这是用户在 2024-7-17 16:23 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Article

Structural and Thermal Investigations of Co(II) and Ni(II)
Co(II)和Ni(II)的结构和热研究

Coordination Polymers Based on biphenyl-4,40-dioxydiacetate Linker
基于联苯-4,4 0 -二氧二乙酸酯接头的配位聚合物

Halina Głuchowska 1,*, Renata Łyszczek 1,*
哈琳娜·格乌乔斯卡 1 *, 雷娜塔·维什切克 1, *

, Liliana Mazur 1 and Alexander M. Kirillov 2,3
莉莉安娜·马祖尔 1 和亚历山大·基里洛夫 2,3

  1. . Introduction
    .介绍

    Coordination polymers represent a very attractive generation of functional materials due to their prominent physico-chemical properties, which arise from the combination of inorganic and organic building blocks that are joined via strong covalent bonds into the infinite one-, two- or three-dimensional structures [15]. These materials exhibit a great potential for applications in many areas, including storage and separation of gases and small molecules, catalysis, chemical sensors, medicine, and magnetic and photonic materials [617].
    配位聚合物因其突出的物理化学特性而代表了一种非常有吸引力的功能材料,这些特性源于无机和有机结构单元的结合,这些结构通过强共价键连接成无限的一维、二维或三维结构[1\u20125]。这些材料在许多领域都具有巨大的应用潜力,包括气体和小分子的储存和分离、催化、化学传感器、医学以及磁性和光子材料[6\u201217]。

    Multidentate ligands, derived from aromatic polycarboxylic acids, are commonly employed as organic building blocks due to the rich coordination modes of carboxylate groups, which strongly impact the structural diversity and topologies of polymeric architecture and their functionality. The energy of the metal-oxygen bonds in carboxylate complexes (ca. 200–400 kJ/mol) is of greater value than the energy of metal-nitrogen bonds in coordination compounds containing neutral ligands (ca. 60–180 kJ/mol) [1822]. The linking abilities of carboxylate ligands are also attributed to the privileged arrangement of their COO groups. 1,4-Benzenedicarboxylic acid, and its expanded analogues, are extensively used in the construction of different types of coordination polymers with large pore sizes and an array of functional properties [14,2327]. Apart from the polycarboxylic acid linkers that comprise a rigid biphenyl, naphthalene, pyrene, or pyrazine moiety, diverse
    芳香族聚羧酸衍生的多齿配体由于羧酸基团的丰富配位模式,通常被用作有机构建单元,这强烈影响了聚合物结构的结构多样性和拓扑结构及其功能。羧酸盐配合物中金属-氧键的能量(约200–400 kJ/mol)比含有中性配体的配位化合物中的金属-氮键的能量(约60–180 kJ/mol)具有更大的价值[18\u20122]。羧酸配体的连接能力也归因于其COO基团的特权排列。1,4-苯二甲酸及其膨胀类似物广泛用于构建具有大孔径和一系列功能特性的不同类型的配位聚合物[1–423–27]。除了包含刚性联苯、萘、芘或吡嗪部分的多羧酸连接剂外,其他

Citation: Głuchowska, H.; Łyszczek, R.; Mazur, L.; Kirillov, A.M. Structural and Thermal Investigations of Co(II) and Ni(II) Coordination Polymers Based on biphenyl-4,40-dioxydiacetate Linker. Materials 2021, 14, 3545. https://doi.org/10.3390/ma14133545

Academic Editor: Andrei S. Potapov
学术编辑:安德烈·波塔波夫

Received: 19 May 2021
收稿日期: 2021-05-19

Accepted: 18 June 2021
录用日期: 2021-06-18

Published: 25 June 2021
出版日期:2021年6月25日

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
出版商注:MDPI对已出版地图和机构隶属关系中的管辖权主张保持中立。

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/
版权所有:© 2021 作者。被许可人MDPI,瑞士巴塞尔。本文是一篇开放获取文章,根据知识共享署名 (CC BY) 许可 (https:// creativecommons.org/licenses/by/ 的条款和条件分发

4.0/).

Department of General and Coordination Chemistry and Crystallography, Faculty of Chemistry, Institute of
化学学院普通与配位化学与晶体学系

Chemical Sciences, Maria Curie-Skłodowska University in Lublin, M.C. Skłodowskiej Sq. 2,
卢布林玛丽亚·居里-斯克沃多夫斯卡大学化学科学,M.C. Skłodowskiej Sq. 2,

20-031 Lublin, Poland; liliana.mazur@poczta.umcs.lublin.pl
20-031 卢布林,波兰;liliana.mazur@poczta.umcs.lublin.pl

Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico,
Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico,

Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; kirillov@tecnico.ulisboa.pt
里斯本大学,Av. Rovisco Pais,1049-001 里斯本,葡萄牙;kirillov@tecnico.ulisboa.pt

Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University),
俄罗斯人民友谊大学化学研究所

6 Miklukho-Maklaya st., 117198 Moscow, Russia
6 Miklukho-Maklaya st., 117198 莫斯科, 俄罗斯联邦

* Correspondence: halina.gluchowska@poczta.umcs.lublin.pl (H.G.); renata.lyszczek@poczta.umcs.lublin.pl (R.Ł.); Tel.: +48-81-537-57-40 (R.Ł.)
* 通信:halina.gluchowska@poczta.umcs.lublin.pl (H.G.);renata.lyszczek@poczta.umcs.lublin.pl (R.Ł.);电话: +48-81-537-57-40 (R.Ł.)

Abstract: Two coordination polymers, [Co(µ4-L)(H2O)2]n (1) and [Ni(µ-L)(H2O)4]n (2), were solvothermally assembled from the corresponding metal(II) chlorides and biphenyl-4,4-dioxydiacetic acid (H2L) as a flexible dicarboxylate linker. The cobalt(II) compound 1 featured a layer-pillared 3D metal-organic network with a cds topology, while the nickel(II) derivative 2 represented a linear chain 1D coordination polymer with a 2C1 topology. The µ4and µ-L2linkers exhibited different denticity and coordination modes in the synthesized compounds, thus contributing to their structural diversity. The dimensionality of 1 and 2 had an influence on their thermal stability and decomposition processes, which were investigated in detail by TG-DSC and TG-FTIR methods. Thermal decomposition products of coordination polymers were also analyzed by PXRD, confirming the formation of Co3O4/CoO and NiO as final materials. The obtained compounds broaden a family of coordination polymers assembled from flexible dicarboxylate linkers.
摘要: 以相应的氯化金属(II)和联苯-4,4-二氧二乙酸(H L)为柔性二羧酸连接剂,以溶剂热方式组装了[Co(μ 4 -L)(H O) 2 ] n (1)和[Ni(μ-L)(H 2 2 O) 4 ] n (2)两种配位聚合物。 2 钴(II)化合物1具有具有cds拓扑结构的层柱状3D金属有机网络,而镍(II)衍生物2则代表了具有2C1拓扑结构的线性链1D配位聚合物。 µ 4 和μ-L 2 连接子在合成化合物中表现出不同的齿密度和配位模式,从而有助于其结构多样性。1和2的维数对其热稳定性和分解过程有影响,采用TG-DSC和TG-FTIR方法进行了详细研究。PXRD还分析了配位聚合物的热分解产物,证实了Co O 4 /CoO和NiO作为最终材料的形成 3 。所获得的化合物扩展了由柔性二羧酸酯连接剂组装而成的配位聚合物家族。

Keywords: coordination polymers; crystal structure; infrared spectra; thermal analysis; TG-FTIR
关键词:配位聚合物;晶体结构;红外光谱;热分析;TG-傅里叶变换红外光谱仪

2 of 15
2 页,共 15

flexible multicarboxylate linkers have gained particular attention for generating novel metal-organic architectures [2832].
柔性多羧酸盐连接子因产生新型金属有机结构而受到特别关注[28\u201232]。

The present study is a continuation of our research on coordination polymers assembled from aromatic polycarboxylic acids [3338]. Recently, our attention has focused on probing biphenyl-4,4’-dioxydiacetic acid (H2L) (Scheme 1) as a flexible linker toward lanthanides and alkali metals [39,40]. This linker offers up to six sites (four carboxylate and two ether) for potential coordination, and possesses good thermal stability and conformational versatility [3941]. It was also postulated that the ionic radius of a metal center might be a main factor that influences the denticity of ligand and dimensionality of the self-assembled coordination polymers. For example, in the lithium derivative, metal centers are coordinated by only carboxylate oxygen atoms, while in the Na- and K-containing compounds, the side-chain oxygen atoms of H2L are also involved in the coordination. Some coordination compounds of biphenyl-4,4’-dioxydiacetic acid, with selected transition metals, were reported by Ji et al. [41]. It was shown that the dicarboxylate ligand is bound to Co(II) and Ni(II) ions through carboxylate groups, forming the isostructural one-dimensional coordination polymers, while the Cd(II) ions are additionally bound by O-ether functionalities generating the two-dimensional layers [41].
本研究是我们对芳香族聚羧酸组装的配位聚合物研究的延续[33\u201238]。最近,我们的注意力集中在探索联苯-4,4'-二氧二乙酸(H 2 L)(方案1)作为镧系元素和碱金属的柔性连接剂[3940]。该连接子提供多达6个位点(4个羧酸盐和2个醚)用于电位配位,并具有良好的热稳定性和构象多功能性[39\u201241]。还假设金属中心的离子半径可能是影响配体密度和自组装配位聚合物维度的主要因素。例如,在锂衍生物中,金属中心仅由羧酸氧原子配位,而在含Na和K化合物中,H 2 L的侧链氧原子也参与配位。Ji等[41]报道了联苯-4,4'-二氧二乙酸与选定过渡金属的一些配位化合物。结果表明,二羧酸配体通过羧酸基团与Co(II)和Ni(II)离子结合,形成同构一维配位聚合物,而Cd(II)离子还与O-醚官能团结合,产生二维层[41]。

Scheme 1. Structure of biphenyl-4,4’-dioxydiacetic acid (H2L).
方案 1.联苯-4,4'-二氧二乙酸(H 2 L)的结构。

With an aim to demonstrate a coordination diversity of H2L toward metal ions with very similar ionic radii, herein we will report on the synthesis and detailed structural investigation of two coordination polymers, namely [Co(µ4-L)(H2O)2]n (1) and [Ni(µL)(H2O)4]n (2). Apart from possessing similar ionic radii, the selection of Co(II) and Ni(II) in the present work was governed by their abundance, low cost, versatile coordination chemistry with carboxylate ligands, and the variety of functional applications of such products and derived materials [42]. Additionally, simultaneous reports on cobalt(II) and nickel(II) coordination compounds bearing related types of flexible dicarboxylate ligands are scant. A particular focus of this research was also on the thermal behavior of synthesized compounds in air and nitrogen atmospheres, accounting for the fact that these coordination polymers can be precursors of transition metal oxide materials [43,44]. We also examined the thermal stability and decomposition processes of 1 and 2 using TG-DSC and TG-FTIR methods.
为了证明H 2 L对具有非常相似离子半径的金属离子的配位多样性,本文将报告两种配位聚合物的合成和详细的结构研究,即[Co(μ 4 -L)(H 2 O) 2 ] n (1)和[Ni(μL)(H 2 O) 4 ] n (2)。除了具有相似的离子半径外,本研究对Co(II)和Ni(II)的选择还受到其与羧酸配体的丰度、低成本、多功能配位化学以及此类产物和衍生材料的多种功能应用的制约[42]。此外,关于携带相关类型的柔性二羧酸配体的钴(II)和镍(II)配位化合物的同时报道很少。这项研究的一个特别重点是合成化合物在空气和氮气环境中的热行为,因为这些配位聚合物可以成为过渡金属氧化物材料的前体[4344]。我们还使用TG-DSC和TG-FTIR方法研究了1和2的热稳定性和分解过程。

