Introduction 介绍
For optical modulators used in microwave photonics (MWP) systems and telecommunications such as photonic microwave
filters [1], photonic phased array antennae
[2], analog-to-digital converters [3],
[4], and advanced modulation formats [5],
[6], one of the important metrics to measure their performances is the
linearity, which is characterized by the spurious-free dynamic range (SFDR) [7]
. Though Mach–Zehnder modulators (MZMs) based on Lithium Niobate (LiNbO3) or III–V
semiconductors have a higher SFDR (up to 121 dB·Hz2/3 for the former
[8] and 128 dB·Hz2/3 for the latter
[9]), they have a large footprint and are also difficult to integrate with
electronic circuits. Optical modulators made on the silicon platform surpass them as they are compatible with the
complementary metal oxide semiconductor (CMOS) techniques for low-cost fabrication and monolithic integration with
microelectronics on one single chip. In fact, silicon modulators have been developing rapidly in recent years
[10]. For example, carrier-depletion-based MZMs have been demonstrated with an
operation speed up to 40 Gb/s [11]–[18].
对于微波光子学 (MWP) 系统和电信中使用的光调制器,如光子微波滤波器 [1]、光子相控阵天线 [2]、模数转换器 [3]、 [4] 和高级调制格式 [5]、[6],衡量其性能的重要指标之一是线性度,其特征是无杂散动态范围 (SFDR) [7].尽管基于铌酸锂 (LiNbO3) 或 III-V 半导体的马赫-曾德尔调制器 (MZM) 具有更高的 SFDR(高达 121 dB·前者为Hz 2/3 [8] 和 128 dB·后者为Hz 2/3 [9]),它们具有较大的占用空间,也难以与电子电路集成。在硅平台上制造的光调制器超越了它们,因为它们与互补金属氧化物半导体 (CMOS) 技术兼容,可实现低成本制造,并在一个芯片上与微电子器件进行单片集成。事实上,硅调制器近年来发展迅速 [10]。例如,基于载流波耗尽的 MZM 已被证明具有高达 40 Gb/s 的运行速度 [11]–[18]。
In order to improve the linearity of silicon optical modulators, many methods have been proposed and demonstrated.
Khilo et al. have demonstrated that, under the differential detection and push–pull drive
scheme with a proper operation point for a certain phase shifter length, the SFDR for the second-order harmonic
distortion (SFDRSHD) and the SFDR for the third-order intermodulation distortion (SFDRIMD) can
be canceled and the linearity of silicon MZM can be theoretically larger than that of conventional LiNbO3
MZM [19]. Recent research shows that by using differential drive, the
linearity of silicon MZM can be improved to 82 dB·Hz1/2 for SFDRSHD and
97 dB·Hz2/3 for SFDRIMD [20]. Microring
modulators have been demonstrated to exhibit a SFDRIMD of 84 dB·Hz2/3, but it is not
suitable for wideband microwave systems due to the poor SFDRSHD [21]
, [22]. SFDRIMD of 106 dB·Hz2/3 has
been achieved in ring-assisted MZMs [23],
[24], because the phase response of the ring resonator cancels the nonlinearity in the MZI sinusoidal transfer
function.
为了提高硅光调制器的线性度,已经提出并演示了许多方法。Khilo 等 人。已经证明,在差分检测和推挽驱动方案下,在一定移相器长度下具有适当的工作点,可以抵消二阶谐波失真 (SFDRSHD) 和三阶交调失真 (SFDRIMD) 的 SFDR,并且硅 MZM 的线性度理论上可以大于传统的 LiNbO3 MZM [19].最近的研究表明,通过使用差分驱动,硅MZM的线性度可以提高到82 dB·SFDRSHD 为Hz 1/2,97 dB·SFDRIMD 为Hz 2/3[20]。微环调制器已被证明表现出 84 dB·Hz2/3,但由于 SFDRSHD 较差,它不适用于宽带微波系统[21] , [22]。SFDRIMD 为 106 dB·在环形辅助 MZM [23]、 [24] 中已经实现了 Hz2/3,因为环形谐振器的相位响应抵消了 MZI 正弦传递函数中的非线性。
In this paper, we present a silicon MZM with a single-drive push–pull traveling-wave electrode (TWE)
configuration with improved linearity. The TWE is optimized to provide impedance match and flat electro-optic
response. Compared with conventional differential drive, the single-drive scheme can more effectively reduce the
second-order harmonic distortion due to the two auto-aligned push–pull signals from one RF feed. The SFDR
SHD is measured to be 85.9 dB·Hz1/2 with 3.9 dB improvement over the previous best
result [20] and the SFDRIMD is measured to be
97.7 dB·Hz2/3. Due to its high linearity, the modulator can generate 2, 3, 4, 5-level pulse
amplitude modulation (PAM) signals at the symbol rate of 40 Gbaud/s and a 8-level PAM signal at the symbol rate of 25
Gbaud/s.
