这是用户在 2024-5-8 10:28 为 https://app.immersivetranslate.com/pdf-pro/afbe3daa-db07-44ec-90f9-6e8af035c986 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_05_08_5cc00865b5e440960507g

BEtarget: A versatile web-based tool to design guide RNAs for base editing in plants
BEtarget:一种多功能的基于网络的工具,用于设计植物基因编辑的引导 RNA

Xianrong Xie , Fuquan Li , Xiyu Tan , Dongchang Zeng , Weizhi Liu , Wanyong Zeng , Qinlong Zhu ,
谢先荣 ,李福权 ,谭西宇 ,曾东昌 ,刘伟志 ,曾万勇 ,朱钦龙
Yao-Guang Liu  刘耀光 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
中国华南农业大学生命科学学院亚热带农业生物资源保护与利用国家重点实验室,中国广州 510642
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
中国广州 510642 岭南现代农业广东实验室

A R T I C L E I N F O
文章信息

Article history: 文章历史

Received 4 May 2022
2022 年 5 月 4 日收到
Received in revised form 26 July 2022
2022 年 7 月 26 日修订稿收到
Accepted 26 July 2022
2022 年 7 月 26 日接受
Available online 29 July 2022
2022 年 7 月 29 日在线提供

Keywords: 关键词:

CRISPR
Base editing 基础编辑
gRNA design gRNA 设计
Genome editing 基因组编辑

Abstract 摘要

A B S T R A C T CRISPR-dependent base editors enable direct nucleotide conversion without the introduction of doublestrand DNA break or donor DNA template, thus expanding the CRISPR toolbox for genetic manipulation. However, designing guide RNAs (gRNAs) for base editors to enable gene correction or inactivation is more complicated than using the CRISPR system for gene disruption. Here, we present a user-friendly web tool named BEtarget dedicated to the design of gRNA for base editing. It is currently supported by 46 plant reference genomes and 5 genomes of non-plant model organisms. BEtarget supports the design of gRNAs with different types of protospacer adjacent motifs (PAM) and integrates various functions, including automatic identification of open reading frame, prediction of potential off-target sites, annotation of codon change, and assessment of gRNA quality. Moreover, the program provides an interactive interface for users to selectively display information about the desired target sites. In brief, we have developed a flexible and versatile web-based tool to simplify complications associated with the design of base editing technology. BEtarget is freely accessible at https://skl.scau.edu.cn/betarget/.
CRISPR 依赖的碱基编辑器使直接核苷酸转换成为可能,而无需引入双链 DNA 断裂或供体 DNA 模板,从而扩展了 CRISPR 工具箱用于基因操作。然而,为碱基编辑器设计引导 RNA(gRNA)以实现基因修正或失活比使用 CRISPR 系统进行基因破坏更为复杂。在这里,我们介绍了一个名为 BEtarget 的用户友好型网络工具,专门用于设计碱基编辑的 gRNA。目前,BEtarget 支持 46 个植物参考基因组和 5 个非植物模式生物的基因组。BEtarget 支持设计具有不同类型的原位间邻近基序(PAM)的 gRNA,并集成了各种功能,包括自动识别开放阅读框,预测潜在的非靶位点,注释密码子变化以及评估 gRNA 质量。此外,该程序为用户提供了一个交互界面,以便选择性地显示关于所需目标位点的信息。简而言之,我们开发了一个灵活多变的基于网络的工具,以简化与碱基编辑技术设计相关的复杂性。 BEtarget 可以在 https://skl.scau.edu.cn/betarget/免费访问。

© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
© 2022 作者。由 Research Network of Computational and Structural Biotechnology 代表 Elsevier B.V.出版。本文是根据 CC BY-NC-ND 许可下的开放获取文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。