2. Materials and Methods
2. 材料与方法

Biphenyl-4,4’-dioxydiacetic acid (H2L) was prepared according to the literature procedure [40]. The metal sources CoCl2·6H2O and NiCl2·6H2O, as well as N,N-dimethylformamide (DMF), were purchased from Alfa-Aesar and used without further purification.
联苯-4,4'-二氧二乙酸(H 2 L)按文献程序制备[40]。金属源CoCl 2 6H 2 O和NiCl 2 6H 2 O以及N,N-二甲基甲酰胺(DMF)购自Alfa-Aesar,无需进一步纯化即可使用。

2.1. Synthesis of Coordination Polymers and Preparation of Metal Oxides
2.1. 配位聚合物的合成和金属氧化物的制备

[Co(µ4-L)(H2O)2]n (1). CoCl2·6H2O (237.9 mg, 1 mmol) and H2L (302 mg, 1 mmol) were dissolved in a mixture of solvents (25 mL of DMF and 25 mL of deionized water) and then transferred into the Teflon-lined stainless steel autoclave (150 mL volume). This was sealed and heated under solvothermal conditions at 120 C over 72 h. The autoclave was then gradually cooled down to room temperature (5 C/h cooling rate). The pink crystals were filtered off, washed with a water and DMF mixture, and dried at room temperature to give the compound 1 (yield: 76% based on cobalt(II) chloride). Anal. Calc. for 1: C, 48.58; H, 4.05. Found: C, 48.21; H, 4.01%.
[Co(μ 4 -L)(H 2 O) 2 ] n 将CoCl 2 6H 2 O(237.9 mg,1 mmol)和H 2 L(302 mg,1 mmol)溶解在溶剂(25 mL DMF和25 mL去离子水)的混合物中,然后转移到衬有聚四氟乙烯的不锈钢高压灭菌器(150 mL体积)中。将其密封并在溶剂热条件下在120 °C下加热72小时。然后将高压灭菌器逐渐冷却至室温(5 C/h冷却速率)。过滤掉粉红色晶体,用水和DMF混合物洗涤,并在室温下干燥,得到化合物1(收率:76%,基于氯化钴(II)。肛门计算 1: C, 48.58;H,4.05。发现:C,48.21;H,4.01%。

[Ni(µ-L)(H2O)4]n (2). This compound was obtained by following a procedure similar to 1, except using NiCl2·6H2O (238 mg, 1 mmol) instead of CoCl2·6H2O. The green crystals were filtered off, washed with a water and DMF mixture, and dried at room temperature to give the compound 2 (yield: 68% based on nickel(II) chloride). Anal. Calc. for 2: C, 44.54; H, 4.64. Found: C, 44.12; H, 4.23%.
[Ni(μ-L)(H 2 O) 4 ] n (2).该化合物通过遵循类似于1的程序获得,只是使用NiCl 2 6H 2 O(238 mg,1 mmol)代替CoCl 2 6H 2 O。过滤掉绿色晶体,用水和DMF混合物洗涤,并在室温下干燥,得到化合物2(收率:68%,基于氯化镍(II)。肛门计算 2: C, 44.54;H,4.64。发现:C,44.12;H,4.23%。

The samples of coordination polymers (100 mg) were heated for 2 h in ceramic crucibles in an electric furnace up to 1000 C in a static air atmosphere. Metal oxides were obtained in the form of black powders and analyzed by PXRD.
将配位聚合物(100mg)样品在陶瓷坩埚中在电炉中加热2小时,在静态空气气氛中加热至1000 °C。金属氧化物以黑色粉末的形式获得,并通过PXRD进行分析。

2.2. Materials Characterization
2.2. 材料表征

The contents of C and H in the prepared compounds were determined by elemental analysis with a EuroEA3000 elemental analyzer (EuroVector S.p.A., Milan, Italy).
使用EuroEA3000元素分析仪(EuroVector S.p.A.,Milan,Italy)进行元素分析,测定制备化合物中C和H的含量。

The ATR-FTIR (attenuated total reflection–Fourier transform infrared spectroscopy) spectra were recorded on a Nicolet 6700 spectrophotometer equipped with the Smart iTR attachment (diamond crystal) over 4000–600 cm1 (Thermo Scientific, Waltham, MA, USA).
ATR-FTIR(衰减全反射-傅里叶变换红外光谱)光谱记录在配备 Smart iTR 附件(金刚石晶体)的 Nicolet 6700 分光光度计上,距离超过 4000–600 厘米 1 (Thermo Scientific,马萨诸塞州沃尔瑟姆,美国)。

Thermal analyses were carried out by the TG-DSC methods using a Setsys 16/18 analyzer (Setaram, Caluire, France). The samples (~8 mg) were heated in alumina crucibles in the flowing air atmosphere (v = 0.75 dm3 h1) at a heating rate of 10 C min1 in the 30–1000 C range.
使用Setsys 16/18分析仪(Setaram,Caluire,France)通过TG-DSC方法进行热分析。样品(~8 mg)在流动空气气氛(v = 0.75 dm 3 h 1 )的氧化铝坩埚中以10 C min 1 的加热速率在30-1000 C范围内加热。

The FTIR (Fourier transform infrared spectroscopy) spectra of volatile products, formed during the decomposition of coordination polymers, were measured using a Q5000 TA apparatus (TA Instruments, New Castle, DE, USA) coupled with the Nicolet 6700 FTIR spectrophotometer.The samples (~20 mg) were heated in open platinum crucibles up to 700 C at a heating rate of 20 C min1 in a flowing nitrogen atmosphere (25 cm3 min1).
使用Q5000 TA设备(TA Instruments,New Castle,DE,USA)和Nicolet 6700 FTIR分光光度计测量了配位聚合物分解过程中形成的挥发性产物的FTIR(傅里叶变换红外光谱)光谱。将样品(~20 mg)在敞开的铂坩埚中以20 C的加热速率在流动的氮气气氛(25 cmmin 3 1 )中以20 C的 升温速率加热至700 C。 1

The PXRD (powder X-ray diffraction) patterns of the synthesized coordination compounds and metal oxides were recorded at room temperature using a PANalytical Empyrean (Panalytical, Almelo, Netherlands) diffractometer (Bragg-Brentano method, Cu-Kα radiation). The data were collected in the 5–90range with a step size of 0.05
使用PANalytical Empyrean(Panalytical,Almelo,Netherlands)衍射仪(Bragg-Brentano方法,Cu-Kα辐射)在室温下记录合成配位化合物和金属氧化物的PXRD(粉末X射线衍射)图案。数据收集范围为 5–90 ,步长为 0.05
.

2.3. Single Crystal X-ray Diffraction
2.3. 单晶X射线衍射

The X-ray diffraction data were collected at 100(2) K using an Oxford Diffraction
使用牛津衍射法在 100(2) K 处收集 X 射线衍射数据

Xcalibur CCD diffractometer (Oxford Diffraction Ltd., Abingdon, UK) equipped with a molybdenum sealed X-ray tube (λ = 0.7071 Å), a graphite monochromator, and an Oxford Cryosystems nitrogen gas flow device (Cobra Plus). The CrysAlis [45] suite of programs was used for data collection, cell refinement, and data reduction. The data were corrected for Lorentz and polarization effects. A multi-scan absorption correction was applied. The structures were solved using direct methods (SHELXS-97 program) and refined by the full-matrix least squares on F2 with the SHELXL-97 program [46]. All non-H atoms were refined with anisotropic displacement parameters. The H atoms attached to carbon centers were positioned geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C). The water H atoms were found in the difference-Fourier map and refined with isotropic displacement parameters. Crystal data and structure refinement details for 1 and 2 are given in Table 1. The CIF files for 1 and 2 were deposited at the Cambridge Crystallographic Data Centre (CCDC Nos 2073788–2073789).
Xcalibur CCD 衍射仪(Oxford Diffraction Ltd.,Abingdon,UK)配备钼密封 X 射线管 (λ = 0.7071 Å)、石墨单色仪和 Oxford Cryosystems 氮气流动装置 (Cobra Plus)。CrysAlis [45] 程序套件用于数据收集、细胞细化和数据缩减。对数据进行了洛伦兹效应和偏振效应的校正。应用了多扫描吸收校正。使用直接方法(SHELXS-97程序)求解结构, 2 并使用SHELXL-97程序通过F上的全矩阵最小二乘法进行细化[46]。所有非H原子均使用各向异性位移参数进行精炼。附着在碳中心的H原子被几何定位,并使用U iso (H)=1.2U eq (C)的骑乘模型进行细化。在差分-傅里叶图中发现了水H原子,并用各向同性位移参数进行了细化。表 1 给出了 1 和 2 的晶体数据和结构细化细节。1 和 2 的 CIF 文件存放在剑桥晶体学数据中心(CCDC 编号 2073788–2073789)。

2.4. Topological Analysis
2.4. 拓扑分析

To get further insight into the crystal structures of 1 and 2, we performed their topological analysis by applying the underlying network concept [4750]. The underlying nets were generated by omitting all the terminal H2O ligands and reducing the µ-L2or µ4-L2linkers to the corresponding centroids, preserving their connectivity with metal nodes.
为了进一步了解1和2的晶体结构,我们通过应用底层网络概念[47\u201250]进行了拓扑分析。通过省略所有末端H 2 O配体并将μ-L 2 4 μ-L 2 连接子还原到相应的质心,保持其与金属节点的连通性,从而生成了底层网。

Materials 2021, 14, 3545
材料 2021, 14, 3545

4 of 15
4 页,共 15

Table 1. Crystallographic data and refinement details for compounds 1 and 2
表 1.化合物 1 和 2 的晶体学数据和精细细节
.

Compound
复合

1

2

Formula
公式

CoC16H16O8
分子化学反应化学反应器(CoC16H16O8)

NiC16H20O10
镍镍16H20O10

Molecular weight
分子量

395.22

431.03

T (K)
吨(K)

100(2)

100(2)

Crystal system
晶系

monoclinic
单斜

triclinic
三斜晶系

Space group
空间组

P21/c

P-1

a (Å)
a (å)

16.114(2)

4.8801(3)

b (Å)
b (å)

6.7450(7)

5.6659(4)

c

7.5917(8)

15.1039(9)

α ( )

90

87.769(5)

β ()
β (

99.218(9)

83.162(5)

γ ()
γ (

90

84.038(6)

V 3)
V (Å 3

814.5(2)

412.26(5)

Z

2

1

dcalc (g cm3)
dcalc (g cm−3)

1.612

1.736

µ (Mo Kα) (mm1)
μ (Mo K α ) (mm 1

1.096

1.235

Rint
林特

0.07

0.034

Refl. collected / unique
Refl. 收集 / 独一无二

6838/1861

3137/1898

Refl. observed [I > 2σ (I)]/param./restr
Refl. 观察到 [I > 2σ ()]/param./restr
.

