这是用户在 2024-4-25 17:07 为 https://app.immersivetranslate.com/pdf-pro/3632d2ac-7868-4b0e-b7ff-9a65ff36b947 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_04_25_224e7e02307f2d298f7eg

A Tightly-Integrated Magnetic-Field aided Inertial Navigation System
紧密集成的磁场辅助惯性导航系统

Chuan Huang 黄川Dept. of Electrical Engineering
电子工程系
Linköping University 林克平大学Linköping, Sweden 瑞典林雪平chuan.huang@liu.se

Gustaf Hendeby 古斯塔夫-亨德比Dept. of Electrical Engineering
电子工程系
Linköping University 林克平大学Linköping, Sweden 瑞典林雪平gustaf.hendeby@liu.se

Isaac Skog 艾萨克-斯科格Dept. of Electrical Engineering
电子工程系
Linköping University 林克平大学Linköping, Sweden 瑞典林雪平isaac.skog@liu.se

Abstract 摘要

A tightly integrated magnetic-field aided inertial navigation system is presented. The system uses a magnetometer sensor array to measure spatial variations in the local magneticfield. The variations in the field are - via a recursively updated polynomial magnetic-field model - mapped into displacement and orientation changes of the array, which in turn are used to aid the inertial navigation system. Simulation results show that the resulting navigation system has three orders of magnitude lower position error at the end of a 40 seconds trajectory as compared to a standalone inertial navigation system. Thus, the proposed navigation solution has the potential to solve one of the key challenges faced with current magnetic-field simultaneous localization and mapping (SLAM) systems - the very limited allowable length of the exploration phase during which unvisited areas are mapped.
介绍了一种紧密集成的磁场辅助惯性导航系统。该系统利用磁力计传感器阵列测量当地磁场的空间变化。通过递归更新的多项式磁场模型,将磁场变化映射为阵列的位移和方向变化,进而用于辅助惯性导航系统。仿真结果表明,与独立的惯性导航系统相比,由此产生的导航系统在 40 秒轨迹结束时的位置误差要低三个数量级。因此,所提出的导航解决方案有可能解决目前磁场同步定位和绘图(SLAM)系统所面临的主要挑战之一,即绘制未访问区域的探索阶段的允许长度非常有限。

Index Terms-inertial navigation, magnetic field, polynomial model, error state Kalman filter

I. INTRODUCTION I.引言

The magnetic-field is omnipresent and stable vector field, which can be a highly informative and reliable source for localization if measured accurately [1]; an example of the magneticfield variations inside a building is shown in Fig. 1. The distorted earth magnetic-field and magnetized materials in the environment provide fingerprints highly correlated to position. Hence, the magnetic-field is a viable and robust information source for localization in Global Navigation Satellite System (GNSS) denied environments, such as indoors and underwater [2], [3].
磁场是无处不在的稳定矢量场,如果测量准确,它可以成为一个信息量大且可靠的定位源[1];图 1 显示了建筑物内磁场变化的一个例子。扭曲的地球磁场和环境中的磁化材料提供了与位置高度相关的指纹。因此,在室内和水下等拒绝全球导航卫星系统(GNSS)的环境中,磁场是一种可行且稳健的定位信息源[2],[3]。
Indeed, magnetic-field based simultaneous localization and mapping (SLAM), where magnetic-field measurements are fused with the navigation solution from a inertial navigation system (INS), has turned out be one of the most promising techniques for scalable indoor localization [4]. However, when using low-cost inertial sensors the error growth rate of the inertial navigation system is typically in the order of 10 meters per minute [5]. Therefore, the allowable length of the exploration phases, where new areas are mapped, is extremely limited when using low-cost inertial sensors. Hence, to increase the usability of current magnetic-field based SLAM solutions we need robust magnetic-field odometry techniques that reduce navigation error drift rate.
事实上,基于磁场的同步定位和测绘(SLAM),即磁场测量与惯性导航系统(INS)的导航解决方案相融合,已成为最有前途的可扩展室内定位技术之一[4]。然而,在使用低成本惯性传感器时,惯性导航系统的误差增长率通常在每分钟 10 米左右 [5]。因此,在使用低成本惯性传感器时,绘制新区域地图的探索阶段的允许长度极为有限。因此,为了提高当前基于磁场的 SLAM 解决方案的可用性,我们需要能够降低导航误差漂移率的稳健磁场里程测量技术。
Fig. 1. Illustration of the magnetic-field magnitude variations inside a building. The field was measured with an magnetometer array, whose location was tracked by camera-based tracking systems. The field measurement was then interpolated and the field magnitude was projected on the floor.
图 1.建筑物内磁场大小变化示意图。磁场由磁力计阵列测量,其位置由摄像跟踪系统跟踪。然后对磁场测量结果进行内插,并将磁场大小投射到地板上。
Thanks to the recent sensor technology development, highperforming and affordable magnetometer vector-sensor arrays can be constructed. These arrays allows for snap-shot "images" of the magnetic-field to be collected, which in turns enables faster and richer feature learning in the SLAM process. Further, magnetometer array measurements must comply with easy to model physical laws. This allows us to model them in such a way that position translation and orientation change are encoded, making it perfect for complementing or correcting an INS. To that end, in this paper, we present a method for tightly integrated magnetic-field aided inertial navigation. The resulting navigation system has, compared to a pure inertial navigation system, an significantly reduced error growth rate. Hence, the proposed navigation method has the potential to greatly extend the allowable length of the exploration phases in magnetic-field based SLAM system.
得益于近年来传感器技术的发展,高性能、价格合理的磁强计矢量传感器阵列得以构建。这些阵列可以收集磁场的快照 "图像",从而在 SLAM 过程中实现更快、更丰富的特征学习。此外,磁强计阵列测量必须符合易于建模的物理定律。这样,我们就可以对其进行建模,从而对位置平移和方向变化进行编码,使其成为补充或修正 INS 的完美工具。为此,我们在本文中提出了一种紧密集成磁场辅助惯性导航的方法。与纯惯性导航系统相比,该导航系统的误差增长率显著降低。因此,所提出的导航方法有可能大大延长基于磁场的 SLAM 系统中探索阶段的允许长度。
The idea behind magnetic-field based odometry is that the velocity of a magnetometer vector sensor array can be
基于磁场的里程测量背后的理念是,磁强计矢量传感器阵列的速度可以

