这是用户在 2024-5-11 15:43 为 https://app.immersivetranslate.com/pdf-pro/bcb441d4-808d-42d9-a8e5-cd23ba3abc96 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_05_11_cdc001ff4f3024748d36g
REGULAR PAPERS 常规论文

Luminescence properties of -activated perovskite compound synthesized by metal organic decomposition
金属有机分解合成 活化 钙钛矿化合物的发光性能

To cite this article: Yuya Onishi et al 2018 Jpn. J. Appl. Phys. 57082601
引用本文: Yuya Onishi et al 2018 Jpn. J. Appl. Phys. 57082601
View the article online for updates and enhancements.
在线查看文章以获取更新和增强功能。

Related content 相关内容
ion doping into : Solubility limit
离子掺杂: 溶解度极限
and luminescence properties
和发光特性
Yuya Onishi, Toshihiro Nakamura and Sadao Adachi
Yuya Onishi、Toshihiro Nakamura 和 Sadao Adachi
Synthesis and properties of
的合成和性质
red-emitting phosphors Shono Sakurai, Toshihiro Nakamura and Sadao Adachi
红色荧光粉 Shono Sakurai、Toshihiro Nakamura 和 Sadao Adachi
Photoluminescent Properties of in
的光致发光特性
Films Prepared by Metal
金属制备的薄膜
Organic Deposition 有机沉积
Yoshinori Tokida and Sadao Adachi
Yoshinori Tokida 和 Sadao Adachi

by metal organic decomposition
通过金属有机分解

}

Yuya Onishi , Toshihiro Nakamura , Hayato Sone , and Sadao Adachi
Yuya Onishi 、Toshihiro Nakamura 、Hayato Sone 和 Sadao Adachi
Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
群马大学科学技术学院电子信息学系, 日本 群马 桐生 376-8515
Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, Hosei University, Koganei, Tokyo 188-8584, Japan
法政大学理工学院电气电子工程系, 日本 东京都小金井 188-8584
*E-mail: nakamura @hosei.ac.jp; adachi@gunma-u.ac.jp
*电子邮件:nakamura @hosei.ac.jp;adachi@gunma-u.ac.jp

Received February 2, 2018; revised March 29, 2018; accepted May 2, 2018; published online July 4, 2018
收稿日期: 2018-02-02;2018 年 3 月 29 日修订;2018年5月2日接受;2018年7月4日在线发布

Abstract 抽象

-activated perovskite ( ) phosphor was synthesized by metal organic decomposition and subsequent calcination at in air. The luminescence properties of the TAP: phosphor were investigated in detail by photoluminescence (PL) spectroscopy and excitation (PLE) spectroscopy, together with PL decay measurements. The PLE spectra and PL decay behaviors of the and emissions showed evidence of resonant energy transfer from the TAG host ( ) to . The temperature dependence of the Eu emission intensity was measured at and analyzed using the conventional quenching model with the addition of the phonon occupation number term, which was promising for gaining the parity-forbidden transition intensity. This study was also focused on a lattice site of the dopant ions substituting whether for the -site or -site in the TAP lattice. The Stark splitting of the to level transitions suggests that the ions are substituted for the A-site with the point symmetry . (C) 2018 The Japan Society of Applied Physics
-活化 钙钛矿( )荧光粉是通过金属有机分解和随后在 空气中煅烧合成的。通过光致发光(PL)光谱和 激发(PLE)光谱以及PL衰减测量,详细研究了TAP: 荧光粉的发光特性。PLE谱和PL衰变行为 表明,TAG主机( )向 . 采用常规淬灭模型测量 并分析了Eu 发射强度的温度依赖性,并添加了声子占用数项,这有望获得奇偶校验禁止 的转变强度。本研究还集中在 掺杂剂离子的晶格位点上,该晶格位点取代了TAP晶格中的 -位点 -位点 能级跃迁的斯塔克分裂表明, 离子被具有点对称性的 A 位点取代。(C) 2018年日本应用物理学会