1265/123/0

1674/140/0

Completeness to θmax
θmax 的完备性

0.999

0.998

R1, wR2 [I > 2σ (I)]
R 1 , wR 2 [I > 2σ ()]

0.0516; 0.0849

0.0390; 0.0782

R1, wR2 (all data)
R 1 、wR 2 (所有数据)

0.0850; 0.0979

0.0476; 0.0826

GOF on F2

1.02

1.052

Max. and min. residual density [e Å3]
最大和最小残余密度 [e Å 3 ]

0.55/0.47

0.42/0.40

3. Results
3. 结果

The reactions of cobalt(II) or nickel(II) chloride with biphenyl-4,40-dioxydiacetic acid (H2L) under solvothermal conditions afforded three-dimensional [Co(µ4-L)(H2O)2]n (1) and one-dimensional [Ni(µ-L)(H2O)4]n (2) coordination polymers. The powder X-ray diffraction patterns of the obtained products fit well with the simulated ones (Figures S1 and S2), thus confirming a purity of the synthesized samples. The same solvothermal conditions furnish a unique combination of solvents (DMF/H2O, 1:1), temperature (120 C), time of heating (72 h), and pressure (autogenous) for the generation and crystallization of such compounds. A related 1D Co(II) coordination polymer [41] was synthesized under following synthetic conditions: DMF/H2O 1:4, 85 C, and 48 h. A change in the synthesis parameters led to the formation of the three-dimensional coordination polymer 1. On the other hand, a nickel(II) complex [41] was prepared using a solvent mixture (DMF/H2O, 1:1), as in the synthesis of 2, while temperature and time were different (80 C, 24 h). Both sets of parameters affected the formation of products, suggesting that the solvent composition and nature of metal ions were the dominant factors that influenced the dimensionality and structural type of coordination polymers.
氯化钴(II)或镍(II)与联苯-4,4 0 -二氧二乙酸(H 2 L)在溶剂热条件下的反应得到三维[Co( 4 μ-L)(H 2 O) 2 ] n (1)和一维[Ni(μ-L)(H 2 O) 4 ] n (2)配位聚合物。所得产物的粉末X射线衍射图谱与模拟物的X射线衍射图谱吻合良好(图S1和S2),从而证实了合成样品的纯度。相同的溶剂热条件为此类化合物的生成和结晶提供了独特的溶剂组合(DMF/H 2 O,1:1)、温度(120 C)、加热时间(72 h)和压力(自生)。在以下合成条件下合成了相关的1D Co(II)配位聚合物[41]:DMF/H 2 O 1:4、85 C和48 h。合成参数的变化导致了三维配位聚合物1的形成。另一方面,使用溶剂混合物(DMF/H 2 O,1:1)制备镍(II)络合物[41],如合成2,而温度和时间不同(80 C,24 h)。两组参数均影响产物的形成,表明金属离子的溶剂组成和性质是影响配位聚合物尺寸和结构类型的主导因素。

Both solvents play crucial, but different, functions during the formation of 1 and 2. In fact, DMF is an excellent polar solvent for deprotonation of H2L [51]. On the other hand, the presence of water is not restricted to a role of solvent since it also acts as a ligand. Despite a similarity of the reaction conditions, the compounds 1 and 2 featured distinct 3D (threedimensional) and 1D (one-dimensional) coordination polymer networks, respectively, thus confirming a structure-defining role of metal(II) centers. In both compounds, the coordination environment of metal building units can originate from soluble mononuclear hexaaqua metal(II) complexes, which are initially formed during the dissolution of metal precursors [52,53]. The formation of the coordination polymers with the biphenyl-4,4’dioxydiacetate linkers can be regarded as a partial substitution of aqua ligands by organic dicarboxylate ones.
两种溶剂在 1 和 2 的形成过程中起着至关重要但不同的功能。事实上,DMF是H 2 L去质子化的极性溶剂[51]。另一方面,水的存在不仅限于溶剂的作用,因为它也充当配体。尽管反应条件相似,但化合物 1 和 2 分别具有不同的 3D(三维)和 1D(一维)配位聚合物网络,从而证实了金属 (II) 中心的结构定义作用。在这两种化合物中,金属建筑单元的配位环境都可来自可溶性单核六水金属(II)配合物,这些配合物最初是在金属前体溶解过程中形成的[5253]。与联苯-4,4'二氧二乙酸连接剂的配位聚合物的形成可以看作是有机二羧酸配体对水配体的部分取代。

3.1. Crystal Structure Description
3.1. 晶体结构说明

[Co(µ4-L)(H2O)2]n (1). This 3D coordination polymer (Figure 1) crystallizes in the monoclinic P21/c space group. The asymmetric unit comprises of half cobalt(II) ion, half µ4-L2linker, and one terminal H2O ligand. The Co1 coordination environment contained four carboxylate oxygen atoms from four µ4-L2blocks and two oxygen atoms from trans aqua ligands (Figure 1a). Such an arrangement of cobalt (II) center is relatively common in carboxylate-based coordination compounds obtained in an aqueous medium [42,54].
[Co(μ 4 -L)(H 2 O) 2 ] n (1).这种3D配位聚合物(图1)在单斜晶系P2 1 /c空间群中结晶。不对称单元包括一半钴 (II) 离子、一半 μ 4 -L 2 连接子和一个末端 H 2 O 配体。Co1配位环境包含来自四个 4 μ-L 2 嵌段的四个羧酸盐氧原子和来自反式水配体的两个氧原子(图1a)。这种钴(II)中心的排列在水性介质中获得的羧酸盐基配位化合物中相对常见[4254]。

(a)
(一)

(b)
(二)

(c) Figure 1. Cont.
(c) 图1.续。

Materials 2021, 14, 35453 of
材料 2021, 14, 3545 3 of

(d)
(四)

(e)
(五)

Figure 1. Structural fragments of 1. (a) Coordination environment of Co center; 50% probability level ellipsoids are drawn; (b) coordination polyhedron of Co atom; (c) ligand arrangement around metal center; (d) 2D layer motif in view along the a axis; and (e) 3D metal-organic network with polyhedral representation of Co atoms; view along the b axis. Symmetry codes: (a) x, y + 0.5, z + 0.5; (b) –x, y0.5, z + 0.5; (c) –x, z + 1, z + 1; and (d) x + 2, y + 1, z + 1.
图 1.1的结构碎片。(a) 合作中心的协调环境;绘制 50% 概率水平椭球体;(b)Co原子的配位多面体;(c)金属中心周围的配体排列;(d) 沿a轴可见的二维图层图案;(e)具有Co原子多面体表示的三维金属有机网络;沿 B 轴查看。对称码:(a) x, −y + 0.5, z + 0.5;(b) –x, y−0.5, −z + 0.5;(c) –x, −z + 1, −z + 1;(d)−x + 2,−y + 1,−z + 1。

The hexa-coordinated cobalt(II) center adopted an almost ideal octahedral environment with carboxylate oxygen atoms in basal sites and water molecules in axial positions
六配位钴(II)中心采用近乎理想的八面体环境,基底位点为羧酸氧原子,轴向位点为水分子

(Figure 1b). The Co–Ocarb bond distances were 2.078(2) and 2.068(2) Å (Table 2), while the Co–OW bond was slightly longer (2.133(2) Å) due to the Jahn-Teller distortion [55]. The O–Co–O angles, which should be 90in a regular octahedral arrangement, ranged from 81.90(8) to 98.10(8), whereas the remaining angles were exactly 180(Table 2).
(图 1b)。Co-O carb 键距离分别为2.078(2)和2.068(2)Å(表2),而Co-O W 键稍长(2.133(2)Å),这是由于Jahn-Teller失真[55]。 在正八面体排列中,O-Co-O角应为90,范围为81.90(8)至98.10(8), 而其余角正好为180 (表2)。

The biphenyl-4,4’-dioxydiacetate ligand acted as a tetradentate µ4-spacer bridging four cobalt (II) centers through both carboxylate groups (Figure 1a,c). The mutually trans µ4-L2linkers were aligned parallel to each other (Figure 1c), while those that are mutually cis were rotated by 77.48to each other. The angles of carboxylate groups in µ4-L2had a typical value of 124.6(3), which is characteristic for the bidentate-bridging COOmode [42]. Carboxylate groups bind cobalt atoms in a non-planar syn-anti mode and both carboxylate O atoms were slightly displaced from the plane of the –O–CH2–C– moiety (O2– C1–C2–O3 and O1–C1–C2–O3 torsion angles were 167.7(2) and 13.0(4), respectively). The oxyacetate arms –O–CH2–COO of the ligand were deviated from the plane of an almost planar biphenyl ring (torsion angles: C2–O3–C3–C8 175.4(3); and C2–O3–C3–C4 3.2(5)). The adjacent Co1 centers were arranged into 2D (two-dimensional) layer cobaltcarboxylate motifs (Figure 1d) that were further interlinked, via the remaining carboxylate functionalities of µ4-L2, into a 3D layer-pillared framework (Figure 1e). The structure was also stabilized by a network of hydrogen bonds (Table S1). The aqua ligands took part in four hydrogen bonds, with the O···O distances ranging from 2.681(3) to 3.052(3) Å, acting as both proton donors and acceptors. It is worth mentioning that both water ligands participated in bifurcated hydrogen bonds. Carboxylate oxygen atoms and oxygen from the side chain played the role of proton acceptors in H-bonding interactions (Figure S3).
联苯-4,4'-二氧二乙酸配体作为四齿μ 4 间隔区,通过两个羧酸酯基团桥接四个钴(II)中心(图1a,c)。相互反式 4 μ-L 2 接头彼此平行排列(图1c),而相互顺式连接子相互旋转77.48 4 μ-L 2 中羧酸酯基团的典型值为124.6(3), 这是双桥COO 模式的特征[42]。羧酸盐基团以非平面的合成抗模式结合钴原子,两个羧酸盐O原子都略微偏离-O-CH-C 2 -部分的平面(O2-C1-C2-O3和O1-C1-C2-O3扭转角分别为167.7(2)和-13.0(4) )。配体的氧乙酸酯臂-O-CH-COO 2 偏离了几乎平面联苯环的平面(扭转角:C2-O3-C3-C8 175.4(3) ;和C2-O3-C3-C4-3.2(5) )。相邻的 Co1 中心被排列成 2D(二维)层钴羧酸酯基序(图 1d),这些基序通过 μ 4 -L 2 的剩余羧酸官能团进一步互连成 3D 层柱状框架(图 1e)。该结构也通过氢键网络稳定(表S1)。水配体参与四个氢键,其中O···O 距离范围为 2.681(3) 至 3.052(3) Å,既是质子供体又是受体。值得一提的是,两种水配体都参与了分叉的氢键。羧酸盐氧原子和侧链中的氧在氢键相互作用中起着质子受体的作用(图S3)。

Table 2. Selected bond distances and angles in 1 and 2
表 2.1 和 2 中选定的键合距离和角度
.

1

2

Bond Distan
邦德远距离

ces (Å)
塞斯 (Å)

C1–O1
C1–O1型

1.246(3)

C1–O1
C1–O1型

1.261(3)

C1–O2
C1–O2型

1.264(3)

C1–O2
C1–O2型

1.259(3)

Co1–O1

2.078(2)

Ni1–O1

2.051(2)

Co1–O1W

2.133(2)

Ni1–O1W

2.073(2)

Co1–O2 a

2.068(2)

Ni1–O2W

2.032(2)

Bond Angl
邦德安格尔

es ()
es (

O1–C1–O2
O1-C1-O2

124.6(3)

O1–C1–O2
O1-C1-O2

126.5(2)

O1–Co1–O1W
O1-Co1-O1W

85.94(9)

O1–Ni1–O1W
O1-Ni1-O1W

88.37(6)

O2 a–Co1–O1

98.10(8)

O2W–Ni1–O1

87.35(7)

O2 b–Co1–O1

81.90(8)

O2W–Ni1–O1W
O2W-Ni1-O1W

90.91(7)

O1 c–Co1–O1

180.0

O2Wd–Ni1–O2W

180.0

O2 b–Co1–O1W

89.09(9)

O2W–Ni1–O1 d

92.65(7)

O2 a–Co1–O1W

90.91(9)

O2W–Ni1–O1W d
O2W-Ni1-O1W d

89.09(7)

O1 c–Co1–O1W

94.06(9)

O1–Ni1–O1W d
O1-Ni1-O1W d

91.63(6)

O1W c–Co1–O1W

180.0

O1d–Ni1–O1

180.0

O2 a–Co1–O1 b

180.0

O1W–Ni1–O1W d

180.0

Symmetry codes: (a) x, y + 1.5, z + 0.5; (b) x, y0.5, z + 0.5; (c) x, y + 1, z + 1; and (d) x + 2, y + 1, z+1.
对称码:(a) x, −y + 1.5, z + 0.5;(b) −x, y−0.5, −z + 0.5;(c) −x, −y + 1, −z + 1;(d)−x + 2,−y + 1,−z+1。

The 3D structure of 1 was also analyzed from a topological viewpoint (Figure 2). An intricate 3D metal-organic architecture was driven by the [Co(H2O)2]2+ blocks and the µ4-L2linkers. Both of these structural blocks are considered as 4-linked nodes that are topologically similar. Hence, an underlying framework in 1 can be classified as a mononodal 4-linked net with a cds (CdSO4) topology and the point symbol of (65.8)
还从拓扑学角度分析了 1 的 3D 结构(图 2)。复杂的 3D 金属有机结构由 [Co(H 2 O) 2 ] 2+ 块和 μ 4 -L 2 连接子驱动。这两个结构块都被认为是拓扑相似的 4 个链接节点。因此,1 中的底层框架可以归类为具有 cds (CdSO 4 ) 拓扑结构和点 符号 (6 5 .8) 的单节点 4 联网

(Figure 2a) [56,57].
(图2a)[5657].