estimated via the differential equation
通过微分方程估计
The equation relates the rate of change of the magnetic field to the rotation rate of the array , the Jacobian of the magnetic field with respect to position , and the velocity . With a magnetometer array, such as that in Fig. 2, the Jacobian can be estimated from spatially distributed measurements and the velocity can be determined.
该方程将磁场 的变化率与阵列 的旋转速率、磁场相对于位置的雅各布系数 以及速度 联系起来。利用磁强计阵列(如图 2 所示),可以根据空间分布的测量结果估算出雅各比,并确定速度。
In [6]-[10], the differential equation (1) was used to develop magenetic-field aided INS solutions. The resulting implementations achieve much lower error growth rate compared to stand-alone inertial navigation systems. In a more recent work [11], a model-based approach to magnetic-field odometry was proposed, in which a polynomial model describing the local magnetic-field was developed. In the proposed modelbased odometry method the velocity was viewed as a model parameter to be estimated, which allowed estimation theory to be used to analyse the problem. Presented experiential results showed that the model-based odometry approach achieved a higher accuracy compared to approaches based upon directly solving (1). The model-based odometry approach was further explored in [12], where it was used to estimate both the translation and orientation change of the array.
在[6]-[10]中,微分方程(1)被用于开发磁场辅助 INS 解决方案。与独立的惯性导航系统相比,由此实现的误差增长率要低得多。最近的一项研究[11]提出了一种基于模型的磁场里程测量方法,其中开发了一个描述本地磁场的多项式模型。在所提出的基于模型的测距方法中,速度被视为一个需要估算的模型参数,因此可以使用估算理论来分析问题。实验结果表明,与直接求解(1)的方法相比,基于模型的里程测量法获得了更高的精度。文献[12]进一步探讨了基于模型的里程测量方法,并将其用于估计阵列的平移和方位变化。

B. Contributions B.捐款

We will in this paper, encouraged by the promising results on model-based magnetic-field odometry shown in [12], present a method for model-based magnetic-field aided inertial navigation. More precisely, we will: (a) derive a tightly integrated magnetic-field aided inertial navigation system using a recursively updated polynomial model; and (b) evaluate its performance using Monte Carlo simulations. All the data and code used to produce the presented results are made available at https://github.com/Huang-Chuan/magnetic-field-odometry.
受 [12] 中基于模型的磁场里程测量法所取得的可喜成果的鼓舞,我们将在本文中介绍一种基于模型的磁场辅助惯性导航方法。更准确地说,我们将(a) 利用递归更新的多项式模型推导出一个紧密集成的磁场辅助惯性导航系统;(b) 利用蒙特卡罗模拟评估其性能。用于得出上述结果的所有数据和代码均可在 https://github.com/Huang-Chuan/magnetic-field-odometry 网站上查阅。

