1. Introduction 1. 引言
In recent years, the economically significant marine organism sea cucumber
Apostichopus japonicus, renowned for its high medicinal value, has witnessed a substantial expansion in both cultivation scale and area. However, diseases pose a significant hindrance to the growth of this industry, with the skin ulcer syndrome (SUS) being particularly severe [1]. The
Vibrio splendidus bacterium is identified as the primary culprit behind this malady [
2]. As iron is essential to many processes that keep life going, maintaining iron homeostasis is critical to the host's defense against pathogenic invasion. Furthermore, it regulates the expression of specific pathogenic genes and is intricately linked to bacterial pathogenicity [3]. By competing with pathogenic microbes for iron in the environment, the host can hinder their growth [4]. Additionally, the host possesses the capability to meticulously regulate iron metabolism, thereby enhancing iron absorption, optimizing iron utilization, and preserving iron balance.
近年来,具有重要经济意义的海洋生物海参 Apostichopus japonicus 以其高药用价值而闻名,在养殖规模和面积上都出现了大幅扩张。然而,疾病对该行业的发展构成了重大阻碍,其中皮肤溃疡综合征 (SUS) 尤其严重 [1]。Vibrio splendidus 细菌被确定为这种疾病背后的罪魁祸首 [2]。由于铁对于维持生命的许多过程至关重要,因此维持铁稳态对于宿主抵御病原体入侵至关重要。此外,它还调节特定致病基因的表达,并与细菌致病性有着错综复杂的联系 [3]。通过与环境中的病原微生物竞争铁,宿主可以阻碍它们的生长 [4]。此外,宿主具有精心调节铁代谢的能力,从而增强铁的吸收,优化铁的利用,并保持铁的平衡。Ferritinophagy plays an important role in maintaining intracellular iron homeostasis by facilitating the degradation and recycling of stored iron [5]. This recycling process ensures that iron can be effectively utilized in cellular processes while mitigating oxidative damage caused by excessive iron accumulation [5]. Specifically, ferritinophagy is a selective autophagy that specifically targets the degradation of intracellular ferritin [5]. Ferritin, a major iron storage protein, is essential to iron homeostasis and is involved in a wide range of physiologic and pathologic processes [6]. The mammalian ferritin is composed of ferritin heavy chain (FTH) and ferritin light chain (FTL) subunits [6]. These subunits are transcribed from distinct genes and can be assembled into heteropolymers in varying proportions. The FTH is responsible for oxidizing Fe
2+, whereas the FTL facilitates the mineralization of Fe3+. Notably, in numerous invertebrates, ferritin typically contains a single subunit that exhibits properties similar to those of the vertebrate FTH subunit [7]. The crystal structure analysis revealed that
AjFerritin, the ferritin in
A. japonicus, exhibits a cage-like, hollow spherical shell comprised of 24 subunits, closely resembling the structure observed in other species [
8]. Ferritinophagy is crucial in various physiological processes, including cell differentiation, erythropoiesis, and immune response [9]. When intracellular iron levels become depleted, the transcription of both the FTH and FTL is activated, leading to elevated intracellular ferritin levels and the formation of ferritin nanoparticles. As iron levels rise again, autophagy receptors bind to these ferritin nanoparticles and target them for degradation via the autophagy-lysosome pathway [10]. This degradation process ultimately releases iron ions from the degraded ferritin molecules into the cytoplasm, enabling their utilization for cellular functions such as heme synthesis or ROS production [11]. During host response to infection or stress, ferritinophagy serves as a mechanism to release iron to meet metabolic needs [
12]. Additionally, the increase in intracellular active iron modifies the intracellular oxidation-reduction environment, triggering immune system activation.