1. Introduction 1. 引言

Clustered regularly interspaced short palindromic repeats associated protein (CRISPR/Cas) systems are adaptive defense systems that protect bacteria and archaea from invading viruses or plasmids [1-3]. They act through at least three general steps, which are as follows. In the adaptive stage, organisms respond to viral or plasmid challenges by integrating short fragments of foreign sequence into the CRISPR locus. In the expression and interference stages, the CRISPR array is transcribed and processed into short crRNAs, which guide Cas proteins to cleave the invading foreign sequence [4]. Currently, CRISPR/Cas systems are engineered into versatile tools for genome editing [5-7]. Cas endonuclease targets a specific sequence through base pairing with the help of a guide RNA (gRNA) and creates a double-strand break (DSB) at the cleavage site [8]. In most eukaryotes, DSB is predominantly repaired by the error-prone non-homologous end joining (NHEJ) pathway, generally resulting in random nucleotide insertion or deletion mutations . Although the NHEJ-dependent gene disruption is efficient, it is frequently hard to achieve the expected accuracy in gene correction [11-13]. In the presence of a donor template, the homology-directed repair (HDR) pathway at the DSB site enables a symmetric sequence correction or insertion at the target site [5]. However, the low efficiency of HDR in plant cells and the lack of an efficient donor DNA delivery method limit its application in plants .
CRISPR/Cas 系统是一种适应性防御系统,可保护细菌和古菌免受入侵病毒或质粒[1-3]。它们通过至少三个一般步骤起作用,具体如下。在适应阶段,生物体通过将外源序列的短片段整合到 CRISPR 位点中来应对病毒或质粒的挑战。在表达和干扰阶段,CRISPR 阵列被转录并加工成短的 crRNA,这些 crRNA 指导 Cas 蛋白切割入侵的外源序列[4]。目前,CRISPR/Cas 系统已被改造成用于基因组编辑的多功能工具[5-7]。Cas 核酸酶通过与引导 RNA(gRNA)的碱基配对来靶向特定序列,并在切割位点产生双链断裂(DSB)[8]。在大多数真核生物中,DSB 主要通过容易出错的非同源末端连接(NHEJ)途径修复,通常导致随机核苷酸插入或缺失突变 。尽管 NHEJ 依赖的基因破坏效率很高,但在基因修正方面往往难以达到预期的准确性[11-13]。 在供体模板的存在下,DSB 位点上的同源定向修复(HDR)途径使得目标位点上的对称序列修正或插入成为可能。然而,HDR 在植物细胞中的低效率以及缺乏有效的供体 DNA 传递方法限制了其在植物中的应用。
Wild-type Cas9 contains two conversed nuclease domains (RuvC and HNH-like domains) in which each cleaves one strand of the double-helix DNA. By mutating one of the two critical residues (D10A or H840A) in the nuclease domains, nickase Cas9 (nCas9) can be generated which cuts only one strand of the target sites [16,17]; if two nuclease domains are mutated, the catalytically dead Cas9 (dCas9) shows inactive nuclease activity while retaining its ability to bind DNA [18]. Engineering of Cas9 variants with different deaminases has generated diverse base editing tools, including cytosine base editor (CBE) and adenine base editor (ABE) [19-21]. The most commonly used base editors are nCas9 or dCas9, which are fused with cytidine deaminase (CBE) or adenosine deaminase (ABE) to simulate cellular mismatch repair and subsequent suitable base substitution . Guided by sgRNA, fused protein complexes are enabled to produce sitespecific C-to-T or A-to-G substitutions without producing DSBs or introducing donor DNA templates .
野生型 Cas9 包含两个保守的核酸酶结构域(RuvC 和 HNH-like 结构域),每个结构域切割双螺旋 DNA 的一条链。通过突变核酸酶结构域中的两个关键残基(D10A 或 H840A)可以生成单链切割酶 Cas9(nCas9),它只切割靶位点的一条链;如果两个核酸酶结构域都突变,催化失活的 Cas9(dCas9)表现出无活性核酸酶活性,同时保留其结合 DNA 的能力。通过工程化 Cas9 变体与不同的脱氨酶结合,生成了多样的碱基编辑工具,包括胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)。最常用的碱基编辑器是 nCas9 或 dCas9,它们与胞嘧啶脱氨酶(CBE)或腺嘌呤脱氨酶(ABE)融合,模拟细胞不匹配修复和随后的适当碱基替换。在 sgRNA 的引导下,融合蛋白复合物能够产生特异的 C 到 T 或 A 到 G 替换,而不产生 DSB 或引入供体 DNA 模板。
Owing to the unique capability of fine-tuned mutagenesis, base editors are widely applied to both model and non-model organisms for genetic manipulation [24-27]. For example, base substitutions in the codons of an open reading frame (ORF) potentially enable amino acid substitutions (missense mutation) or cause gene inactivation by introducing premature STOP codons (nonsense mutation) [11,12,28-31]. Moreover, multiple base substitutions can occur in the editing window, thus ensuring the role of base editors in large-scale saturation mutation, regulatory element editing, therapeutic gene correction, and crop improvement [32-36]. However, the design of gRNAs for base editors is complicated, and several specific criteria are carefully considered [24], including the preferred editing window, bystander effect, potential codon change, and off-target effect. Thus a convenient tool for the rapid design of gRNAs for base editors is required and currently, there are a few programs available [37].
由于精细调节突变的独特能力,碱基编辑酶广泛应用于模式和非模式生物中进行基因操作[24-27]。例如,开放阅读框架(ORF)密码子中的碱基替换可能导致氨基酸替换(错义突变),或通过引入过早终止密码子(无义突变)导致基因失活[11,12,28-31]。此外,编辑窗口中可能发生多个碱基替换,从而确保碱基编辑酶在大规模饱和突变、调控元件编辑、治疗基因修正和作物改良中的作用[32-36]。然而,碱基编辑酶的 gRNA 设计复杂,需要仔细考虑几个特定标准[24],包括首选编辑窗口、旁观者效应、潜在密码子改变和脱靶效应。因此,需要一个快速设计碱基编辑酶 gRNA 的便捷工具,目前有几个可用程序[37]。
Based on the extensive analysis of genome-wide base editing outcomes in mammalian cells, several machine learning models with corresponding design programs, including BE-Hive, BE-DICT, DeepBaseEditor, and FORECasT-BE, were developed to predict the editing efficiency and the bystander effect [38-41]. In other organisms, a few gRNA design tools were developed to assist researchers in the rapid choosing of appropriate target sites [42-46]. Due to the difficulties faced while performing a large-scale genetic transformation method, especially in plants, these tools majorly focus on the function of searching all possible target sites in the target gene and the annotation of the codon changes in the editing window. For example, CRISPR-BETS and CRISPR-CBEI focus on designing gRNAs for CBE-mediated nonsense mutation [42,43], CRISPyweb 2.0 is a tool developed only for Streptomyces coelicolor [44], beditor is a specialized tool used to design genome-wide gRNA libraries in cell lines [45], and BE-Designer provides a comprehensive analysis of all possible candidate target sites with useful information, including potential off-target sites for base editors in various organisms .
根据对哺乳动物细胞基因组范围内碱基编辑结果的广泛分析,开发了几种机器学习模型及相应的设计程序,包括 BE-Hive、BE-DICT、DeepBaseEditor 和 FORECasT-BE,用于预测编辑效率和旁观效应[38-41]。在其他生物体中,开发了一些 gRNA 设计工具,以帮助研究人员快速选择合适的靶点[42-46]。由于在进行大规模基因转化方法时面临的困难,特别是在植物中,这些工具主要关注于搜索目标基因中所有可能的靶点以及编辑窗口中密码子变化的功能注释。例如,CRISPR-BETS 和 CRISPR-CBEI 专注于设计用于 CBE 介导的无义突变的 gRNA[42,43],CRISPyweb 2.0 是专门为 Streptomyces coelicolor 开发的工具[44],beditor 是用于设计细胞系中基因组范围 gRNA 库的专用工具[45],而 BE-Designer 提供了各种生物体中用于碱基编辑的所有可能候选靶点的全面分析,包括潜在的离靶位点信息。
Considering the wide and prospective applications of base editors in plants, we have developed a dedicated web-based tool named BEtarget to aid researchers in the design of gRNAs for genes of interest by visiting directly at http://skl.scau.edu.cn/betarget/, or from our previous CRISPR-GE website [47] (http://skl.scau.edu.cn/ ). The program provides a user-friendly submission interface by supporting fully customizable settings of input parameters and target genes. BEtarget lists all possible target sites in the ORF of a given gene as an interactive table and a graph along with comprehensive information, including amino acid change, potential offtarget sites, and quality assessment.
考虑到基因编辑酶在植物中的广泛和前景应用,我们开发了一个名为 BEtarget 的专用基于 Web 的工具,以帮助研究人员设计感兴趣基因的 gRNA,用户可以直接访问网址 http://skl.scau.edu.cn/betarget/,或者从我们之前的 CRISPR-GE 网站[47](http://skl.scau.edu.cn/)获取。该程序提供了一个用户友好的提交界面,支持完全可定制的输入参数和目标基因设置。BEtarget 以交互式表格和图形的形式列出了给定基因 ORF 中所有可能的靶位点,以及包括氨基酸变化、潜在的离靶位点和质量评估在内的全面信息。