II. SYSTEM MODELING II.系统建模

A moving platform with an inertial measurement unit (IMU) and a magnetometer sensor array consisting of sensors is considered; see Fig. 2. Our focus is on estimating the position, velocity, and orientation of the platform from the data generated by the sensors. To that end, in this section a state-space model that can be used to fuse the inertial and magnetic-field measurement will be derived.
我们考虑了一个带有惯性测量单元(IMU)和由 传感器组成的磁力计传感器阵列的移动平台;见图 2。我们的重点是从传感器生成的数据中估计平台的位置、速度和方向。为此,我们将在本节中推导出一个可用于融合惯性和磁场测量的状态空间模型。

A. Inertial Navigation Equations
A.惯性导航方程

The navigation equations for an inertial navigation system using low-cost sensor and moving at moderate velocities are given by [13]
使用低成本传感器并以中等速度移动的惯性导航系统的导航方程为 [13]
Fig. 2. Example of magnetic-field quiver plot, that is, a magnetic-field image, overlaid on the magnetic-field sensor array used to capture the field. Two arrows are missing due to broken sensors.
图 2.磁场颤动图示例,即磁场图像与用于捕捉磁场的磁场传感器阵列的叠加图。由于传感器损坏,缺少两个箭头。
where 其中
Here the superscript and subscript and denote the navigation frame and body frame at timestep , respectively. , and (3D rotation group) denote the position, velocity, and orientation (parameterized as a unit quaternion), respectively. The specific force and gravity are denoted by and , respectively and the sampling interval is denoted by . The body angular velocity is denoted by . Moreover, is the rotation matrix that transforms a vector in the body frame to the navigation frame . Furthermore, denotes quaternion multiplication, is the operator that maps a axis-angle to a quaternion, and is the operator that maps a quaternion to a rotation matrix (see [14] for details on quaternion algebra).
这里的上标和下标 分别表示时间步 时的导航帧和身体帧。 , 和 (三维旋转组)分别表示位置、速度和方向(参数为单位四元数)。比力和重力分别用 表示,采样间隔用 表示。机体角速度用 表示。此外, 是旋转矩阵,用于将身体框架 中的矢量转换到导航框架 中。此外, 表示四元数乘法, 是将轴角映射到四元数的算子, 是将四元数映射到旋转矩阵的算子(有关四元数代数的详情,请参阅 [14])。

B. Inertial Measurement Unit Measurement Model
B.惯性测量单元测量模型

Acceleration and gyroscope measurements, denoted by and , are modeled as the true values affected by sensor bias and noise, i.e.,
加速度和陀螺仪测量值(分别用 表示)被模拟为受传感器偏差和噪声影响的真实值,即
Here and denote accelerometer and gyroscope bias, respectively. Further, and denote accelerometer and gyroscope noise, respectively. The accelerometer and gyroscope measurement noises are modeled as white Gaussian noises with covariance and , respectively. Here, denote an identity matrix of dimension .
分别表示加速度计和陀螺仪偏差。此外, 分别表示加速度计和陀螺仪噪声。加速度计和陀螺仪测量噪声分别建模为协方差为 的白高斯噪声。这里, 表示维数为 的标识矩阵。
The IMU sensor biases are modeled as random walk processes, i.e.,
IMU 传感器的偏差被模拟为随机漫步过程,即
where and are Gaussian white noise with covariance matrix and , respectively.
其中 分别为高斯白噪声,其协方差矩阵分别为

C. Magnetometer Array Measurement Model
C.磁强计阵列测量模型

The magnetometer sensor array measurement is denoted as
磁强计传感器阵列测量值表示为
where denotes the measurement from the magnetometer in the array. Further, locally the magnetic-field at location in the body coordinate frame at time is modeled as
其中 表示阵列中 磁强计的测量值。此外,在人体坐标系中, 位置在时间 的局部磁场 建模为
where is a regression matrix defined in [11] and is the coefficients of the polynomial model; for a order polynomial the model has 3 unknown parameters [12]. Thus, the magnetometer sensor array measurement is modeled as
其中 是[11]中定义的回归矩阵, 是多项式模型的系数;对于 阶多项式,模型有 3 个未知参数[12]。因此,磁强计传感器阵列测量的模型为
where denotes the location of the magnetometer in the array expressed in the body coordinate frame at time . Further, denotes the measurement noise which is assumed to be white and Gaussian distributed with covariance matrix .
其中 表示 磁强计在阵列中的位置,以时间 的身体坐标系表示。此外, 表示测量噪声,假定为白色高斯分布,协方差矩阵为