在本文中,我们提出了一种硅 MZM,该硅具有单驱动推挽行波电极 (TWE) 配置,线性度更高。TWE 经过优化,可提供阻抗匹配和平坦的电光响应。与传统的差动驱动相比,单驱动方案可以更有效地减少由于来自一个 RF 馈电的两个自动对准推挽信号而导致的二阶谐波失真。经测得的 SFDR SHD 为 85.9 dB·Hz1/2 比之前的最佳结果提高了 3.9 dB [20],测得的 SFDRIMD 为 97.7 dB·赫兹2/3。由于其高线性度,调制器可以生成 2、3、4、5 级脉冲幅度调制 (PAM) 信号(符号率为 40 Gbaud/s)和 8 级脉冲幅度调制 (PAM) 信号(符号率为 25 Gbaud/s)。
Device Design and Fabrication
设备设计和制造
Fig.1(a) shows the schematic structure of our silicon MZM. Compared to the
differential drive configuration, the single-drive features low chirp, low capacitance (two junction capacitors
connected in series), and simplified RF connection interface [25],
[26]. The length difference of two arms in the asymmetric MZI is
90 μm. The 3.3-mm-long TWE uses a symmetric coplanar strip (CPS) structure in a ground-signal (GS)
configuration with the two metal strips connected to the p+-doping regions outside the MZI arms where
the RF signal is applied. A dc voltage (Vd) is applied to the middle n+
-doping region to set the two p-n junctions at the reverse-bias mode. The silicon waveguide is 500 nm wide and
220 nm high with an etched depth of 160 nm. The p-n junction is positioned in the middle of the silicon
waveguide with doping concentrations of
图 1(a) 显示了我们的硅 MZM 的示意图结构。与
差分驱动配置,单驱动器具有低线性调频、低电容(两个结电容器
串联)和简化的射频连接接口 [25]、
[26]. 不对称马赫-曾德尔调制器中两条臂的长度差为
90 微米。3.3 mm 长的 TWE 在接地信号 (GS) 中使用对称共面带 (CPS) 结构
配置,其中两个金属条连接到马赫-曾德尔调制臂外的 p+ 掺杂区域,其中
施加 RF 信号。直流电压 (VD) 施加到中间的 n+
-掺杂区将两个 p-n 结设置为反向偏置模式。硅波导宽 500 nm,
高 220 nm,刻蚀深度为 160 nm。p-n 结位于硅的中间
波导的掺杂浓度
Fig. 1(b) shows the optical microscope image of the fabricated device.
