Mycolic acids represent a major component of the unique cell wall of mycobacteria. Mycolic acid biosynthesis is inhibited by isoniazid, a key frontline antitubercular drug that is inactivated by mycobacterial and human arylamine N-acetyltransferase (NAT). We show that an in-frame deletion of Mycobacterium bovis BCG nat results in delayed entry into log phase, altered morphology, altered cell wall lipid composition, and increased intracellular killing by macrophages. In particular, deletion of nat perturbs biosynthesis of mycolic acids and their derivatives and increases susceptibility of M. bovis BCG to antibiotics that permeate the cell wall. Phenotypic traits are fully complemented by introduction of Mycobacterium tuberculosis nat. We infer from our findings that NAT is critical to normal mycolic acid synthesis and hence other derivative cell wall components and represents a novel target for antituberculosis therapy. In addition, this is the first report of an endogenous role for NAT in mycobacteria.
分枝杆菌酸是分枝杆菌独特细胞壁的主要成分。异烟肼是一种关键的一线抗结核药物,可被分枝杆菌和人芳基胺 N-乙酰转移酶 (NAT) 灭活,从而抑制分枝菌酸的生物合成。我们发现,牛分枝杆菌 BCG nat 的框内删除会导致进入对数期延迟、形态改变、细胞壁脂质组成改变以及巨噬细胞的细胞内杀伤增加。特别是,nat 的缺失会扰乱分枝菌酸及其衍生物的生物合成,并增加牛分枝杆菌 BCG 对渗透细胞壁的抗生素的敏感性。通过引入结核分枝杆菌 nat,可以充分补充表型特征。我们从我们的发现中推断,NAT 对于正常分枝菌酸合成以及其他衍生细胞壁成分至关重要,并且代表了抗结核治疗的新靶点。此外,这是首次报道 NAT 在分枝杆菌中的内源性作用。

Mycobacterium tuberculosis, the etiological agent of tuberculosis, is responsible for two to three million deaths per year, worldwide (1, 2). Chemotherapy is available for tuberculosis, but requires an extremely long, complex multiple therapy regimen to resolve infection (3). The length of this course leads to high rates of patient noncompliance, suspected to account for the increasing number of drug-resistant clinical isolates of M. tuberculosis now observed (4). Additional antituberculosis drugs are now urgently required both to treat organisms already resistant to existing therapeutics, and to limit the emergence of drug resistance by use with current treatment regimens to shorten the course of therapy.
结核分枝杆菌是结核病的病原体,每年导致全世界 2 至 300 万人死亡 (1, 2)。化疗可用于治疗结核病,但需要极长、复杂的多重治疗方案来解决感染 (3)。这个疗程的长度导致患者不依从的比例很高,这可能是目前观察到的结核分枝杆菌耐药临床分离株数量不断增加的原因(4)。现在迫切需要额外的抗结核药物来治疗已经对现有疗法产生耐药性的生物体,并通过与当前的治疗方案一起使用以缩短疗程来限制耐药性的出现。

M. tuberculosis belongs to the genus Mycobacterium, characterized by a unique cell wall rich in unusual glycolipids, polysaccharides, and lipids, including mycolic acids. Biosynthetic pathways of cell wall components have proved to be effective targets for several major antitubercular drugs, including the frontline drug isoniazid (INH), which inhibits mycolic acid biosynthesis. Mycolic acids are large, α alkyl β hydroxy fatty acids with the general structure of R1-CH(OH)-CH(R2)-COOH, where R1 is a meromycolate chain typically containing 50–56 carbons and R2 is a shorter α branch containing 22–26 carbons. They constitute the inner leaflet of the lipid bilayer of the mycobacterial cell wall and form an effective barrier to the penetration of antibiotics and chemotherapeutic agents (5). The effect of INH on cell wall and mycolic acid synthesis is long established (613), although there has been controversy over the molecular targets of INH. We recently reported arylamine N-acetyltransferase (NAT) of M. tuberculosis is a modifier of INH involved in mediating INH resistance (14,15).
结核分枝杆菌属于分枝杆菌属,其独特的细胞壁富含不寻常的糖脂、多糖和脂质,包括分枝菌酸。细胞壁成分的生物合成途径已被证明是几种主要抗结核药物的有效靶点,其中包括抑制霉菌酸生物合成的一线药物异烟肼(INH)。分枝菌酸是大的α烷基β羟基脂肪酸,其一般结构为R 1 -CH(OH)-CH(R 2 )-COOH,其中R 1 是包含 22-26 个碳的较短 α 支链。它们构成分枝杆菌细胞壁脂质双层的内层,并形成抗生素和化疗药物渗透的有效屏障 (5)。尽管 INH 的分子靶点存在争议,但 INH 对细胞壁和分枝菌酸合成的影响早已确定 (6-13)。我们最近报道了结核分枝杆菌的芳基胺 N-乙酰转移酶 (NAT) 是 INH 的修饰剂,参与介导 INH 耐药性 (14, 15)。