1. Introduction 1. 引言

Perovskite oxide materials in the form of are a special class of compounds, which have applications in various areas of science and technology, including cheap solar cells, multiferroic materials, energy harvesting devices, photocatalysis, anode materials in solid oxide fuel cells, and so on (see Ref. 1). The perovskite oxide materials also have unique physical properties, such as wide band gaps, high refractive indices, high melting points, small thermal expansion coefficients, and high dielectric permittivities.
钙钛矿氧化物材料 是一类特殊的化合物,在科学技术的各个领域都有应用,包括廉价的太阳能电池、多铁性材料、能量收集装置、光催化、固体氧化物燃料电池中的负极材料等(见参考文献1)。钙钛矿氧化物材料还具有独特的物理性能,如宽带隙、高折射率、高熔点、小热膨胀系数和高介电常数。
A trivalent rare-earth (RE) oxide compound, perovskite (TAP), is a member of the perovskite oxide family crystallizing in the orthorhombic structure with the space group Pnma The optical properties of in TAP, such as optical absorption, emission, and magnetooptical absorption and emission, have been studied by a number of researchers. Furthermore, the TAP crystal has been used as a host material for some non-RE and RE activator ions, such as and ) Photoluminescence (PL) investigation has also been performed on heterostructures with thin films deposited on TAP single-crystalline substrates by pulsed laser deposition.
三价稀土(RE)氧化物化合物 钙钛矿(TAP)是钙钛矿氧化物家族的成员,在与空间群Pmma 的斜方结构中结晶,TAP 的光学特性,如光吸收、发射和磁光吸收和发射,已被许多研究人员研究。 此外,TAP晶体已被用作一些非RE和RE活化离子的主体材料,例如 )还通过脉冲激光沉积对TAP单晶衬底上沉积 薄膜 的异质结构进行了光致发光(PL)研究。
The purpose of this study is to determine in detail the PL properties of -activated TAP phosphor. The ion is known to be an efficient activator in a number of phosphor materials. To the best of our knowledge, only one article has been published on a study of the PL properties of TAP:Eu Recently, Gorbenko et al. have reported the PL properties of -activated -mixed perovskites grown on substrates by liquid phase epitaxy. The aim of their study is to develop scintillating screens for use in microimaging applications. They found that , and films can be used as microimaging detectors. Concerning TAP: , they also reported optical spectra of absorption, PL, PL excitation (PLE), and cathodoluminescence, together with the PL decay characteristic measured by monitoring at Eu emission).
本研究的目的是详细确定 活化TAP荧光粉的PL特性。众所周知,该 离子是许多荧光粉材料中的有效活化剂。据我们所知,只有一篇关于 TAP:Eu 的 PL 特性研究的文章发表 最近,Gorbenko 等人 报道了通过液相外延在衬底上 生长的 活化 混合钙钛矿的 PL 特性。他们研究的目的是开发用于显微成像应用的闪烁屏幕。他们发现 ,胶片可以 用作显微成像探测器。关于TAP: ,他们还报告了吸收、PL、PL激发(PLE)和阴极发光的光谱,以及通过监测Eu 发射测量的PL衰变特性)。
Here, we synthesized pure and -activated TAP phosphors by metal organic decomposition (MOD). The structural and PL properties of the phosphor powders were investigated by X-ray diffraction (XRD) analysis, diffuse reflectance spectroscopy, PL analysis, PLE spectroscopy, and PL decay measurements. The temperature dependence of the PL properties was studied from to in increments. PL decay measurements were performed by monitoring at both (Eu emission) and ( emission). The reason for this is to confirm the efficient energy transfer occurring from the host to in the TAP:Eu system. This study was also focused on a lattice site of the dopant ions substituting whether for the A- or B-site in the TAP lattice.
在这里,我们通过金属有机分解(MOD)合成了纯和 活化的TAP荧光粉。通过X射线衍射(XRD)分析、漫反射光谱、PL分析、PLE光谱和PL衰减测量研究了荧光粉的结构和PL性能。研究了PL性能从 温度依赖性。PL衰减测量是通过监测 (Eu 排放)和 排放)进行的。这样做的原因是为了确认从 主机到 TAP:Eu 系统中发生的有效能量转移。本研究还集中在 掺杂剂离子的晶格位点上,该晶格位点取代了TAP晶格中的A位 点或B位 点。

2. Experimental procedure
2.实验程序

The TAP: Eu phosphor was synthesized by MOD. A mixed solution of , isoamyl acetate, and isopropyl alcohol was supplied from Kojundo Chemical Laboratory (Product No. Al-03-P). (KANTO CHEMICAL, ) was dissolved in deionized water and used as a source of . This solution was then mixed with the above-mentioned solution sufficiently. The MOD solutions were in molar ratios of with was dissolved in an aqueous solution and then mixed with the Tb-Al-O MOD solution sufficiently. The trivalent concentrations in were (pure TAP) and (TAP:Eu ). After prebaking in air at for , the MOD precursor was calcined on an alumina boat in an electric furnace at for in air. The synthesized TAP:Eu sample was ground in an agate mortar and used for various measurements.
TAP:Eu荧 光粉由MOD合成。 由乙酸异戊酯和异丙醇组成的 混合溶液由Kojundo化学实验室(货号.AL-03-P)。 (KANTO CHEMICAL, )溶于去离子水中,用作. 然后将该溶液与上述 溶液充分混合。将MOD溶液的摩尔比 溶解在水 溶液中,然后与Tb-Al-O的MOD溶液充分混合。中的三价 浓度为 (纯TAP)和 (TAP:Eu )。 在空气 预烘烤后,MOD前驱体在氧化铝船上的电炉 中煅烧。合成的TAP:Eu 样品在玛瑙研钵中研磨并用于各种测量。
The structural properties of the synthesized phosphor powders were analyzed by XRD spectroscopy using an X-ray diffractometer (SmartLab, Rigaku) with radiation at . The room-temperature diffuse reflectance spectrum was measured using a spectrometer (JASCO V-570) at .
使用X射线衍射仪(SmartLab,理学)通过XRD光谱分析了合成荧光粉的结构特性, 辐射在 。室温漫反射光谱是使用光谱仪(JASCO V-570)在 .
PL measurements were performed using a single monochromator equipped with a charge-coupled device (Princeton Instruments PIXIS 100B) and a Nd:YAG laser (Teem Photonics STV-01E) at with pulse duration at or a laser (Kimmon IK3302R-E) at
PL测量使用配备电荷耦合器件(Princeton Instruments PIXIS 100B)和Nd:YAG激光器(Teem Photonics STV-01E) 的单色器进行, 脉冲持续时间为或 激光器(Kimmon IK3302R-E)在
Fig. 1. (Color online) XRD patterns for the TAP and TAP: samples. The ASTM card pattern for orthorhmbic TAP (space group = Pnma; #01-088-0154) is shown at the bottom. Crosses and open triangles represent the diffraction peaks obtained from the ASTM card for cubic TAG (ASTM: and corundom-type (ASTM: #00-046-1212), respectively,
图 1.(在线彩)用于TAP和TAP 样品的XRD图谱。正交TAP的ASTM卡型(空间组= Pnma;#01-088-0154)显示在底部。十字和开三角形分别表示从ASTM卡中获得的三次TAG(ASTM: 和corundom型 (ASTM:#00-046-1212))的衍射峰,
as the excitation light source at room temperature or at temperatures from to in step. PLE measurements were performed at using a monochromator (JASCO CT-25C) with a Peltier-device cooled photomultiplier tube (Hamamatsu R375) and a xenon lamp as the excitation light source.
作为激发光源,在室温或温度从 步进到 步进 。PLE测量是在 使用单色器(JASCO CT-25C)和帕尔帖器件冷却光电倍增管(Hamamatsu R375)和 氙灯作为激发光源的情况下进行的。
Room-temperature PL decay measurements were performed by the excitation of the sample using the above-mentioned Nd:YAG laser at and . The decay signal was detected using a Peltier-element-cooled photomultiplier tube (Hamamatsu R375), a multichannel scaler (Stanford Research Systems SR 430), and a preamplifier (Stanford Research Systems SR 445A).
室温PL衰减测量是通过使用上述Nd:YAG激光在和 激发样品进行的。使用帕尔帖元件冷却光电倍增管 (Hamamatsu R375)、多通道缩放器 (Stanford Research Systems SR 430) 和前置放大器 (Stanford Research Systems SR 445A) 检测衰减信号。