The p-n junction is segmented with a 1-μm-long striation un-doped in every 10 μm length to ensure that
current flows only in the metal strips to reduce the RF loss. The TWE is made of aluminum metal strips with a width of
60 μm and a thickness of 1.5 μm. The gap separation between the signal and ground metal lines is
50 μm. The dc bias line is connected to the middle n+-doping region. In order to reduce the
electromagnetic interference between the RF and dc signals, the dc line is designed as 10 μm wide and
2 mm long to act as an inductor to isolate them. As shown in Fig. 1
(a), the two PN junctions are connected in series with the dc voltage applied to the common cathode of the PN junctions
to set the reverse bias at
图 1(b) 显示了所制造设备的光学显微镜图像。
p-n 结每 10 μm 长度用一个 1 μm 长的未掺杂条纹分割,以确保
电流仅在金属条中流动,以减少射频损耗。TWE 由铝金属带制成,宽度为
60 μm 和 1.5 μm 的厚度。信号线和接地金属线之间的间隙间隔为
50 微米。直流偏置线连接到中间的 n+ 掺杂区域。为了减少
射频和直流信号之间的电磁干扰,直流线路设计为 10 μm 宽,并且
2 mm 长,用作电感器以隔离它们。如图 1 所示
(a) 将两个 PN 结串联,直流电压施加到 PN 结的公共阴极
将反向偏置设置为
Linearity Analysis 线性分析
This section presents a mathematical analysis of the linearity of the MZM. We assume that the MZM is composed of two
ideal multimode interference (MMI) 3-dB couplers. The output electric field can be expressed as
本节对 MZM 的线性度进行了数学分析。我们假设 MZM 由两个
理想的多模干扰 (MMI) 3 dB 耦合器。输出电场可以表示为
查看源 \begin{equation} E_{\rm out} = \frac{{E_{\rm in} }}{2}\bigg[ {e^{ - a_A } e^{i\left({\phi _A + \Delta \phi } \right)} + e^{ - a_B } e^{i\phi _B } } \bigg] \end{equation} where
其中
查看源 \begin{eqnarray} {P_{\rm out} } |_{\rm Quad} &=& P_{\rm in} \left[ \frac{1}{4}({e^{ - 2a_A }+\, e^{ - 2a_B } }) \right. \nonumber\\ && \left.- \frac{1}{2}e^{ - ({a_A + a_B })} \sin ({\phi _A - \phi _B }) \right]\\ {P_{\rm out} } |_{\rm Peak} &=& P_{\rm in} \left[ \frac{1}{4}(e^{ - 2a_A } + e^{- 2a_B}) \right. \nonumber\\ &&\left. + \frac{1}{2}e^{ - ({a_A + a_B })} \cos ({\phi _A - \phi _B }) \right]. \end{eqnarray}
查看源 \begin{eqnarray} a_{A,B} (V) &=& a_0 + a_1 V + a_2 V^2 + a_3 V^3\\ \phi _{A,B} (V) &=& \varphi _1 V + \varphi _2 V^2 + \varphi _3 V^3 . \end{eqnarray}
We assume the top and bottom arms have identical responses to drive voltage in the ideal case. During the
push–pull modulation, the top and bottom arms are subject to opposite drive voltages of V and
−V, respectively, and thus we have:
我们假设在理想情况下,顶部和底部臂对驱动电压的响应相同。在
推挽调制,顶部和底部臂承受相反的驱动电压 V 和
−V,因此我们得到:
查看源 \begin{eqnarray} a_A + a_B &=& 2a_0 + 2a_2 V^2\\ \phi _A - \phi _B &=& 2\varphi _1 V + 2\varphi _3 V^3 . \end{eqnarray}
Therefore, (2) and
(3) can be rewritten as:
因此,(2) 和
(3) 可以改写为:
查看源 \begin{eqnarray} P_{\rm out} |_{\rm Quad} &=& P_{\rm in} \left[ \frac{1}{4}\left(e^{ - 2({a_0 + a_1 V + a_2 V^2 + a_3 V^3 })}\right.\right. \nonumber\\ && \left.+ e^{ - 2({a_0 - a_1 V + a_2 V^2 - a_3 V^3 })} \right) \nonumber\\ && \left.- \frac{1}{2}e^{ - 2({a_0 + a_2 V^2 })} \sin ({2\varphi _1 V + 2\varphi _3 V^3 })\right] \\ P_{\rm out} |_{\rm Peak} &=& P_{\rm in} \left[ \frac{1}{4}\left (e^{ - 2({a_0 + a_1 V + a_2 V^2 + a_3 V^3 })}\right. \right.\nonumber\\ && \left.+ e^{ - 2({a_0 - a_1 V + a_2 V^2 - a_3 V^3 })} \right) \nonumber\\ &&+ \frac{1}{2}e^{ - 2({a_0 + a_2 V^2 })} \cos ({2\varphi _1 V + 2\varphi _3 V^3 }) \end{eqnarray}
From the above equations, we see that three factors contribute to the nonlinearity: (i) optical loss modulation in
the active arms, (ii) cubic nonlinearity of the phase modulation, and (iii) MZI sinusoidal transfer function.