Genes encoding NAT are present in a range of bacterial genomes (15, 16). This observation first provoked intrigue because human NATs have long been identified as drug metabolizing enzymes (17). NAT represents one of the first examples of pharmacogenetic variation and its study revealed the role of acetyl-CoA as an acetyl donor. In particular, NAT2 in humans is known to be responsible for the inactivation of INH through acetylation (1820). We have studied mycobacterial NATs in this laboratory as potential contributors to the variation in INH resistance among M. tuberculosis clinical isolates. It is now known that nat in M. tuberculosis is polymorphic (14). The expression product acetylates and inactivates INH in vitro, and it has been suggested that this activity and polymorphism might be a contributory factor to INH resistance (14, 15, 21). We know that nat is expressed in M. tuberculosis and Mycobacterium bovis BCG and the gene product is active (14). The genomes of M. tuberculosis (22) and M. bovis (23) have been sequenced. M. bovis is a member of the M. tuberculosis complex. M. bovis BCG is an attenuated M. bovis strain in use as a vaccine. The nat gene is maintained in M. bovis BCG and is identical in sequence to that of M. tuberculosis (1416, 22, 23).
编码 NAT 的基因存在于一系列细菌基因组中 (15, 16)。这一观察结果首先引起了人们的兴趣,因为人类 NAT 长期以来一直被认为是药物代谢酶 (17)。 NAT 代表了药物遗传学变异的第一个例子,其研究揭示了乙酰辅酶 A 作为乙酰供体的作用。特别是,已知人类中的 NAT2 负责通过乙酰化作用使 INH 失活 (18–20)。我们在本实验室研究了分枝杆菌 NAT,将其视为结核分枝杆菌临床分离株 INH 耐药性变异的潜在因素。现在已知结核分枝杆菌中的 nat 是多态性的 (14)。表达产物在体外乙酰化并灭活 INH,有人认为这种活性和多态性可能是 INH 耐药性的一个促成因素 (14,15,21)。我们知道 nat 在结核分枝杆菌和牛分枝杆菌 BCG 中表达,并且基因产物具有活性 (14)。结核分枝杆菌 (22) 和牛分枝杆菌 (23) 的基因组已被测序。牛分枝杆菌是结核分枝杆菌复合群的成员。牛分枝杆菌 BCG 是用作疫苗的减毒牛分枝杆菌菌株。 nat 基因保留在牛分枝杆菌 BCG 中,其序列与结核分枝杆菌的序列相同 (14–16,22,23)。

An endogenous role for the N-acetylation activity of NAT has not been reported for any mycobacterial species and to this end we have generated an in-frame deletion of nat in M. bovis BCG. We examined the growth, cell morphology, and extractable cell wall lipid composition of the resulting knockout strain. The most important finding is that NAT is essential for normal mycolic acid synthesis in M. bovis BCG, suggesting that mycolic acid biosynthesis involves an as yet unidentified pathway involving NAT. In addition, loss of NAT activity resulted in increased intracellular killing of M. bovis BCG by macrophages. We were able to restore M. bovis BCG wild-type phenotype via functional complementation with M. tuberculosis nat, indicating that NAT has an endogenous role within mycobacteria. We propose that NAT, with its crucial role in mycolic acid biosynthesis, represents a novel antituberculosis drug target.
尚未报道任何分枝杆菌物种中 NAT N-乙酰化活性的内源性作用,为此,我们在牛分枝杆菌 BCG 中产生了 nat 的框内删除。我们检查了所得敲除菌株的生长、细胞形态和可提取的细胞壁脂质组成。最重要的发现是,NAT 对于牛分枝杆菌 BCG 中正常分枝菌酸合成至关重要,这表明分枝菌酸生物合成涉及一条尚未确定的涉及 NAT 的途径。此外,NAT 活性的丧失导致巨噬细胞对牛支原体 BCG 的细胞内杀伤增加。我们能够通过与结核分枝杆菌 nat 的功能互补来恢复牛分枝杆菌 BCG 野生型表型,这表明 NAT 在分枝杆菌中具有内源性作用。我们认为,NAT 在分枝菌酸生物合成中发挥着至关重要的作用,代表了一种新型的抗结核药物靶点。

Bacterial Strains and Culture Conditions.
细菌菌株和培养条件。

M. bovis BCG Pasteur and genetically modified strains, including the Δnat complemented with nat in pACE1 (24), were cultured at 37°C in roller bottles with rotation at two revolutions per minute in Middlebrook 7H9 liquid medium containing 10% (vol/vol) albumin-dextrose-catalase (ADC; Difco) and 0.05% (vol/vol) Tween 80 (Sigma-Aldrich), and on Middlebrook 7H10 agar plus 10% (vol/vol) oleic acid–ADC (OADC; Difco), unless otherwise stated. Cultures were harvested from log phase at an OD600 of 0.6–1.2. NAT activity in cell lysates was determined after HPLC analysis as previously described (14).
牛支原体 BCG 巴斯德和转基因菌株,包括 pACE1 中与 nat 互补的 Δnat (24),在 37°C 的滚瓶中培养,在含有 10% (vol/vol) 的 Middlebrook 7H9 液体培养基中以每分钟两转的速度旋转) 白蛋白-葡萄糖-过氧化氢酶 (ADC; Difco) 和 0.05% (vol/vol) Tween 80 (Sigma-Aldrich),以及 Middlebrook 7H10 琼脂加 10% (vol/vol) 油酸-ADC (OADC; Difco),除非另有说明。培养物从对数期收获,OD 600 为 0.6–1.2。如前所述,在 HPLC 分析后测定细胞裂解物中的 NAT 活性 (14)。