D. Polynomial model recursive updates
D.多项式模型递归更新

The polynomial model in (6) describes the local magneticfield in the body frame at time . Given the change in pose
(6) 中的多项式模型描述了时间 时身体框架中的局部磁场。鉴于姿势的变化
where 其中
a way to update the polynomial model is needed. To that end, assume that is valid within the volume , centered at the origin of the array at time . Then if there exists a location such that , the magnetic field at location can be expressed as
需要一种更新多项式模型的方法。为此,假设 在体积 内有效,以时间 的阵列原点为中心。那么,如果存在一个位置 ,使得 ,则位置 的磁场可表示为
where 其中
Here is the operator that maps a vector in to a skewsymmetric matrix such that .
这里, 是将 中的向量映射到偏对称矩阵的算子,这样,
Combined with (6), it leads to
结合 (6),可以得出
where 其中
Note for a given , and , (10a) represents three equations. Since is of dimension , different location vectors are need to solve the equation system with respect to . For a polynomial model of order 2 or is divisible by 3. In these cases, vectors can be used to construct the equation system
请注意,对于给定的 , 和 , (10a) 表示三个方程。由于 的维数为 ,因此需要不同的位置向量来求解与 有关的方程组。对于阶数为 2 或 可被 3 整除的多项式模型,可使用 向量来构建方程组。
Finally, given that is invertible, it holds that
最后,考虑到 是可逆的,因此可以认为
Since the polynomial model only describes the magneticfield locally, the change in origin of the model from the body coordinate frame at time to will introduce additional model errors. To describe these errors a white noise is added to the recursions in (12). That is, with a slight abuse of notation, the update of the polynomial coefficients given a displacement is modeled as
由于多项式模型只能描述局部磁场,因此模型原点从 时的身体坐标系到 时的身体坐标系的变化会带来额外的模型误差。为了描述这些误差, 。也就是说,略微滥用一下符号,给定位移 的多项式系数更新模型为
where is assumed to be white and Gaussian distributed with covariance matrix .
其中 假设为白色高斯分布,协方差矩阵为

E. Full state-space model
E.全状态空间模型

By combining the models in (2), (3), (4), (7) and (13) a state-space model relating the IMU and magnetometer array measurements can be found. Let the state vector , input vector , and process noise be defined as
将 (2)、(3)、(4)、(7) 和 (13) 中的模型结合起来,就能找到一个与 IMU 和磁强计阵列测量相关的状态空间模型。假设状态矢量 、输入矢量 和过程噪声 定义为
respectively. Then the state-space model becomes
分别为然后状态空间模型变为
Fig. 3. The flowchart of the ESKF algorithm. The filter first propagates the nominal state and predicts measurement which is then compared with the actual measurement. The error in prediction goes into a Kalman filter with error state model and corrects the propagated nominal state to output the final state estimate.
图 3 ESKF 算法流程图ESKF 算法流程图。滤波器首先传播标称状态并预测测量值,然后与实际测量值进行比较。预测误差进入带有误差状态模型的卡尔曼滤波器,修正传播的标称状态,输出最终的状态估计值。
where 其中
and

III. State estimation III.状态估计

The quaternion in the state-vector in (14) does not belong to Euclidean space. Therefore, standard nonlinear filter algorithms, such as the extended Kalman filter and unscented Kalman filter, cannot be applied to the state-space model in (15) without appropriate modifications. The error state Kalman filter (ESKF) presented in [14] includes such modifications and is a long-time established workhorse for creating various sensor aided INS solutions [15]. With reference to Fig. 3, the algorithm works by propagating a nominal state via the state-transition model in (15a) and using a complimentary Kalman filter to estimate the errors in the nominal states. By assuming the errors in the orientation, i.e., the quaternion vector, to be small the fact that orientations do not belong to Euclidean space can be neglected and a standard Kalman filter is used. The estimated errors are then used to correct the nominal states. Since ESKF is a standard algorithm, only the error propagation model that is unique to the statespace model in (15), will here be presented. For details about the full ESKF the reader is referred to [14].
(14) 中状态矢量 中的四元数不属于欧几里得空间。因此,标准的非线性滤波算法,如扩展卡尔曼滤波器和无符号卡尔曼滤波器,在没有适当修改的情况下,不能应用于 (15) 中的状态空间模型。文献[14]中介绍的误差状态卡尔曼滤波器(ESKF)就包含了这种修改,并且是长期以来用于创建各种传感器辅助 INS 解决方案的主要工具[15]。参考图 3,该算法通过 (15a) 中的状态转换模型传播标称状态 ,并使用卡尔曼滤波器估计标称状态中的误差 。假设方向(即四元数矢量)误差较小,就可以忽略方向不属于欧几里得空间这一事实,并使用标准卡尔曼滤波器。然后利用估计误差修正标称状态。由于 ESKF 是一种标准算法,这里只介绍 (15) 中状态空间模型所独有的误差传播模型。有关完整 ESKF 的详细信息,读者可参阅 [14]。

