectivity ascribes causal relationships between nodes in a network using models to add weighted directionality. Intracranial electrical cortical stimulation induced evoked potentials can provide a direct method to evaluate effective connectivity in vivo in patients with epilepsy.
有几项研究显示,癫痫患者的连通性中断和网络拓扑结构发生了变化。 最近,研究人员提出,基于静息状态功能磁共振成像(rs-fMRI)的功能连通性可用作影响癫痫手术决策的工具。 分析表明,通过 rs-fMRI 治疗前连通性评估,可预测耐药抑郁症患者对重复经颅磁刺激(rTMS)的反应。 定义为空间遥远区域之间神经生理测量的统计依赖性。 有效的功能连通性通过模型添加加权方向性来描述网络中节点之间的因果关系。颅内皮质电刺激诱发电位可提供一种直接方法来评估癫痫患者体内的有效连接性。
Recordings of local evoked potentials induced by direct electrical cortical stimulation, termed 'direct cortical responses,' were first performed by who found a local surface negative potential evoked by electrical stimulation of the cortical surface in various species. Single-pulse electrical stimulation (SPES) induces evoked potentials, termed cortico-cortical evoked potentials (CCEPs), which can be used to trace corticocortical connections in vivo CCEPs have been extensively employed to evaluate the cortico-cortical networks associated with various normal brain functions and to evaluate cortical excitability and connectivity associated with areas of epileptogenicity. Keller et al. reported that both indegree (the total number of times stimulation of any region evokes a significant CCEP at the region of interest) and outdegree (the total number of significant CCEPs observed when the region of interest is stimulated) CCEPs were higher in the seizure onset zone (SOZ) than outside SOZ, suggesting that the more epileptogenic area has larger and stronger corticocortical connectivity. We hypothesized that the area with larger in-degree and out-degree CCEPs could be a hub of the brain and could be a good target for RNS therapy via association fibre through which CCEPs travel. We tested this hypothesis by analysing the amplitude of intracranially recorded in-degree and out-degree CCEPs and examined its correlation with RNS outcomes. In this study, we asked the question, could CCEPs be used to optimize targets for RNS neuromodulation? In the analysis of CCEPs, the out-degree of a region represents the number of significant CCEPs elicited following stimulation of the site of interest, while the in-degree refers to the total number of significant CCEPs elicited at the site of interest upon stimulation of all other sites. These out-degree and in-degree
首先记录了皮层直接电刺激诱发的局部诱发电位,称为 "皮层直接反应",他发现在不同物种中,皮层表面电刺激会诱发局部表面负电位。单脉冲电刺激(SPES)可诱发诱发电位,称为皮质-皮质诱发电位(CCEPs),可用于追踪体内皮质连接 ,CCEPs 已被广泛用于评估与各种正常脑功能相关的皮质-皮质网络 ,以及评估与致痫区相关的皮质兴奋性和连接性。 Keller 等人 报告说,发作起始区(SOZ)的内度(刺激任何区域引起相关区域显著 CCEP 的总次数)和外度(刺激相关区域时观察到的显著 CCEP 的总次数)CCEP 均高于 SOZ 以外的区域,这表明致痫性更强的区域具有更大和更强的皮质连接性。我们假设,CCEPs 内度和外度较大的区域可能是大脑的一个枢纽,并可能通过 CCEPs 穿过的关联纤维成为 RNS 治疗的良好靶点。我们通过分析颅内记录的度内和度外 CCEPs 的振幅来验证这一假设,并研究其与 RNS 治疗结果的相关性。在这项研究中,我们提出了这样一个问题:CCEPs 可以用来优化 RNS 神经调控的目标吗?在 CCEPs 分析中,一个区域的 "外度 "代表刺激相关部位后引起的显著 CCEPs 的数量,而 "内度 "指的是刺激所有其他部位后在相关部位引起的显著 CCEPs 的总数。 这些外度和内度

CCEPs reflect the directional flow of information in the brain. Since seizures propagate through cortico-cortical networks, CCEPs is a unique approach to study directional connectivity of epileptogenic networks. As in-degree CCEPs of a given cortical site reflect an area of hypersynchrony, and out-degree CCEPs can be a measure of ictal propagation, we were interested in analysing both measures for the optimal placement of RNS electrodes. We reviewed the CCEPs performed in patients during stereoelectroencephalography (SEEG) evaluation who later went on to have RNS therapy. We investigated the correlations between CCEPs during SEEG and prior to the RNS placement, the eventual RNS contact location and outcomes from RNS therapy. In this study, we retrospectively investigated the degree of connectivity, as measured by CCEPs, at the point of the RNS contact placement in two scenarios: (i) the distances from the SEEG recording sites of CCEPs to the eventual closest RNS contacts for in-degree CCEPs; and (ii) distance from the SEEG stimulus sites for CCEPs to the eventual closest RNS contacts for out-degree CCEPs. Our primary hypothesis was that there exists a greater degree of both in-degree and out-degree connectivity at the point of RNS contact in patients who benefit from RNS therapy. Both in-degree and out-degree CCEPs have been reported higher in the SOZ than outside SOZ, suggesting that the more epileptogenic area has larger and stronger cortico-cortical connectivity. In-degree CCEPs may reflect the degree of hypersynchronous brain activity. Those brain regions associated with high indegree CCEPs could be influenced by neuronal or electrical activity from distant sources. This could be one explanation for why neuromodulation therapy with a wide variety of stimulation targets can still modulate the epileptic network. In addition, we have reported that by stimulating the ictal onset zone, significant out-degree CCEPs were observed within the epileptic network. Such a finding could support the notion that FC should be considered during RNS contact placement with the goal of modulating the epileptic network as a whole.
CCEPs 反映了大脑中信息流动的方向。由于癫痫发作是通过皮层-皮层网络传播的,CCEPs 是研究致痫网络定向连接性的一种独特方法。由于特定皮层部位的内度 CCEPs 反映了一个超同步区域,而外度 CCEPs 则可作为癫痫发作传播的衡量标准,因此我们有兴趣分析这两种衡量标准,以确定 RNS 电极的最佳位置。我们回顾了在立体脑电图(SEEG)评估期间对后来接受 RNS 治疗的患者进行的 CCEP。我们研究了 SEEG 期间和 RNS 放置之前的 CCEPs、最终 RNS 接触位置和 RNS 治疗结果之间的相关性。在这项研究中,我们回顾性地调查了两种情况下通过 CCEPs 测定的 RNS 接触点位置的连接程度:(i) 度内 CCEPs 的 SEEG 记录点到最终最近 RNS 接触点的距离;(ii) 度外 CCEPs 的 SEEG 刺激点到最终最近 RNS 接触点的距离。我们的主要假设是,从 RNS 治疗中获益的患者在 RNS 接触点处存在更大程度的 "度内 "和 "度外 "连接。有报告称,SOZ 内的度内和度外 CCEPs 均高于 SOZ 外,这表明致痫区具有更大、更强的皮质-皮质连通性。 度内 CCEPs 可反映大脑活动的不同步程度。那些与高度内CCEPs相关的脑区可能受到来自远处的神经元或电活动的影响。这也可以解释为什么神经调控疗法使用多种刺激靶点仍能调节癫痫网络。此外,我们还报道了通过刺激癫痫发作区,在癫痫网络内观察到了显著的外度 CCEP。 这一发现支持了这样一种观点,即在放置 RNS 接触点时应考虑 FC,以达到调节整个癫痫网络的目的。