Generation of nat Knockout.
nat淘汰赛的产生。

M. bovis BCG Pasteur with an in-frame unmarked deletion of the nat open reading frame (ORF) was generated by homologous recombination, using plasmids and methods previously described (24, 25). The suicide construct comprised p2NIL, homology arms of ∼1 Kb flanking the M. bovis BCG nat ORF, and a selectable marker cassette from pGOAL19. Preparation and transformation of M. bovis BCG electrocompetent cells and selection of the knockout strain were performed exactly as described (25). For the resultant strain, the nat ORF (Rv3566c) and the five upstream ORFs (Rv3566A, Rv3567c, Rv3568c, Rv3569c, and Rv3570c) in the putative nat operon (16) were amplified using pFU DNA polymerase (Promega) with gene-specific primers (Rv3566c nat: 5′-GAC GAG GTC AGA ATG GCA AC-3′ and 5′-GGG GTT CGT TTG TTC GGA TA-3′; Rv3566A: 5′-GTGTCCGGCGCCGAT-3′ and 5′-TCAGATCCAGTGCCATGTTGC-3′; Rv3567c: 5′-ATGTCGGCTCAGATCGATCC-3′ and 5′-CTAGAGCCAGGTGTCCTGG-3′; Rv3568c: 5′-TGAGCATCCGGTCGCTG-3′ and 5′-CTAGCCGCGAGCGCCTAC-3′; Rv3569c: 5′-ATGACAGCTACCGAGGAATTG-3′ and 5′-TCATCTGCCACCTCCCAG-3′; Rv3570c: 5′-GTGACGTCCCATTCAACAGCG-3′ and 5′-TAGACCATGGTGTCGCCG-3′). DMSO at 6% (vol/vol) was added to all reactions. Mycobacterial cells were denatured at 95°C for 10 min as an extra cycle before the addition of the enzyme mix. The PCR cycle was repeated 30 times. The DNA sequences of the PCR products were confirmed by automated sequencing (Biochemistry Department, DNA Sequencing Facility, Oxford University).
使用之前描述的质粒和方法,通过同源重组生成具有读码框内未标记的 nat 开放阅读框 (ORF) 缺失的牛分枝杆菌 BCG 巴斯德 (24, 25)。自杀构建体包含 p2NIL、牛分枝杆菌 BCG nat ORF 侧翼约 1 Kb 的同源臂以及来自 pGOAL19 的选择性标记盒。牛支原体 BCG 电感受态细胞的制备和转化以及敲除菌株的选择完全按照所述进行(25)。对于所得菌株,使用带有基因特异性引物的 pFU DNA 聚合酶 (Promega) 扩增假定 nat 操纵子 (16) 中的 nat ORF (Rv3566c) 和五个上游 ORF(Rv3566A、Rv3567c、Rv3568c、Rv3569c 和 Rv3570c) (Rv3566c nat:5′-GAC GAG GTC AGA ATG GCA AC-3′和5′-GGG GTT CGT TTG TTC GGA TA-3′;Rv3566A:5′-GTGTCCGGCGCCGAT-3′和5′-TCAGATCCAGTGCCATGTTGC-3′; Rv3567c: 5'-ATGTCGGCTCAGATCGATCC-3' 和 5'-CTAGAGCCAGGTGTCCTGG-3'; Rv3568c: 5'-TGAGCATCCGGTCGCTG-3' 和 5'-CTAGCCGCGAGCGCCTAC-3'; Rv3569c: 5'-ATGACAGCTACCGAGGAATTG-3' 和 5'-TCATCTGCCACC TCCCAG -3';Rv3570c:5'-GTGACGTCCCATTCAACAGCG-3'和5'-TAGACCATGGTGTCGCCG-3')。将 6%(体积/体积)的 DMSO 添加到所有反应中。在添加酶混合物之前,将分枝杆菌细胞在 95°C 下变性 10 分钟,作为额外循环。 PCR循环重复30次。 PCR产物的DNA序列通过自动测序(牛津大学生物化学系,DNA测序设施)进行确认。

Complementation of M. bovis BCG Δnat with M. tuberculosis nat.
牛分枝杆菌 BCG Δnat 与结核分枝杆菌 nat 的互补。