A. Nominal and error state
A.标称状态和误差状态

The nominal state , error state are defined as
标称状态 ,误差状态 定义如下
respectively. Here, denotes the perturbation between the nominal and true quaternion. The true state and nominal state relate to each other via
分别为 表示标称四元数与真实四元数之间的扰动。真实状态和标称状态之间的关系通过

B. Error State Propagation
B.错误状态传播

The dynamics of all error states except has been derived in [14] and are given by
之外的所有误差状态的动力学参数已在文献 [14] 中得到,其值为
where 其中
To the first order the errors in (13) propagates according to
在一阶,(13) 中的误差根据以下公式传播
where 其中
However, instead of expressing the error development in terms of we would like to express it in terms of the orientation error , velocity error , accelerometer bias estimation error , and gyroscope bias estimation error . To do so, note that
不过,我们希望用方向误差 、速度误差 、加速度计偏差估计误差 和陀螺仪偏差估计误差 来表示误差的发展,而不是用 来表示。为此,请注意
Thus, it holds that
因此,可以认为
where 其中
which gives that 得出
Here second and higher order terms have been neglected. Moreover, it holds that
这里的二阶和高阶项已被忽略。此外,可以认为
Bringing it all together gives the following expression for the polynomial model error propagation
综上所述,多项式模型误差传播的表达式如下
where 其中
and
To summarize, (18) and (23) specifies the dynamics of the errors in the nominal states and is used in the ESKF.
总之,(18) 和 (23) 规定了名义状态误差的动态变化,并用于 ESKF。

IV. EVALUATION IV.评估

To evaluate the performance of the proposed magnetic-field aided INS solution a Monte Carlo simulation was conducted.
为了评估所提出的磁场辅助 INS 解决方案的性能,进行了蒙特卡罗模拟。

A. Simulation setup and evaluation metrics
A.仿真设置和评估指标

Magnetic-field data was collected using a magnetometer within a volume of approximately in the room shown in Fig. 1. A high-order dipole reference model was then fitted to the data. The field of the resulting reference model is shown in Fig. 4. Using the reference model, 1000 Monte Carlo simulations where a sensor array moved along a 60 seconds spiral trajectory through the field, were conducted. During the spiral motion, the body frame orientation was changing at constant rate in all three axis. The pose of the body frame and the trajectory are shown in Fig. 5.
使用磁强计在图 1 所示房间内约 的范围内收集磁场数据。然后根据数据拟合出一个高阶偶极子参考模型。参考模型的磁场如图 4 所示。利用该参考模型,进行了 1000 次蒙特卡罗模拟,其中传感器阵列沿 60 秒的螺旋轨迹穿过该场。在螺旋运动过程中,身体框架的方向在所有三个轴上以恒定速率变化。主体框架的姿态和轨迹如图 5 所示。
For comparison, during the first 20 seconds position measurements were also provided, making the system a position and magnetic-field aided INS. Then the position measurements were removed, leaving only magnetometer array measurements available for the last 40 seconds.
为了便于比较,在前 20 秒还提供了位置测量值,使该系统成为一个位置和磁场辅助 INS。然后取消位置测量,最后 40 秒只提供磁强计阵列测量。
Fig. 4. Illustration of the magnetic-field used in the simulations. The field model is based on real measurements to which a high-order dipole model has been fitted.
图 4.模拟中使用的磁场示意图。磁场模型基于实际测量结果,并与高阶偶极子模型相匹配。
Fig. 5. The orientation of the body frame and trajectory used in the simulations. The red dot indicates the end of the trajectory (black line) and the blue, red, and green lines indicates the -, and -coordinates axes of the navigation platform.
图 5.模拟中使用的主体框架和轨迹的方向。红点表示轨迹的终点(黑线),蓝线、红线和绿线分别表示导航平台的 - 和 - 坐标轴。
The geometry of the simulated array was the same as for the one shown in Fig. 2. That is, the array consisted of 30 magnetometers placed in a 6 times 5 grid with and spacing in the - and -axis directions, respectively. The settings used in the simulation are summerized in Table I. Furthermore, the order of polynomial model is selected as 2 .
模拟阵列的几何形状与图 2 所示的阵列相同。也就是说,阵列由 30 个磁力计组成,放置在 6 乘 5 的网格中, - 和 - 轴方向的间距分别为 6 乘 5。模拟中使用的设置见表 I。此外,多项式模型的阶数选择为 2。
Using the simulated array measurements, the navigation states were estimated by the ESKF, and the root-mean-squareerror (RMSE) of the estimates and average normalized estimation error squared (ANEES) were calculated. Further, the uncertainty of the state estimates given by the filter were calculated as , where is
利用模拟阵列测量结果,ESKF 对导航状态进行了估计,并计算了估计值的均方根误差(RMSE)和平均归一化估计误差平方(ANEES)。此外,还计算出滤波器给出的状态估计值的 不确定性为 ,其中
TABLE I 表 I
PARAMETER SETTINGS USED IN THE SIMULATIONS
模拟中使用的参数设置
Value Unit
st.d. of accelerometer noise
加速度计噪声的 st.d.
0.05
initial accelerometer bias
初始加速度计偏置
st.d. of accelerometer bias
加速度计偏差的 st.d.
noise
st.d. of gyroscope noise
陀螺仪噪音的 st.d.
0.1
initial gyroscope bias 初始陀螺偏置
st.d. of gyroscope bias noise
陀螺仪偏置噪声 st.d.
st.d. of magnetometer noise
磁强计噪声 st.d.
0.01
st.d. of position measurement
位置测量精度
noise
0.01
initial position 初始位置
initial velocity 初始速度
initial orientation 初始定向 -
initial accelerometer bias esti-
初始加速度计偏置估计
mate
initial gyroscope bias estimate
初始陀螺仪偏差估计值
initial coefficients estimate
初始系数估计值
least square fit 最小平方拟合
to the field
-
the covariance matrix of the navigation states in the Monte Carlo simulation, and is the index of the state component.
蒙特卡罗模拟中导航状态的协方差矩阵, 是状态分量的索引。