铁蛋白自噬通过促进储存铁的降解和再循环,在维持细胞内铁稳态中发挥重要作用 [5]。这种回收过程确保铁可以在细胞过程中得到有效利用,同时减轻铁过度积累造成的氧化损伤 [5]。具体来说,铁蛋白自噬是一种选择性自噬,专门针对细胞内铁蛋白的降解 [5]。铁蛋白是一种主要的铁储存蛋白,对铁稳态至关重要,并参与广泛的生理和病理过程 [6]。哺乳动物铁蛋白由铁蛋白重链 (FTH) 和铁蛋白轻链 (FTL) 亚基组成 [6]。这些亚基是从不同的基因转录而来的,可以以不同比例组装成杂聚物。FTH 负责氧化 Fe2+,而 FTL 促进 Fe 3+ 的矿化。值得注意的是,在许多无脊椎动物中,铁蛋白通常包含一个亚基,其特性与脊椎动物 FTH 亚基相似 [7]。晶体结构分析显示 AjFerritin,即 A. Japonicus 表现出由 24 个亚基组成的笼状空心球形壳,与其他物种观察到的结构非常相似 [8]。铁蛋白自噬在各种生理过程中至关重要,包括细胞分化、红细胞生成和免疫反应 [9]。当细胞内铁水平耗尽时,FTH 和 FTL 的转录被激活,导致细胞内铁蛋白水平升高和铁蛋白纳米颗粒的形成。随着铁水平再次升高,自噬受体与这些铁蛋白纳米颗粒结合,并通过自噬-溶酶体途径靶向它们进行降解 [10]。这个降解过程最终将铁离子从降解的铁蛋白分子中释放到细胞质中,使其能够用于细胞功能,如血红素合成或 ROS 产生 [11]。在宿主对感染或应激的反应期间,铁蛋白自噬是一种释放铁以满足代谢需要的机制 [12]。此外,细胞内活性铁的增加会改变细胞内氧化还原环境,从而触发免疫系统激活。 The nuclear receptor coactivator 4 (NCOA4) functions as a ferritinophagy receptor, facilitating the binding and delivery of ferritin to the autophagosome and lysosome [13]. Then iron ions are released by degrading ferritin. The flux of ferritinophagy is modulated by NCOA4 levels, which are in turn tightly controlled by intracellular iron levels [14]. Specifically, high intracellular iron levels promote the iron-bound interaction of NCOA4 with the ubiquitin E3 ligase HERC2, leading to proteasomal degradation of NCOA4 [15]. Conversely, low iron levels hinder this interaction, stabilizing NCOA4 and subsequently enhancing ferritinophagy in the lysosome [16]. NCOA4-mediated ferritinophagy plays a crucial role in physiological processes which demands significant iron, such as erythropoiesis. In zebrafish, NCOA4 deletion leads to defects in globin synthesis and hemoglobinization [16]. Similarly, NCOA4-mediated ferritinophagy is essential for iron availability in heme synthesis in the NCOA4-knockout mouse [17]. Additionally, ferritinophagy regulates susceptibility to infectious diseases. For instance,
Escherichia coli survive by utilizing ferritin-bound iron from autophagosomes to support their proliferation [
18]. The ferritin transport is reliant on NCOA4, and suppressing NCOA4 reduces bacterial load [19]. Autophagy inhibitors and iron chelators can also mitigate bacterial burden and host cell death, indicating therapeutic potential in regulating NCOA4-dependent ferritinophagy during certain bacterial infections [19]. NCOA4 mediated ferritinophagy is an essential part of iron homeostasis under normal and pathological conditions [
19]. However, the role of NCOA4 in invertebrates is an area that has not been fully explored. Based on the importance of NCOA4 in systemic iron homeostasis, future research on the function of NCOA4 in diseases with iron homeostasis disorders will be beneficial.