3. Results and discussion
3. 结果与讨论

3.1 XRD measurements 3.1 XRD测量

TAP can be synthesized from mole of and mole of via
TAP可以由 摩尔 摩尔合成
with . From Eq. (1), one can expect to obtain other stoichiometric compounds at specific values, namely, garnet (TAG) at at 0.667 , and at , together with the end-point binaries of and . However, only ternary materials of TAP and TAG were synthesized by MOD. The synthesis of and by the MOD or other methods was found to be very difficult or, in principle, impossible.
.从式(1)中,可以预期获得其他特定 值的化学计量化合物,即石 榴石(TAG) 0.667处和 在,以及端点二进制的 。然而,MOD只合成了TAP和TAG的三元材料。 发现MOD或其他方法的合成 非常困难,或者原则上是不可能的。
Figure 1 shows the XRD data measured for the TAP and TAP: Eu samples. The diffraction pattern taken from the American Society for Testing and Materials (ASTM) card for orthorhmbic TAP (space group = Pnma; #01-088-0154) is shown at the bottom of Fig. 1. The XRD data in Fig. 1 suggest that our synthesized TAP and TAP:Eu samples
图 1 显示了 TAP 和 TAP: Eu 样品测量的 XRD 数据。图 1 底部显示了美国材料与试验协会 (ASTM) 卡中正交 TAP(空间组 = Pnma;#01-088-0154)的衍射图。图1中的XRD数据表明,我们合成的TAP和TAP:Eu 样品
Fig. 2. Room-temperature diffuse reflectance spectrum of the TAP:Eu sample.
图 2.TAP:Eu 样品的室温漫反射光谱。
contain small amounts of unavoidable TAG and inclusions. Crosses and open triangles represent the diffraction peaks from cubic TAG (ASTM: #00-056-1461) and corundom-type (ASTM: #00-046-1212), respectively. The dominant inclusions were cubic TAG in the TAP sample and both cubic TAG and with the latter as the most dominant one in the Eu -doped TAP sample.
含有少量不可避免的 TAG 和 内含物。十字形和开三角形分别表示三次 TAG (ASTM: #00-056-1461) 和 corundom 型 (ASTM: #00-046-1212) 的衍射峰。TAP样品中的主要夹杂物是立方TAG,在Eu 掺杂TAP样品中,立方TAG 和后者是最主要的。

3.2 Diffuse reflectance spectrum
3.2 漫反射光谱

Figure 2 shows the diffuse reflectance spectrum of the TAP:Eu sample at . We can see that our diffuse reflectance spectrum shows a weak peak series at , which correspond to the transitions. A large dip at also corresponds to the transitions in (see details in Fig. 5 below).
图 2 显示了 TAP:Eu 样品在 处的 漫反射光谱。我们可以看到,我们的漫反射光谱在 处 显示出一个弱峰序列,这与 跃迁相对应。处 的大幅下降也对应于 转换( 详见下图 5)。

3.3 PL properties 3.3 PL性能

Figure 3 shows the PL spectrum of the TAP:Eu sample measured by excitation at and , together with those of TAG:Eu and . The TAG: and trace data were taken from Refs. 22 (TAG: and , which were obtained by excitation at and . Comparing these PL spectra, we can understand that some very weak emission peaks in the TAP:Eu sample at , and 630 originate from the TAG: inclusion. Such very weak inclusion peaks were marked in Fig. 3 by crosses.
图 3 显示了 TAP:Eu 样品在 处激发测量的 PL 谱图,以及 TAG:Eu 的 PL 谱图。TAG: 跟踪数据取自 Refs。22 (TAG: ,这是通过在 处激发获得的。比较这些PL谱图,我们可以了解到,在TAP:Eu 样品中 ,和630处的一些非常微弱的发射峰 来自TAG: 夹杂物。这种非常弱的包涵体峰在图3中用十字标记。