B. Result and discussion
B.结果和讨论

The results from the Monte Carlo simulations are shown in Fig. 6-12. From the figures the following can be observed. Firstly, during first 20 seconds the position error and associated uncertainty are very small, which is expected as position measurements were provided during this period. However, when the position aiding is removed after 20 seconds the position error grows much slower for the magnetic-field aided INS than for the stand-alone INS. This confirms the effectiveness of the proposed method. The reduction in the position error growth rate is from cubic to linear in time. Secondly, the velocity and orientation estimation error are consistent with the uncertainty given by filter and all sensor bias errors show a downward trend and converge in the end. Thirdly, the plot of polynomial coefficient error also suggest that the secondorder polynomial model is sufficient to model the magneticfield and works well in the ESKF framework. Finally, the calculated ANEES remains below the lower bound of interval except the transience in the beginning, indicating the filter is conservative. One possible cause is that the covariance matrix of process noise used to describe the random changes in the polynomial model coefficients was not tuned well enough to match the true changes. Currently, the process noise for the polynomial model coefficients is assumed to be white and covariance matrix fixed. The variance for process noise is set to approximately (by visual inspection) the variance of the prediction error given true coefficients at two consecutive timesteps. In practice, model error grows along with the displacement between two timesteps and there may exist correlation in process noise, hence, the covariance matrix may need to be adjusted accordingly.
蒙特卡罗模拟的结果如图 6-12 所示。从图中可以看出以下几点。首先,在最初的 20 秒内,位置误差和相关的不确定性非常小,这在意料之中,因为在此期间提供了位置测量值。然而,当 20 秒后取消位置辅助时,磁场辅助 INS 的位置误差增长速度要比独立 INS 慢得多。这证明了建议方法的有效性。位置误差增长率的降低在时间上从立方变为线性。其次,速度和方位估计误差与滤波器给出的不确定性一致,所有传感器偏置误差均呈下降趋势并最终收敛。第三,多项式系数误差图也表明二阶多项式模型足以建立磁场模型,并且在 ESKF 框架中运行良好。最后,计算出的 ANEES 除了开始时的瞬态外,一直低于 区间的下限,这表明滤波器是保守的。其中一个可能的原因是,用于描述多项式模型系数随机变化的过程噪声协方差矩阵调整得不够好,无法与真实变化相匹配。目前,多项式模型系数的过程噪声被假定为白色,协方差矩阵固定不变。过程噪声的方差被设定为近似(通过目测)两个连续时间步的真实系数预测误差的方差。实际上,模型误差会随着两个时间步之间的位移而增加,过程噪声可能存在相关性,因此协方差矩阵可能需要相应调整。

Fig. 6. Position estimation error. The red line shows the RMSE of the filter estimate with magnetic-field aiding, the gray area shows the uncertainty given by the filter. Furthermore, the dashed line shows the RMSE of the filter estimate without magnetic-field aiding.
图 6.位置估计误差。红线表示有磁场辅助的滤波估计的均方根误差,灰色区域表示滤波给出的 不确定性。此外,虚线表示没有磁场辅助的滤波估计的有效误差。

Fig. 7. Velocity estimation error. The red line shows the RMSE of the filter estimate and the gray area shows the uncertainty given by the filter.
图 7 速度估计误差速度估计误差。红线表示滤波估计的均方根误差,灰色区域表示滤波给出的 不确定性。