2. Workflow and implementation
2. 工作流程和实施

2.1. Workflow of BEtarget
2.1. BEtarget 的工作流程

BEtarget is a web-based application in a "browser-server" mode. Its front web pages are implemented with HTML5, JavaScript, and Bootstrap, and the backend is constructed using the
BEtarget 是一种基于 Web 的应用程序,采用“浏览器-服务器”模式。其前端网页采用 HTML5、JavaScript 和 Bootstrap 实现,后端使用 Django 框架构建。用 Python 3 编写用于处理上传数据和分析序列的程序。BEtarget 的工作流程如图 1 所示。总体而言,它设计有三个主要步骤:(i) 输入页面接受用户定义的参数和目标序列或基因位点标识(ID)号;(ii) 后端处理上传的数据,包括 ORF 的自动检测、在 ORF 中识别所有可能的靶位点以及预测潜在的非靶位点;(iii) 输出页面以 JSON 格式检索结果数据,并在交互式表格中显示带有有用信息的结果。

Django framework. Programs for processing the uploaded data and analyzing sequences are written with Python 3 . The workflow of BEtarget is shown in Fig. 1. Overall, it is designed with three major steps: (i) the input page accepts user-defined parameters and a target sequence or a gene locus identity (ID) number; (ii) the backend processes the uploaded data, including automatic detection of the ORF, identification of all possible target sites in the ORF, and prediction of potential off-target sites; (iii) the output page retrieves the resulting data in the JSON format and displays results in an interactive table with useful information.
2.2. 序列输入和参数设置

2.2. Sequence input and setting of parameters
2.2. 序列输入和参数设置

The submission interface consists of two parts, namely a panel for parameter settings, including the setting of a protospacer adjacent motif (PAM), editing type (CBE or ABE), editing window and a reference genome selection, and another panel for target sequence (or gene locus) input (Fig. 2). BEtarget presently supports the searching of targets sites with commonly used PAM (including NGG, NG, TTN, and TTTN) or any specific PAM defined by users. Based on the type and efficiency of the base editor used (either or ), users can manually define the editing window accordingly. Currently, 46 plant reference genomes and 5 genomes of non-plant model organisms are provided as references to evaluate potential off-target sites. Users can also select "None" if no target reference genome is available for which the program will not predict potential off-target sites. Alternatively, users can request the developer to add more desired reference genome(s). In the sequence input panel, three types are supported as input: (i) the genomic sequence with the corresponding intact coding sequence (CDS) of a target gene; (ii) a partial sequence of the target gene; (iii) a gene locus ID of the selected reference genome. When a partial sequence of the target gene as input which can either be a genomic sequence or CDS, BEtarget will automatically extract the corresponding genomic sequence and CDS of the gene by invoking a subprogram called GeneCat for gRNA design. The GeneCat tool can also be accessed independently from the website (http://skl. scau.edu.cn/) to extract the genomic sequence and corresponding CDS of a gene (Supplementary Fig. 1). Below the "Submit" button, users can select to check for gene structure (default is not selected).
提交界面由两部分组成,即参数设置面板,包括原始间隔相邻基序(PAM)的设置、编辑类型(CBE 或 ABE)、编辑窗口和参考基因组选择,以及另一个用于输入目标序列(或基因位点)的面板(图 2)。BEtarget 目前支持搜索具有常用 PAM(包括 NGG、NG、TTN 和 TTTN)或用户定义的任何特定 PAM 的靶位点。根据所使用的碱基编辑器的类型和效率( ),用户可以手动相应地定义编辑窗口。目前提供了 46 个植物参考基因组和 5 个非植物模式生物的基因组作为参考,用于评估潜在的非靶位点。如果没有目标参考基因组可用,用户还可以选择“无”,程序将不会预测潜在的非靶位点。或者,用户可以请求开发人员添加更多所需的参考基因组。 在序列输入面板中,支持三种类型作为输入:(i) 具有目标基因相应完整编码序列 (CDS) 的基因组序列;(ii) 目标基因的部分序列;(iii) 所选参考基因组的基因座 ID。当将目标基因的部分序列作为输入时,可以是基因组序列或 CDS,BEtarget 将通过调用名为 GeneCat 的子程序自动提取基因的相应基因组序列和 CDS 用于 gRNA 设计。GeneCat 工具也可以从网站 (http://skl.scau.edu.cn/) 独立访问,以提取基因的基因组序列和相应 CDS (附图 1)。在“提交”按钮下方,用户可以选择检查基因结构 (默认未选中)。