Materials and methods 材料和方法

Patients 患者

We studied 12 patients (six females) with drug resistant focal epilepsy who underwent CCEPs recordings during their presurgical SEEG evaluation and subsequently underwent RNS therapy (NeuroPace, Inc., Mountain View, CA). The median age was 26 years (range: 18-60) at time of RNS implantation, median age of epilepsy onset was 13 years (range: ) (Supplementary Table 1). Prior to their SEEG evaluation, patients underwent non-invasive testing including: scalp video-EEG, MEG, brain MRI, -fluorodeoxyglucose positron emission tomography (PET), ictal single-photon emission computerized tomography (SPECT) and neuropsychological examinations. All patients were discussed in the comprehensive patient management conferences at our centre before and after their SEEG evaluation that resulted
我们研究了 12 名耐药局灶性癫痫患者(6 名女性),他们在手术前 SEEG 评估期间接受了 CCEPs 记录,随后接受了 RNS 治疗(NeuroPace, Inc.)植入 RNS 时的中位年龄为 26 岁(范围:18-60 岁),癫痫发病的中位年龄为 13 岁(范围: )(补充表 1)。在进行 SEEG 评估之前,患者接受了非侵入性检查,包括:头皮视频脑电图(EEG)、脑电图(MEG)、脑磁共振成像(MRI)、 -氟脱氧葡萄糖正电子发射断层扫描(PET)、发作期单光子发射计算机断层扫描(SPECT)和神经心理学检查。所有患者在接受 SEEG 评估前后都在本中心的患者综合管理会议上进行了讨论,结果如下

in a decision to offer RNS therapy. Discussion at our post-SEEG patient management conference included suggestions as to where the RNS electrodes should be placed for each patient and was based solely on the ictal patterns recorded during SEEG. The planning of the location of the RNS lead was informed by IOZ SEEG location. The implanted RNS System includes a programmable neurostimulator connected to 1-4 depth electrodes or subdural strip leads with each lead containing four electrodes. Figure 1 shows a flowchart of the steps involved in the analysis. The use of RNS depth electrodes versus subdural strips was assessed individually based on location of the IOZ during patient management conference. This retrospective study protocol was approved by the Cleveland Clinic institutional review board.
决定是否提供 RNS 治疗。我们在 SEEG 后患者管理会议上讨论的内容包括建议为每位患者放置 RNS 电极的位置,这些建议完全基于 SEEG 期间记录的发作模式。RNS 导联位置的规划参考了 IOZ SEEG 位置。植入式 RNS 系统包括一个与 1-4 个深度电极或硬膜下带状导线相连的可编程神经刺激器,每个导线包含四个电极。图 1 显示了分析步骤的流程图。在患者管理会议上,根据 IOZ 的位置对使用 RNS 深度电极还是硬膜下导联线进行了单独评估。这项回顾性研究方案已获得克利夫兰诊所机构审查委员会的批准。