M. tuberculosis nat cloned into the Escherichia coli mycobacterial shuttle expression vector pACE1, under control of the inducible acetamidase promoter (15, 24), was used to complement M. bovis BCG Δnat. Preparation and transformation of electrocompetent M. bovis BCG cells with the construct were as previously described, with selection of transformants on 50 μg/ml 7H10 OADC agar-containing hygromycin. Cultures of M. bovis BCG Δnat complemented with nat in pACE1 were initially maintained in minimal medium induced with 2 mg/ml acetamide (15) and the log phase was reached after 7 d. For experiments in which growth characteristics were compared with other strains, the complemented strain was grown in liquid culture in 7H9 Middlebrook medium, under which conditions the acetamide promoter is known to drive basal level expression (26).
将结核分枝杆菌 nat 克隆到大肠杆菌分枝杆菌穿梭表达载体 pACE1 中,在诱导型乙酰胺酶启动子 (15, 24) 的控制下,用于补充牛分枝杆菌 BCG Δnat。使用构建体制备和转化电感受态牛分枝杆菌BCG细胞如前所述,在含有潮霉素的50μg/ml 7H10 OADC琼脂上选择转化体。在 pACE1 中用 nat 补充的牛分枝杆菌 BCG Δnat 培养物最初维持在用 2 mg/ml 乙酰胺诱导的基本培养基中 (15),7 天后达到对数期。对于将生长特性与其他菌株进行比较的实验,互补菌株在 7H9 Middlebrook 培养基中的液体培养物中生长,已知在该条件下乙酰胺启动子可驱动基础水平表达 (26)。

Western Blotting.  蛋白质印迹法。

We performed SDS-PAGE and Western blotting as previously described using rabbit antiserum raised against recombinant M. tuberculosis NAT as first antibody (21) at a dilution of 1:10,000.
我们使用针对重组结核分枝杆菌 NAT 的兔抗血清作为第一抗体(21)以 1:10,000 的稀释度进行 SDS-PAGE 和蛋白质印迹,如前所述。

Electron Microscopy.  电子显微镜。

Transmission electron microscopy (TEM) was performed as previously described (27) and viewed on a Philips EM410 transmission electron microscope. Digital images were taken using the Gatan multiscan Camera, model 791.
如前所述 (27) 进行透射电子显微镜 (TEM) 并在 Philips EM410 透射电子显微镜上观察。使用 Gatan 多重扫描相机(型号 791)拍摄数字图像。

Scanning electron microscopy (SEM) was performed on polylysine-coated sterile coverslips kept under PBS buffer within a 24-well plate. A drop of concentrated bacterial culture was placed on the surface, washed three times after 1 h with PBS, and then fixed with 3% glutaraldehyde and stained with 1% osmium tetroxide. Critical point drying was performed after a serial wash with 75, 85, and 95%, and twice in absolute alcohol and dry alcohol (kept under CuSO4). The sample was coated with platinum vapor and observed by SEM (28).
在 24 孔板内保存在 PBS 缓冲液下的聚赖氨酸包被的无菌盖玻片上进行扫描电子显微镜 (SEM)。将一滴浓缩细菌培养物置于表面,1小时后用PBS洗涤3次,然后用3%戊二醛固定,并用1%四氧化锇染色。用75%、85%和95%的无水酒精和无水酒精(在CuSO 4 下保存)连续洗涤两次后进行临界点干燥。将样品涂上铂蒸气并通过SEM观察(28)。

Preparation and Analysis of Polar and Nonpolar Lipids, and Mycolic Acids.
极性和非极性脂质以及霉菌酸的制备和分析。

100 ml roller cultures were harvested at mid-exponential phase (OD600 = 1.0) for each strain. The CFU values for each culture were determined separately to confirm equivalence of biomass. The complex lipids and mycolic acids were extracted and the same proportion of each culture was loaded onto thin layer chromatography (TLC) plates as previously described (29) to allow direct visual comparison between the different strains. Identification of components was by comparison with authenticated standards.
每个菌株在指数中期 (OD 600 = 1.0) 收获 100 ml 滚筒培养物。分别测定每种培养物的 CFU 值,以确认生物量的等效性。提取复合脂质和分枝菌酸,并将相同比例的每种培养物加载到薄层色谱(TLC)板上,如前所述(29),以允许不同菌株之间的直接视觉比较。通过与经过验证的标准进行比较来识别成分。

Drug Susceptibility/Sensitivity Assay.
药物敏感性/敏感性测定。

M. bovis BCG Pasteur and Δnat strains were grown to mid-exponential phase (OD600 = 1.0) and serially diluted using fresh liquid medium (7H9 ADC Tween 80) and spotted at 102 cells/well in six-well plates with or without antibiotics in 5 ml 7H10 OADC agar. Growth was observed after 14 d of incubation at 37°C. Mid-exponential phase cultures were dispensed and grown in 7H9 Middlebrook medium containing ADC and INH from 0 to 0.3 μg/ml in 96-well plates until cultures without INH reached the late exponential phase (4 d). The growth rate was followed by measuring the turbidity at 600 nm. The relative growth rate is expressed as a fraction of the OD of the untreated wild-type cells (21).
将牛支原体 BCG 巴斯德和 Δnat 菌株生长至指数中期 (OD 600 = 1.0),并使用新鲜液体培养基 (7H9 ADC Tween 80) 进行系列稀释,并在 10 2 六孔板中的细胞/孔,含或不含抗生素,含 5 ml 7H10 OADC 琼脂。 37℃培养14天后观察生长情况。将指数中期培养物分配并生长在96孔板中含有0至0.3μg/ml ADC和INH的7H9 Middlebrook培养基中,直到不含INH的培养物达到指数后期(4天)。通过测量 600 nm 处的浊度来跟踪生长速率。相对生长速率表示为未处理野生型细胞 OD 的分数 (21)。