2.3. Data processing 2.3. 数据处理

After submitting a task, BEtarget first preprocesses the uploaded target sequence or gene locus. It is important to exactly define ORF in the given genomic sequence to identify the locations of target sites. After uploading the genomic sequence and intact CDS, the program aligns CDS to the genomic sequence and automatically detects the boundaries of each exon. If gene locus ID is used as input, the program fetches the genomic coordinates of all transcripts of the input gene from the reference genome database. If users choose to check gene structure at the submission page, detailed coordinate information and sequence are returned to the front check page for the users to confirm the exon/intron structure or select a preferred transcript from possible multiple alternative transcripts (Fig. 3). Minor modifications in the exon positions are allowed when necessary, in case the position offset happens in the program. Otherwise, in general, the program uses genomic coordinates judged by the program. Once the coordinates of ORF or the transcript are confirmed, all possible target sites are extracted, and only those located in or overlapping with the coding regions are kept for further analysis. Potential off-target sites and their scores are then predicted by invoking the offTarget program in the CRISPR-GE toolkit [41]. Possible secondary structures of
提交任务后,BEtarget 首先对上传的目标序列或基因座进行预处理。在给定的基因组序列中准确定义 ORF 对于识别目标位点的位置至关重要。上传基因组序列和完整的 CDS 后,程序将 CDS 对齐到基因组序列,并自动检测每个外显子的边界。如果使用基因座 ID 作为输入,程序将从参考基因组数据库中提取输入基因的所有转录本的基因组坐标。如果用户选择在提交页面检查基因结构,则详细的坐标信息和序列将返回到前端检查页面,供用户确认外显子/内含子结构或从可能的多个备选转录本中选择首选转录本(图 3)。在必要时允许对外显子位置进行轻微修改,以防程序中发生位置偏移。否则,一般情况下,程序使用程序判断的基因组坐标。 一旦 ORF 或转录本的坐标确认,将提取所有可能的靶点位点,仅保留位于编码区域内或与之重叠的位点进行进一步分析。然后通过调用 CRISPR-GE 工具包中的 offTarget 程序来预测潜在的离靶位点及其分数[41]。可能的次级结构
Fig. 1. Overall workflow chart of BEtarget. The program searches all possible target sites in a target gene based on the user's defined parameters and performs a comprehensive analysis of the target sites, including their basic features, potential off-target sites, and changes in codons and amino acids within the editing widows.
图 1。BEtarget 的整体工作流程图。该程序基于用户定义的参数在目标基因中搜索所有可能的靶点位点,并对这些位点进行全面分析,包括它们的基本特征、潜在的离靶位点以及编辑窗口内密码子和氨基酸的变化。
A
B
Fig. 2. Submission page of BEtarget. (A) Settings panel for PAM type, editing type, editing window, and reference genome. (B) Input panel for target sequence (or gene). Three types are supported as input: (i) the genomic sequence with the corresponding CDS of a target gene; (ii) a partial sequence of target gene; (iii) a gene locus ID of the selected reference genome.
图 2.BEtarget 提交页面。(A) PAM 类型、编辑类型、编辑窗口和参考基因组的设置面板。(B) 目标序列(或基因)的输入面板。支持三种类型的输入:(i) 具有目标基因相应 CDS 的基因组序列;(ii) 目标基因的部分序列;(iii) 所选参考基因组的基因位点 ID。
A
Job ID: 202201101 dZamj
作业 ID:202201101 dZamj
\begin{abstract} \begin{摘要}
Please check the CDS frame (the CDS sequence is highlighted by yellow color):
请检查 CDS 框架(CDS 序列以黄色突出显示):

acaagteacagggaggagtegaaaagagteaataceageegegecacegeteectegetgaeetgeeegtgttegeecetcetegeeggeegecgaceegeceetgetgeteacegetecagecteegeteateceaageettecac cacaaccecccaccectgctegeccgegcacceagctcaccagcgcaccegtetggggtctgectgecgettctccetcecogtgcaggtgcaggggaagaggeaaggagggcaagaccoggggegcagtggggagtacggaggaage tggtgcagcgtgggagagagggagctggaaaagaaggaagaaaggggggcagtacaagggggacttgggaggaggaagaagggggaatattttgagtatATGATCAATTCGCCGTCCAATCCAGATGTGCGCCAACCAATTCGC ATGgtataattgataataatgataccttccttgttgtatctatctatctatctatctatctatctatctatctatctatctatctatctatctatcgatttcttatctttctttgctcatgcctgacgatgtcatgtcacagctgc tatgetatageaatctcettacttcaggattatcatgtatgtaaatcactagtaatgtattacgagaatatatacaattaageatgtatcacatcgatgtaattggettagtacaataagetttcattatctaaaaaaattaca GTTCTTGTGTTGCTCTGIGCGAACGAAACTTTAAACTGGACAGGTTGAGGAGCTGGCTTCACTCATCAAGGACAACCTCTACAGCAAGCACCTCGTCCTCTCTACTGAGGAACCCTCGICGGGATCCTACAGAACCAGTACCAC

tccatgtgagtttgaagtgggtagtcaattrgacttactetcatcgttccacaggcatagtttgatgtgtcataagacattcagttccatagatatcttcttgttattccettaa aaaagatatt aattctaagtgcaccatctgcacaaagaaaacctattctacatgtataatgtgatgcactgtgcaatcttatgtgtgtgtaacaggttaataattagcattttgaattctcttctaacagATCT1GAAGAAGCCTGGAAGGAAG ATGCCCAAGAAAMATTTCTGCTGAAATCTCGCATTTGAAAAATGATGCAGgtacgttgcgcttgctgtccacctctcaacaaagcgtctttcaaactgtcttagggtgtgtttggaactccaagttcccaactccattgctttgt tttcgtacgcttttcaaactgttaaacgttgegtttttttgcaaaaagtttctatacaaagttgcttttaaaaatcatattgatccaattttgaaaaaaatagcaaatacttaattaatcatgtactaatggaccgctccgtttte

TGCCTGGTGTTGAAGGAAGTGATGGTCCGGTGCGGAAAGGCAAGTAAgagtegagttgagatgggaggtgtaatgtaggtattaggatggagtgaaatggcaactetgtgatgattttcatctggtgatactatgetggtataaga tgagatggaaggectggtatcccttggtggaagaagttgaagegcaaaatgcaatgctggggatatgcaagtggaagaagttgaagegcaaaatgcaatgctgggggatatgcaagtggaagtggtgagagctagetgcttgcega tggcageagttgtggeaatattgagtgeaattgacaggtetttgtttgttttgtttttttttttgecagaagetgeagtttageaggtecttatttegtcagaagttacaaagagagaatatgecaatttttagetttatattt
Job ID: 202201101 Imozl
209606 206131
100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300
Oos01T0104000-02
I
oso1 4000 -
1
Fig. 3. Proofreading of CDS and transcript selection of the target gene. (A) When the genomic sequence with corresponding CDS is used as input, the program automatically detects the coordinates of CDS on the genomic sequence. If users select to check the gene structure at the submission page, BEtarget jumps to the check page, which displays the exon/intron structure of the target gene sequence in which the exons are highlighted in yellow. Coordinates can be modified by clicking the "Adjust CDS" button. (B) When gene locus is used as input, BEtarget displays all possible alternative transcripts of the target gene, and users can select the preferred transcript for target design. The yellow boxes indicate ORFs of the transcript. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
图 3. CDS 的校对和目标基因转录本选择。(A) 当使用具有相应 CDS 的基因组序列作为输入时,程序会自动检测基因组序列上 CDS 的坐标。如果用户选择在提交页面检查基因结构,BEtarget 会跳转到检查页面,显示目标基因序列的外显子/内含子结构,其中外显子以黄色突出显示。通过点击“调整 CDS”按钮可以修改坐标。(B) 当基因位点作为输入时,BEtarget 会显示目标基因的所有可能的替代转录本,用户可以选择首选转录本进行目标设计。黄色框表示转录本的 ORF。(有关本图例中颜色的解释,请参阅本文的网络版本。)
the targets that pair with the gRNA scaffold sequence are also analyzed. Finally, possible base substitutions within the editing windows are subjected to the annotation of codon change and corresponding amino acid change. The resulting data, including the target sites and their correlated information, are returned to the results page in the JSON format.
与 gRNA 支架序列配对的靶标也被分析。最后,编辑窗口内可能的碱基替换经过密码子变化和相应氨基酸变化的注释。包括靶位点及其相关信息在内的结果数据以 JSON 格式返回到结果页面。