核受体共激活因子 4 (NCOA4) 作为铁蛋白自噬受体发挥作用,促进铁蛋白结合并递送至自噬体和溶酶体 [13]。然后通过降解铁蛋白释放铁离子。铁蛋白自噬的通量受 NCOA4 水平的调节,而 NCOA4 水平又受到细胞内铁水平的严格控制 [14]。具体来说,细胞内铁水平高会促进 NCOA4 与泛素 E3 连接酶 HERC2 的铁结合相互作用,从而导致 NCOA4 的蛋白酶体降解 [15]。相反,低铁水平会阻碍这种相互作用,稳定 NCOA4 并随后增强溶酶体中的铁蛋白自噬 [16]。NCOA4 介导的铁蛋白自噬在需要大量铁的生理过程中起着至关重要的作用,例如红细胞生成。在斑马鱼中,NCOA4 缺失导致珠蛋白合成和血红蛋白化缺陷 [16]。同样,NCOA4 介导的铁蛋白自噬对于 NCOA4 敲除小鼠血红素合成中的铁可用性至关重要 [17]。此外,铁蛋白自噬调节对传染病的易感性。例如,大肠杆菌通过利用自噬体中的铁蛋白结合铁来支持其增殖而存活 [18]。 铁蛋白的转运依赖于 NCOA4,抑制 NCOA4 可减少细菌载量 [19]。自噬抑制剂和铁螯合剂还可以减轻细菌负荷和宿主细胞死亡,表明在某些细菌感染期间调节 NCOA4 依赖性铁蛋白自噬具有治疗潜力 [19]。NCOA4 介导的铁蛋白自噬是正常和病理条件下铁稳态的重要组成部分 [19]。然而,NCOA4 在无脊椎动物中的作用是一个尚未得到充分探索的领域。基于 NCOA4 在全身性铁稳态中的重要性,未来对 NCOA4 在铁稳态障碍疾病中功能的研究将是有益的。 In this study, we successfully amplified the full-length cDNA sequence of
AjNCOA4 from the sea cucumber
A. japonicus. To assess its evolutionary status, a phylogenetic tree analysis was conducted. Additionally, the expression levels of AjNCOA4 were examined using real-time quantitative reverse transcription PCR (qRT-PCR). We also obtained the recombinant protein of AjNCOA4 through prokaryotic expression, facilitating the analysis of its interaction with
AjFerritin. Furthermore, the functional significance of NCOA4 was elucidated using RNA interference, revealing its regulatory involvement in ferritinophagy. Consequently, our investigation into NCOA4-mediated ferritinophagy offers promising avenues for the prevention and treatment of bacterial infectious diseases.
在这项研究中,我们成功扩增了海参 Aj NCOA4 的全长 cDNA 序列。为了评估其进化状态,进行了系统发育树分析。此外,使用实时定量逆转录 PCR (qRT-PCR) 检测 Aj NCOA4 的表达水平。我们还 通过原核表达获得了 AjNCOA4 的重组蛋白,有助于分析其与 AjFerritin 的相互作用。此外,使用 RNA 干扰阐明了 NCOA4 的功能意义,揭示了其在铁蛋白自噬中的调节参与。因此,我们对 NCOA4 介导的铁蛋白自噬的研究为预防和治疗细菌传染病提供了有希望的途径。4. Discussion 4. 讨论
Due to its rich nutritional value, the sea cucumber stands as a crucial marine economic species in Asia, and its aquaculture industry is rapidly developing to meet the huge demand for this product in Southeast Asia. Nevertheless, the rapid expansion of A. japonicus aquaculture has resulted in significant disease challenges. SUS is the most common and harmful disease which is characterized by the symptoms of shaking head, viscera excretion, and large area ulceration of the body wall. Notably, the immune defense mechanism of A. japonicus largely relies on its innate immune system [22]. Consequently, examining the innate immune system of
A. japonicus may offer a novel avenue for understanding the defense mechanisms of this species. Essential for nearly all cellular life forms, iron plays a crucial role in various biological processes, thus maintaining iron homeostasis is fundamental for organismal cell growth [23]. Recently, research has revealed that NCOA4 regulates iron homeostasis by binding to ferritin and facilitating its autophagy degradation, a mechanism referred to as ferritinophagy [13]. In this study, we identified