从上述方程中,我们可以看到三个因素导致了非线性:(i) 有源臂中的光损耗调制,(ii) 相位调制的三次非线性,以及 (iii) MZI 正弦传递函数。
The RF drive signal with two frequency tones can be written as
具有两个频率音的 RF 驱动信号可以写成
查看源 \begin{eqnarray} &&e^ - 2\left({a_0 + a_2 V^2 } \right) \sin \left({2\varphi _1 V + 2\varphi _3 V^3 } \right) \nonumber\\ &&\qquad= A\left[ {\cos ({2\omega _1 - \omega _2 })t + \cos ({2\omega _2 - \omega _1 })t} \right] \nonumber\\ &&\qquad\qquad+ B\left[ {\cos ({\omega _1 t}) + \cos ({\omega _2 t})} \right] \\ &&\qquad A = e^{ - 2a_0 } \left[ {({7a_2 V_0 ^2 - 2})J_1 (z)J_2 (z) - 3a_2 V_0 ^2 J_0 (z)J_1 (z)} \right. \nonumber\\ &&\qquad \qquad \left.+ 2a_2 V_0 ^2 J_0 (z)J_3 (z) - 3a_2 V_0 ^2 J_2 (z)J_3 (z) \right] \\ &&\qquad B = e^{ - 2a_0 } \left[ {({2 - 9a_2 V_0 ^2 })J_0 (z)J_1 (z) + 6a_2 V_0 ^2 J_1 (z)J_2 (z)} \right.\nonumber \\ &&\qquad\qquad \left. + a_2 V_0 ^2 J_0 (z)J_3 (z) \right] \end{eqnarray} and the second term in the bracket of Eq. (9) can be rewritten as
方程 (9) 括号中的第二项可以 被重写为
查看源 \begin{eqnarray} & & {\rm e}^{ - 2\left({a_0 + a_2 V^2 } \right)} \cos \left({2\varphi _1 V + 2\varphi _3 V^3 } \right) \nonumber\\ & & \quad= C\left[ {\cos \left({2\omega _1 t} \right) + \cos \left({2\omega _2 t} \right)} \right]\\ &&\ C = e^{ - 2a_0 } \left[ {4a_2 V_0 ^2 J_1 ^2 \left(z \right) - a_2 V_0 ^2 J_0 ^2 \left(z \right) - 2a_2 V_0 ^2 J_2 ^2 \left(z \right)} \right. \nonumber\\ && \qquad \left. - 2\left({1 - 2a_2 V_0 ^2 } \right)J_0 \left(z \right)J_2 \left(z \right) \right] \end{eqnarray}
其中
Experiments and Results 实验和结果
Fig. 2 shows the experimental setup to measure the SFDR and perform the
PAM-N (N = 2, 3, 4, 5 and 8) modulation. Light from a tunable continuous wave (CW) laser first went through a
polarization controller to set the transverse electric (TE) polarization and coupled to the MZM through an on-chip
inverse taper. The modulated light was amplified by an erbium-doped fiber amplifier (EDFA) to compensate for MZM
insertion loss and followed by a 3-nm bandwidth optical filter to suppress the amplified spontaneous emission (ASE)
noise. The light was finally received by a 100 GHz bandwidth photodetector (u2t XPDV4120R). The
responsivity of the photodetector is 0.5 A/W. For the SFDR measurement, the MZM was driven by a microwave signal
consisting of two tones at frequencies 1005 and 1015 MHz generated by a microwave generator (R&S SMB100A).
The microwave signal was applied to the TWE of the MZM via a 40 GHz bandwidth microwave GS probe. The other end
of TWE was terminated with a 50 Ω resistor. The SFDR was obtained by measuring the fundamental, SHD and IMD
components on an RF spectrum analyzer (R&S FSUP50). For the PAM modulation, a 20-GHz arbitrary waveform generator
(AWG) from Keysight (M8195A) was used as the RF drive signal to modulate the MZM and the modulated signal was measured
by a 33-GHz real-time digital signal analyzer (DSA) from Keysight (DSAX93204A).