V. CONCLusion & Future ReSEARCH
V.结论与未来研究

A method to create a tightly-coupled magnetic-field aided INS has been presented. Simulation results show that the position error growth rate of the proposed navigation system is significantly lower than that of the stand-alone INS. A position error reduction from to over a 40 seconds trajectory is seen. Hence, the proposed navigation system solution has the potential to solve one of the key challenges faced with current magnetic-field simultaneous localization and mapping (SLAM) systems - the very limited allowable length of the exploration phase during which unvisited areas are mapped. Our future research will be focused on developing robust magnetic-field odometry immune to non-static disturbance as in [8] and magnetic-field SLAM methods that
介绍了一种创建紧密耦合磁场辅助 INS 的方法。仿真结果表明,拟议导航系统的位置误差增长率明显低于独立的 INS。在 40 秒的轨迹上,位置误差从 减小到 。因此,所提出的导航系统解决方案有可能解决当前磁场同步定位和绘图(SLAM)系统所面临的主要挑战之一,即绘制未访问区域的探索阶段的允许长度非常有限。我们未来的研究将集中在开发不受非静态干扰影响的稳健磁场里程计(如文献[8])和磁场 SLAM 方法上。

Fig. 8. Orientation estimation error. The red line shows the RMSE of the filter estimate and the gray area shows the uncertainty given by the filter.
图 8.方向估计误差。红线表示滤波器估计的均方根误差,灰色区域表示滤波器给出的 不确定性。
Acceleration bias error -axis
加速度偏置误差 -轴

Fig. 9. Accelerometer bias estimation error. The red line shows the RMSE of the filter estimate and the gray area shows the uncertainty given by the filter.
图 9.加速度计偏差估计误差。红线表示滤波器估计值的均方根误差,灰色区域表示滤波器给出的 不确定性。
incorporates the proposed tightly-coupled magnetic-field aided INS architecture.
采用了拟议的紧耦合磁场辅助 INS 结构。

REFERENCES 参考文献

[1] M. Angermann, M. Frassl, M. Doniec, B. J. Julian, and P. Robertson, "Characterization of the indoor magnetic field for applications in localization and mapping," in Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), Sydney, Australia, Sep. 2012, pp. 1-9.
[1] M. Angermann, M. Frassl, M. Doniec, B. J. Julian, and P. Robertson, "Characterization of the indoor magnetic field for applications in localization and mapping," in Int.室内定位与室内导航(IPIN)研讨会,澳大利亚悉尼,2012 年 9 月,第 1-9 页。
[2] T. N. Lee and A. J. Canciani, "Magslam: Aerial simultaneous localization and mapping using earth's magnetic anomaly field," Navigation, vol. 67, no. 1, pp. 95-107, 2020.
[2] T. N. Lee 和 A. J. Canciani,"Magslam:导航》,第 67 卷第 1 期,第 95-107 页,2020 年。
[3] H. F. Rice, V. Benischek, and L. Sczaniecki, "Application of atom interferometric technology for GPS independent navigation and time solutions," in 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, Canada, 2018, pp. 1097-1106.
[3] H. F. Rice、V. Benischek 和 L. Sczaniecki,"原子干涉测量技术在独立于 GPS 的导航和时间解决方案中的应用",2018 年 IEEE/ION 定位、位置和导航研讨会(PLANS),加拿大蒙特雷,2018 年,第 1097-1106 页。
[4] F. Viset, J. T. Gravdahl, and M. Kok, "Magnetic field norm SLAM using Gaussian process regression in foot-mounted sensors," in European Control Conference (ECC), Rotterdam, Netherlands, 2021, pp. 392-398.
[4] F. Viset、J. T. Gravdahl 和 M. Kok,"使用高斯过程回归的脚踏传感器磁场规范 SLAM",欧洲控制会议(ECC),荷兰鹿特丹,2021 年,第 392-398 页。