AjNCOA4 in the sea cucumber
A. japonicus and investigated its role in regulating ferritinophagy induced by
V. splendidus, a primary pathogen of SUS.
由于其丰富的营养价值,海参是亚洲重要的海洋经济物种,其水产养殖业正在迅速发展,以满足东南亚对该产品的巨大需求。然而,日本蚜蒿水产养殖的迅速扩大带来了重大的疾病挑战。SUS 是最常见和最有害的疾病,其特征是摇头、内脏排泄和体壁大面积溃疡的症状。值得注意的是,日本蚜蒲的免疫防御机制在很大程度上依赖于其先天免疫系统[22]。因此,检查 A. japonicus 的先天免疫系统可能为了解该物种的防御机制提供一条新的途径。铁对几乎所有细胞生命形式都是必不可少的,在各种生物过程中起着至关重要的作用,因此维持铁稳态是有机体细胞生长的基础 [23]。最近,研究表明,NCOA4 通过与铁蛋白结合并促进其自噬降解来调节铁稳态,这种机制称为铁蛋白自噬 [13]。在这项研究中,我们在海参 A. japonicus 中鉴定了 AjNCOA4,并研究了其在调节 SUS 主要病原体 V. splendidus 诱导的铁蛋白吞噬中的作用。 NCOA4 was initially discovered as a protein that interacts with the androgen receptor (AR), and its overexpression has been documented to stimulate the transcription of AR-regulating genes [24]. This protein forms a multifaceted interaction by facilitating the self-oligomerization of NCOA4 via its N-terminal coiled helical domain, while also binding to FTH1 through an intrinsically disordered region [
25,
26]. Both of these interactions play a crucial role in the formation of ferritin-NCOA4 particles. In our study, it was discovered that
AjNCOA4 encodes a protein consisting of 597 amino acids, with a predicted molecular weight of 67.74 kDa, and possesses an ARA70 domain (Fig. 1). Through phylogenetic analysis, it was discovered that the evolutionary lineage of NCOA4 aligns with the established evolutionary timeline of metazoans (Fig. 2). Specifically, in vertebrates, NCOA4 encompasses two ARA70 family domains: ARA70-I and ARA70-II. Notably, the ARA70-I domain, situated at the N-terminus and overlapping with the helix-helix domain, exhibits evolutionary conservation across metazoans, ranging from cnidarians to mammals. This conservation of the ARA70 domain among homologues suggests a preserved functionality. However, the ARA70-II domain is exclusively found in vertebrates and lacks obvious sequence homology with the ARA70-I domain. Intriguingly, no protein homologous to NCOA4 was identified in arthropods [27], potentially indicating the existence of alternative proteins within this phylum that compensate for this absence. In fact, certain primitive organisms harbor genes that are absent in arthropods but present in mammals, a phenomenon frequently observed in genome comparisons among highly evolved organisms, including fruit flies. For instance, fibrous collagen, which is encoded by genomes of higher organisms like cnidarians and mammals, is absent from insect genomes [28].
NCOA4 最初被发现是一种与雄激素受体 (AR) 相互作用的蛋白质,其过表达已被证明可以刺激 AR 调节基因的转录 [24]。这种蛋白质通过其 N 末端卷曲螺旋结构域促进 NCOA4 的自寡聚化,同时还通过固有无序区域与 FTH1 结合,从而形成多方面相互作用 [25,26]。这两种相互作用在铁蛋白-NCOA4 颗粒的形成中起着至关重要的作用。在我们的研究中,发现 AjNCOA4 编码一种由 597 个氨基酸组成的蛋白质,预测分子量为 67.74 kDa,并具有一个 ARA70 结构域(图 1)。通过系统发育分析,发现 NCOA4 的进化谱系与已建立的后生动物进化时间线一致(图 2)。具体来说,在脊椎动物中,NCOA4 包含两个 ARA70 家族结构域:ARA70-I 和 ARA70-II。值得注意的是,位于 N 端并与螺旋-螺旋结构域重叠的 ARA70-I 结构域在后生动物(从刺胞动物到哺乳动物)中表现出进化保守性。ARA70 结构域在同源物中的这种保守性表明功能保留。然而,ARA70-II 结构域仅存在于脊椎动物中,与 ARA70-I 结构域缺乏明显的序列同源性。 有趣的是,在节肢动物中没有发现与 NCOA4 同源的蛋白质 [27],这可能表明该门中存在替代蛋白质来补偿这种缺失。事实上,某些原始生物携带的基因在节肢动物中不存在,但存在于哺乳动物中,这种现象在高度进化的生物(包括果蝇)的基因组比较中经常观察到。例如,由刺胞动物和哺乳动物等高等生物的基因组编码的纤维胶原在昆虫基因组中不存在[28]。 In this study, we discovered that
AjNCOA4 is abundantly present across all tested tissues of
A. japonicus including body wall, muscle, intestine, respiratory tree, and coelomocytes (
Fig. 3). In humans, NCOA4 serves as an intracellular protein that is abundantly expressed across multiple organs, encompassing the adrenal glands, heart, kidneys, lungs, intestines, spleen, and skeletal muscle [29]. The maintenance of the aforementioned tissues' respective functions is significantly influenced by the localization and expression patterns of NCOA4. Numerous studies have demonstrated a strong association between the heightened expression of NCOA4 in mouse bronchial epithelial cells and the pathological progression of chronic obstructive pulmonary disease [30]. Furthermore, in degenerative disorders like disc degeneration, an increase in NCOA4 expression is observed in nucleus pulposus cells [31].