Infectivity and Killing Assay with Macrophages.
巨噬细胞的感染性和杀伤性测定。

Monolayers of the mouse macrophage cell line RAW 264.7 were grown in RPMI 1640 with 10% FBS and plated on coverslips in multiwell plates for 3–4 h before infection (30). Cells were washed three times with OPTIMEM and labeled with TOPRO3 (Molecular Probe) as previously described (31). Elicited macrophage were prepared as previously described (32). M. bovis BCG Pasteur or Δnat cells were harvested at mid-log phase, washed, and resuspended in PBS. One half of the mycobacterial cells were washed and resuspended in OPTIMEM for infection and killing assays, and the remainder were labeled with 500 μg/ml FITC in NaHCO3, pH 8.5. For opsonization, mycobacteria were incubated at 37°C for 30 min with human serum (4:1 vol/vol), and used immediately. All solutions contained 0.01% Tween 80 (Sigma-Aldrich).
小鼠巨噬细胞系 RAW 264.7 的单层在含有 10% FBS 的 RPMI 1640 中生长,并在感染前铺在多孔板的盖玻片上 3-4 小时 (30)。细胞用 OPTIMEM 洗涤 3 次,并用 TOPRO3(分子探针)标记,如前所述 (31)。如前所述制备引出的巨噬细胞(32)。在对数中期收获牛支原体 BCG 巴斯德或 Δnat 细胞,洗涤并重悬于 PBS 中。将一半的分枝杆菌细胞洗涤并重悬于 OPTIMEM 中进行感染和杀灭测定,其余细胞用 NaHCO 3 (pH 8.5)中的 500 μg/ml FITC 进行标记。对于调理作用,将分枝杆菌与人血清(4:1 体积/体积)在 37°C 下孵育 30 分钟,并立即使用。所有溶液均含有 0.01% Tween 80 (Sigma-Aldrich)。

Infection Assay.  感染测定。

Bacteria were added to macrophages in a ratio of 10:1 for fluorimetry, FACS® analysis, and microscopy. Cultures were incubated for 2 h at 37°C, washed three times in PBS, and fixed with 4% paraformaldehyde. Cells were either stained with ZN (Tb-color kit; Bund Deutscher Hebammen Laboratory) for light microscopy or with TOPRO 3 for 1 h at room temperature after permeabilization with 1% Triton X-100 (31) and washing, before FACS® analysis. For FACS® and fluorimetry, cells were recovered by scraping. Protein was measured using the Bradford Colorimetric Assay (Sigma-Aldrich).
将细菌以 10:1 的比例添加到巨噬细胞中,用于荧光测定、FACS ® 分析和显微镜检查。培养物在37°C孵育2小时,用PBS洗涤3次,并用4%多聚甲醛固定。在 FACS ® 分析。对于 FACS ® 和荧光测定法,通过刮擦回收细胞。使用布拉德福德比色测定法(Sigma-Aldrich)测量蛋白质。

Killing Assay.  杀伤测定。

After infection with M. bovis BCG Pasteur and the corresponding Δnat mutant in 16-well plates for 2 h, macrophage were washed thoroughly with OPTIMEM with 0.01% Tween, incubated at 37°C for 2 h, 3 d, or 7 d, and then washed with PBS with 0.01% Tween 80. After discarding the medium, cells were lysed in distilled water at room temperature for 10 min, and dilutions were incubated on Middlebrook 7H10 OADC agar at 37°C for 28 d to determine the CFUs.
在16孔板中用牛分枝杆菌BCG巴斯德和相应的Δnat突变体感染2小时后,用含0.01%吐温的OPTIMEM彻底洗涤巨噬细胞,在37°C下孵育2小时、3天或7天,并且然后用含 0.01% Tween 80 的 PBS 清洗。弃去培养基后,室温下在蒸馏水中裂解细胞 10 分钟,并将稀释液在 Middlebrook 7H10 OADC 琼脂上于 37°C 孵育 28 d,以确定 CFU。

Generation of M. bovis BCG Pasteur Δnat by Allelic Exchange.
通过等位基因交换产生牛支原体 BCG Pasteur Δnat。