3.4 PL and PLE spectra: resonant energy transfer between and ions
3.4 PL 和 PLE 光谱:和 离子之间的 共振能量转移

Figure 4 shows the PL and PLE spectra of (a) TAP: , (b) TAP, (c) (Ref. 23), and (d) (Ref. 24) measured at . The PL spectra were obtained by excitation at (TAP: ), (TAP and , and . The PLE spectra were measured by monitoring at a) emission] and b)-(d) emission]. The PLE results in Figs. 4(b)-4(d) indicate that the emission can be efficiently excited at light wavelengths of due to the transitions with in and at shorter wavelengths than due to the transitions in (see Fig. 5 below). The strongest PLE peaks at (TAP) and are assigned to the
图 4 显示了 (a) TAP: , (b) TAP、(c) (参考文献 23) 和 (d) (参考文献 24) 在 处测量的 PL 和 PLE 光谱。PL谱图是通过在 (TAP: )、 (TAP和 、和 .PLE光谱是通过 a) 发射]和 b)-(d) 发射]的监测来测量的。图4(b)-4(d)中的PLE结果表明, 由于与in 跃迁和比 由于跃 迁的 波长更短的光波长 ,发射可以被有效地激发(见下面的图5)。最强的 PLE 在 (TAP) 处达到峰值, 分配给
Fig. 3. (Color online) Room-temperature PL spectrum of the TAP:Eu sample, together with those of TAG:Eu (Ref. 22) and (Ref. 23). The PL spectra were measured by excitation at (TAP:Eu ) and . Very weak PL peaks in the PL spectrum of the TAP:Eu sample marked by crosses arise from the unavoidable TAG: Eu inclusion. Vertical arrows also indicate the positions or regions of the transition peaks.
图 3.(在线彩)TAP:Eu 样品的室温PL光谱,以及TAG:Eu (参考文献22)和 (参考文献23)的室温PL光谱。PL谱图在 (TAP:Eu )和 .在以交叉标记的 TAP:Eu 样品的 PL 谱图中,非常弱的 PL 峰来自不可避免的 TAG:Eu 包含。垂直箭头也表示 过渡峰的位置或区域。
Fig. 4. (Color online) Room-temperature PL and PLE spectra of (a) the TAP:Eu , (b) TAP, (c) , and (d) phosphors. The PL spectra were measured by excitation at (TAP:Eu ), (TAP, , and . The PLE spectra were observed by monitoring at emission; TAP: ) and emission; TAP, . The experimental PL and PLE data for the and phosphors were taken from Refs. 23 and 24 , respectively.
图 4.(在线彩)(a) TAP:Eu 、(b) TAP、(c) 和 (d) 荧光粉的室温 PL 和 PLE 光谱。PL光谱在 (TAP:Eu )、 (TAP、 、和 .通过发射监测 观察PLE光谱;TAP: )和 排放;轻点、 . 荧光粉的实验PL和PLE数据取自Refs。分别为 23 和 24。
and transitions in , respectively. The sharp PLE peaks observed at in Fig. 4(b) can also be assigned to the ; transitions. Note that the PLE spectrum for the Eu emission in the TAP:Eu sample [Fig. 4(a)] is nearly the same as those for the emission in the and - samples [Figs. 4(c) and 4(d)]. This means that the emissive transitions in TAP:Eu occur via ions in the TAP host (i.e., energy transfer from to ). (a)
中的 过渡。 在图4(b)中 观察到的尖锐PLE峰也可以分配给; 转换。请注意,TAP:Eu样品中Eu 发射的PLE光谱[图4(a)]与 - 样品中的发射光谱几乎相同[图4(c)和4(d)]。 这意味着 TAP:Eu 中的 发射跃迁通过 TAP 主体中的离子 发生(即,从 的能量转移)。(一)
Fig. 5. (Color online) (a) Electronic energy level scheme for in TAP and (b) room-temperature PL and PLE spectra for the TAP: phosphor. The PL and PLE spectra in (b) were measured by excitation at (PL) and monitoring at (PLE). The vertical axis in (b) is presented by the linear scale.
图 5.(在线彩)(a)TAP 的电子能级方案和(b)TAP的室温PL和PLE光谱: 荧光粉。(b)中的PL和PLE光谱是通过( PL)激发和 (PLE)监测来测量的。(b)中的纵轴由线性刻度表示。
Such energy transfer from the host to has also been observed in various -based phosphor materials, such as (Ref. 22) and )
在各种基于荧光粉的材料中也观察到了这种从 宿主到宿主的能量 转移,例如 (参考文献22)和
The energy level scheme for the PL and PLE transitions in the TAP: phosphor, together with their experimental spectra, is shown in Fig. 5. The experimental PL and PLE spectra in Fig. 5(b) were measured at 300 K. The PL spectrum of the TAP: phosphor shows many sharp related emission peaks at . The main emission peaks correspond to the , , and transitions. The weak forbidden transition peaks can also be observed near . Furthermore, the enlarged PL spectrum in Fig. 5(b) shows several very weak forbidden and rarely measured transition peaks at and , respectively. All these dipole transition peaks, except for the transition ones, are of the electric dipole character, while the transition peaks are of the magnetic dipole one. The enlarged PL spectrum in the shorter wavelength region also reveals the emission peaks due to the and transitions in the host at and , respectively.
TAP: 荧光粉中PL和PLE跃迁的能级方案及其实验光谱如图5所示。图5(b)中的实验PL和PLE光谱是在300 K下测量的。TAP: 荧光粉的PL光谱在 处显示出许多尖锐 的相关发射峰。主要 发射峰对应于 跃迁。在附近 也可以观察到微弱 的禁止过渡峰。此外,图5(b)中扩大的PL谱分别在 处显示了几个非常微弱 的禁止和很少测量 的跃迁峰。 过渡峰外,所有这些偶极子跃迁峰都具有电偶极子特性,而 跃迁峰则具有磁偶极子特性。 在较短波长区域中扩大的PL光谱也分别揭示了 由于宿主在和 跃迁而产生的发射峰值。
As previously mentioned, the PLE peaks for the emission in the TAP: sample mainly originate from the ion transitions. The dipole transition diagram for these absorption transitions is shown on the left-hand (short-wavelength) side of Fig. 5(b). The electrons excited in such higherlying levels can transfer energy to the higher-lying Eu that finally relaxes to its lowest excitation state , resulting in the emissive transitions in .
如前所述,TAP中发射的PLE峰 样品主要来自 离子跃迁。这些吸收跃迁的偶极子跃迁图显示在图5(b)的左侧(短波长)。在如此高能 级中被激发的电子可以将能量传递到高位的氭, 最终弛豫到最低激发态 ,导致 发射 跃迁。