在这项研究中,我们发现 AjNCOA4 大量存在于日本曲霉的所有测试组织中,包括体壁、肌肉、肠道、呼吸树和体腔细胞(图 3)。在人类中,NCOA4 是一种细胞内蛋白,在多个器官中大量表达,包括肾上腺、心脏、肾脏、肺、肠道、脾脏和骨骼肌 [29]。上述组织各自功能的维持受到 NCOA4 定位和表达模式的显着影响。大量研究表明,小鼠支气管上皮细胞中 NCOA4 表达升高与慢性阻塞性肺疾病的病理进展之间存在密切关联 [30]。此外,在椎间盘退化等退行性疾病中,观察到髓核细胞中 NCOA4 表达增加 [31]。Research has revealed that NCOA4-mediated ferritinophagy significantly enhances the availability of free iron during
Mycobacterium tuberculosis (Mtb) infection, thereby promoting the bacterium's growth [
32]. Mice with defective NCOA4 in bone marrow cells exhibited significantly increased resistance to Mtb infection, indicating that NCOA4 is a key regulator of ferritin's effect on Mtb infection [33]. Additionally, iron overload in cells induces NCOA4-dependent ferritinophagy, leading to uropathogenic Escherichia coli overreplication and host cell death [
18]. The virulence factor Etf-3 of Ehrlichia chaffeensis binds directly to the ferritin light chain, inducing ferritinophagy and enhancing intracellular growth [
34]. Furthermore, we demonstrated that
V. splendidus infection can up-regulate NCOA4 expression in coelomocytes of
A. japonicus (
Fig. 4). Collectively, these findings suggest that harnessing host ferritinophagy to acquire iron represents a fundamental escape strategy employed by diverse pathogens.
研究表明,NCOA4 介导的铁蛋白自噬显着提高了结核分枝杆菌 (Mtb) 感染期间游离铁的可用性,从而促进了细菌的生长 [32]。骨髓细胞中 NCOA4 缺陷的小鼠对 Mtb 感染的抵抗力显著增加,表明 NCOA4 是铁蛋白对 Mtb 感染影响的关键调节因子 [33]。此外,细胞中的铁过载会诱导 NCOA4 依赖性铁蛋白自噬,导致尿路致病性大肠杆菌过度复制和宿主细胞死亡 [18]。 Ehrlichia chaffeensis 的毒力因子 Etf-3 直接与铁蛋白轻链结合,诱导铁蛋白自噬并增强细胞内生长 [34]。此外,我们证明 V. splendidus 感染可以上调 A. japonicus 体腔细胞中 NCOA4 的表达 (图 4)。总的来说,这些发现表明,利用宿主铁蛋白自噬来获取铁代表了多种病原体采用的基本逃逸策略。Ferritin plays a vital role in maintaining iron homeostasis across various organisms due to its conserved nature. It comprises 24 subunits of FTH and FTL, capable of storing up to 4500 ions of Fe
2+. These ions are subsequently oxidized to Fe
3+ and stored as a mineral core within the cavity. In times of iron deficiency, ferritin particles are transported to lysosomes to release the stored iron atoms [35]. Ferritinophagy is a process facilitated by NCOA4, which functions as the cargo receptor for ferritin. This process encompasses two stages: NCOA4-ferritin complex formation and ferritin degradation. Specifically, the FTH1 subunit binds to the C-terminal domain of NCOA4, forming the NCOA4-ferritin complex. Some studies have demonstrated that human NCOA4 can bind to mouse FTH, but not to mouse FTL, despite their high degree of identity with humans [
36]. Notably, most invertebrates, plants, and microorganisms possess only one ferritin subunit. These subunits share characteristics with both the FTH and FTL, including iron oxidase centers and nucleation sites [37]. In
A. japonicus,
AjFerritin exhibits higher homology with
HsFTH.