(a) (b)
(一)(二)

Figure 2. Topological representations of simplified 3D (a) and 1D (b) metal-organic networks in 1 and 2; views along the b axis. The (a) mononodal 4-connected net in 1 with a cds topology; 4-connected Co nodes (blue balls), and centroids of 4-connected µ4-L2linkers (gray); and (b) four linear chains showing a 2-linked net in 2 with a 2C1 topology; Ni nodes (green balls), and centroids of µ-L2linkers (gray).
图2.简化的3D(a)和1D(b)金属有机网络在1和2中的拓扑表示;沿 B 轴的视图。(a) 具有 cds 拓扑结构的 1 中的单节点 4 连接网络;4 连接的 Co 节点(蓝色球)和 4 连接 µ 4 的 -L 2 连接子的质心(灰色);(b)四条线性链,在2中显示2连接网,拓扑结构为2C1;Ni 节点(绿色球)和 μ-L 2 接头的质心(灰色)。

[Ni(µ-L)(H2O)4]n (2). This 1D coordination polymer (Figure 3) crystallized in the triclinic P-1 space group with half of the metal ion, half of the dicarboxylate ligand, and two terminal water ligands in the asymmetric unit. This compound is isostructural with the previously reported one-dimensional biphenyl-4,4’-diacetate prepared under different conditions [41]. Two carboxylate oxygen atoms from different µ-L2linkers and four water molecules formed an almost ideal octahedron around the Ni1 center (Figure 3a,b). The Ni–Ocarb bond lengths were 2.051(2) Å, while the Ni–OW distances were 2.032(2) and
[Ni(μ-L)(H 2 O) 4 ] n (2).这种一维配位聚合物(图3)在不对称单元中与一半的金属离子、一半的二羧酸配体和两个末端水配体在三斜晶系P-1空间群中结晶。该化合物与先前报道的一维联苯-4,4'-二乙酸酯在不同条件下制备的同构化合物[41]。来自不同 μ-L 2 接头的两个羧酸氧原子和四个水分子在 Ni1 中心周围形成了一个几乎理想的八面体(图 3a、b)。Ni-O carb 键长为2.051(2)Å,Ni-O W 键长为2.032(2)且

2.073(2) Å. The angles that should be 90in the regular octahedron ranged from 87.35(7) to
2.073(2) å.正八面体中应为 90 的角度范围为 87.35(7) 至

92.65(7); the remaining angles were 180(Figure 3b). The bond lengths and angles in the coordination octahedron were within those observed in a related nickel compound [41]. The µ-L2ligand acted as a bidentate linker to form a 1D linear chain structure (Figure 3c), as observed in related compounds [40,41]. Both carboxylate groups were monodentate with the O2–C1–O1 angle equal to 126.5(2). The biphenyl ring and side arms of µL2were almost coplanar. As depicted in Figures 3d and S4, there was an extensive network of intramolecular and intermolecular hydrogen bonds (Table S1), with the latter responsible for a structural extension into a 3D H-bonded network. Water molecules participated in the bifurcated hydrogen bonds: three times as proton donor and one as proton acceptor. Topological analysis of 2 classified the 1D metal-organic chains within a 2C1 type (Figure 2b) [58,59], while the 3D H-bonded net featured a 6,8T13 topology.
92.65(7) ;其余角度为180 (图3b)。配位八面体的键长和角在相关镍化合物中观察到的键长和角内[41]。如相关化合物[4041]所示,μ-L 2 配体作为双向连接物形成一维线性链结构(图3c)。两个羧酸基团都是单齿的,O2-C1-O1角等于126.5(2)。 μL 2 的联苯环和侧臂几乎是共面的。如图3d和图S4所示,存在广泛的分子内和分子间氢键网络(表S1),后者负责结构延伸为3D氢键网络。水分子参与了分叉的氢键:三倍于质子供体,一倍于质子受体。2的拓扑分析将1D金属有机链归类为2C1类型(图2b)[5859],而3D H键合网具有6,8T13拓扑结构。

(a)
(一)

(b)
(二)

(c)
(三)

(d)
(四)

Figure 3. Structural fragments of 2. (a) Coordination environment of Ni center; 50% probability level ellipsoids are drawn; (b) coordination polyhedron of Ni atom; and (c) crystal packing with polyhedral representation of Ni atoms in view along the b axis. Symmetry code: (d) –x + 2, y + 1, z + 1. (d) H-bond network (dotted lines) in compound 2
图3.2.(a) 倪中心的协调环境;绘制 50% 概率水平椭球体;(b)Ni原子的配位多面体;(c)沿b轴可见的Ni原子多面体表示的晶体堆积。对称码:(d) –x + 2, −y + 1, z + 1。(d) 化合物2中的氢键网络(虚线)
.

3.2. Analysis of Infrared Spectra
3.2. 红外光谱分析

The infrared spectra of 1 and 2 featured absorption bands due to the OH groups from the water ligands in the stretching vibration region of 3500–3000 cm1, with maxima at 3376 and 3381 cm1, respectively (Figure 4). An involvement of H2O ligands in hydrogen bonds results in the band broadening [60,61]. The presence of coordinated water molecules in both 1 and 2 gave rise to the appearance of strong bending δ(OH) vibrations at 1648 and 1651 cm1, respectively [62]. Infrared spectra were also dominated by asymmetric and symmetric stretching vibrations of carboxylate groups, which appeared at 1601/1428 and 1592/1429 cm1 for 1 and 2, respectively. Slightly different positions of bands arising from asymmetric stretching vibrations of COOgroups confirmed the different coordination modes in 1 and 2 [63].
1 和 2 的红外光谱在 3500–3000 cm 1 的拉伸振动区域具有由于水配体的 OH 基团而产生的吸收带,最大值分别为 3376 和 3381 cm 1 (图 4)。H 2 O配体参与氢键导致能带变宽[6061]。1和2中均存在配位水分子,分别在1648和1651 cm 1 处出现强烈的弯曲δ OH)振动[62]。红外光谱也以羧酸基团的不对称和对称拉伸振动为主,分别出现在1和1601/1428和1592/1429 cm 1 处。COO 基团的不对称拉伸振动引起的能带位置略有不同,证实了1和2的不同配位模式[63]。

Figure 4. Infrared spectra of 1 and 2
图4.1 和 2 的红外光谱
.

3.3. Thermal Analysis in Air
3.3. 空气中的热分析

The investigated compounds exhibited different thermal behavior according to the thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses in an air atmosphere. The TG curve of 1 showed that the compound was stable up to 230 C (Figure 5), followed by a multistep decomposition process connected with a release of water molecules and the burning of organic ligands, as attested by a broad exothermic effect. The degradation of metal-organic framework, with a mass loss of 78%, was nearly complete at 480 C. At first, Co3O4 was formed as a solid residue of 1 under heating in air. This product was partially transferred into CoO in the temperature range of 900–940 C. This process was accompanied by a minor endothermic effect on the DSC curve [64].
根据热重法(TG)和差示扫描量热法(DSC)分析,所研究的化合物在空气气氛中表现出不同的热行为。TG曲线1显示,该化合物在230 °C下保持稳定(图5),随后是与水分子释放和有机配体燃烧相关的多步骤分解过程,广泛的放热效应证明了这一点。金属有机骨架的降解在480 °C时几乎完全,质量损失为78%。起初,Co 3 O 4 在空气中加热时形成为1的固体残留物。该产品在900-940 °C的温度范围内部分转移到CoO中。这一过程伴随着对DSC曲线的轻微吸热效应[64]。

Figure 5. TG curves of 1 and 2 recorded in air atmosphere. The inset shows DSC curves.
图5.在空气大气中记录 1 和 2 的 TG 曲线。插图显示了 DSC 曲线。

The 1D coordination polymer 2 showed lower thermal stability in comparison with

1 (Figure 5). The first mass loss (17.10%), observed on the TG curve at 150–200 C, was ascribed to the release of four aqua ligands (calcd. 16.70%). The DSC profile indicated that the dehydration process took place in one step with an endothermic effect at 170 C (peak top). A dehydrated sample was unstable on further heating, resulting in two-stage decomposition in the temperature ranges of 210–360 and 361–470 C with mass losses of 5.37 and 59.70%, respectively. This significant mass loss corresponds to the burning of the organic ligand and the formation of NiO as a final solid residue [65].
1(图 5)。在150–200° C的TG曲线上观察到的第一次质量损失(17.10%)归因于四种水配体的释放(计算值为16.70%)。DSC曲线表明,脱水过程在170 °C(峰值)下具有吸热效应,一步进行。脱水样品在进一步加热时不稳定,导致在210-360和361-470 °C的温度范围内发生两阶段分解,质量损失分别为5.37%和59.70%。这种显著的质量损失对应于有机配体的燃烧和NiO作为最终固体残基的形成[65]。

3.4. PXRD Analysis of Metal Oxides
3.4. 金属氧化物的PXRD分析

The PXRD patterns for the metal oxides (Figure 6), prepared on the basis of the compounds 1 and 2, were compared with the reference data from the PDF ICDD database [66]. Heating of 1 at 1000 C for 2 h gives a mixture of Co3O4 (65(1)%) and CoO (35(1)%), according to the reference data 04-005-7243 and 01-076-3830, respectively. Co3O4 is characterized by the following crystallographic data: cubic crystal system, space group F3d-3m, and unit cell parameters: a = b = c = 8.0920 Å, Z = 8, and V = 529.87 Å3. The crystallographic data of CoO are as follows: cubic crystal system, Fm-3m space group, and unit cell parameters: a = b = c = 4.7230 Å, Z = 4, and V = 78.02 Å3
将基于化合物1和化合物2制备的金属氧化物的PXRD图谱(图6)与PDF ICDD数据库的参考数据进行了比较[66]。根据参考数据 1-1000-7243 和 01-076-3830,分别得到 Co 3 O 4 (65(1)%) 和 CoO (35(1)%) 的混合物。 3 Co O 4 的特征在于以下晶体学数据:立方晶系、空间群 F3d-3m 和晶胞参数:a = b = c = 8.0920 Å、Z = 8 和 V = 529.87 Å 3 。CoO的晶体学数据如下:立方晶系、Fm-3m空间群和晶胞参数:a = b = c = 4.7230 Å,Z = 4,V = 78.02 Å 3
.