Fig. 10. Gyroscope bias estimation error. The red line shows the RMSE of the filter estimate and the gray area shows the uncertainty given by the filter.
图 10.陀螺仪偏差估计误差。红线表示滤波器估计值的均方根误差,灰色区域表示滤波器给出的 不确定性。
[5] I. Skog, "Low-cost navigation systems: A study of four problems," Ph.D. dissertation, KTH, Stockholm, Sweden, 2009.
[5] I. Skog,"低成本导航系统:瑞典斯德哥尔摩 KTH 博士论文,2009 年。
[6] E. Dorveaux, T. Boudot, M. Hillion, and N. Petit, "Combining inertial measurements and distributed magnetometry for motion estimation," in Proceedings of the 2011 American Control Conference, Hilton San Francisco, California, 2011, pp. 4249-4256.
[6] E. Dorveaux、T. Boudot、M. Hillion 和 N. Petit,"结合惯性测量和分布式磁力测量进行运动估计",2011 年美国控制会议论文集,加利福尼亚州旧金山希尔顿酒店,2011 年,第 4249-4256 页。
[7] E. Dorveaux and N. Petit, "Presentation of a magneto-inertial positioning system: navigating through magnetic disturbances," in Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), Guimaraes, Portugal, 2011.
[7] E. Dorveaux 和 N. Petit,"磁惯性定位系统介绍:通过磁干扰导航",国际室内定位与室内导航会议(IPIN),葡萄牙吉马良斯,2011 年。Indoor Positioning and Indoor Navigation (IPIN), Guimaraes, Portugal, 2011.
[8] C.-I. Chesneau, M. Hillion, and C. Prieur, "Motion estimation of a rigid body with an EKF using magneto-inertial measurements," in Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), Alcalá de Henares, Spain, 2016, pp. 1-6.
[8] C.-I.Chesneau, M. Hillion, and C. Prieur, "Motion estimation of a rigid body with an EKF using magneto-inertial measurements," in Int.室内定位与室内导航会议(IPIN),西班牙阿尔卡拉德埃纳雷斯,2016 年,第 1-6 页。
[9] M. Zmitri, H. Fourati, and C. Prieur, "Improving inertial velocity estimation through magnetic field gradient-based extended Kalman filter," in Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 2019, pp. 1-7.
[9] M. Zmitri, H. Fourati, and C. Prieur, "Improving inertial velocity estimation through magnetic field gradient-based extended Kalman filter," in Int.In Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 2019, pp.
[10] M. Zmitri, H. Fourati, and C. Prieur, "Magnetic Field Gradient-Based EKF for Velocity Estimation in Indoor Navigation," Sensors, vol. 20, no. 20 , p. 5726, 2020.
[11] I. Skog, G. Hendeby, and F. Gustafsson, "Magnetic odometry - a modelbased approach using a sensor array," in International Conference on Information Fusion (FUSION), Cambridge, United Kingdom, 2018, pp. 794-798.
[11] I. Skog、G. Hendeby 和 F. Gustafsson,"磁性里程测量--使用传感器阵列的基于模型的方法",国际信息融合会议(FUSION),英国剑桥,2018 年,第 794-798 页。
[12] I. Skog, G. Hendeby, and F. Trulsson, "Magnetic-field based odometry - an optical flow inspired approach," in Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 2021, pp. 1-8.
[12] I. Skog, G. Hendeby, and F. Trulsson, "Magnetic-field based odometry - an optical flow inspired approach," in Int.室内定位与室内导航会议(IPIN),西班牙 Lloret de Mar,2021 年,第 1-8 页。
[13] J. Farrell and M. Barth, The Global Positioning System & Inertial Navigation. McGraw-Hill Education, 1999.
[13] J. Farrell 和 M. Barth,《全球定位系统与惯性导航》。McGraw-Hill Education, 1999.
[14] J. Solà, "Quaternion kinematics for the error-state Kalman filter," CoRR, vol. abs/1711.02508, 2017. [Online]. Available: http://arxiv.org/abs/1711.02508
[14] J. Solà:《误差态卡尔曼滤波器的四元运动学》,CoRR,vol. abs/1711.02508,2017.[Online].Available: http://arxiv.org/abs/1711.02508
[15] V. Madyastha, V. Ravindra, S. Mallikarjunan, and A. Goyal, "Extended Kalman filter vs. error state Kalman filter for aircraft attitude estimation," in AIAA Guidance, Navigation, and Control Conference, Portland, US, 2011, p. 6615.
[15] V. Madyastha、V. Ravindra、S. Mallikarjunan 和 A. Goyal,"用于飞机姿态估计的扩展卡尔曼滤波器与误差状态卡尔曼滤波器",AIAA 制导、导航和控制会议,美国波特兰,2011 年,第 6615 页。

Fig. 11. Coefficient estimation error. The red line shows the RMSE of the filter estimate and the gray area shows the uncertainty given by the filter. The reference values of were calculated by fitting the model (6) to the generated field.
图 11.系数估计误差。红线表示滤波估计的均方根误差,灰色区域表示滤波给出的 不确定性。 的参考值是通过将模型 (6) 与生成的场拟合计算得出的。
Fig. 12. Average normalized estimation error squared.
图 12.平均归一化估计误差平方

  1. This work has been funded by the Swedish Research Council (Vetenskapsrådet) project 2020-04253 "Tensor-field based localization".
    这项工作得到了瑞典研究理事会(Vetenskapsrådet)2020-04253 "基于张量场的定位 "项目的资助。