AjNCOA4 has been shown to bind to
AjFerritin in coelomocytes stimulated by
V. splendidus (
Fig. 6). This suggests the important role of
AjNCOA4 in regulating iron homeostasis through ferritinophagy.
由于其保守的性质,铁蛋白在维持各种生物体的铁稳态方面起着至关重要的作用。它包含 FTH 和 FTL 的 24 个亚基,能够储存多达 4500 个 Fe2+ 离子。这些离子随后被氧化成 Fe3+,并作为矿物核心储存在空腔内。在缺铁时,铁蛋白颗粒被转运到溶酶体以释放储存的铁原子 [35]。铁蛋白自噬是 NCOA4 促进的过程,NCOA4 充当铁蛋白的转运受体。这个过程包括两个阶段:NCOA4-铁蛋白复合物形成和铁蛋白降解。具体而言,FTH1 亚基与 NCOA4 的 C 端结构域结合,形成 NCOA4-铁蛋白复合物。一些研究表明,尽管人 NCOA4 与人类高度相同,但它们可以与小鼠 FTH 结合,但不能与小鼠 FTL 结合 [36]。值得注意的是,大多数无脊椎动物、植物和微生物只有一个铁蛋白亚基。这些亚基与 FTH 和 FTL 具有共同特征,包括铁氧化酶中心和成核位点 [37]。在 A. japonicus 中,Aj铁蛋白与 HsFTH 表现出更高的同源性。AjNCOA4 已被证明与 V. splendidus 刺激的体腔细胞中的 Aj铁蛋白结合(图 6)。这表明 AjNCOA4 在通过铁蛋白自噬调节铁稳态中的重要作用。Iron is an essential element in a variety of biological processes, including oxygen binding and transport, ATP production, and DNA biosynthesis and repair [38]. Therefore, cells must maintain a delicate balance between iron availability and storage. Iron enters ferritin in the form of Fe
2+ through the ferritin iron pore and is subsequently oxidized to Fe
3+ by FTH1 within the ferritin cage, resulting in an inert deposition of Fe
3+ unusable by the cell. To utilize ferritin, iron must be released from ferritin and reduced back to Fe
2+. The flux of the ferritinophagy pathway is dependent on NCOA4 levels, which are tightly regulated by intracellular iron levels. Under iron-replete conditions, increased binding of NCOA4 to the E3 ubiquitin ligase HERC2 leads to proteasomal degradation of NCOA4. Lower NCOA4 levels inhibit ferritinophagy and enhance ferritin iron storage [15]. We also found that
AjNCOA4 can regulate the iron levels in the coelomocytes of
A. japonicus (
Fig. 7). This suggests that NCOA4 can alter iron homeostasis in sea cucumber.
铁是多种生物过程中的必需元素,包括氧结合和运输、ATP 产生以及 DNA 生物合成和修复 [38]。因此,细胞必须在铁的可用性和储存之间保持微妙的平衡。铁通过铁蛋白铁孔以 Fe2+ 的形式进入铁蛋白,随后在铁蛋白笼内被 FTH1 氧化成 Fe3+,导致细胞无法使用的 Fe3+ 惰性沉积。要利用铁蛋白,必须从铁蛋白中释放铁并还原回 Fe2+。铁自噬途径的通量取决于 NCOA4 水平,而 NCOA4 水平受细胞内铁水平的严格调节。在铁充满的条件下,NCOA4 与 E3 泛素连接酶 HERC2 的结合增加导致 NCOA4 的蛋白酶体降解。较低的 NCOA4 水平会抑制铁蛋白自噬并增强铁蛋白铁的储存 [15]。我们还发现 AjNCOA4 可以调节 A. japonicus 体腔细胞中的铁水平 (图 7)。这表明 NCOA4 可以改变海参中的铁稳态。 Autophagy, a conserved cellular process, involves the degradation of misfolded proteins, damaged or redundant organelles, intracellular pathogens, and other cytoplasmic components by delivering them to lysosomes [39]. This process recycles the breakdown products of certain substrates into cells, serving as nutrients for energy production or macromolecular biosynthesis. Autophagy is thus often described as a mechanism for maintaining cellular homeostasis and survival [
40]. During autophagy, the substrate is transported to the lysosome via double-membrane vesicles known as autophagosomes [40]. This process can be either selective or non-selective. In selective autophagy, specific receptors bind to and target certain substrates, such as mitochondria (mitophagy), pathogens (xenophagy), endoplasmic reticulum (ER-phagy), and protein aggregates (aggrephagy), for degradation [40]. In iron-deficient cells, autophagy plays a crucial role in the lysosomal degradation of ferritin. NCOA4, a cargo receptor, specifically targets ferritin to autophagosomes during selective autophagy. Our study demonstrates that AjNCOA4 mediates
V. splendidus-induced ferritinophagy in coelomocytes of
A. japonicus (
Fig. 8). This finding aligns with studies conducted in mammals, indicating that the function of NCOA4 is conserved across different species. Ferritinophagy serves as a vital mechanism for regulating iron content in the body and is closely linked to neurological diseases, tumors, and infectious diseases. Therefore, elucidating the molecular mechanism underlying ferritinophagy is expected to provide a theoretical framework for the treatment of diseases characterized by abnormal iron homeostasis.