CCEPs recording during the SEEG evaluation
在 SEEG 评估期间记录的 CCEP

Among the 12 patients, nine underwent bilateral and three unilateral SEEG electrode implantation (two left hemisphere, one right hemisphere). The median number of implanted SEEG electrodes was 13 (range: 7-16). The median number of pairs of stimulus sites for CCEPs was 11.5 (range 3-45) and the median number of SEEG contacts implanted used for CCEPs recording was 150 (range: 65-185). The median number of contacts on middle temporal gyrus (MTG) for out-degree CCEPs analysis was 13.5 (range: 2-20) and that on superior temporal gyrus (STG) was 11 (range: 226). The configurations of SEEG electrodes and RNS electrodes are shown in Talairach space and on a presurgical 3D-MRI in Fig. 2. The 12 patients were classified as follows: three mesial temporal lobe epilepsy (mesial TLE), seven neocortical TLE, one temporo-parietal lobe epilepsy (T-PLE) and one occipital lobe epilepsy (OLE) according to the results of SEEG evaluation (Supplementary Table 1). Only one patient (Patient 4) underwent a resective epilepsy surgery of the right posterior basal temporal region before RNS therapy.
12 名患者中,9 人接受了双侧 SEEG 电极植入术,3 人接受了单侧 SEEG 电极植入术(2 人左半球,1 人右半球)。植入 SEEG 电极的中位数为 13 个(范围:7-16)。用于 CCEPs 的刺激点对数中位数为 11.5 对(范围:3-45),用于 CCEPs 记录的 SEEG 触点植入数量中位数为 150 个(范围:65-185)。用于度外 CCEPs 分析的颞中回(MTG)触点数量中位数为 13.5 个(范围:2-20),颞上回(STG)触点数量中位数为 11 个(范围:226)。图 2 显示了 SEEG 电极和 RNS 电极在 Talairach 空间和术前 3D-MRI 上的配置。根据 SEEG 评估结果(补充表 1),12 名患者被分类如下:3 名颞叶中叶癫痫(中叶 TLE)、7 名新皮层 TLE、1 名颞顶叶癫痫(T-PLE)和 1 名枕叶癫痫(OLE)。只有一名患者(患者 4)在接受 RNS 治疗前接受了右侧后基底颞区癫痫切除手术。
Depth electrodes for SEEG evaluation were made of platinum (AdTech, Integra or PMT) and implanted using the Talairach stereotactic method based on the results of presurgical non-invasive evaluation in each patient.
用于 SEEG 评估的深度电极由铂金(AdTech、Integra 或 PMT)制成,根据每位患者的术前无创评估结果,采用 Talairach 立体定向法植入。
The methodology of CCEPs evaluation has been previously reported. In brief, CCEPs were recorded towards the end of the SEEG evaluation when patients are restarted on their antiseizure medications. Using a constant-current stimulation device (Grass S88, Astro-Med, Inc., RI, USA), SPES at consisting of square wave pulses was repetitively applied at with alternating polarity through a pair of adjacent SEEG contacts in the cortices. Trials of 60 SPESs were delivered for each stimulus site (two trials of 30 SPESs). Reponses were recorded at a sampling rate of (EEG-1200, Nihon Kohden, Tokyo, Japan) and bandpass filtered at . The reference electrode was placed on the skin at the vertex region.
CCEPs 评估方法此前已有报道。 简而言之,CCEPs 是在 SEEG 评估即将结束、患者重新开始服用抗癫痫药物时记录的。使用恒流刺激装置(Grass S88,Astro-Med, Inc., RI, USA),在 重复施加由 方波脉冲组成的 SPES, ,极性交替地通过大脑皮层中一对相邻的 SEEG 触点。对每个刺激点进行 60 次 SPES 试验(两次试验 30 个 SPES)。反应以 的采样率记录(EEG-1200,Nihon Kohden,日本东京),并以 进行带通滤波。参比电极置于顶点区域的皮肤上。

Identification of locations of RNS contacts and the correlation with SEEG contacts
确定 RNS 接触点的位置以及与 SEEG 接触点的相关性

The locations of the contacts relative to brain anatomy were determined by co-registering the preoperative MRI of the brain with the head CT scan for SEEG electrode locations and CT scan for RNS electrode locations. We have recently developed a semi-automated identification process of anatomical labelling for intracranial electrode contacts, details of which are described in Tayler et al. In brief, the preoperative MRI of each patient was imported to BrainSuite and an anatomical segmentation was performed based on the USCBrain atlas. The SEEG contacts locations are determined from the CT using the Curry software (Compumedics, NeuroScan Laboratories, Charlotte, NC, USA), and the outputs are combined to localize and automatically assign anatomical labels to each contact. The contact locations of RNS were identified in the same manner. The distances between each SEEG and each RNS contact were calculated using an in-house MATLAB script (the Mathworks, Inc., Natick, MA, USA). BrainSuite and BrainStorm software were used to confirm the locations of the contacts of SEEG and RNS electrodes within the brain volumes.
通过术前脑部核磁共振成像与头部 CT 扫描(SEEG 电极位置)和 CT 扫描(RNS 电极位置)的共同对比,确定接触点与脑部解剖结构的相对位置。我们最近开发了一种半自动化的颅内电极触点解剖标记识别流程,详情请见 Tayler 等人的文章 。简而言之,每位患者的术前 MRI 都被导入 BrainSuite ,并根据 USCBrain 图集进行解剖学分割。 使用 Curry 软件(Compumedics,NeuroScan Laboratories,Charlotte,NC,USA)从 CT 上确定 SEEG 触点位置,并将输出结果结合起来,对每个触点进行定位并自动分配解剖标签。RNS 的触点位置也是以同样的方式确定的。使用内部 MATLAB 脚本(Mathworks, Inc.)BrainSuite 和 BrainStorm 软件 用于确认 SEEG 和 RNS 电极在脑体积内的接触位置。