3.5 PL decay characteristics
3.5 PL衰减特性

To investigate energy transfer in the TAP:Eu phosphor in more detail, we examined the PL decay curves both for the TAP and TAP: samples at the excitation wavelength . Figure 6 shows the results of these experi-
为了更详细地研究 TAP:Eu 荧光粉中的能量转移,我们检查了 TAP 和 TAP 的 PL 衰减曲线: 激发波长 下的样品。图 6 显示了这些实验的结果
Fig. 6. (Color online) Room-temperature PL decay characteristics of the TAP and TAP:Eu phosphors measured by excitation at and monitoring at emission). Solid lines show the results calculated using Eqs. (2) and (3). The fit-determined parameters and related average decay times are listed in Table I.
图 6.(在线彩)TAP和TAP:Eu 荧光粉的室温PL衰减特性,通过激发时 的激发和发射时 的监测来测量)。实线表示使用方程计算的结果。(2)和(3)。拟合确定的参数和相关的平均衰减时间列于表I中。
ments by excitation at and monitoring at emission). Solid lines show the results calculated using the multiple exponential function:
通过激发 和发射监测 )。实线显示使用多重指数函数计算的结果:
The fit-determined decay parameters are listed in Table I ( ). The long decay time of observed both for the TAP and TAP: Eu samples indicates that such a slow decay component is not very strongly affected by activator doping (i.e., by energy transfer from to ).
拟合确定的衰减参数列于表I( )中。在TAP和TAP:Eu样品中观察到的 较长衰变时间表明,这种缓慢的衰变成分不会受到 活化剂掺杂(即通过从 到的能量 转移)的强烈影响。
It is evident from Fig. 6 that, at the early decay stage, the TAP: phosphor shows considerably faster decay than the TAP phosphor. This finding suggests evidence of the resonant energy transfer from the host to in the TAP: phosphor. To quantitatively show the effect of activator doping on sensitizer emission, we define the average decay time of emission as
从图6中可以明显看出,在衰变早期阶段,TAP: 荧光粉的衰变速度比TAP荧光粉快得多。这一发现表明了从 宿主到 TAP中的共振能量转移的证据: 荧光粉。为了定量显示 活化剂掺杂对 敏化剂发射的影响,我们将发射的平均 衰减时间 定义为
Note that the usual decay time , which includes all the decay time processes, can be obtained by summing up to 3 (not 2 ) in Eq. (4). These average decay times are also listed in Table I.
请注意,通常的衰减时间 ,包括所有衰减时间过程,可以通过在方程(4)中将 3(而不是2)相加来获得。这些平均衰减时间也列在表I中。
The room-temperature PL decay curve for the emission in the TAP:Eu phosphor is shown in Fig. 7. The PL decay curve was measured by excitation at and monitoring at . Solid lines show the results calculated using Eqs. (2) and (3). The "negative" term, if required in Eq. (2), represents the enhancement component at the early stage of the radiative transient process. Note that the need of such a negative term is direct evidence of energy transfer occurring from to . After finishing the enhancement event in the radiative transient process,
TAP:Eu 荧光粉发射的室温PL衰减曲线 如图7所示。PL衰减曲线通过激发 和监测来 测量。实线表示使用方程计算的结果。(2)和(3)。如果方程(2)中需要,“负” 项表示辐射瞬态过程早期阶段的增强分量。请注意,需要这样一个否定 项是能量转移从 的直接证据。在辐射瞬态过程中完成增强事件后,

Table I. PL decay parameters and determined by fitting the experimental data in Figs. 6 and 7 with Eqs. (2) and (3) and average decay times and calculated from Eq. (4).
表I. PL衰减参数 ,并通过将图6和图7中的实验数据与方程拟合 来确定。(2)和(3)以及平均衰减时间 并根据方程(4)计算。
Emission
0.838 0.85 -0.75
0.0039 0.0015 0.0015
0.152 0.12 1.75
0.02 0.005 2.3
0.010 0.03 -
0.53 0.53 -
0.0117 0.0026 -
0.248 0.474
Fig. 7. (Color online) Room-temperature PL decay characteristic of the TAP:Eu phosphor measured by excitation at and monitoring at (Eu emission). Solid lines show the results calculated using Eqs. (2) and (3). The fit-determined parameters are listed in Table I.
图 7.(在线彩)TAP:Eu 荧光粉的室温PL衰减特性,通过激发和 监测 (Eu 发射)测量。实线表示使用方程计算的结果。(2)和(3)。拟合确定的参数列于表I中。
the decay curve exhibits a popularly observed intensity decay process. Such a unique decay process is observed in the TAP:Eu phosphor (Fig. 7). The rise time in negatively decaying term is determined to be s. Such fit-determined decay parameters in Fig. 7 are listed in Table I.
衰变曲线表现出普遍观察到的强度衰变过程。在TAP:Eu 荧光粉中观察到这种独特的衰变过程(图7)。负衰减 项的上升时间被确定为 s。图7中这种拟合确定的衰减参数列于表I中。
The energy transfer efficiency from to can be estimated from as
的能量传递效率 可以从
where and represent the average decay times of the sensitizer emission in the absence and presence of the activator ion, respectively. Using the average decay times listed in Table I, we determined to be at . We also determined to be from the experimental emission intensity excited at with and without activator ion. An efficient energy transfer is also reported to occur in the sensitizer/ activator system at excitation wavelengths longer than , but not at a considerably longer wavelength
其中 分别表示在没有 和存在活化剂离子的情况下 敏化剂发射的平均衰减时间。使用表I中列出的平均衰减时间,我们确定 我们还从实验 发射强度中确定了 有和没有 活化剂离子时激发的。 据报道,在 激发波长大于 的激发波长下,敏化剂/ 活化剂系统中也会发生有效的能量转移,但在相当长的波长 下不会发生