3. Output and result visualization
3. 输出和结果可视化

BEtarget produces an interactive graph and table for displaying the results (Fig. 4). The graph shows the structure of a target gene in which the exons are indicated as yellow-colored boxes (Fig. 4A). When the mouse pointer is moved on an exon, the table lists only candidate target sites in the exon, and when clicked on "show all target", it displays all candidate target sites in the gene. The initial results table lists all candidate target sites and their positions, strands, GC content, potential off-target sites, and corresponding codon changes (Fig. 4B). Possible base substitutions and corresponding amino acid changes, including stop codon mutations within the editing windows are highlighted in red. Users can select to display target sites with the expected mutation type, either as all candidate sites or only those with stop codon mutations (nonsense mutations). By clicking the "see detail" link, users can examine detailed potential off-target sites with their scores.
BEtarget 生成一个交互式图表和表格来显示结果(图 4)。图表显示目标基因的结构,其中外显子被表示为黄色方框(图 4A)。当鼠标指针移动到一个外显子上时,表格中仅列出该外显子中的候选靶点,当点击“显示所有靶点”时,会显示基因中所有候选靶点。初始结果表列出所有候选靶点及其位置、链、GC 含量、潜在的非靶位点以及相应的密码子变化(图 4B)。在编辑窗口内突变的可能碱基替换和相应的氨基酸变化,包括终止密码子突变,会用红色突出显示。用户可以选择显示具有预期突变类型的靶点,可以是所有候选位点或仅包含终止密码子突变(无义突变)的位点。通过点击“查看详情”链接,用户可以查看详细的潜在非靶位点及其分数。
Although there is a lack of large-scale analysis of base editing outcomes for predicting the efficiency because of the lowefficiency of delivery method in plants, it is possible to anticipate low-efficiency target sites, including those with very low or high GC content ( or ), poly-T site(s), contiguous basepairing with the sgRNA sequence, or potential off-target sites of high score value ( ). These candidate low-quality target sites are marked with warning indicators (!, !!, or !!!). Finally, users can select target site(s) (on the left-most side) and click on "Show target(s) in the gene sequence" or "Primer design" (below the candidate targets) for the purposes indicated.
尽管由于植物中传递方法的低效性而缺乏对碱基编辑结果进行大规模分析以预测效率,但仍然可以预期低效率的靶位点,包括那些具有非常低或高 GC 含量( ),聚 T 位点,与 sgRNA 序列连续碱基配对,或具有高分值潜在的离靶位点( )。这些候选低质量靶位点标有警告指示符(!,!!或!!!)。最后,用户可以选择靶位点(位于最左侧)并单击“在基因序列中显示靶位点”或“引物设计”(在候选靶位点下方)以达到所示目的。

A

Result output type: Amino acid & stop codon (STP) mutations Only targets with STP mutations
结果输出类型: 氨基酸和终止密码子(STP)突变 仅具有 STP 突变的靶位点
B
Fig. 4. Visualization of the results. (A) The graph shows the structure of a target gene. When the mouse pointer is moved on an exon, the results table lists the target sites present in the exon. When the "Show all target" is clicked on, it displays all candidate target sites in the gene. Users can selectively display target sites with the expected mutation type, either as all candidate sites or only those with stop codon mutations. (B) The table lists candidate target sites and their useful information, including basic features, predicted amino acid changes, potential off-target sites, and scores. Users can select target site(s) (on the left-most side) and click "Show target(s) in the gene sequence" or "Primer design" for these purposes.
图 4. 结果的可视化。(A) 图表显示目标基因的结构。当鼠标指针移动到外显子上时,结果表列出外显子中存在的靶位点。当点击“显示所有靶位点”时,显示基因中所有候选靶位点。用户可以选择性地显示具有预期突变类型的靶位点,无论是所有候选位点还是仅具有终止密码子突变的位点。(B) 表格列出候选靶位点及其有用信息,包括基本特征、预测的氨基酸变化、潜在的非靶位点以及分数。用户可以选择靶位点(在最左侧)并点击“在基因序列中显示靶位点”或“引物设计”以实现这些目的。

4. Conclusion 4. 结论

BEtarget is a user-friendly tool to select optimal gRNAs in a given gene for base editing. The program extracts comprehensive information of all candidate target sites in the coding regions, including their basic features, predicted codon changes, potential off-target sites, and annotations. The results are displayed using an interactive graph and table. In this study, BEtarget was carefully compared with other similar design tools that foucus on the function of searching target sites for base editing, including CRISPRBETS [42], CRISPR-CBEI [43], PnB Designer [48], and BE-Designer [46], as summarized in Supplementary Table 1. The comparison showed that BEtarget has the following advantages. Firstly, BEtarget supports gRNA design for current base editors, including ABE and CBE, with no limitation of PAM variants. By modifying the parameters of the PAM setting, users can define their PAM type. Secondly, BEtarget is flexible for sequence input, which allows users input a partial sequence of target gene, and the program can automatically fetch the genomic sequence and corresponding
BEtarget 是一个用户友好的工具,用于选择给定基因中的最佳 gRNAs 进行碱基编辑。该程序提取编码区域中所有候选靶位点的全面信息,包括它们的基本特征、预测的密码子变化、潜在的非靶位点和注释。结果使用交互式图表和表格显示。在这项研究中,BEtarget 与其他类似的设计工具进行了仔细比较,这些工具专注于搜索碱基编辑的靶位点,包括 CRISPRBETS [42]、CRISPR-CBEI [43]、PnB Designer [48]和 BE-Designer [46],如附表 1 所总结的。比较表明 BEtarget 具有以下优势。首先,BEtarget 支持当前碱基编辑器(包括 ABE 和 CBE)的 gRNA 设计,不受 PAM 变体的限制。通过修改 PAM 设置的参数,用户可以定义他们的 PAM 类型。其次,BEtarget 对序列输入灵活,允许用户输入目标基因的部分序列,程序可以自动获取基因组序列和相应