Directional connectivity analysis using CCEPs
利用 CCEP 进行定向连通性分析

The process of CCEPs analysis was performed with BrainStorm using the method described by our group. After importing the raw SEEG data, excluding epochs contaminated with artefacts, we obtained CCEPs by averaging the remaining epochs time-locked to the stimulation. Baseline was taken from 100 to before stimulation. We categorized the CCEPs stimulation site and response site by their anatomical location. The anatomical location of CCEPs performed during presurgical SEEG evaluation was retrospectively compared to the ensuing locations of the RNS contacts. We analysed whether SEEG recording and stimulus sites of CCEPs close to the ensuing RNS contacts were associated with large in-degree [the sum of the potentials in the region of interest evoked by stimulating all other pairs of SEEG contacts (Fig. 1 bottom, left)] and outdegree CCEPs [the sum of potentials from the region of interest, namely, the degree of the output from the stimulus site (Fig. 1 bottom, right)] in patients with good RNS outcomes.
CCEPs 分析过程是通过 BrainStorm 使用我们小组描述的方法进行的。 在导入 SEEG 原始数据并排除受伪影污染的历时后,我们对与刺激时间锁定的剩余历时进行平均,从而获得 CCEPs。基线取自刺激前 100 到 。我们将 CCEPs 的刺激部位和反应部位按其解剖位置进行分类。我们将手术前 SEEG 评估中进行的 CCEPs 解剖位置与随后的 RNS 接触位置进行了回顾性比较。我们分析了在 RNS 效果良好的患者中,SEEG 记录和 CCEPs 刺激位置靠近随后的 RNS 接触点是否与较大的内度 CCEPs [刺激所有其他成对 SEEG 接触点诱发的感兴趣区电位总和(图 1 左下方)] 和外度 CCEPs [感兴趣区电位总和,即刺激位置输出的程度(图 1 右下方)] 有关。
To evaluate directional connectivity, we analysed indegree and out-degree CCEPs. For in-degree CCEPs, we investigated the CCEPs responses seen in the SEEG contact closest to the ensuing RNS contact. The in-degree CCEPs are the sum of the potentials in the region of interest evoked by stimulating all other pairs of SEEG contacts (Fig. 1 bottom, left). For in-degree CCEPs, the analysis included responses in all regions of cortices stimulated. For out-degree CCEPs, we analysed the CCEPs responses in just two regions
为了评估定向连接性,我们分析了 "内度 "和 "外度 "CCEPs。 对于程度内 CCEPs,我们研究了在最靠近随后 RNS 接触的 SEEG 接触中看到的 CCEPs 反应。度内 CCEPs 是刺激所有其他成对 SEEG 触点所诱发的相关区域电位的总和(图 1 左下方)。对于程度内 CCEPs,分析包括所有受刺激皮层区域的反应。对于外度 CCEPs,我们只分析了两个区域的 CCEPs 反应
Patient selection 病人选择
Retrospective study 回顾性研究
  • Refractory epilepsy undergoing presurgical evaluation with SEEG
    使用 SEEG 进行手术前评估的难治性癫痫
  • CCEP recording during the SEEG
    SEEG 期间的 CCEP 记录
(alternating polarity), ( square wave pulse)
(极性交替)、 ( 方波脉冲)
1 trial single-pulse electrical stimuli
1 次试验 单脉冲电刺激
  • RNS therapy following the SEEG
    SEEG 之后的 RNS 治疗
12 patients: 3 mesial temporal lobe epilepsy, 7 neocortical temporal lobe epilepsy,
12 名患者:3名颞叶中叶癫痫患者,7名颞叶新皮质癫痫患者、
1 temporo-parietal lobe epilepsy, 1 occipital lobe epilepsy
1 例颞顶叶癫痫,1 例枕叶癫痫
Identification of contact location (SEEG/RNS)
确定联系地点(SEGEG/RNS)
  • SEEG contacts: pre-SEEG MRI and post-SEEG (during implantation) CT
    SEEG 接触:SEEG 前 MRI 和 SEEG 后(植入期间)CT
  • RNS contacts: pre-SEEG MRI and post-RNS CT
    RNS 接触:SEEG 前 MRI 和 RNS 后 CT
calculate distances between each SEEG contact and each RNS contact
计算每个 SEEG 触点和每个 RNS 触点之间的距离

CCEP analysis CCEP 分析

In-degree CCEP 学位内 CCEP
(all regions) (所有地区)
O SEEG electrode O SEEG 电极
  • SEEG contact (contact of interest)
    SEEG 联系人(相关联系人)
Stimulus site for CCEP
社区教育项目刺激站点
CCEP to the contact of interest
将 CCEP 发送给相关联系人
Out-degree CCEP 学位外 CCEP
(only on MTG/STG) (仅适用于 MTG/STG)
Recording site for out-degree CCEP on STG
STG 上的学位外 CCEP 记录站点
Recording site for out-degree CCEP on MTG
MTG 上的学位外 CCEP 记录站点
CCEP from the stimulus site of interest
相关刺激点的 CCEP
Figure I Flowchart of whole steps of recording and analyses. The functional anatomically-guided stacked-area (FAST) graph displays the sum of the responses at the particular area or SEEG contact to visualize and investigate 'in-degree' and 'out-degree' CCEPs. The 'in-degree' CCEPs indicate the sum of the potentials on the region of interest evoked by stimulating any pairs of SEEG contacts, namely, the degree of the input to the recording site. The 'out-degree' CCEPs indicate the sum of potentials from the region of interest, namely, the degree of output from the stimulus site. In this study, for the standardization of the CCEPs across patients, we focused on the 'out-degree' CCEPs from each stimulus site on only middle temporal gyrus (MTG) and superior temporal gyrus (STG), which were the only two common anatomical locations across the 12 patients. CCEPs, cortico-cortical evoked potential; SEEG, stereoelectroencephalography; RNS, responsive neurostimulation; FAST graph, functional anatomically-guided stacked-area graph; MTG, middle temporal gyrus; STG, superior temporal gyrus.
图 I 记录和分析整个步骤的流程图。功能解剖导向叠加区(FAST)图显示特定区域或 SEEG 接触点的反应总和,以直观显示和研究 "度内 "和 "度外 "CCEPs。度内 "CCEPs 表示刺激任何一对 SEEG 触点在感兴趣区域诱发的电位总和,即记录点的输入度。out-degree "CCEPs 表示来自感兴趣区域的电位总和,即从刺激部位输出的程度。在本研究中,为了对不同患者的 CCEPs 进行标准化,我们只关注了每个刺激部位的 "外度 "CCEPs,即颞中回(MTG)和颞上回(STG),这是 12 名患者中仅有的两个共同的解剖位置。CCEPs:皮质诱发电位;SEEG:立体脑电图;RNS:反应性神经刺激;FAST图:功能解剖学引导的叠加区域图;MTG:颞中回;STG:颞上回。
Figure 2 Configurations of SEEG and RNS electrodes. Configurations of SEEG and RNS electrodes are shown in anatomical labels in Talairach space (top for each patient) and on a presurgical 3D-MRI (bottom for each patient), except that for Patient II whose is shown in Fig. 3. IOZs were defined by the experts' review of ictal SEEG. The red lines on the electrode maps indicate the vertical line passing the anterior commissure (VAC line, between and ), the vertical line passing the posterior commissure (VPC line, between and ) and the line (a horizontal line between 8 and 9) in Talairach space to visualize and standardize the electrode locations of SEEG. Abbreviations: the conventions are same as for Fig. I.
图 2 SEEG 和 RNS 电极的配置。SEEG 和 RNS 电极的配置显示在 Talairach 空间的解剖标签上(每个患者的顶部)和手术前 3D-MRI 上(每个患者的底部),但患者 II 除外,其配置显示在图 3 中。IOZ 是由专家对发作期 SEEG 进行审查后确定的。电极图上的红线表示通过前神经丘的垂直线(VAC 线,位于 之间)、通过后神经丘的垂直线(VPC 线,位于 之间)以及 Talairach 空间中的 线(位于 8 和 9 之间的水平线),以直观和标准化 SEEG 的电极位置。缩写:与图 I 一致。
A
  • SEEG electrode SEEG 电极
  • SEEG electrode (IOZ) SEEG 电极(IOZ)
RNS electrode  RNS 电极
Stimulus site for CCEP 社区教育项目刺激站点
Patient 11 病人 11
Recording site for out-degree CCEP on STG
STG 上的学位外 CCEP 记录站点
Recording site for out-degree CCEP on MTG
MTG 上的学位外 CCEP 记录站点