图 2 显示了测量 SFDR 和执行 PAM-N(N = 2、3、4、5 和 8)调制的实验设置。来自可调谐连续波 (CW) 激光器的光首先通过偏振控制器以设置横向电 (TE) 偏振,然后通过片上反向锥度耦合到 MZM。调制光由掺铒光纤放大器 (EDFA) 放大以补偿 MZM 插入损耗,然后由 3 nm 带宽的滤光片放大以抑制放大的自发发射 (ASE) 噪声。光最终被 100 GHz 带宽光电探测器 (u2t XPDV4120R) 接收。光电探测器的响应度为 0.5 A/W。对于 SFDR 测量,MZM 由微波发生器 (R&S SMB100A) 产生的频率为 1005 和 1015 MHz 的两个音调组成的微波信号驱动。微波信号通过 40 GHz 带宽微波 GS 探头施加到 MZM 的 TWE。TWE 的另一端端接一个 50 Ω 电阻器。SFDR 是通过在射频频谱分析仪 (R&S FSUP50) 上测量基波、SHD 和 IMD 分量获得的。对于 PAM 调制,使用 Keysight 的 20 GHz 任意波形发生器(AWG)(M8195A)作为射频驱动信号来调制 MZM,调制后的信号由 Keysight 的 33 GHz 实时数字信号分析仪(DSA)测量(DSAX93204A)。
We first measured the MZM optical transmission spectra with the reverse bias applied either to the top or the bottom
arms. Fig. 3(a) shows the typical spectra at 0 V and 6 V reverse
biases. The spectra are all normalized to a passive straight waveguide. The on-chip insertion loss of the modulator is
around 9 dB. The free spectral range (FSR) is 6.3 nm.
我们首先测量了 MZM 光传输光谱,将反向偏压施加到顶部或底部臂。 图 3(a) 显示了 0 V 和 6 V 反向偏置时的典型频谱。光谱都归一化为无源直线波导。调制器的片上插入损耗约为 9 dB。自由光谱范围 (FSR) 为 6.3 nm。
From the spectral shift, we can get the relative phase shift (
从频谱偏移中,我们可以得到相对相移 (
查看源 \begin{equation} V_\pi \left. {\frac{{d\phi }}{{dV}}} \right|_{V = V_d } = \pi . \end{equation}
Therefore, the modulation efficiencies of the top and bottom arms at
因此,顶部和底部臂的调制效率为
One sees from Fig. 3(a) that the extinction ratio (ER) of the
interference fringe increases when the bias is applied to the top arm while it decreases when the bias at the bottom
arm. Thus, it is inferred that the top arm has a higher loss than the bottom one, i.e.,
从图 3(a) 中可以看出,该
当偏置施加到顶部臂时,干涉条纹增加,而当底部偏置时,干涉条纹减少
手臂。因此,可以推断出顶部臂的损耗高于底部臂,即
查看源 \begin{equation} ER = 20\log _{10} \left({\frac{{{\mathop{\rm e}\nolimits} ^{ - a_B } + {\mathop{\rm e}\nolimits} ^{ - a_A } }}{{{\mathop{\rm e}\nolimits} ^{ - a_B } - {\mathop{\rm e}\nolimits} ^{ - a_A } }}} \right). \end{equation}
Therefore, we have
因此,我们有
查看源 \begin{eqnarray} \frac{{{\mathop{\rm e}\nolimits} ^{ - a_B } + {\mathop{\rm e}\nolimits} ^{ - a_A } }}{{{\mathop{\rm e}\nolimits} ^{ - a_B } - {\mathop{\rm e}\nolimits} ^{ - a_A } }} &=& 10^{\frac{{\rm ER}}{{20}}} \equiv k\\ a_A - a_B &=& \ln \frac{{k + 1}}{{k - 1}}. \end{eqnarray}
From the measured ER change with bias on the top or bottom arm, we can get
从顶部或底部臂上偏置的测得的 ER 变化中,我们可以得到
The optical phase shift and loss versus voltage for each arm are fit with a third-order polynomial. The fitting
parameters for each arm of the MZM are listed in Table I.
每个臂的光学相移和损耗与电压的关系与三阶多项式拟合。表 I 列出了 MZM 每个臂的拟合参数。
We can convert the loss coefficient change into waveguide loss change by using the following formula:
我们可以使用以下公式将损耗系数变化转换为波导损耗变化:
查看源 \begin{equation} \Delta Loss_{A,B} \left({dB} \right) = 20\left[ {a_{A,B} (V) - a_{B,A} (0)} \right]\log _{10} e. \end{equation}
Fig. 3(d) shows the loss reduction as a function of reverse bias for the
top and bottom arms. The loss reduction rate is similar for the two arms.