CDS. Thirdly, BEtarget provides an interactive and customized visualization interface to display information about target sites. In summary, BEtarget is an innovative tool for researchers to rapidly choose appropriate target sites for base editing.
CDS。第三,BEtarget 提供一个交互式和定制的可视化界面,用于显示有关靶位点的信息。总之,BEtarget 是一个创新工具,可让研究人员快速选择适当的靶位点进行碱基编辑。

Author contributions 作者贡献

YL and XX drafted the project. XX, FL, and XT wrote the programs for BEtarget. YL and QZ provided critical comments on the design of BEtarget. WL and DZ tested the programs. XX and FL wrote the manuscript. All authors read and approved the final version of the manuscript.
YL 和 XX 起草了该项目。XX,FL 和 XT 编写了 BEtarget 的程序。YL 和 QZ 就 BEtarget 的设计提出了重要意见。WL 和 DZ 测试了这些程序。XX 和 FL 撰写了手稿。所有作者都阅读并批准了手稿的最终版本。

Funding 资助

This work was supported by the National Natural Science Foundation of China (31991223) and the Major Program of Guangdong Basic and Applied Basic Research (2019B030302006).
本工作得到中国国家自然科学基金(31991223 号)和广东省基础与应用基础研究重大项目(2019B030302006 号)的支持。

Declaration of Competing Interest
竞争利益声明

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
作者声明他们没有已知的竞争性财务利益或个人关系,可能会影响本文报告的工作。

Appendix A. Supplementary data
附录 A. 补充数据

Supplementary data to this article can be found online at https://doi.org/10.1016/j.csbj.2022.07.046.
本文的补充数据可在 https://doi.org/10.1016/j.csbj.2022.07.046 上找到。

References 参考文献

[1] Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012;482(7385):331-8.
[1] Wiedenheft B,Sternberg SH,Doudna JA。RNA 引导的细菌和古菌遗传沉默系统。自然 2012;482(7385):331-8。
[2] Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010;327(5962):167-70.
[2] Horvath P,Barrangou R。CRISPR/Cas,细菌和古菌的免疫系统。科学 2010;327(5962):167-70。
[3] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007;315 (5819):1709-12.
[3] Barrangou R,Fremaux C,Deveau H,Richards M,Boyaval P,等。CRISPR 为原核生物提供了对病毒的获得性抗性。科学 2007;315(5819):1709-12。
[4] Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phagebacteria interactions. Annu Rev Microbiol 2010;64:475-93.
[4] Deveau H,Garneau JE,Moineau S。CRISPR/Cas 系统及其在噬菌体-细菌相互作用中的作用。Annu Rev Microbiol 2010;64:475-93。
[5] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157(6):1262-78
[5] Hsu PD,Lander ES,Zhang F。CRISPR-Cas9 的开发和应用于基因组工程。Cell 2014;157(6):1262-78
[6] Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun .
[6] Adli M。用于基因组编辑及其他用途的 CRISPR 工具包。Nat Commun
[7] Hille F, Richter H, Wong SP, Bratovic M, Ressel S, et al. The biology of CRISPRCas: backward and forward. Cell 2018;172(6):1239-59.
[7] Hille F,Richter H,Wong SP,Bratovic M,Ressel S,等。CRISPRCas 的生物学:回顾与展望。Cell 2018;172(6):1239-59。
[8] Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339(6121):819-23.
[8] Cong L,Ran FA,Cox D,Lin S,Barretto R,等。利用 CRISPR/Cas 系统进行多重基因组工程。Science 2013;339(6121):819-23。
[9] Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science 2018;361(6405):866-9.
[9] Knott GJ,Doudna JA。CRISPR-Cas 引领基因工程的未来。Science 2018;361(6405):866-9。
[10] Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014;32(4):347-55.
[10] Sander JD,Joung JK。CRISPR-Cas 系统用于编辑、调控和靶向基因组。Nat Biotechnol 2014;32(4):347-55。
[11] Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020;38 (7):824-44.
[11] Anzalone AV,Koblan LW,Liu DR。使用 CRISPR-Cas 核酸酶、碱基编辑器、转座酶和首选编辑器进行基因组编辑。Nat Biotechnol 2020;38(7):824-44。
[12] Kuscu C, Parlak M, Tufan T, Yang J, Szlachta K, et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods 2017;14(7):710-2,
[12] Kuscu C,Parlak M,Tufan T,Yang J,Szlachta K,等。CRISPR-STOP:通过碱基编辑诱导的无义突变进行基因沉默。Nat Methods 2017;14(7):710-2。
[13] Voytas DF, Gao C. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 2014;12(6):e1001877.
[13] Voytas DF,高 C。精准基因组工程与农业:机遇和监管挑战。PLoS Biol 2014;12(6):e1001877。
[14] Liu M, Rehman S, Tang X, Gu K, Fan Q, et al. Methodologies for improving HDR efficiency. Front Genet 2019;9:691.
[14] 刘 M,Rehman S,唐 X,顾 K,范 Q,等。提高 HDR 效率的方法。Front Genet 2019;9:691。
[15] Mao Y, Botella JR, Liu Y, Zhu JK. Gene editing in plants: progress and challenges. Natl Sci Rev 2019;6(3):421-37.
[15] 毛 Y,Botella JR,刘 Y,朱 JK。植物基因编辑:进展与挑战。Natl Sci Rev 2019;6(3):421-37。
[16] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science
[16] Jinek M,Chylinski K,Fonfara I,Hauer M,Doudna JA 等。一种可编程的双 RNA 引导 DNA 核酸酶在细菌适应性免疫中的应用。《科学》
[17] Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 2012;109(39):E2579-86.
[17] Gasiunas G,Barrangou R,Horvath P,Siksnys V。Cas9-crRNA 核糖核蛋白复合物介导细菌适应性免疫的特异性 DNA 切割。《美国国家科学院院刊》2012;109(39):E2579-86。
[18] Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013;152(5):1173-83.
[18] 齐 LS,Larson MH,Gilbert LA,Doudna JA,Weissman JS 等。将 CRISPR 重新用作 RNA 引导平台,用于特异性控制基因表达。《细胞》2013;152(5):1173-83。
[19] Liu T, Zeng D, Zheng Z, Lin Z, Xue Y, et al. The ScCas9(++) variant expands the CRISPR toolbox for genome editing in plants. J Integr Plant Biol 2021;63 (9):1611-9.
[19] 刘 T,曾 D,郑 Z,林 Z,薛 Y 等。ScCas9(++)变体扩展了植物基因组编辑的 CRISPR 工具箱。植物生物学集成杂志 2021 年;63(9):1611-9。
[20] Tan J, Zeng D, Zhao Y, Wang Y, Liu T, et al. PhieABEs: a PAM-less/free highefficiency adenine base editor toolbox with wide target scope in plants. Plant Biotechnol J 2022. https://doi.org/10.1111/pbi.13774.
[20] 谭 J,曾 D,赵 Y,王 Y,刘 T 等。PhieABEs:一种无 PAM/高效率腺嘌呤碱基编辑工具箱,在植物中具有广泛的靶点范围。植物生物技术杂志 2022 年。https://doi.org/10.1111/pbi.13774。
[21] Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018;19(12):770-88.
[21] Rees HA,Liu DR。碱基编辑:对活细胞基因组和转录组的精确化学修饰。自然遗传学评论 2018 年;19(12):770-88。
[22] Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, et al. Programmable base editing of to in genomic DNA without DNA cleavage. Nature 2017;551(7681):464-71.
[22] Gaudelli NM,Komor AC,Rees HA,Packer MS,Badran AH 等。在基因组 DNA 中可编程地编辑 ,无需 DNA 切割。自然 2017 年;551(7681):464-71。