B
Figure 3 Example of CCEPs FAST graph and a sign permutation test. (A) Configurations of SEEG and RNS electrodes in a representative patient (Patient II). (Top) SEEG electrodes (white circle), those judged as ictal onset zone (IOZ) (red/solid circle) and RNS electrodes (blue/filled square) are shown in anatomical labels in Talairach space. Two red vertical lines and one red horizontal line indicate VAC, VPC and AC-PC lines, respectively, as in Fig. 2. (Bottom) The SEEG and RNS electrodes and stimulus sites (yellow/electric mark) are displayed on a presurgical (before SEEG evaluation) 3D-MRI. The light green (STG) and the light blue (MTG) areas represent the recording sites for out-degree CCEPs. (B) An example of CCEPs FAST graph recorded from the SEEG contacts on MTG. (Top) A total of seven pairs of SEEG contacts were stimulated for the out-degree CCEPs recording in this patient. Each graph indicates the stacked area plots of the rectified out-degree CCEPs waveforms presenting the sum of the amplitudes on the left and right MTGs. The horizontal axis indicates the analysed time window ( -100 to from the stimulation). The area above 0 and below 0 suggests the sum in the left MTG and that in the right MTG, respectively. (C) An example of a sign permutation test. The FAST graph of the sum of the out-degree CCEPs on MTG by stimulation of a pair of SEEG contacts on Lt MTG (highlighted with a rectangle in red in Fig. 2B) was evaluated statistically for each time point. The amplitude in each epoch was randomly multiplied by either or and then the epochs were averaged. This procedure was repeated 5000 times for each response (grey waveforms), and they were compared with the original CCEPs waveform (blue and black waveform) to show the data-driven distribution for the statistical analysis. For the multiple comparisons, we used a false discovery rate (FDR, ). The blue parts indicate the significant time points and the black parts the time points without significance. IOZ, ictal onset zone; Lt, left; Rt, right; Amyg, amygdala; PoCG, postcentral gyrus; SMG,
图 3 CCEPs FAST 图和符号排列检验示例。(A) 一名代表性患者(患者 II)的 SEEG 和 RNS 电极配置。(上图)SEEG 电极(白色圆圈)、被判定为发作起始区(IOZ)的电极(红色/实心圆圈)和 RNS 电极(蓝色/填充方形)以 Talairach 空间的解剖标记显示。两条红色垂直线和一条红色水平线分别表示 VAC、VPC 和 AC-PC 线,如图 2 所示。 (下图) SEEG 和 RNS 电极和刺激部位(黄色/电标记)显示在手术前(SEEG 评估前)的 3D-MRI 上。浅绿色(STG)和浅蓝色(MTG)区域代表度外 CCEP 的记录点。(B) 从 MTG 上 SEEG 触点记录的 CCEPs FAST 图示例。(上图)该患者共有七对 SEEG 触点受到刺激,以记录外度 CCEPs。每张图表都显示了整流后的度外 CCEPs 波形的叠加区域图,呈现了左右 MTG 上的振幅总和。横轴表示分析的时间窗口(刺激后 -100 至 )。高于 0 和低于 0 的区域分别表示左侧 MTG 和右侧 MTG 的总和。(C) 符号置换测试示例。通过刺激左侧 MTG 上的一对 SEEG 触点(图 2B 中用红色矩形突出显示),对 MTG 上的外度 CCEPs 总和的 FAST 图进行统计评估。每个时间点的振幅随机乘以 ,然后取平均值。每个反应(灰色波形)重复此过程 5000 次,并与原始 CCEPs 波形(蓝色和黑色波形)进行比较,以显示统计分析的数据驱动分布。对于多重比较,我们使用了错误发现率(FDR, )。蓝色部分表示有意义的时间点,黑色部分表示无意义的时间点。IOZ,发作开始区;Lt,左侧;Rt,右侧;Amyg,杏仁核;PoCG,中央后回;SMG、
supramarginal gyrus; AG, angular gyrus. Other conventions are same as for Figs I and 2.
AG,角回。其他约定与图 I 和图 2 相同。
that were common to all patients, MTG and STG, following stimulation of site closest to the ensuing RNS contact. The out-degree CCEPs are the sum of potentials from the region of interest, namely, the degree of the output from the stimulus site (Fig. 1 bottom, right).
所有患者(MTG 和 STG)在刺激与随后的 RNS 接触最接近的部位后,都会出现相同的 CCEPs。外度 CCEPs 是相关区域电位的总和,即刺激部位输出的程度(图 1 右下方)。

Functional anatomically-guided stacked-area graph (FAST graph)
功能解剖导向叠加区域图(FAST 图)