自噬是一种保守的细胞过程,涉及通过将错误折叠的蛋白质、受损或多余的细胞器、细胞内病原体和其他细胞质成分输送到溶酶体来降解它们 [39]。这个过程将某些底物的分解产物回收到细胞中,作为能量产生或大分子生物合成的营养物质。因此,自噬通常被描述为维持细胞稳态和存活的一种机制[40]。在自噬过程中,底物通过称为自噬体的双膜囊泡转运到溶酶体 [40]。此过程可以是选择性的,也可以是非选择性的。在选择性自噬中,特异性受体结合并靶向某些底物,如线粒体(线粒体自噬)、病原体(异种自噬)、内质网(ER自噬)和蛋白质聚集体(聚集自噬)进行降解[40]。在缺铁细胞中,自噬在铁蛋白的溶酶体降解中起着至关重要的作用。NCOA4 是一种转运受体,在选择性自噬过程中特异性地将铁蛋白靶向自噬体。我们的研究表明,AjNCOA4 介导 V. splendidus 诱导的日本曲霉体腔细胞中的铁蛋白自噬 (图 8)。这一发现与在哺乳动物中进行的研究一致,表明 NCOA4 的功能在不同物种中是保守的。 铁蛋白自噬是调节体内铁含量的重要机制,与神经系统疾病、肿瘤和传染病密切相关。因此,阐明铁蛋白自噬的分子机制有望为治疗以异常铁稳态为特征的疾病提供理论框架。 In conclusion, this study revealed that
AjNCOA4 is widely expressed across tissues in
A. japonicus and its expression is upregulated in coelomocytes following
V. splendidus infection. IF and Co-IP experiments further confirmed the association of
AjNCOA4 with
AjFerritin in
A. japonicus. Utilizing RNAi technology, our findings clarify
AjNCOA4's regulatory influence on iron homeostasis in coelomocytes, highlighting its function in ferritinophagy during
V. splendidus infection of
A. japonicus. By elucidating the crucial function of
AjNCOA4 in ferritinophagy and iron homeostasis regulation in
A. japonicus, our findings offer promising targets and avenues for the development of novel therapeutic interventions against diseases affecting this species. Additionally, these outcomes contribute to enhancing the understanding of NCOA4's role in other animals, thereby advancing the research in the fields of autophagy and iron metabolism.
总之,本研究揭示了 AjNCOA4 在 A. japonicus 组织中广泛表达,并且在 V. splendidus 感染后的体腔细胞中表达上调。IF 和 Co-IP 实验进一步证实了 AjNCOA4 与 Aj 铁蛋白在日本的相关性。利用 RNAi 技术,我们的研究结果阐明了 AjNCOA4 对腔细胞中铁稳态的调节影响,突出了其在 A. japonicus 的 V. splendidus 感染期间的铁蛋白自噬中的作用。通过阐明 AjNCOA4 在 A. japonicus 铁蛋白自噬和铁稳态调节中的关键功能,我们的研究结果为开发针对影响该物种的疾病的新型治疗干预措施提供了有希望的目标和途径。此外,这些结果有助于增强对 NCOA4 在其他动物中的作用的理解,从而推进自噬和铁代谢领域的研究。