Figure 6. PXRD patterns of cobalt oxides (a) and (b) nickel oxide.
图6.钴氧化物(a)和(b)氧化镍的PXRD图案。

Heating of 2 led to the formation of NiO, which perfectly fits with the reference data 04-006-1894. This nickel(II) oxide crystallized in the cubic crystal system with the Fm-3m space group and unit cell parameters: a = b = c = 4.1800 Å, Z = 4, and V = 73.03 Å3
2的加热导致了NiO的形成,这与参考数据04-006-1894完全吻合。这种氧化镍 (II) 在立方晶体体系中结晶,具有 Fm-3m 空间群和晶胞参数:a = b = c = 4.1800 Å,Z = 4 和 V = 73.03 Å 3
.

3.5. TG-FTIR Analysis
3.5. TG-FTIR分析

To assess the thermal stability of 1 and 2 in an inert atmosphere, as well as to identify the gaseous products of their thermal decomposition, the coupling of thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FTIR) was applied (Figures S5, 7 and 8).
为了评估 1 和 2 在惰性气氛中的热稳定性,以及识别其热分解的气态产物,应用了热重分析 (TG) 和傅里叶变换红外光谱 (FTIR) 的耦合(图 S5、7 和 8)。

Figure 7. (a) 3D representation of FTIR spectra of evolved gases during decomposition of 1; and (b) FTIR spectra of gaseous products recorded at different temperatures.
图7.(a) 1分解过程中逸出气体的FTIR光谱的3D表示;(b)在不同温度下记录的气态产物的傅里叶变换红外光谱。

Figure 8. (a) 3D representation of FTIR spectra of evolved gases during the decomposition of 2; and (b) FTIR spectra of gaseous products recorded at different temperatures.
图8.(a) 2分解过程中逸出气体的FTIR光谱的3D表示;(b)在不同温度下记录的气态产物的傅里叶变换红外光谱。

The compound 1 is thermally stable in a nitrogen atmosphere up to 189 C. During further heating, three stages of decomposition were observed in the temperature ranges of 190–308, 309–378, and 379–600 C, which were accompanied by mass losses of 32.9, 13.4, and 21.2%, respectively. As can be deduced from the infrared spectra of volatile products evolved during the heating of 1 under nitrogen, the dehydration took place along with the decomposition process. The molecules of water, formic acid, and carbon dioxide were released at first (Figure 7). The FTIR spectra showed weak broad bands in the wavenumber ranges of 4000–3400 and 1900–1300 cm1 as a result of stretching and deformation vibrations of OH groups from evolved water molecules [3338]. In the range of 3150–2600 cm1, there was a broad band with the maxima at 2931 and 2854 cm1 due to the stretching CH vibrations from evolved formic acid [67]. Several bands at 1792,
化合物 1 在高达 189 C 的氮气气氛中具有热稳定性。在进一步加热过程中,在190-308、309-378和379-600 °C的温度范围内观察到三个分解阶段,分别伴随着32.9%、13.4%和21.2%的质量损失。从在氮气下加热1期间放出的挥发性产物的红外光谱可以推断出,脱水与分解过程一起发生。首先释放出水、甲酸和二氧化碳分子(图7)。FTIR光谱显示,在4000-3400和1900-1300 cm 1 的波数范围内,由于演化水分子的OH基团的拉伸和变形振动,宽带较弱[33\u201238]。在3150–2600 cm 1 的范围内,由于逸出甲酸的拉伸CH振动,在2931和2854 cm 1 处有一个宽带[67]。1792年的几个乐队,

1749, and 1723 cm1 were attributed to the stretching vibrations of the carbonyl group. The relatively strong bands, with maxima at 1121 and 1081 cm1, were assigned to the COH groups from the evolved HCOOH molecules. The highest intensities of such gas evolution was observed up to about 400 C. Carbon dioxide molecules gave characteristic bands in the 2400–2250 cm1 range (maxima at 2358, 2344, 2321, and 2310 cm1) and one band at 668 cm1 due to the stretching and deformation vibrations. Intense carbon dioxide evolution was observed up to about 600 C. Carbon monoxide molecules were also identified among the volatile products of the compound 1 decomposition (Figure 7), as attested by a very diagnostic double band in the 2250–2000 cm1 range [3338]. The most intense release of CO took place above 400 C. It is worth mentioning that methane was also observed above 250 C, as attested by a group of bands with a maximum at 3014 cm1
1749 和 1723 cm 1 归因于羰基的拉伸振动。相对强的条带,最大值在1121和1081 cm 1 ,被分配到进化的HCOOH分子的COH组。 二氧化碳分子在2400-2250 cm 1 范围内(最大值在2358、2344、2321和2310 cm 1 )和668 cm 1 处给出一个特征条带。在化合物1分解的挥发性产物中也发现了强烈的二氧化碳释放,在约600° C的浓度下也发现了一氧化碳分子(图7),2250-2000 cm 1 范围内的双带非常具有诊断意义[33\u201238]。一氧化碳释放最强烈发生在400 °C以上。值得一提的是,在250 °C以上也观察到甲烷,一组最大温度为3014厘米 1 的波段证明了这一点
.

Compound 2 was thermally stable in a nitrogen atmosphere up to 102 C. Then, an overlapping four-stage decomposition occurred in the temperature ranges of 103–203, 204–285, 286–486, and 487–700 C, accompanied by mass losses of 12.2, 9, 30.3, and 5.9%, respectively (Figure S4). The compounds that were isostructural with 2 [41] exhibited different thermal behavior in a nitrogen atmosphere. Their dehydration process took place in the temperature range of 86–151 C, with the formation of dehydrated complexes stable up to ~400 C. These distinct thermal behaviors can be explained by supramolecular differences (H-bonding networks and other weak interactions), which have an effect on the solid state reactions during heating.
化合物2在高达102 °C的氮气气氛中具有热稳定性。然后,在103-203、204-285、286-486和487-700 °C的温度范围内发生了重叠的四阶段分解,质量损失分别为12.2%、9、30.3%和5.9%(图S4)。与2[41]同构的化合物在氮气气氛中表现出不同的热行为。它们的脱水过程发生在 86-151 C 的温度范围内,脱水复合物的形成稳定到 ~400 C。这些不同的热行为可以通过超分子差异(氢键网络和其他弱相互作用)来解释,这些差异对加热过程中的固态反应有影响。

The water was the main volatile product observed in the temperature range of
水是观察到的主要挥发产物,温度范围为

105–245 C, as can be proposed based on the FTIR spectra (Figure 8). Further heating led to the degradation of the compound and the evolution of such volatile products as carbon dioxide and formic acid. Additionally, some traces of carbon monoxide were also recognized. Above 420 C, the increase of intensity of CO2 bands, as well as the evolution of CO, were observed. In comparison to the degradation of 1, methane molecules were identified among gaseous products above 430 C. The total mass loss associated with heating of 2 in nitrogen was 57.4%.
105–245 C,根据FTIR光谱可以提出(图8)。进一步加热导致化合物降解以及二氧化碳和甲酸等挥发性产物的析出。此外,还发现了一些微量的一氧化碳。在420 C以上,观察到CO 2 带强度的增加以及CO的演变。与1的降解相比,在430 °C以上的气态产物中鉴定出甲烷分子。与在氮气中加热2相关的总质量损失为57.4%。

4. Conclusions
4. 结论

In this work, we further explored biphenyl-4,4’-dioxydiacetic acid (H2L) as a flexible dicarboxylate linker for the solvothermal assembly of cobalt(II) and nickel(II) coordination polymers. Both products [Co(µ4-L)(H2O)2]n (1) and [Ni(µ-L)(H2O)4]n (2) were structurally characterized. Despite a similarity in synthetic procedures, the compounds featured distinct 3D (1) and 1D (2) structures and topologies. The dimensionality of the obtained compounds had an influence on their thermal stability and decomposition processes, which were investigated in detail by TG-DSC and TG-FTIR methods. Thermal decomposition products of 1 and 2 were also analyzed by PXRD, confirming the formation of Co3O4/CoO and NiO. The coordination polymers were stable in air up to 230 C (1) and 150 C (2), and their decomposition proceeded with an evolution of water, formic acid, and carbon oxides as the main species. We believe this study contributes to the widening of a family of metalorganic architectures assembled from flexible carboxylate linkers and to the gathering of information on their thermal behavior with relevance to the synthesis of metal oxide materials. It should be noted that coordination polymers represent a very promising class of precursors for the generation of metal oxide nanoparticles and related composite materials with interesting morphological and electrochemical properties [6871]. Further research in this direction is underway in our laboratories.
在这项工作中,我们进一步探索了联苯-4,4'-二氧二乙酸(H 2 L)作为钴(II)和镍(II)配位聚合物溶剂热组装的柔性二羧酸酯连接剂。两种产物 [Co(μ 4 -L)(H 2 O) 2 ] n (1) 和 [Ni(μ-L)(H 2 O) 4 ] n (2) 都进行了结构表征。尽管合成过程相似,但这些化合物具有不同的 3D (1) 和 1D (2) 结构和拓扑结构。所得化合物的维数对其热稳定性和分解过程有影响,采用TG-DSC和TG-FTIR方法对此进行了详细研究。PXRD还分析了1和2的热分解产物,证实了Co 3 O 4 /CoO和NiO的形成。配位聚合物在高达230 C(1)和150 C(2)的空气中保持稳定,其分解以水、甲酸和碳氧化物为主要物质。我们相信这项研究有助于扩大由柔性羧酸盐连接剂组装而成的金属有机结构家族,并有助于收集与金属氧化物材料合成相关的热行为信息。应该指出的是,配位聚合物是一类非常有前途的前体,用于生成具有有趣形态和电化学特性的金属氧化物纳米颗粒和相关复合材料[68\u201271]。我们的实验室正在朝着这个方向进行进一步的研究。

Supplementary Materials: The following are available online at https://www.mdpi.com/article/ 10.3390/ma14133545/s1 : Table S1. Geometries of hydrogen bonds and selected short contacts for studied structures; Figure S1. Powder X-ray diffraction patterns of 1: (a) experimental, (b) calculated; Figure S2. Powder X-ray diffraction patterns of 2: (a) experimental, (b) calculated; Figure S3. H-bond network (green lines) in compound 1. Symmetry codes: (a) x, y+0.5, z+0.5; (b) –x, y0.5, z+0.5; (c) –x, z+1, z+1; (e) x, y+0.5, z+0.5; Figure S4. H-bond network (green lines) in compound 2. Symmetry codes: (d) –x+2, y+1, z+1; (f) –x+2, y, z+1; (g) –x+1, y+1, z+1; Figure S5. TG curves of 1 and 2 recorded in nitrogen atmosphere.