In performing our CCEPs analysis, we generated functional anatomically-guided stacked-area (FAST) graphs of CCEPs responses. Details of the FAST graph have been previously reported by our group. In brief, area plots of rectified CCEPs waveforms are stacked to present the sum of responses, either across all contacts for a single stimulation pair (out-degree), or at a single contact across multiple stimulations (in-degree). An example of the FAST graph in a representative patient (Patient 11) is shown in Fig. 3. The locations of SEEG and RNS electrodes and stimulus sites for CCEPs in this patient are displayed in Fig. 3A. In previous studies recorded with subdural electrodes, CCEPs were typically composed of two negative potentials (early and late ), and the latency of N1 and N2 usually ranged from and , respectively. However, the CCEPs in patients with SEEG demonstrate more complex waveforms, likely due to variable contact locations within the six layers of
在进行 CCEPs 分析时,我们生成了 CCEPs 反应的功能解剖导向叠加区图(FAST)。关于 FAST 图形的详细信息,我们的研究小组之前已经做过报告。 简而言之,将整流 CCEPs 波形的区域图进行堆叠,以显示单个刺激对的所有触点的反应总和(out-degree),或多个刺激的单个触点的反应总和(in-degree)。图 3 显示了一位代表性患者(患者 11)的 FAST 图示例。图 3A 显示了 SEEG 和 RNS 电极的位置以及该患者 CCEPs 的刺激点。在之前使用硬膜下电极记录的研究中,CCEP 通常由两个负电位(早期 和晚期 )组成,N1 和 N2 的潜伏期通常分别为 然而,SEEG 患者的 CCEP 波形更为复杂,这可能是由于六层脑膜的接触位置不同所致。

cerebral cortex and white matter. In order to overcome this complexity, we used the sum of the absolute value of the CCEPs response, separated into early , middle and late latency periods (Figs 1 and .
大脑皮层和白质。 为了克服这种复杂性,我们使用了 CCEPs 反应绝对值的总和,将其分为早期 、中期 和晚期潜伏期 (图 1 和 )。
For in-degree CCEPs, we calculated the CCEPs FAST graph at each SEEG contact from all stimulation sites. The responses for each SEEG contact were sorted in descending RMS order and ranked for the early, middle and late latency periods in each patient. SEEG contacts in both grey and white matters were included in the in-degree CCEPs. In our experience, CCEPs performed during SEEG can show meaningful responses in electrodes within both white and grey matters. To specify the responses of each location including white matter, we adopted a bipolar montage for the analyses of CCEPs and corresponding FAST graphs in the localization of in-degree CCEPs. For out-degree CCEPs, we grouped similar stimulation and responses in the only two common anatomical locations across patients (MTG and STG). The out-degree CCEPs FAST graphs from MTG/STG were recorded using a referential montage (referenced the scalp vertex region), since the possibility of far field responses was eliminated by sampling only the contacts in this cortical region of interest in all patients. In this study, we confirmed the area showing hyperperfusion in ictal SPECT based on our previous report demonstrating strong connectivity between the ictal onset zone and hyperperfused regions in ictal SPECT Eleven out of 12 patients underwent an ictal SPECT examination during preoperative evaluation. The rate of significant out-degree CCEPs between patients with and without ictal hyperperfusion on MTG/STG in subtraction ictal SPECT co-registered with MRI (SISCOM) was compared.
对于同度 CCEPs,我们计算了所有刺激部位每个 SEEG 接触点的 CCEPs FAST 图。每个 SEEG 接触点的反应按 RMS 降序排序,并对每位患者的早期、中期和晚期潜伏期进行排序。灰质和白质中的 SEEG 触点都包含在同度 CCEP 中。根据我们的经验,在 SEEG 期间进行的 CCEP 可在白质和灰质中的电极上显示有意义的反应。为了明确包括白质在内的每个位置的反应,我们采用了双极蒙太奇来分析 CCEPs 和相应的 FAST 图来定位度内 CCEPs。 对于度外 CCEPs,我们将患者仅有的两个共同解剖位置(MTG 和 STG)的类似刺激和反应分组。来自 MTG/STG 的外度 CCEPs FAST 图使用参照蒙太奇(以头皮顶点区域为参照)进行记录,因为在所有患者中只对该皮质感兴趣区域的触点进行取样,从而消除了远场反应的可能性。在本研究中,我们根据之前的报告确认了在发作期 SPECT 中出现高灌注的区域,该报告显示发作期起始区与发作期 SPECT 中的高灌注区域之间具有很强的连通性 12 名患者中有 11 名在术前评估时接受了发作期 SPECT 检查。我们比较了在与核磁共振成像(SISCOM)共同注册的减影发作期SPECT检查中,MTG/STG有发作期高灌注和无发作期高灌注的患者之间有明显度外CCEP的比率。