图 3(d) 显示了顶部和底部臂的反向偏置的损耗降低。两个组的损失减少率相似。
The TWE was optimized to achieve a large electro–electro (EE) bandwidth [26]
. The measured S-parameters (S21 and S11) under various bias voltages are shown in
Figs. 4(a) and 4(b). The microwave probe
and coaxial cables were calibrated before measurement using the standard short-open-load-through (SOLT) method. The
6-dB EE bandwidth increases from 14.2 GHz at
TWE 经过优化以实现较大的电-电 (EE) 带宽 [26] 。在各种偏置电压下测得的 S 参数(S21 和 S11)如
图 4(a) 和 4(b)。微波探头
同轴电缆在测量前使用标准短路开路负载直通 (SOLT) 方法进行校准。这
从 TWE 的 S21 曲线中观察到,6 dB EE 带宽从 14.2 GHz 增加到
In order to find the optimal operation point to achieve the highest SFDR, we measured the output power ratio between
the fundamental tones and the distortions (F/SHD and F/IMD) versus wavelength as shown in
Fig. 5(a). The power of the fundamental tone at each wavelength was set to
–50 dBm. Both traces F/SHD and F/IMD have two peaks at the positive and negative slopes of the optical
transmission spectrum close to the quadrature operation points. Because of the nonlinearity of free carrier absorption
loss and the fact that loss and phase responses of the two arms are slightly different due to fabrication
imperfections, the SHD cannot be fully cancelled when the modulator is biased at quadrature. The input laser
wavelength was set at the quadrature point (1551.5 nm) for the following linearity measurement. The optical power
received by the photodetector was 12 dBm and the photodetector current was 8.58 mA. The bias voltage was set to
为了找到实现最高 SFDR 的最佳工作点,我们测量了
基音和失真(F/SHD 和 F/IMD)与波长的关系,如下所示
图 5(a).每个波长的基音功率设置为
–50 dBm。迹线 F/SHD 和 F/IMD 在光学器件的正斜率和负斜率处都有两个峰值
靠近正交操作点的传输光谱。由于自由载流子吸收的非线性
损耗以及由于制造原因,两个臂的损耗和相位响应略有不同的事实
缺陷时,当调制器在正交处偏置时,SHD 无法完全抵消。输入激光器
波长设置在正交点 (1551.5 nm) 处,用于以下线性度测量。光功率
光电探测器接收的电流为 12 dBm,光电探测器电流为 8.58 mA。偏置电压设置为
The high linearity property of the modulator can be exploited to generate PAM modulation signals. The input laser
wavelength was set at the quadratic point to ensure the modulator was operated in the linear response regime. The RF
drive signal from the AWG was amplified to a voltage swing of 7
可以利用调制器的高线性度特性来产生 PAM 调制信号。输入激光器
波长设置为二次点,以确保调制器在线性响应模式下运行。俄罗斯联邦
来自 AWG 的驱动信号被放大到 7 的电压摆幅
Conclusion 结论
We have presented experimental measurement on the linearity of a carrier-depletion-based silicon MZM with a
single-drive push–pull drive configuration. The single-drive scheme can effectively reduce the second harmonic
distortion due to the two strictly aligned push–pull signals from the one input RF feed. The MZM possesses a
3-dB EO bandwidth of 15 and 32 GHz at 0 and 6 V reverse biases, respectively. The SFDRSHD and
SFDRIMD were measured to be 85.9 dB·Hz1/2 and 97.7 dB·Hz2/3
at the quadrature operation point, respectively. PAM modulation was realized using the high-linearity modulator.
Eye-diagrams were measured for the PAM-2, 3, 4, and 5 signals at a symbol rate of 40 Gbaud/s and the PAM-8 signal at a
symbol of 25 Gbaud/s.
我们提出了对具有单驱动推挽驱动配置的基于载流子耗尽的硅 MZM 的线性度的实验测量。单驱动方案可以有效减少由于来自一个输入 RF 馈电的两个严格对齐的推挽信号而导致的二次谐波失真。MZM 在 0 V 和 6 V 反向偏置时分别具有 15 GHz 和 32 GHz 的 3 dB EO 带宽。测得的 SFDRSHD 和 SFDRIMD 为 85.9 dB·Hz1/2 和 97.7 dB·Hz2/3 分别在正交操作点。PAM 调制是使用高线性度调制器实现的。以 40 Gbaud/s 的符号速率测量 PAM-2、3、4 和 5 信号,以 25 Gbaud/s 的符号测量 PAM-8 信号的眼图。
ACKNOWLEDGMENT 确认
The authors would like to thank IME Singapore for device fabrication.
作者要感谢 IME Singapore 的设备制造。