[23] Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016;533(7603):420-4.
[23] Komor AC,Kim YB,Packer MS,Zuris JA,Liu DR。在基因组 DNA 中可编程地编辑目标碱基,无需双链 DNA 切割。自然 2016 年;533(7603):420-4。
[24] Molla KA, Yang Y. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol 2019;37(10):1121-42.
[24] Molla KA,Yang Y。CRISPR/Cas 介导的碱基编辑:技术考虑和实际应用。生物技术趋势 2019 年;37(10):1121-42。
[25] Hess GT, Tycko J, Yao D, Bassik MC. Methods and applications of CRISPRmediated base editing in eukaryotic genomes. Mol Cell 2017;68(1):26-43.
[25] Hess GT,Tycko J,Yao D,Bassik MC。CRISPR 介导的碱基编辑在真核基因组中的方法和应用。Mol Cell 2017;68(1):26-43。
[26] Zeng D, Liu T, Tan J, Zhang Y, Zheng Z, et al. PhieCBEs: plant high-efficiency cytidine base editors with expanded target range. Mol Plant 2020;13 (12):1666-9
[26] 曾 D,刘 T,谭 J,张 Y,郑 Z,等。PhieCBEs:植物高效胞嘧啶碱基编辑酶具有扩展的靶标范围。Mol Plant 2020;13(12):1666-9。
[27] Zhang R, Liu J, Chai Z, Chen S, Bai Y, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants .
[27] 张 R,刘 J,柴 Z,陈 S,白 Y,等。利用碱基编辑在小麦中产生除草剂耐受性特征和新的可选择标记。Nat Plants
[28] Billon P, Bryant EE, Joseph SA, Nambiar TS, Hayward SB, et al. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Mol Cell 2017:67(6):1068-79.
[28] Billon P, Bryant EE, Joseph SA, Nambiar TS, Hayward SB, 等。CRISPR 介导的碱基编辑通过诱导终止密码子有效破坏真核基因。Mol Cell 2017:67(6):1068-79。
[29] Hua K, Tao X, Zhu JK. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J .
[29] 华 K,陶 X,朱 JK。通过使用 Cas9 变体在水稻中扩展碱基编辑范围。Plant Biotechnol J
[30] Kim S, Kim D, Cho SW, Kim J. Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 2014;24(6):1012-9.
[30] 金 S,金 D,卓 SW,金 J。金 JS。通过传递纯化的 Cas9 核糖核蛋白高效 RNA 引导基因组编辑在人类细胞中。Genome Res 2014;24(6):1012-9。
[31] Li Q, Li Y, Yang S, Huang S, Yan M, et al. CRISPR-Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development. Nat Cell Biol 2018;20(11):1315-25.
[31] 李 Q,李 Y,杨 S,黄 S,严 M 等。CRISPR-Cas9 介导的碱基编辑筛选在小鼠中识别了对原始生殖细胞发育至关重要的 DND1 氨基酸。Nat Cell Biol 2018;20(11):1315-25。
[32] Yan D, Ren B, Liu L, Yan F, Li S, et al. High-efficiency and multiplex adenine base editing in plants using new TadA variants. Mol Plant 2021;14(5):722-31.
[32] 严 D,任 B,刘 L,严 F,李 S 等。使用新的 TadA 变体在植物中进行高效和多重腺嘌呤碱基编辑。Mol Plant 2021;14(5):722-31。
[33] Zeng Y, Li J, Li G, Huang S, Yu W, et al. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol Ther 2018;26(11):2631-7.
[33] 曾 Y,李 J,李 G,黄 S,于 W 等。通过碱基编辑在人类细胞和杂合胚胎中纠正 Marfan 综合征致病性 FBN1 突变。Mol Ther 2018;26(11):2631-7。
[34] Villiger L, Grisch-Chan HM, Lindsay H, Ringnalda F, Pogliano CB, et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat Med 2018;24(10):1519-25.
[34] Villiger L,Grisch-Chan HM,Lindsay H,Ringnalda F,Pogliano CB,等。通过体内基因组碱基编辑治疗代谢性肝病成年小鼠。Nat Med 2018;24(10):1519-25。
[35] Li C, Zong Y, Wang Y, Jin S, Zhang D, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 2018;19(1):59.
[35] Li C,Zong Y,Wang Y,Jin S,Zhang D,等。利用 Cas9-腺苷脱氨酶融合在水稻和小麦中进行扩展碱基编辑。Genome Biol 2018;19(1):59。
[36] Bharat SS, Li S, Li J, Yan L, Xia L. Base editing in plants: Current status and challenges. The Crop J 2020;8(3):384-95.
[36] Bharat SS,Li S,Li J,Yan L,Xia L。植物中的碱基编辑:现状和挑战。The Crop J 2020;8(3):384-95。
[37] McDaniel S, Komor A, Goren A. The use of base editing technology to characterize single nucleotide variants. Comput Struct Biotechnol J .
[37] McDaniel S,Komor A,Goren A。使用碱基编辑技术表征单核苷酸变异。计算结构生物技术杂志