M. bovis BCG with an in-frame unmarked deletion of the nat gene (M. bovis BCG Δnat) was generated using homologous recombination (25). Deletion of nat in M. bovis BCG Δnat was confirmed by PCR, Southern blotting, and sequencing of the vestigial nat sequence. We also confirmed the integrity of the adjacent genes by sequencing and PCR. The effect of deleting nat was confirmed by NAT activity, which fell from 17.2 pmoles INH acetylated/min/mg protein to an undetectable level in lysates of the M. bovis BCG Δnat strain. Western blotting using an antibody that specifically recognizes NAT in cell lysates of M. tuberculosis and M. bovis BCG (fig. 1 D) showed NAT to be clearly present in the parental strain, but we do not detect NAT protein in the lysate of M. bovis BCG Δnat. We introduced the E. coli mycobacterial shuttle expression vector pACE1 (24) containing M. tuberculosis nat (14) into M. bovis BCG Δnat to generate a complemented M. bovis BCG Δnat strain. The level of expression of NAT in the complemented strain as determined by Western blotting appears to be similar to the wild-type strain (Fig. 1 D).
使用同源重组生成具有读码框内未标记 nat 基因缺失的牛支原体 BCG (牛支原体 BCG Δnat) (25)。通过 PCR、Southern 印迹和残留 nat 序列测序证实了牛分枝杆菌 BCG Δnat 中 nat 的缺失。我们还通过测序和 PCR 确认了邻近基因的完整性。 NAT 活性证实了删除 nat 的效果,在牛支原体 BCG Δnat 菌株的裂解物中,NAT 活性从 17.2 pmoles INH 乙酰化/min/mg 蛋白降至不可检测的水平。使用特异性识别结核分枝杆菌和牛分枝杆菌 BCG 细胞裂解物中 NAT 的抗体进行蛋白质印迹分析(图 1 D),结果显示 NAT 清楚地存在于亲本菌株中,但我们没有在结核分枝杆菌裂解物中检测到 NAT 蛋白。牛 BCG Δnat。我们将含有结核分枝杆菌 nat (14) 的大肠杆菌分枝杆菌穿梭表达载体 pACE1 (24) 引入牛分枝杆菌 BCG Δnat,以生成互补的牛分枝杆菌 BCG Δnat 菌株。通过蛋白质印迹测定,互补菌株中 NAT 的表达水平似乎与野生型菌株相似(图 1D)。

Figure 1. 图1。
Figure 1. Deleting the nat gene affects the growth of M. bovis BCG Pasteur. (A) Growth of M. bovis BCG and M. bovis BCG Δnat over a 28-d period on solid medium. Colonies of M. bovis BCG are visible by day 21 compared with day 28 for the Δnat strain (magnification, 0.2-fold). (B) Colonies of the Δnat strain (KO) are smaller than the corresponding colonies of the M. bovis BCG (WT) and complemented strain (KO+NAT; magnification, 10-fold). (C) When M. bovis BCG (▴), M. bovis BCG Pasteur Δnat (▪), and nat complemented strains (♦) are grown in liquid culture (7H9 ADC and Tween 80), growth of the M. bovis BCG Δnat strain is altered such that the lag phase is extended and it is restored to the wild-type phenotype when the nat gene is reintroduced. (D) Lysates of cells harvested at mid-log phase were run on SDS-PAGE. In each lane, lysate corresponding to 10 ml culture was loaded. Western blots were developed with specific antibodies against recombinant M. tuberculosis NAT (reference 21) used at a 1:10,000 dilution. Lane 1, pure recombinant NAT (reference 14) as standard (C); lane 2, M. bovis BCG (WT); lanes 3 and 5, Rainbow Molecular Weight Markers (Amersham Biosciences); lane 4, M. bovis BCG Δnat (KO); lane 6, M. bovis BCG Δnat complemented with nat (KO+NAT).
View largeDownload slide
查看大的下载幻灯片
Figure 1. Deleting the nat gene affects the growth of M. bovis BCG Pasteur. (A) Growth of M. bovis BCG and M. bovis BCG Δnat over a 28-d period on solid medium. Colonies of M. bovis BCG are visible by day 21 compared with day 28 for the Δnat strain (magnification, 0.2-fold). (B) Colonies of the Δnat strain (KO) are smaller than the corresponding colonies of the M. bovis BCG (WT) and complemented strain (KO+NAT; magnification, 10-fold). (C) When M. bovis BCG (▴), M. bovis BCG Pasteur Δnat (▪), and nat complemented strains (♦) are grown in liquid culture (7H9 ADC and Tween 80), growth of the M. bovis BCG Δnat strain is altered such that the lag phase is extended and it is restored to the wild-type phenotype when the nat gene is reintroduced. (D) Lysates of cells harvested at mid-log phase were run on SDS-PAGE. In each lane, lysate corresponding to 10 ml culture was loaded. Western blots were developed with specific antibodies against recombinant M. tuberculosis NAT (reference 21) used at a 1:10,000 dilution. Lane 1, pure recombinant NAT (reference 14) as standard (C); lane 2, M. bovis BCG (WT); lanes 3 and 5, Rainbow Molecular Weight Markers (Amersham Biosciences); lane 4, M. bovis BCG Δnat (KO); lane 6, M. bovis BCG Δnat complemented with nat (KO+NAT).
View largeDownload slide
查看大的下载幻灯片
Figure 1. Deleting the nat gene affects the growth of M. bovis BCG Pasteur. (A) Growth of M. bovis BCG and M. bovis BCG Δnat over a 28-d period on solid medium. Colonies of M. bovis BCG are visible by day 21 compared with day 28 for the Δnat strain (magnification, 0.2-fold). (B) Colonies of the Δnat strain (KO) are smaller than the corresponding colonies of the M. bovis BCG (WT) and complemented strain (KO+NAT; magnification, 10-fold). (C) When M. bovis BCG (▴), M. bovis BCG Pasteur Δnat (▪), and nat complemented strains (♦) are grown in liquid culture (7H9 ADC and Tween 80), growth of the M. bovis BCG Δnat strain is altered such that the lag phase is extended and it is restored to the wild-type phenotype when the nat gene is reintroduced. (D) Lysates of cells harvested at mid-log phase were run on SDS-PAGE. In each lane, lysate corresponding to 10 ml culture was loaded. Western blots were developed with specific antibodies against recombinant M. tuberculosis NAT (reference 21) used at a 1:10,000 dilution. Lane 1, pure recombinant NAT (reference 14) as standard (C); lane 2, M. bovis BCG (WT); lanes 3 and 5, Rainbow Molecular Weight Markers (Amersham Biosciences); lane 4, M. bovis BCG Δnat (KO); lane 6, M. bovis BCG Δnat complemented with nat (KO+NAT).
View largeDownload slide
查看大的下载幻灯片
Figure 1. Deleting the nat gene affects the growth of M. bovis BCG Pasteur. (A) Growth of M. bovis BCG and M. bovis BCG Δnat over a 28-d period on solid medium. Colonies of M. bovis BCG are visible by day 21 compared with day 28 for the Δnat strain (magnification, 0.2-fold). (B) Colonies of the Δnat strain (KO) are smaller than the corresponding colonies of the M. bovis BCG (WT) and complemented strain (KO+NAT; magnification, 10-fold). (C) When M. bovis BCG (▴), M. bovis BCG Pasteur Δnat (▪), and nat complemented strains (♦) are grown in liquid culture (7H9 ADC and Tween 80), growth of the M. bovis BCG Δnat strain is altered such that the lag phase is extended and it is restored to the wild-type phenotype when the nat gene is reintroduced. (D) Lysates of cells harvested at mid-log phase were run on SDS-PAGE. In each lane, lysate corresponding to 10 ml culture was loaded. Western blots were developed with specific antibodies against recombinant M. tuberculosis NAT (reference 21) used at a 1:10,000 dilution. Lane 1, pure recombinant NAT (reference 14) as standard (C); lane 2, M. bovis BCG (WT); lanes 3 and 5, Rainbow Molecular Weight Markers (Amersham Biosciences); lane 4, M. bovis BCG Δnat (KO); lane 6, M. bovis BCG Δnat complemented with nat (KO+NAT).
View largeDownload slide
查看大的下载幻灯片