3.6 Lattice site of dopant ion in the TAG host
3.6 TAG主体中 掺杂离子的晶格位点

As shown in Table II, perovskite-type oxide compounds such as have two different cation sites (A- and B-sites). Thus, there is a possibility that can be substituted for the A- or B-site in the TAP lattice. The crystal field perturbation destroys the wavefunc-
如表二所示,钙钛矿型 氧化物化合物如 具有两个不同的阳离子位点(A位点和B位点)。因此, 有可能在TAP晶格中替代A位 点或B位 点。晶体场扰动破坏了波函数c-
Table II. Theoretical transition lines of for ion in perovskite crystal. Values in parentheses give the experimental PL peak wavelengths (in ) at .
表二.钙钛矿晶体 中离子的 理论跃迁 线。括号中的值给出了实验 PL 峰值 波长 (in )。
ion on site
A-site B-site
Monoclinic Hexagonal Trigonal
Point group
Transition lines 过渡线
1
1 1
3
2 2
2 3
Undefined control sequence \multicolumn 2 3
2 5
3 5
13
5 7
a) Ref.  a) 参考文献
b) Ref. . b) 参考文献。
tions of the -configuration states split up in a number of crystal field levels (Stark splitting). Thus, the extent to which the degeneracy of a term is removed depending on the symmetry class (icosahedral, cubic, octagonal, hexagonal, pentagonal, tetragonal, trigonal, orthorhombic, monoclinic or triclinic). In cubic or icosahedral crystal fields, the level is not split. In hexagonal [e.g., symmetry (Ref. 1)], tetragonal, and trigonal [(e.g., symmetry (Ref. 29)] crystal fields, the level is split into nondegenerate and twofold degenerate crystal field levels. In orthorhombic or lower symmetries [e.g., monoclinic symmetry (Ref. 30)], the complete removal of crystal field degeneracies results in three sublevels for (Table II).
-构型 状态的分裂在许多晶体场级中(斯塔克分裂)。因此,项的 简并 性在多大程度上被移除取决于对称性类别(二十面体、立方体、八角形、六边形、五边形、四方形、三角形、正交、单斜或三斜)。 在立方体或二十面体晶体场中, 液位不分裂。在六边形 [例如, 对称 (参考文献 1)]、四方和三边形 [(例如, 对称 (参考文献 29)] 晶场中, 该能级分为非简并晶场和二重简并晶场能级。在斜方对称性或较低对称性中[例如,单斜 对称性(参考文献30)],晶场简并的完全去除导致( 表II)的三个子能级。
In Fig. 3, we see that our experimental PL spectrum for the TAP: phosphor shows three and five emission lines for the and transitions, respectively, together with the very weak but clear single transition peak. These PL peak numbers are in agreement with the fact that the dopant ions can be substituted for the lattice site ( point symmetry) rather than for the lattice one ( or point symmetry) in the TAP host (see Table II). The experimental PL peak wavelengths for the transitions are also listed in Table II. Note that the experimental PL peak numbers for the transitions with , and 6 are smaller than those presented in Table II. This is only due to their very weak intensities that make them impossible to identify or distinguish.
在图3中,我们看到TAP的实验PL光谱: 荧光粉分别显示了 跃迁的三条和五条发射线,以及非常微弱但清晰的单 跃迁峰。这些PL峰数与 掺杂离子可以代替TAP主体中的 晶格位点( 点对称性)而不是晶 格位点( 点对称性)的事实一致(见表II)。表II中还列出了跃 迁的实验PL峰值波长。请注意,带有 和 6 跃迁的实验 PL 峰数小于表 II 中所示的峰值数。这只是由于它们的强度非常弱,使它们无法识别或区分。
We can conclude from the PL spectra in Figs. 3 and 5 that the site symmetry of should be (i.e., ions should be substituted for the site). Similarly, the PL spectra of the TAG and samples in Fig. 3 suggest that
我们可以从图3和图5中的PL谱图中得出结论,该 位点的位点对称性应为 (即 ,离子应代替 位点)。同样,图3中TAG和 样品的PL谱图表明
Fig. 8. (Color online) Integrated PL intensity for the emission vs reciprocal temperature plots for the TAP:Eu phosphor. The dashed and solid lines show the results calculated without and with the phonon occupation number of the second term on the right-hand side of the bracket in Eq. (6), respectively (see text). The inset shows the PL spectra measured at , and .
图 8.(在线彩)TAP:Eu荧光粉发射与倒数温度 图的积分PL强度 虚线和实线分别表示在方程(6)中括号右侧的第二项的声子占用数和声子占用数的情况下计算的结果(见正文)。插图显示了在 处测得的 PL 谱图。
ions can be substituted for the local symmetry of an orthorhombic site with the point symmetry (TAG; Ref. 31) and for the local symmetry of a trigonal site with the point symmetry Ref. 22).
离子可以代替具有点对称性的 正交 位点的局部对称性(TAG;参考文献31)和具有点对称性的 三角 位点的局部对称性(参考文献22)。