[38] Arbab M, Shen MW, Mok B, Wilson C, Matuszek Ż, et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 2020;182(2):463-80
[38] Arbab M,Shen MW,Mok B,Wilson C,Matuszek Ż,等。通过目标库分析和机器学习确定碱基编辑结果的决定因素。细胞 2020 年;182(2):463-80
[39] Marquart KF, Allam A, Janjuha S, Sintsova A, Villiger L, et al. Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nat Commun 2021;12(1):5114.
[39] Marquart KF,Allam A,Janjuha S,Sintsova A,Villiger L,等。使用基于注意力的深度学习算法在高通量目标库筛选上训练的预测碱基编辑结果。自然通讯 2021 年;12(1):5114。
[40] Song M, Kim HK, Lee S, Kim Y, Seo SY, et al. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nat Biotechnol 2020;38
[40] 宋 M,金 HK,李 S,金 Y,徐 SY 等。腺嘌呤和胞嘧啶碱基编辑效率的特异性预测。自然生物技术 2020;38
[41] Pallaseni A, Peets EM, Koeppel J, Weller J, Vanderstichele T, et al. Predicting base editing outcomes using position-specific sequence determinants. Nucleic Acids Res 2022;50(6):3551-64
[41] 帕拉森尼 A,皮茨 EM,科埃佩尔 J,韦勒 J,范德斯蒂切勒 T 等。使用位置特异性序列决定因子预测碱基编辑结果。核酸研究 2022;50(6):3551-64
[42] Wu Y, He Y, Sretenovic S, Liu S, Cheng Y, et al. CRISPR-BETS: a base-editing design tool for generating stop codons. Plant Biotechnol J 2021;20
[42] 吴 Y,何 Y,斯雷特诺维奇 S,刘 S,程 Y 等。CRISPR-BETS:一种用于生成终止密码子的碱基编辑设计工具。植物生物技术杂志 2021;20
[43] Yu H, Wu Z, Chen X, Ji Q Tao S. CRISPR-CBEI: a designing and analyzing tool kit for cytosine base editor-mediated gene inactivation. mSystems 2020;5(5): e00350-e 420
[43] 余辉,吴志,陈旭,季强陶胜。CRISPR-CBEI:胞嘧啶碱基编辑介导的基因失活设计和分析工具包。mSystems 2020;5(5):e00350-e420
[44] Blin K, Shaw S, Tong Y, Weber T. Designing sgRNAs for CRISPR-BEST base editing applications with CRISPy-web 2.0. Synth Syst. Biotechnol 2020;5 .
[44] Blin K,肖 S,童 Y,韦伯 T。使用 CRISPy-web 2.0 为 CRISPR-BEST 碱基编辑应用设计 sgRNA。Synth Syst. Biotechnol 2020;5
[45] Dandage R, Despres PC, Yachie N, Landry CR. beditor: a computational workflow for designing libraries of guide RNAs for CRISPR-mediated base editing. Genetics 2019;212(2):377-85.
[45] Dandage R,Despres PC,Yachie N,Landry CR。beditor:用于设计 CRISPR 介导碱基编辑引物库的计算工作流程。遗传学 2019;212(2):377-85。
[46] Hwang GH, Park J, Lim K, Kim S, Yu J, et al. Web-based design and analysis tools for CRISPR base editing. BMC Bioinf 2018;19(1):542.
[46] 黄光辉,朴 J,林 K,金 S,俞 J 等。CRISPR 碱基编辑的基于 Web 的设计和分析工具。BMC 生物信息学 2018;19(1):542。
[47] Xie X, Ma X, Zhu Q Zeng D, Li G, et al. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant 2017;10(9):1246-9.
[47] 谢 X,马 X,朱 Q 曾 D,李 G 等。CRISPR-GE:CRISPR 基因组编辑的便捷软件工具包。分子植物 2017;10(9):1246-9。
[48] Siegner SM, Karasu ME, Schroder MS, Kontarakis Z, Corn JE. PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinf 2021;22(1):101.
[48] Siegner SM,Karasu ME,Schroder MS,Kontarakis Z,Corn JE。PnB Designer:用于动植物设计引物和碱基编辑器引导 RNA 的 Web 应用程序。BMC 生物信息学 2021;22(1):101。

  1. Abbreviations: ABE, adenine base editor; CBE, cytosine base editor; CDS, coding sequence; CRISPR, clustered regularly interspaced short palindromic repeats; DSB, doublestrand break; ORF, open reading frame; NHEJ, non-homologous end joining; PAM, protospacer adjacent motif; gRNA, guide RNA.
    缩写:ABE,腺嘌呤碱基编辑酶;CBE,胞嘧啶碱基编辑酶;CDS,编码序列;CRISPR,簇状规律间隔短回文重复;DSB,双链断裂;ORF,开放阅读框;NHEJ,非同源末端连接;PAM,原位启动子相邻基序;gRNA,引导 RNA。
    • Corresponding authors at: State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
      通讯作者:华南农业大学生命科学学院亚热带农业生物资源保护与利用国家重点实验室,中国广州 510642。
    E-mail addresses: xiexianrong@scau.edu.cn (X. Xie), ygliu@scau.edu.cn (Y.-G. Liu).
    电子邮件地址:xiexianrong@scau.edu.cn(谢先荣),ygliu@scau.edu.cn(刘永刚)。