Deleting the nat gene affects the growth of M. bovis BCG Pasteur. (A) Growth of M. bovis BCG and M. bovis BCG Δnat over a 28-d period on solid medium. Colonies of M. bovis BCG are visible by day 21 compared with day 28 for the Δnat strain (magnification, 0.2-fold). (B) Colonies of the Δnat strain (KO) are smaller than the corresponding colonies of the M. bovis BCG (WT) and complemented strain (KO+NAT; magnification, 10-fold). (C) When M. bovis BCG (▴), M. bovis BCG Pasteur Δnat (▪), and nat complemented strains (♦) are grown in liquid culture (7H9 ADC and Tween 80), growth of the M. bovis BCG Δnat strain is altered such that the lag phase is extended and it is restored to the wild-type phenotype when the nat gene is reintroduced. (D) Lysates of cells harvested at mid-log phase were run on SDS-PAGE. In each lane, lysate corresponding to 10 ml culture was loaded. Western blots were developed with specific antibodies against recombinant M. tuberculosis NAT (reference 21) used at a 1:10,000 dilution. Lane 1, pure recombinant NAT (reference 14) as standard (C); lane 2, M. bovis BCG (WT); lanes 3 and 5, Rainbow Molecular Weight Markers (Amersham Biosciences); lane 4, M. bovis BCG Δnat (KO); lane 6, M. bovis BCG Δnat complemented with nat (KO+NAT).
删除 nat 基因会影响牛分枝杆菌 BCG 巴斯德的生长。 (A) 牛分枝杆菌 BCG 和牛分枝杆菌 BCG Δnat 在固体培养基上 28 天的生长。与 Δnat 菌株第 28 天相比,牛分枝杆菌 BCG 菌落在第 21 天可见(放大倍数,0.2 倍)。 (B) Δnat 菌株 (KO) 的菌落小于牛支原体 BCG (WT) 和互补菌株 (KO+NAT;放大倍数,10 倍) 的相应菌落。 (C) 当牛支原体 BCG (▴)、牛支原体 BCG Pasteur Δnat (▪) 和 nat 互补菌株 (♦) 在液体培养物(7H9 ADC 和 Tween 80)中生长时,牛支原体 BCG Δnat 的生长菌株被改变,使得滞后期延长,并且当重新引入 nat 基因时,它恢复到野生型表型。 (D) 在对数中期收获的细胞裂解物在 SDS-PAGE 上运行。在每个泳道中,加载了相当于 10 ml 培养物的裂解液。使用针对重组结核分枝杆菌 NAT(参考文献 21)的特异性抗体以 1:10,000 稀释度进行蛋白质印迹分析。泳道1,纯重组NAT(参考文献14)作为标准(C);泳道 2,牛支原体 BCG (WT);泳道 3 和 5,Rainbow 分子量标记(Amersham Biosciences);泳道 4,牛支原体 BCG Δnat (KO);泳道 6,牛支原体 BCG Δnat 与 nat 互补 (KO+NAT)。

Figure 1.