Author Contributions: Conceptualization, H.G. and R.Ł.; methodology, H.G., R.Ł., L.M., and A.M.K.; software, L.M.; formal analysis, H.G., R.Ł., L.M., and A.M.K.; investigation, H.G., R.Ł., L.M., and A.M.K.; resources, H.G., R.Ł., L.M., and A.M.K.; data curation, H.G., R.Ł., and L.M.; writing—original draft preparation, H.G., R.Ł., and A.M.K.; writing—review and editing, H.G., R.Ł., and A.M.K.; visualization, H.G., R.Ł., L.M., and A.M.K.; supervision, H.G. and R.Ł.; project administration, H.G. and R.Ł. All authors have read and agreed to the published version of the manuscript.
作者贡献:Conceptualization, H.G. and R.Ł.;方法论,H.G.、R.Ł.、L.M. 和 A.M.K.;软件,L.M.;形式分析,H.G.、R.Ł.、L.M. 和 A.M.K.;调查,H.G.、R.Ł.、L.M. 和 A.M.K.;资源,H.G.、R.Ł.、L.M. 和 A.M.K.;数据管理,H.G.、R.Ł. 和 L.M.;写作——原始草稿准备、H.G.、R.Ł. 和 A.M.K.;写作——审查和编辑,H.G.、R.Ł. 和 A.M.K.;可视化,H.G.、R.Ł.、L.M. 和 A.M.K.;监督,H.G.和R.Ł.;项目管理,H.G.和R.Ł。所有作者均已阅读并同意该手稿的出版版本。

Funding: This research received no external funding.
资金:这项研究没有获得外部资金。

Institutional Review Board Statement: Not applicable.
机构审查委员会声明:不适用。

Informed Consent Statement: Not applicable.
知情同意声明:不适用。

Data Availability Statement: The data underlying this article will be shared on reasonable request from the corresponding authors.
数据可用性声明:本文所依据的数据将在通讯作者的合理要求下共享。

Acknowledgments: A.M.K. acknowledges the FCT (LISBOA-01-0145-FEDER-029697, PTDC/QUIQIN/3898/2020) and RUDN University (this paper has been supported by the RUDN University Strategic Academic Leadership Program).
致谢:A.M.K. 感谢 FCT (LISBOA-01-0145-FEDER-029697, PTDC/QUIQIN/3898/2020) 和俄罗斯人民友谊大学(本文已得到俄罗斯人民友谊大学战略学术领导力计划的支持)。

Conflicts of Interest: The authors declare no conflict of interest.
利益冲突:作者声明没有利益冲突。

References
引用

Robin, A.Y.; Fromm, K.M. Coordination polymer networks with O-and N-donors: What they are, why and how they are made? Coord. Chem. Rev. 2006, 250, 2127–2157. [CrossRef]
罗宾,A.Y.;Fromm, K.M. 与O-和N-供体的配位聚合物网络:它们是什么,为什么以及如何制造?坐标。Chem. Rev. 2006, 250, 2127–2157.[交叉参考]

Janiak, C.; Vieth, J.K. MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366–2388. [CrossRef]
贾尼亚克,C.;Vieth, J.K. MOFs、MILs等:多孔配位网络(PCNs)的概念、特性和应用。新化学杂志 2010, 34, 2366–2388.[交叉参考]

Batten, S.R.; Neville, S.M.; Turner, D.R. Coordination Polymers: Design, Analysis and Application; Royal Society of Chemistry Publishing: Cambridge, UK, 2009.
巴顿,S.R.;内维尔,SM;Turner, D.R. 配位聚合物:设计、分析和应用;英国皇家化学学会出版社:英国剑桥,2009年。

Morsali, A.; Hashemi, L. Main Group Metal Coordination Polymers: Structures and Nanostructures; John Wiley & Sons: Hoboken, NJ, USA, 2017.
莫萨利,A.;Hashemi, L. 主族金属配位聚合物:结构和纳米结构;John Wiley & Sons:美国新泽西州霍博肯,2017 年。

Allendorf, M.D.; Stavila, V. Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. Cryst. Eng. Comm. 2015, 17, 229–246. [CrossRef]
艾伦多夫,医学博士;Stavila, V. 晶体工程、结构-功能关系以及金属-有机框架的未来。Cryst. Eng. Comm. 2015, 17, 229–246.[交叉参考]

Mohideen, M.I.H.; Pillai, R.S.; Adil, K.; Bhatt, P.M.; Belmabkhout, Y.; Shkurenko, A.; Maurin, G.; Eddaoud, M. A Fine-tuned mof for gas and vapor separation: A multipurpose adsorbent for acid gas removal, dehydration, and btx sieving. Chem 2017, 3, 822–833. [CrossRef]
莫希登,M.I.H.;皮莱,R.S.;阿迪尔,K.;巴特,下午;贝尔马布霍特,Y.;什库连科,A.;莫林,G.;埃达乌德,M.用于气体和蒸汽分离的微调MOF:一种用于酸性气体去除、脱水和btx筛分的多用途吸附剂。化学 2017, 3, 822–833.[交叉参考]

Wang, H.; Li, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 2018, 21, 108–121.
王旭东;李,K.;孙,Y.;洛拉尔,CT;李,J.;周, H.-C.使用金属有机框架进行气体储存和分离的最新进展。母校。今天 2018, 21, 108–121.

Zheng, L.-N.; Yan, Y.-T.; Ding, T.; Xue, N. Construction and magnetic properties of cobalt(II) and manganese(II) coordination polymers based on N-heterocyclic carboxylate bifunctional ligands. Inorg. Chim. Acta 2021, 515, 120054. [CrossRef]
郑L.-N.;闫玉旭;丁,T.;基于N-杂环羧酸双官能配体的钴(II)和锰(II)配位聚合物的构造和磁性.伊诺格。奇姆。学报 2021, 515, 120054.[交叉参考]

Kuznetsova, A.; Matveevskaya, V.; Pavlov, D.; Yakunenkov, A.; Potapov, A. Coordination Polymers Based on Highly Emissive Ligands: Synthesis and Functional Properties. Materials 2020, 13, 2699. [CrossRef]
库兹涅佐娃,A.;马特维耶夫斯卡娅,V.;巴甫洛夫,D.;亚库年科夫,A.;Potapov,A.基于高发射配体的配位聚合物:合成和功能特性。材料 2020, 13, 2699.[交叉参考]

Amini, A.; Kazemi, S.; Safarifard, V. Metal-organic framework-based nanocomposites for sensing applications–a review. Polyhedron 2020, 177, 114260. [CrossRef]
阿米尼,A.;卡泽米,S.;Safarifard, V. 基于金属有机框架的纳米复合材料在传感应用中的应用——综述。多面体 2020, 177, 114260.[交叉参考]

Lippi, M.; Cametti, M. Highly dynamic 1D coordination polymers for adsorption and separation applications. Coord. Chem. Rev. 2021, 430, 213661. [CrossRef]
里皮,M.;Cametti, M. 用于吸附和分离应用的高动态一维配位聚合物。坐标。Chem. Rev. 2021, 430, 213661.[交叉参考]

Liu, J.-M.; Hou, J.-X.; Liu, J.; Jing, X.; Lia, L.-J.; Du, J.-L. Pyrazinyl-functionalized Zr(IV)-MOF for ultrasensitive detection of tyrosine/TNPand efficient CO2/N2 separation. J. Mater. Chem. C 2019, 7, 11851–11857. [CrossRef]
刘建明;侯J.-X.;刘,J.;静,X.;利亚,L.-J.;杜J.-L.吡嗪基官能化Zr(IV)-MOF用于酪氨酸/TNP的超灵敏检测和高效的CO 2 /N 2 分离。J.马特。化学 C 2019, 7, 11851–11857.[交叉参考]

Jaros, S.W.; Sokolnicki, J.; Woloszyn, A.; Haukka, M.; Kirillov, A.M.; Smolen´ski, P. A Novel 2D Coordination Network Built from Hexacopper(I)-Iodide Clusters and Cagelike Aminophosphine Blocks for Reversible “Turn-On” Sensing of Aniline. J. Mater. Chem. C 2018, 6, 1670–1678. [CrossRef]
雅罗斯,SW;索科利尼基,J.;沃洛辛,A.;豪卡,M.;基里洛夫,上午;斯摩棱斯基,P.一种由六铜(I)-碘化物簇和笼状氨基膦块构建的新型2D配位网络,用于苯胺的可逆“开启”传感。J.马特。化学 C 2018, 6, 1670–1678.[交叉参考]

Huang, W.; Jiang, J.; Wu, D.; Xu, J.; Xue, B.; Kirillov, A.M. A Highly Stable Nanotubular MOF Rotator for Selective Adsorption of Benzene and Separation of Xylene Isomers. Inorg. Chem. 2015, 54, 10524–10526. [CrossRef] [PubMed]
黄,W.;江,J.;吴,D.;徐,J.;薛斌;基里洛夫,上午一种高度稳定的纳米管式MOF旋转器,用于苯的选择性吸附和二甲苯异构体的分离。伊诺格。化学 2015, 54, 10524–10526.[交叉参考][出版]

Raptopoulou, C.P. Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials 2021, 14, 310. [CrossRef]
Raptopoulou, C.P. 金属有机框架:合成方法和潜在应用。材料 2021, 14, 310.[交叉参考]

Wen, J.; Fang, Y.; Zeng, G. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: A review of studies from the last decade. Chemosphere 2018, 201, 627–643. [CrossRef] [PubMed]
温,J.;方,Y.;使用金属有机框架从水溶液中吸附去除重金属离子的进展和前景:过去十年的研究回顾。化学圈 2018, 201, 627–643.[交叉参考][出版]

Lustig, W.P.; Li, J. Luminescent metal-organic frameworks and coordination polymers as alternative phosphors for energy efficient lighting devices. Coord. Chem. Rev. 2018, 373, 116–147. [CrossRef]
勒斯蒂格,WP;Li, J. 发光金属有机框架和配位聚合物作为节能照明设备的替代荧光粉.坐标。化学修订版 2018, 373, 116–147.[交叉参考]

Rancan, M.; Armelao, L. Exploiting dimensional variability in coordination polymers: Solvent promotes reversible conversion between 3D and chiral 1D architectures. Chem. Commun. 2015, 51, 12947–12949. [CrossRef] [PubMed]
兰坎,M.;利用配位聚合物的尺寸变异性:溶剂促进 3D 和手性 1D 结构之间的可逆转换。化学2015, 51, 12947–12949.[交叉参考][出版]

Rancan, M.; Carlotto, A.; Bottaro, G.; Armelao, L. Effect of coordinating solvents on the structure of Cu(II)-4,4’-bipyridine coordination polymers. Inorganics 2019, 7, 103. [CrossRef]
兰坎,M.;卡洛托,A.;博塔罗,G.;配位溶剂对Cu(II)-4,4'-联吡啶配位聚合物结构的影响。无机物 2019, 7, 103.[交叉参考]

Noro, S.; Kitaura, R.; Kondo, M.; Kitagawa, S.; Ishii, T.; Matsuzaka, H.; Yamashita, M. Framework engineering by anions and porous functionalities of Cu(II)/4,40-bpy coordination polymers. J. Am. Chem. Soc. 2002, 124, 2568–2583. [CrossRef]
诺罗,S.;北浦,R.;近藤,M.;北川,S.;石井,T.;松坂,H.;Yamashita, M. Cu(II)/4,40-bpy配位聚合物的阴离子和多孔官能团的框架工程。J. Am. Chem. Soc. 2002, 124, 2568–2583.[交叉参考]

Rizzato, S.; Moret, M.; Beghi, F.; Lo Presti, L. Crystallization and structural properties of a family of isotopological 3D-networks: The case of a 4,4’-bipy ligand–M2+ triflate system. CrystEngComm 2018, 20, 3784–3795. [CrossRef]
里扎托,S.;莫雷特,M.;贝吉,F.;Lo Presti, L. 同位素 3D 网络家族的结晶和结构特性:4,4'-双配体-M2+ 三氟甲磺酸盐系统的情况。CrystEngComm 2018, 20, 3784–3795.[交叉参考]

Kondo, A.; Kajiro, H.; Noguchi, H.; Carlucci, L.; Proserpio, D.M.; Ciani, G.; Kato, K.; Takata, M.; Seki, H.; Sakamoto, M.; et al. Super flexibility of a 2D Cu-based porous coordination framework on gas adsorption in comparison with a 3D framework of identical composition: Framework dimensionality-dependent gas adsorptivities. J. Am. Chem. Soc. 2011, 133, 10512–10522. [CrossRef]
近藤,A.;Kajiro,H.;野口,H.;卡鲁奇,L.;普罗瑟皮奥,DM;恰尼,G.;加藤,K.;高田,M.;关,H.;坂本,M.;等。与相同成分的 3D 框架相比,2D Cu 基多孔配位框架在气体吸附方面的超强灵活性:框架维度依赖性气体吸附率。J. Am. Chem. Soc. 2011, 133, 10512–10522.[交叉参考]