Outcome of RNS therapy
RNS 治疗的结果

Seizure outcomes in patients undergoing epilepsy surgery are typically reported using the Engel classification or International League Against Epilepsy (ILAE) classification. For RNS seizure outcomes, the response to neuromodulation changes over time. Therefore, the percentage seizure reduction at one time point to the baseline seizure frequency pre-RNS therapy is more clinically meaningful. We applied a modified percentage outcome scale based on the seizure reduction from pre-RNS seizure frequency. These seizure outcome categories consisted of: worsened (scale -1), no change (scale 0 ), seizure reduction (scale 1), seizure reduction (scale 2 ), seizure reduction (scale 3), seizure reduction (scale 4 ) and seizure reduction (scale 5). The follow-up period for evaluation ranged from 1.3-4.8 years (median 2.7) after RNS therapy was initiated. In two patients (#3 and #10), we could not accurately determine the seizure outcome due to the patient's inability to report their seizure frequency reliably. Of the two patients seizure reduction; scale 4 , one had antiseizure medication (ASM) reduced and one had no change; one patient seizure reduction; scale 3 ) had no ASM change; four patients seizure reduction; scale 2), three had no change and one had ASM increased; three patients seizure reduction; scale 1 ), two had no change and one had ASM increased.
接受癫痫手术的患者的癫痫发作结果通常采用恩格尔分类 或国际抗癫痫联盟(ILAE)分类进行报告。 对于 RNS 癫痫发作结果,对神经调控的反应会随着时间的推移而改变。因此,一个时间点的癫痫发作减少百分比与 RNS 治疗前的基线癫痫发作频率相比更具临床意义。 我们根据与 RNS 治疗前发作频率相比发作减少的百分比,对结果进行了修改。这些癫痫发作结果类别包括:恶化(评分-1)、无变化(评分 0)、 癫痫发作减少(评分 1)、 癫痫发作减少(评分 2)、 癫痫发作减少(评分 3)、 癫痫发作减少(评分 4)和 癫痫发作减少(评分 5)。在开始接受 RNS 治疗后,随访评估期为 1.3-4.8 年(中位数为 2.7 年)。在两名患者(3 号和 10 号)中,由于患者无法可靠地报告其癫痫发作频率,我们无法准确确定其癫痫发作结果。在两名患者 癫痫发作减少;量表 4 中,一名患者的抗癫痫药物(ASM)减少,一名患者没有变化;一名患者 癫痫发作减少;量表 3 )的 ASM 没有变化;四名患者 癫痫发作减少;量表 2 )中,三名患者的 ASM 没有变化,一名患者的 ASM 增加;三名患者 癫痫发作减少;量表 1 )中,两名患者的 ASM 没有变化,一名患者的 ASM 增加。

Grouping of SEEG contacts according to the distance to the ensuing closest RNS contact
根据与随后最近的 RNS 联系人的距离对 SEEG 联系人进行分组

We classified the SEEG contacts (for stimulation and recording in CCEPs) into four groups based on distance to the closest ensuing RNS contact: Group 1 (G1: 0-5 mm), Group 2 (G2: 5-10 mm), Group 3 (G3: 10-20 mm) and Group 4 (G4: ). Due to the number of stimulation pairs being smaller than those for the recording, we combined G3 and G4 as G3-4 (>10 mm from the closest RNS contact) for the analyses of out-degree CCEPs.
我们根据与最近的 RNS 接触点的距离将 SEEG 接触点(用于 CCEPs 的刺激和记录)分为四组:第 1 组(G1:0-5 毫米)、第 2 组(G2:5-10 毫米)、第 3 组(G3:10-20 毫米)和第 4 组(G4: )。由于刺激对的数量少于记录对的数量,我们将 G3 和 G4 合并为 G3-4(距离最近的 RNS 接触点大于 10 毫米),用于分析度外 CCEP。

Statistical analysis 统计分析

For each latency period (early, middle and late), we compared the ranks according to the highest amplitude over the time window of in-degree CCEPs in each group described above using a Mann-Whitney test a -value of was considered significant for multiple comparisons (G1 versus G2, G1 versus G3 and G1 versus G4) by Bonferroni correction]. We standardized the CCEPs per patient in this way because the distribution and amplitude of CCEPs are different for each patient. We then calculated the in-degree CCEPs ratios for G1, G2 and G3 relative to G4 by using the highest amplitude of the sum of CCEPs. The mean of the highest amplitude of the sum of CCEPs in G1, G2 and G3 was divided by that in G4 for the early, middle and late latency periods in each patient. The correlations between the in-degree CCEPs ratios (G1/G4, G2/G4 and G3/G4 ratios) and the outcome of RNS therapy were evaluated by the Pearson correlation coefficient (a -value of was considered significant for each for multiple comparisons by Bonferroni correction). We examined the seizure reduction rate every visit. Variations of the outcome of RNS therapy are known to occur based on programming changes to both detection and stimulation parameters. Thus, we adopted the score at the time of the greatest seizure reduction after RNS therapy for each patient in this study.
对于每个潜伏期(早期、中期和晚期),我们使用 Mann-Whitney ,根据上述各组阶内 CCEPs 在时间窗内的最高振幅进行了等级比较, ,经 Bonferroni 校正后认为多重比较(G1 与 G2、G1 与 G3 和 G1 与 G4)具有显著性]。由于每位患者的 CCEPs 分布和振幅不同,因此我们以这种方式对每位患者的 CCEPs 进行了标准化处理。然后,我们使用 CCEPs 总和的最高振幅计算 G1、G2 和 G3 相对于 G4 的度内 CCEPs 比率。将 G1、G2 和 G3 中 CCEPs 最高振幅之和的平均值除以 G4 中早、中、晚潜伏期的 CCEPs 最高振幅之和的平均值。度内 CCEPs 比值(G1/G4、G2/G4 和 G3/G4 比值)与 RNS 治疗结果之间的相关性通过皮尔逊相关系数进行评估(经 Bonferroni 校正后,多重比较中每项的 - 值 均被视为显著)。我们对每次就诊的癫痫发作减少率进行了检查。众所周知,RNS 治疗的结果会因检测和刺激参数的程序更改而发生变化。 因此,在本研究中,我们采用了每位患者接受 RNS 治疗后癫痫发作减少最多时的评分。
When investigating the out-degree CCEPs, we performed a sign permutation test to extract statistically significant CCEPs for each stimulus site in the aforementioned FAST graph based on previously established methods. The details of the sign permutation test are further described by our group. In order to evaluate significance, the amplitude in each epoch was randomly multiplied by either +1 or -1 and the epochs were averaged. This procedure was repeated 5000 times for each response to generate a data-driven null distribution. This was then compared with the original CCEPs waveform for statistical analysis (Fig. 3C). For multiple comparison correction, we used a false discovery rate correction protocol (FDR, ). CCEPs were deemed
在研究外度 CCEPs 时,我们根据以前建立的方法,对上述 FAST 图中的每个刺激点进行了符号置换检验,以提取具有统计意义的 CCEPs。 关于符号置换检验的细节,我们的研究小组有进一步的说明。 为了评估显著性,我们随机将每个时程的振幅乘以+1或-1,然后取平均值。每个反应重复这一过程 5000 次,以生成数据驱动的空分布。然后将其与原始 CCEPs 波形进行比较,以进行统计分析(图 3C)。对于多重比较校正,我们使用了错误发现率校正协议(FDR, )。CCEPs 被认为是
significant when at least 1 time point showed significance in the sign permutation test. The rate of significant out-degree CCEPs, namely the number of stimulus pairs producing significant CCEPs divided by the number of all stimulus pairs, was then calculated for MTG and STG in each patient. For group comparisons of the rate of significant out-degree CCEPs between patients with and without ictal hyperperfusion on MTG/STG in SISCOM, we applied a MannWhitney test [a -value of was considered significant for multiple comparisons (early, middle and late latency periods on MTG/STG) by Bonferroni correction]. A Wilcoxon Signed-rank test was performed for the comparison between G1 and G3-4 for out-degree CCEPs (a -value of was considered significant).
当至少有 1 个时间点在符号置换测试中显示出显著性时,则为显著。然后计算每名患者 MTG 和 STG 的显著度外 CCEPs 率,即产生显著 CCEPs 的刺激对数量除以所有刺激对数量。为了对 SISCOM 中 MTG/STG 上有和没有发作性高灌注的患者之间的显著度外 CCEPs 率进行分组比较,我们采用了 MannWhitney 检验[通过 Bonferroni 校正, - 值为 则认为多重比较(MTG/STG 的早期、中期和晚期潜伏期)具有显著性]。对 G1 和 G3-4 之间的阶外 CCEP 比较进行了 Wilcoxon Signed-rank 检验( -值为 即为显著)。
An additional analysis was done for out-degree CCEPs and is available in Supplementary Material.
对学位外 CCEP 进行了补充分析,见补充材料。