3.7 Temperature dependence of PL intensity
3.7 PL强度的温度依赖性

Figure 8 shows the integrated PL intensity vs reciprocal lattice temperature plots for the TAP:Eu phosphor. The inset in Fig. 8 shows the PL spectra measured at ,
图8显示了TAP:Eu 荧光粉的积分PL强度 与倒数晶格温度 的关系图。图 8 中的插图显示了在 下测得的 PL 光谱 ,
300, and . Because of its intra-f-shell transition nature, no marked change in PL spectral feature was observed over the entire temperature range from to . A popular phenomenon observed in many phosphors is that the PL intensity remains constant from a low to and gradually decreases with further increasing . However, the data in Fig. 8 indicate that the intensity gradually increases from to and then steeply decreases with further increasing . Such a unique dependence of can be successfully explained using the conventional thermal quenching model with the addition of the Bose-Einstein phonon statistics term
300 和 .由于其f-壳内跃迁性质,在从 到的整个 温度范围内,PL光谱特征没有观察到明显的变化。在许多荧光粉中观察到的一个流行现象是,PL强度从低 保持恒定,并随着进一步增加 而逐渐降低。然而,图8中 的数据表明,强度从 到逐渐 增加,然后随着进一步增加 而急剧降低。这种独特的 依赖性 可以使用传统的热淬灭模型以及玻色-爱因斯坦声子统计项来成功解释
The solid line in Fig. 8 shows the result calculated using Eq. (6) with only), and . The dashed line also shows the result calculated without the phonon occupation number of the second term on the right-hand side of the bracket in Eq. (6): , and . One observes that considering the phonon occupation number term gives good agreement between the experimental and calculated vs data. Note that the transition in is parity-forbidden. Therefore, its emission intensity should be gained by the activation of vibronic quanta with the energy . The phonon occupation term in Eq. (6) originates from this finding.
图 8 中的实线显示了使用方程 (6) 计算的结果,其中 只有 )和 。虚线还显示了在方程(6) 中括号右侧没有第二项的声子占用数的情况下计算的结果 :和。人们观察到,考虑声子占领数项可以使实验和计算 数据之间有很好的一致性。请注意,禁止奇偶校验的 转换。因此,它的发射强度应该通过激活具有能量 的振动量子来获得。式(6)中的声子占有项源于这一发现。