Yaghi, O.M. Reticular Chemistry: Molecular Precision in Infinite 2D and 3D. Mol. Front. J. 2019, 3, 66–83. [CrossRef]
Yaghi, O.M. 网状化学:无限 2D 和 3D 中的分子精度。J. 2019, 3, 66–83.[交叉参考]

Sanati, S.; Abazari, R.; Morsali, A.; Kirillov, A.M.; Junk, P.C.; Wang, J. An Asymmetric Supercapacitor Based on a Non-Calcined 3D Pillared Cobalt(II) Metal–Organic Framework with Long Cyclic Stability. Inorg. Chem. 2019, 58, 16100–16111. [CrossRef]
萨纳蒂,S.;阿巴扎里,R.;莫萨利,A.;基里洛夫,上午;垃圾,个人电脑;王, J.一种基于非煅烧三维柱状钴(II)金属有机框架的非对称超级电容器,具有长循环稳定性。伊诺格。化学 2019, 58, 16100–16111.[交叉参考]

[PubMed]
[出版]

Han, F.; Cao, S.; Ding, H.; Chen, Z.; Zhang, Q.; Xu, S.D. Two mixed-ligand Cd(II)-coordination polymers: Structural diversity and antitumor activity against human osteogenic sarcoma cells. Inorg. Nano-Metal Chem. 2020, 50, 880–887. [CrossRef]
韩,F.;曹曹曹;丁,H.;陈志强;张,Q.;徐, S.D.两种混合配体 Cd(II) 配位聚合物:针对人成骨肉瘤细胞的结构多样性和抗肿瘤活性。伊诺格。纳米金属化学 2020, 50, 880–887.[交叉参考]

Thuéry, P.; Atoini, Y.; Harrowfield, J. Structure-Directing Effects of Coordinating Solvents, Ammonium and Phosphonium Counterions in Uranyl Ion Complexes with 1,2-, 1,3-, and 1,4-Phenylenediacetates. Inorg. Chem. 2020, 59, 2503–2518. [CrossRef]
Thuéry,P.;阿托尼,Y.;Harrowfield, J. 与 1,2-、1,3- 和 1,4-亚苯二乙酸酯的铀酰离子络合物中配位溶剂、铵和磷铵反离子的结构导向效应。伊诺格。化学 2020, 59, 2503–2518.[交叉参考]

[PubMed]
[出版]

Newsome, W.J.; Ayad, S.; Cordova, J.; Reinheimer, E.W.; Campiglia, A.D.; Harper, J.K.; Hanson, K.; Uribe-Romo, F.J. Solid State Multicolor Emission in Substitutional Solid Solutions of Metal–Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 11298–11303. [CrossRef]
纽瑟姆,W.J.;阿亚德,S.;科尔多瓦,J.;莱因海默,E.W.;坎皮利亚,公元;哈珀,J.K.;汉森,K.;Uribe-Romo, F.J. 金属有机框架替代固体溶液中的固态多色发射。J. Am. Chem. Soc. 2019, 141, 11298–11303.[交叉参考]

Barsukova, M.O.; Sapchenko, S.A.; Kovalenko, K.A.; Samsonenko, D.G.; Potapov, A.S.; Dybtsev, D.N.; Fedin, V.P. Exploring the multifunctionality in metal–organic framework materials: How do the stilbenedicarboxylate and imidazolyl ligands tune the characteristics of coordination polymers? New J. Chem. 2018, 42, 6408–6415. [CrossRef]
巴尔苏科娃,M.O.;萨普琴科,S.A.;科瓦连科,K.A.;萨姆索年科,D.G.;波塔波夫,A.S.;迪布采夫,DN;Fedin, V.P. 探索金属有机框架材料的多功能性:二苯乙二甲酸酯和咪唑基配体如何调节配位聚合物的特性?新化学杂志 2018, 42, 6408–6415.[交叉参考]

Paz, F.A.A.; Klinowski, J.; Vilela, S.M.F.; Tomé, J.P.C.; Cavaleiro, J.A.S.; Rocha, J. Ligand design for functional metal–organic frameworks. Chem. Soc. Rev. 2012, 41, 1088–1110.
帕斯,FAA;克利诺夫斯基,J.;维莱拉,S.M.F.;多美,J.P.C.;卡瓦莱罗,J.A.S.;Rocha, J. 功能性金属有机框架的配体设计。Chem. Soc. Rev. 2012, 41, 1088–1110.

Liu, C.-S.; Sañudo, E.C.; Hu, M.; Zhou, L.-M.; Guo, L.-Q.; Ma, S.-T.; Gao, L.-J.; Fang, S.-M. Metal–organic coordination polymers based on a flexible tetrahydrofuran-2,3,4,5-tetracarboxylate ligand: Syntheses, crystal structures, and magnetic/photoluminescent properties. CrystEngComm 2010, 12, 853–865. [CrossRef]
刘,C.-S.;萨努多,E.C.;胡,M.;周, L.-M.;郭立奎;马,S.-T.;高L.-J.;方, S.-M.基于柔性四氢呋喃-2,3,4,5-四羧酸配体的金属-有机配位聚合物:合成、晶体结构和磁性/光致发光特性。CrystEngComm 2010, 12, 853–865.[交叉参考]

Liu, J.-Q.; Wu, J.; Wu, T. A Luminescent eight-coordinated 2D Cd(II) framework material with flexible multi-carboxylate ligand. Synth. React. Inorg. Met. Chem. 2010, 40, 231–236. [CrossRef]
刘J.-Q.;吴,J.;吴婷婷一种具有柔性多羧酸配体的发光八配位 2D Cd(II) 框架材料。合成器。反应。伊诺格。遇到。化学 2010, 40, 231–236.[交叉参考]

Yang, K.-N.; Yuan, K.-D.; Jiang, L.-L.; Zhang, Y. A new Pb(II)-based coordination polymer constructed from a semirigid tricarboxylate ligand: Crystal structure and anti-lung cancer activity. Main Group Met. Chem. 2019, 42, 8–12. [CrossRef]
杨,K.-N.;袁国强;江,L.-L.;张彦由半刚性三羧酸配体构建的新型Pb(II)基配位聚合物:晶体结构和抗肺癌活性。主要小组开会。化学 2019, 42, 8–12.[交叉参考]

Łyszczek, R.; Mazur, L. Synthesis, crystal structure, spectroscopic and thermal investigations of neodymium(III) biphenyl-4,4’dicarboxylate framework. Cent. Eur. J. Chem. 2012, 10, 1165–1174. [CrossRef]
维什切克,R.;Mazur, L. 钕 (III) 联苯-4,4'二羧酸钕框架的合成、晶体结构、光谱和热研究。Cent. Eur. J. Chem. 2012, 10, 1165–1174.[交叉参考]

Łyszczek, R. Synthesis, structure, thermal and luminescence behaviors of lanthanide pyridine-3,5-dicarboxylate frameworks series. Thermochim. Acta 2010, 509, 120–127. [CrossRef]
Łyszczek, R. 镧系吡啶-3,5-二羧酸酯框架系列的合成、结构、热和发光行为。热火。学报 2010, 509, 120–127.[交叉参考]

Łyszczek, R.; Rusinek, I.; Sienkiewicz-Gromiuk, J.; Iwan, M.; Pavlyuk, O. 3-D lanthanide coordination polymers with the flexible 1,3-phenylenediacetate linker: Spectroscopic, structural and thermal investigations. Polyhedron 2019, 159, 93–101. [CrossRef]
维什切克,R.;鲁西内克,I.;Sienkiewicz-Gromiuk,J.;伊万,M.;Pavlyuk, O. 具有柔性 1,3-苯二乙酸酯连接剂的 3-D 镧系元素配位聚合物:光谱、结构和热研究。多面体 2019, 159, 93–101.[交叉参考]

Łyszczek, R.; Lipke, A. Microwave-assisted synthesis of lanthanide 2,6-naphthalenedicarboxylates: Thermal, luminescent and sorption characterization. Micropor. Mesopor. Mat. 2013, 168, 81–91. [CrossRef]
维什切克,R.;Lipke, A. 镧系元素 2,6-萘二甲酸盐的微波辅助合成:热、发光和吸附表征。微孔。中波。马太福音 2013, 168, 81–91.[交叉参考]

Łyszczek, R.; Głuchowska, H.; Cristóvão, B.; Tarasiuk, B. New lanthanide biphenyl-4,40-diacetates hydrothermal synthesis, spectroscopic, magnetic and thermal investigations. Thermochim. Acta 2016, 645, 16–23. [CrossRef]
维什切克,R.;格乌霍夫斯卡,H.;克里斯托万,B.;塔拉修克,b.新型镧系元素联苯-4,4 0 -二乙酸酯-水热合成、光谱、磁性和热研究。热火。学报 2016, 645, 16–23.[交叉参考]

Łyszczek, R. Correlation between adsorption and thermal properties of lanthanide(III) dinicotinates. App. Surf. Sci. 2010, 257, 1736–1739. [CrossRef]
Łyszczek, R. 镧系元素(III)二烟酸盐吸附与热性能之间的相关性。应用冲浪。科学 2010, 257, 1736–1739.[交叉参考]

Głuchowska, H.; Łyszczek, R.; Jusza, A.; Piramidowicz, R. Effect of N,N0-dimethylformamide solvent on structure and thermal properties of lanthanide(III) complexes with flexible biphenyl-4,40-dioxydiacetic acid. J. Therm. Anal. Calorim. 2021. [CrossRef]
格乌霍夫斯卡,H.;维什切克,R.;尤萨,A.;N,N 0 -二甲基甲酰胺溶剂对镧系元素(III)配合物与柔性联苯-4,4 0 -二氧二乙酸的结构和热性能的影响。J. Therm. 肛门. 卡路里.2021. [交叉参考]

Łyszczek, R.; Głuchowska, H.; Mazur, L.; Tarasiuk, B.; Kinzhybalo, V.; Kirillov, A.M. Structural diversity of alkali metal coordination polymers driven by flexible biphenyl-4,40-dioxydiacetic acid. J. Solid State Chem. 2018, 265, 92–99. [CrossRef]
维什切克,R.;格乌霍夫斯卡,H.;马祖尔,L.;塔拉修克,B.;金日巴洛,V.;Kirillov, A.M. 由柔性联苯-4,4 0 -二氧二乙酸驱动的碱金属配位聚合物的结构多样性。固体化学杂志 2018, 265, 92–99.[交叉参考]

Ji, C.-C.; Li, J.; Li, Y.-Z.; Guo, Z.-J.; Zheng, H.-G. Eight new complexes based on flexible multicarboxylate ligands: Synthesis, structures and properties. CrystEngComm 2010, 12, 3183–3194. [CrossRef]
姬,C.-C.;李,J.;李Y.-Z.;郭志杰;郑旭辉基于柔性多羧酸配体的八种新复合物:合成、结构和性质。CrystEngComm 2010, 12, 3183–3194.[交叉参考]

Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [CrossRef]
新郎,CR;布鲁诺,IJ;莱特富特,议员;南卡罗来纳州沃德剑桥结构数据库。晶体学报 2016, B72, 171–179.[交叉参考]

Modanlou Juibari, N.; Abbasi, A.; Bourbour Ajdari, H. Synthesis and characterization of new cobalt(II)–pyrazine coordination polymer as precursor for preparation of Co(II) oxide nanoparticles: Surprising coordination, DFT calculation and spectroscopic studies. J. Inorg. Organomet. Polym. 2017, 27, S124–S130. [CrossRef]
莫丹露·朱巴里(Modanlou Juibari),N.;阿巴西,A.;Bourbour Ajdari, H. 新型钴 (II) -吡嗪配位聚合物作为制备 Co(II) 氧化物纳米颗粒前体的合成和表征:令人惊讶的配位、DFT 计算和光谱研究。J.伊诺格。有机物。波利姆。2017, 27, S124–S130.[交叉参考]

Imaduddin, I.S.; Majid, S.R.; Aziz, S.B.; Brevik, I.; Yusuf, S.N.F.; Brza, M.A.; Saeed, S.R.; Kadir, M.F.Z.A. Fabrication of Co3O4 from Cobalt/2,6-Napthalenedicarboxylic Acid Metal-Organic Framework as Electrode for Supercapacitor Application. Materials 2021, 14, 573. [CrossRef] [PubMed]
伊马杜丁,I.S.;马吉德,S.R.;阿齐兹,S.B.;布雷维克,I.;优素福,S.N.F.;马萨诸塞州布尔扎;赛义德,S.R.;Kadir, M.F.Z.A. 用钴/2,6-萘二甲酸金属有机框架制造 Co3O4 作为超级电容器应用电极。材料 2021, 14, 573.[交叉参考][出版]

CrysAlis PRO; Agilent Technologies Ltd.: Oxfordshire, UK, 2013.
孤岛危机PRO;安捷伦科技有限公司:英国牛津郡,2013 年。

Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [CrossRef] 47.Blatov, V.A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCr CompComm Newsl. 2006, 7, 4–38.
Sheldrick, G.M. 使用 SHELXL 进行晶体结构改进。晶体学报。C节结构。化学 2015, 71, 3–8.[交叉参考] 47.Blatov, V.A. 使用程序包 TOPOS 进行多用途晶体化学分析。IUCr CompComm 新闻。2006, 7, 4–38.

Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [CrossRef]
弗吉尼亚州布拉托夫;舍甫琴科,美联社;Proserpio, D.M. 使用程序包 ToposPro 对晶体结构进行应用拓扑分析。Cryst. 增长设计 2014, 14, 3576–3586.[交叉参考]

O’Keeffe, M.; Yaghi, O.M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675–702. [CrossRef] [PubMed]
奥基夫,M.;Yaghi, O.M. 将金属有机框架和相关材料的晶体结构解构为它们的底层网络。化学修订版 2012, 112, 675–702.[交叉参考][出版]

Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O.M. Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 1343–1370. [CrossRef]
李,M.;李,D.;奥基夫,M.;Yaghi, O.M. 具有多主题连接子和/或多个建筑单元的金属有机框架的拓扑分析以及最小传递性原理。化学修订版 2014, 114, 1343–1370.[交叉参考]

Muzart, J. N,N’-Dimethylformamide: Much more than a solvent. Tetrahedron 2009, 65, 8313–8323. [CrossRef]
穆扎特,J. N,N'-二甲基甲酰胺:不仅仅是一种溶剂。四面体 2009, 65, 8313–8323.[交叉参考]

Galstyan, G.; Knapp, E.-W. Computing pKA values of hexa-aqua transition metal complexes. J. Comp. Chem. 2015, 36, 69–78. [CrossRef]
加尔斯蒂安,G.;克纳普,E.-W.计算六水过渡金属配合物的pK A 值。化学杂志 2015, 36, 69–78.[交叉参考]

Ramanan, A.; Whittingham, M.S. How molecules turn into solids: The case of self-assembled metal organic-frameworks. Cryst. Growth Des. 2006, 6, 2419–2421. [CrossRef]
拉马南,A.;惠廷厄姆,理学硕士分子如何变成固体:自组装金属有机框架的情况。Cryst. Growth Des. 2006, 6, 2419–2421.[交叉参考]

Davies, M.B. Cobalt 1992–1993. Coord. Chem. Rev. 1996, 152, 1–85. [CrossRef]
Davies, M.B. 钴 1992–1993。坐标。化学修订版 1996, 152, 1–85.[交叉参考]

Halcrow, M.A. Jahn–Teller distortions in transition metal compounds, and their importance in functional molecular and inorganic materials. Chem. Soc. Rev. 2013, 42, 1784–1795. [CrossRef] [PubMed]
Halcrow, M.A. Jahn-Teller过渡金属化合物中的畸变及其在功能分子和无机材料中的重要性。Chem. Soc. Rev. 2013, 42, 1784–1795.[交叉参考][出版]

Kang, Y.; Li, Z.; Wang, Y.; Chen, Y.; Yang, X.; Wen, A. An intriguing N-oxide-functionalized 3D flexible microporous MOFexhibiting highly selectivity for CO2 with a gate effect. Polyhedron 2020, 185, 114593. [CrossRef]
康,Y.;李志强;王彦;陈彦;杨,X.;温,A.一种有趣的 N-氧化物功能化 3D 柔性微孔 MOFs,对 2 具有栅极效应的 CO 表现出高选择性。多面体 2020, 185, 114593.[交叉参考]

Garai, M.; Biradha, K. Water-Resistant and Transparent Plastic Films from Functionalizable Organic Polymers: Coordination Polymers as Templates for Solid-State [2+2]-Photopolymerization. Chem. Eur. J. 2017, 23, 273–277. [CrossRef]
加莱,M.;Biradha, K. 来自功能化有机聚合物的防水和透明塑料薄膜:配位聚合物作为固态 [2+2]-光聚合的模板。欧洲化学杂志 2017, 23, 273–277.[交叉参考]

Gu, J.-Z.; Liang, X.; Cui, Y.; Wu, J.; Shi, Z.-F.; Kirillov, A.M. Introducing 2-(2-carboxyphenoxy)terephthalic acid as a new versatile building block for design of diverse coordination polymers: Synthesis, structural features, luminescence sensing, and magnetism. CrystEngComm 2017, 19, 2570–2588. [CrossRef]
顾J.-Z.;梁旭;崔彦;吴,J.;石志芳;Kirillov, A.M. 介绍 2-(2-羧基苯氧基)对苯二甲酸作为设计不同配位聚合物的新型多功能构建单元:合成、结构特征、发光传感和磁性。CrystEngComm 2017, 19, 2570–2588.[交叉参考]

Gu, J.-Z.; Wen, M.; Cai, Y.; Shi, Z.; Arol, A.S.; Kirillova, M.V.; Kirillov, A.M. Metal-Organic Architectures Assembled from Multifunctional Polycarboxylates: Hydrothermal Self-Assembly, Structures, and Catalytic Activity in Alkane Oxidation. Inorg. Chem. 2019, 58, 2403–2412. [CrossRef]
顾J.-Z.;温,M.;蔡彦;石志强;阿罗尔,A.S.;基里洛娃,M.V.;Kirillov, A.M. 由多功能聚羧酸酯组装的金属有机结构:烷烃氧化中的水热自组装、结构和催化活性。伊诺格。化学 2019, 58, 2403–2412.[交叉参考]

Holly, S.; Sohar, P. Absorption Spectra in the Infrared Region; Akademiai Kiado: Budapest, Hungary, 1975.
霍莉,S.;Sohar, P. 红外区域的吸收光谱;Akademiai Kiado:匈牙利布达佩斯,1975年。

Silverstein, R.M.; Webster, F.X. Spectrometric Identification of Organic Compounds, 6th ed.; Wiley: New York, NY, USA, 1996.
西尔弗斯坦,RM;Webster, F.X. 有机化合物的光谱鉴定,第 6 版;Wiley:美国纽约,纽约,1996 年。

Fukuda, J.; Shinoda, K. Coordination of water molecules with Na+ cations in a beryl channel as determined by polarized IR spectroscopy. Phys. Chem. Miner. 2008, 35, 347–357. [CrossRef]
福田,J.;Shinoda,K.通过偏振红外光谱法测定绿柱石通道中水分子与Na + 阳离子的配位。Phys. Chem. 矿工。2008, 35, 347–357.[交叉参考]

Deacon, G.; Huber, F.; Phillips, R. Diagnosis of the nature of carboxylate coordination from the direction of shifts of carbon oxygen stretching frequencies. Inorg. Chim. Acta 1985, 104, 41–45. [CrossRef]
执事,G.;胡贝尔,F.;Phillips, R. 从碳氧拉伸频率的位移方向诊断羧酸盐配位的性质。伊诺格。奇姆。学报 1985, 104, 41–45.[交叉参考]

Rzaczyn´ska, Z.; Bartyzel, A.; Olszewska, E.; Sawka-Dobrowolska, E. Synthesis and characterization of Co(II), Cu(II) and Zn(II) complexes with 1,1-cyclobutanedicarboxylic acid. Polyhedron 2006, 25, 687–694. [CrossRef]
Rzaczyn'ska,Z.;巴蒂泽尔,A.;奥尔谢夫斯卡,E.;Co(II)、Cu(II)和Zn(II)与1,1-环丁烷二羧酸的配合物的合成和表征。多面体 2006, 25, 687–694.[交叉参考]

Bartyzel, A. Effect of molar ratios of reagents and solvent on the complexation process of nickel(II) ions by the N2O3-donor Schiff base. Polyhedron 2017, 134, 30–40. [CrossRef]
Bartyzel,A.试剂和溶剂的摩尔比对N 2 O 3 -供体Schiff碱对镍(II)离子络合过程的影响。多面体 2017, 134, 30–40.[交叉参考]

Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A Quality Materials Characterization Database. Powder Diffr. 2019, 34, 352–360. [CrossRef]
盖茨-雷克托,S.;布兰顿,T.粉末衍射文件:优质材料表征数据库。粉末衍射2019, 34, 352–360.[交叉参考]

Reva, I.D.; Plokhotnichenko, A.M.; Radchenko, E.D.; Sheina, G.G.; Blagoi, Y.P. The IR spectrum of formic acid in an argon matrix. Spectrochim. Acta 1994, 50A, 1107–1111. [CrossRef]
雷瓦,I.D.;普洛霍特尼琴科,上午;拉德琴科,E.D.;希娜,G.G.;布拉戈伊,Y.P.氩基质中甲酸的红外光谱。分辨。学报 1994, 50A, 1107–1111.[交叉参考]

Reddy, R.C.K.; Lin, J.; Chen, Y.; Zeng, C.; Lin, X.; Cai, Y.; Su, C.Y. Progress of nanostructured metal oxides derived from metal–organic frameworks as anode materials for lithium–ion batteries. Coord. Chem. Rev. 2020, 420, 213434. [CrossRef]
雷迪,R.C.K.;林,J.;陈彦;曾,C.;林,X.;蔡彦;Su, C.Y. 从金属有机框架衍生的纳米结构金属氧化物作为锂离子电池负极材料的研究进展.坐标。Chem. Rev. 2020, 420, 213434.[交叉参考]

Li, Y.; Xu, Y.; Yang, W.; Shen, W.; Xue, H.; Pang, H. MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 2018, 14, 1704435. [CrossRef]
李彦;徐彦;杨,W.;沈旭东;薛旭东;Pang, H. MOF衍生的金属氧化物复合材料,用于先进的电化学储能。小 2018, 14, 1704435.[交叉参考]

Das, R.; Pachfule, P.; Banerjee, R.; Poddar, P. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): Finding the border of metal and metal oxides. Nanoscale 2012, 4, 591–599. [CrossRef] [PubMed]
达斯,R.;帕奇富勒,P.;班纳吉,R.;Poddar, P. 从金属有机框架 (MOF) 合成金属和金属氧化物纳米颗粒:寻找金属和金属氧化物的边界。纳米尺度 2012, 4, 591–599.[交叉参考][出版]

Wu, S.; Liu, J.; Wang, H.; Yan, H. A review of performance optimization of MOF-derived metal oxide as electrode materials for supercapacitors. Int. J. Energy Res. 2019, 43, 697–716. [CrossRef]
吴,S.;刘,J.;王旭东;闫旭东.MOF衍生金属氧化物作为超级电容器电极材料的性能优化综述.国际能源研究杂志 2019, 43, 697–716.[交叉参考]