Results 成果

In-degree CCEPs to the closest RNS contacts
与最近的区域联络网联系的内向 CCEP

Following SEEG evaluation, the electrodes for RNS therapy were implanted with up to four electrodes of which only two can be connected: one electrode in one patient, two electrodes in six patients (bilaterally in three patients), three electrodes in three patients (bilaterally in one patient) and four electrodes in one patient. Figure 4 represents the ranks of all contacts sorted by the values of in-degree CCEPs in each group relative to their rank among all contacts in a representative patient (Patient 11). The rank of G1 from the closest RNS contact) was significantly higher than that of G4 from the closest RNS contact) for the early, middle and late latency periods , for all) and that of G3 from the closest RNS contact) for the early latency period , whereas there were no differences between G1 and G2 or between G1 and G3 (for the middle and late latency periods) . The in-degree CCEPs were significantly higher in G1 than G4 in six patients for the early and middle latency periods ( , for all), and in five patients for the late latency periods , for all). The in-degree CCEPs were also significantly higher in G1 than G3 in four patients for the middle and late latency periods , for all) and in five patients for the early latency period , for all). There was no difference between G1 and G2 for all the latency periods (early, middle and late) in any of the patients . This analysis could not be assessed in two out of 12 patients due to lack of CCEPs data in proximity to the eventual RNS contact. The results of the statistical tests for all patients are summarized in Table 1.
SEEG 评估后,用于 RNS 治疗的电极最多植入四个,其中只能连接两个:一名患者植入一个电极,六名患者植入两个电极(三名患者为双侧),三名患者植入三个电极(一名患者为双侧),一名患者植入四个电极。图 4 显示了所有触点的等级,按每组中的同度 CCEPs 值相对于其在具有代表性的患者(患者 11)的所有触点中的等级进行排序。在早期、中期和晚期潜伏期,G1 from the closest RNS contact) 的排名均明显高于 G4 from the closest RNS contact) 的排名 ,在早期潜伏期,G3 from the closest RNS contact) 的排名 ,而 G1 和 G2 之间以及 G1 和 G3 之间(在中期和晚期潜伏期)没有差异 。在早期和中期潜伏期,G1 中有 6 名患者的度内 CCEPs 明显高于 G4( ,全部),在晚期潜伏期,有 5 名患者的度内 CCEPs 明显高于 G4( ,全部)。在中潜伏期和晚潜伏期,G1 级有 4 名患者的度内 CCEPs 明显高于 G3 级 ,所有患者均是如此),在早潜伏期,有 5 名患者的度内 CCEPs 明显高于 G3 级 ,所有患者均是如此)。在所有潜伏期(早期、中期和晚期),G1 和 G2 在所有患者中均无差异 。由于缺乏与最终 RNS 接触附近的 CCEPs 数据,无法对 12 名患者中的两名进行此项分析评估。表 1 汇总了所有患者的统计检测结果。

Correlation between in-degree CCEPs ratio and RNS outcomes
学位内 CCEPs 比率与 RNS 结果之间的相关性

Figure 5 shows the correlations between the in-degree CCEPs ratios (for early, middle and late latency periods)
图 5 显示了度内(早期、中期和晚期)CCEPs 比率之间的相关性。
Table I Comparison of in-degree CCEPs between Group I (0-5 mm from RNS contacts) and Groups 2-4
表 I 第一组(距离 RNS 触点 0-5 毫米)与第二至第四组的同度 CCEP 比较
Patient
Group I versus 第 I 组
Group
Group I versus Group 3
第 I 组 与第 3 组
Group I versus Group 4
第 I 组 与第 4 组
Early Middle Late Early Middle Late Early Middle Late
I 0.021 0.040 0.029
2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
3 0.400 0.200 0.400 0.643 0.143 0.143 0.148 0.895 0.876
4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
5 0.128 0.248 0.248
6 0.868 0.616 0.525
7 0.029 0.396 0.672 0.051 0.786 0.197 0.439
8 0.042 0.148 0.057