4. Conclusions 4. 结论

TAP:Eu red-light emitting phosphor with a perovskite-type crystal structure was synthesized from , and raw materials by MOD. XRD results suggest that it contains small amounts of unavoidable TAG and inclusions. The PL and PLE spectra, and the increase in Eu emission intensity at the early stage of luminescence decay indicate evidence of resonant energy transfer from the host to in the TAP:Eu phosphor system. The temperature dependence of the emission intensity in the TAP: Eu phosphor was measured from to in increments and analyzed using the conventional thermal quenching model taking into account the phonon occupation number. The latter term is required to take into account the gaining of the parity-forbidden intra-f-shell transition intensity. The quenching energy determined here was . The PL peak numbers of the emission clearly suggest that the dopant ions in the TAP host are substituted for the monoclinic lattice site with the point symmetry . The schematic energy level diagram for in TAP was also proposed for a better understanding of the PL and PLE processes in this type of phosphorescent material.
TAP:采用MOD合成了具有钙钛矿型晶体结构 的Eu 红光发光荧光粉。XRD结果表明,它含有少量不可避免的TAG和 夹杂物。PL 和 PLE 光谱,以及发光衰减早期 Eu 发射强度的增加表明了从 主体到 TAP:Eu 荧光体系统中共振能量转移的证据。以从 单位测量了TAP:Eu 荧光粉中发射强度的温度依赖性 ,并使用传统的热淬灭模型进行了分析,同时考虑了声子占用数。后一项需要考虑奇偶校验禁止 的 f-shell 内跃迁强度的获得。这里确定的淬火能是 。发射的 PL峰数清楚地表明,TAP主体中的 掺杂离子被具有点对称性的 单斜 晶格位点所取代。为了更好地理解这类磷光材料中的PL和PLE过程,还提出了 TAP的能级示意图。
  1. S. K. Gupta, N. Pathak, and R. M. Kadam, J. Lumin. 169, 106 (2016).
    SK Gupta、N. Pathak 和 RM Kadam、J. Lumin。169, 106 (2016).
  2. G. Garton and B. M. Wanklyn, J. Cryst. Growth 1, 164 (1967).
    G. Garton 和 B. M. Wanklyn,J. Cryst. 增长 1,164 (1967)。
  3. A. Bombik, B. Leśniewska, J. Mayer, A. Oleś, A. W. Pacyna, and J. Przewoźnik, J. Magn. Magn. Mater. 168, 139 (1997).
    A. Bombik、B. Leśniewska、J. Mayer、A. Oleś、A. W. Pacyna 和 J. Przewoźnik、J. Magn。马格恩。母校。168, 139 (1997).
  4. S. Hüfner, L. Holmes, F. Varsanyi, and L. G. Van Uitert, Phys. Rev. 171, 507 (1968).
    S. Hüfner、L. Holmes、F. Varsanyi 和 L. G. Van Uitert,Phys. Rev. 171, 507 (1968)。
  5. M.-F. Joubert, C. Linares, B. Jacquier, and B. Wanklyn, J. Lumin. 31-32, 90 (1984).
    MF Joubert、C. Linares、B. Jacquier 和 B. Wanklyn、J. Lumin。31-32, 90 (1984).
  6. M. Sekita, Y. Miyazawa, S. Morita, H. Sekiwa, and Y. Sato, Appl. Phys. Lett. 65,2380 (1994)
    M. Sekita、Y. Miyazawa、S. Morita、H. Sekiwa 和 Y. Sato,Appl. Phys. Lett. 65,2380 (1994)
  7. M. Sekita, Y. Miyazawa, and M. Ishii, J. Appl. Phys. 83, 7940 (1998).
    M. Sekita、Y. Miyazawa 和 M. Ishii, J. Appl. Phys. 83, 7940 (1998)。
  8. U. V. Valiev, M. M. Lukina, and K. S. Saidov, Phys. Solid State 41, 1880 (1999).
    U. V. Valiev、M. M. Lukina 和 KS Saidov,Phys. Solid State 41,1880 (1999)。
  9. P. Novák, K. Nnížek, and J. Kuneš, Phys. Rev. B 87, 205139 (2013).
    P. Novák、K. Nnížek 和 J. Kuneš,Phys. Rev. B 87,205139 (2013)。
  10. D. K. Sardar, K. L. Nash, R. M. Yow, and J. B. Gruber, J. Appl. Phys. 100,
    D. K. Sardar, K. L. Nash, R. M. Yow, and J. B. Gruber, J. Appl. Phys. 100,
  11. J. B. Gruber, K. L. Nash, R. M. Yow, D. K. Sardar, U. V. Valiev, A. A. Uzokov, and G. W. Burdick, J. Lumin. 128, 1271 (2008).
    JB Gruber、KL Nash、RM Yow、DK Sardar、UV Valiev、AA Uzokov 和 GW Burdick、J. Lumin。128, 1271 (2008).
  12. J. P. van der Ziel and L. G. Van Uitert, Solid State Commun. 7, 819 (1969).
    J. P. van der Ziel 和 L. G. Van Uitert,固态公社。7, 819 (1969).
  13. Y. Zorenko, V. Gorbenko, T. Vozniak, M. Batentschuk, A. Osvet, and A. Winnacker, Phys. Status Solidi A 207, 967 (2010).
    Y. Zorenko、V. Gorbenko、T. Vozniak、M. Batentschuk、A. Osvet 和 A. Winnacker,Phys. Status Solidi A 207, 967 (2010)。
  14. Y. V. Zorenko and V. I. Gorbenko, Phys. Solid State 51, 1800 (2009).
    Y. V. Zorenko 和 V. I. Gorbenko,Phys. Solid State 51, 1800 (2009)。
  15. V. A. Antonov, P. A. Arsenev, and D. S. Petrova, J. Solid State Chem. 29, 151 (1979).
    V. A. Antonov、P. A. Arsenev 和 D. S. Petrova, J. Solid State Chem. 29, 151 (1979)。
  16. H. Sato, V. I. Chani, A. Yoshikawa, Y. Kaganitani, H. Machida, and T. Fukuda, J. Cryst. Growth 264, 253 (2004).
    H. Sato、V. I. Chani、A. Yoshikawa、Y. Kaganitani、H. Machida 和 T. Fukuda, J. Cryst. 增长 264, 253 (2004)。
  17. Y. Adachi, H. Ryoken, I. Sakaguchi, N. Ohashi, H. Haneda, and T. Takenaka, J. Ceram. Soc. Jpn. 110, 488 (2002).
    Y. Adachi、H. Ryoken、I. Sakaguchi、N. Ohashi、H. Haneda 和 T. Takenaka、J. Ceram。Soc. Jpn. 110, 488 (2002).
  18. V. Gorbenko, T. Zorenko, K. Paprocki, F. Riva, P. A. Douissard, T. Martin, Y. Zhydachevskii, A. Suchocki, A. Fedorovd, and Y. Zorenko, CrystEngComm 20, 937 (2018).
    V. Gorbenko、T. Zorenko、K. Paprocki、F. Riva、PA Douissard、T. Martin、Y. Zhydachevskii、A. Suchocki、A. Fedorovd 和 Y. Zorenko,CrystEngComm 20, 937 (2018)。
  19. Y. Onishi, T. Nakamura, and S. Adachi, Opt. Mater. 64, 557 (2017),
    Y. Onishi、T. Nakamura 和 S. Adachi,选择母校。64, 557 (2017),
  20. Y. Onishi, T. Nakamura, and S. Adachi, J. Lumin. 192, 720 (2017).
    Y. Onishi、T. Nakamura 和 S. Adachi、J. Lumin。192, 720 (2017).
  21. Y. Onishi, T. Nakamura, and S. Adachi, J. Lumin. 183, 193 (2017).
    Y. Onishi、T. Nakamura 和 S. Adachi、J. Lumin。183, 193 (2017).
  22. Y. Onishi, T. Nakamura, H. Sone, and S. Adachi, J. Lumin. 197, 242 (2018).
    Y. Onishi、T. Nakamura、H. Sone 和 S. Adachi、J. Lumin。197, 242 (2018).
  23. Y. Onishi, T. Nakamura, and S. Adachi, Jpn. J. Appl. Phys. 55, 112401
    Y. Onishi, T. Nakamura, and S. Adachi, Jpn. J. Appl. Phys. 55, 112401
  24. K. Sawada, T. Nakamura, and S. Adachi, J. Alloys Compd. 678, 448
    K. Sawada, T. Nakamura, and S. Adachi, J. Alloys Compd. 678, 448
  25. K. Sawada and S. Adachi, J. Lumin. 165, 138 (2015).
    K. Sawada 和 S. Adachi,J. Lumin。165, 138 (2015).
  26. K. Sawada, T. Nakamura, and S. Adachi, ECS J. Solid State Sci. Technol. 6, R97 (2017).
    K. Sawada、T. Nakamura 和 S. Adachi,ECS J. Solid State Sci. Technol. 6, R97 (2017)。
  27. K. Binnemans, Coord. Chem. Rev. 295, 1 (2015).
    K. Binnemans,坐标。Chem. Rev. 295, 1 (2015).
  28. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006)
    J. R. Lakowicz,《荧光光谱原理》(Springer,纽约,2006年)
  29. J. H. Kim, Physica B 505, 52 (2017).
    J. H. Kim,Physica B 505,52 (2017)。
  30. C. Rudowicz, P. Gnutek, and M. G. Brik, J. Rare Earth 27, 627 (2009).
    C. Rudowicz、P. Gnutek 和 MG Brik, J. 稀土 27, 627 (2009)。
  31. Y. Onishi, T. Nakamura, and S. Adachi, J. Lumin. 176, 266 (2016).
    Y. Onishi、T. Nakamura 和 S. Adachi、J. Lumin。176, 266 (2016).
  32. S. Adachi, J. Lumin. 197, 119 (2018).
    S.足立,J.卢米。197, 119 (2018).
  33. T. Takahashi and S. Adachi, J. Electrochem. Soc. 155, E183 (2008).
    T. Takahashi 和 S. Adachi,J. 电化学。Soc. 155, E183 (2008年)。