Deleting the nat gene affects the growth of M. bovis BCG Pasteur. (A) Growth of M. bovis BCG and M. bovis BCG Δnat over a 28-d period on solid medium. Colonies of M. bovis BCG are visible by day 21 compared with day 28 for the Δnat strain (magnification, 0.2-fold). (B) Colonies of the Δnat strain (KO) are smaller than the corresponding colonies of the M. bovis BCG (WT) and complemented strain (KO+NAT; magnification, 10-fold). (C) When M. bovis BCG (▴), M. bovis BCG Pasteur Δnat (▪), and nat complemented strains (♦) are grown in liquid culture (7H9 ADC and Tween 80), growth of the M. bovis BCG Δnat strain is altered such that the lag phase is extended and it is restored to the wild-type phenotype when the nat gene is reintroduced. (D) Lysates of cells harvested at mid-log phase were run on SDS-PAGE. In each lane, lysate corresponding to 10 ml culture was loaded. Western blots were developed with specific antibodies against recombinant M. tuberculosis NAT (reference 21) used at a 1:10,000 dilution. Lane 1, pure recombinant NAT (reference 14) as standard (C); lane 2, M. bovis BCG (WT); lanes 3 and 5, Rainbow Molecular Weight Markers (Amersham Biosciences); lane 4, M. bovis BCG Δnat (KO); lane 6, M. bovis BCG Δnat complemented with nat (KO+NAT).

Close modal

M. bovis BCG Pasteur Δnat Is Defective for Entry into Exponential Growth Phase.
M. bovis BCG Pasteur Δnat 存在进入指数生长期的缺陷。

The growth of M. bovis BCG is slower when nat is deleted. This is observed both on solid agar and in liquid cultures. On agar, colonies in which the nat gene is deleted appear at day 28, as opposed to day 21 for the parental strain (Fig. 1 A). Growth curves in liquid culture reveal that the strain with the nat gene deleted has an increased lag phase (Fig. 1 C), whereas its exponential growth rate mirrors that of the parental strain. In the complemented strain, the growth is restored to that of the wild-type, consistent with the restoration of NAT protein.
当 nat 被删除时,牛支原体 BCG 的生长较慢。这在固体琼脂和液体培养物中都观察到。在琼脂上,nat 基因被删除的集落出现在第 28 天,而亲本菌株则出现在第 21 天(图 1 A)。液体培养中的生长曲线显示,删除 nat 基因的菌株具有更长的滞后期(图 1 C),而其指数生长速率则与亲本菌株相同。在补充菌株中,生长恢复至野生型,与 NAT 蛋白的恢复一致。

M. bovis BCG Pasteur Δnat Has Altered Cellular Morphologies.
M. bovis BCG Pasteur Δnat 改变了细胞形态。

We observed, initially by eye, that colonies of M. bovis BCG Δnat appear smaller than their parental strain counterparts (Fig. 1, A and B). This was confirmed by light microscopy; the knockout colonies appear smaller. We attempted to quantify this morphological change using SEM and TEM. From SEM, the individual cells of M. bovis BCG Δnat are significantly (P < 0.05) smaller (Fig. 2 C) than those of the parental cells (M. bovis BCG, total area 5.47 ± 0.84 μ2; M. bovis BCG Δnat, total area 3.97 ± 0.65; average ± SD, n = 40).
我们最初通过肉眼观察到,牛支原体 BCG Δnat 的菌落看起来比其亲本菌株对应物小(图 1、A 和 B)。光学显微镜证实了这一点;敲除的菌落显得更小。我们尝试使用 SEM 和 TEM 量化这种形态变化。从SEM观察,牛分枝杆菌BCG Δnat的单个细胞明显(P < 0.05)小于亲本细胞(牛分枝杆菌BCG,总面积5.47 ± 0.84 μ 2

Figure 2. 图 2.
Figure 2. Morphology and ultrastructure of individual M. bovis BCG Pasteur cells are modified when the nat gene is deleted. Longitudinal (A) and transverse (B) TEM images show that the size of M. bovis BCG is altered on deleting the nat gene. The outer cell wall (arrow), present in M. bovis BCG, is absent in the Δnat strain. SEM (C) also shows the difference in size of the bacilli. Cord formation (arrow) in M. bovis BCG is missing when the nat gene is deleted. Bar is 1 μm for all frames.
View large Download slide
查看大的下载幻灯片

Morphology and ultrastructure of individual M. bovis BCG Pasteur cells are modified when the nat gene is deleted. Longitudinal (A) and transverse (B) TEM images show that the size of M. bovis BCG is altered on deleting the nat gene. The outer cell wall (arrow), present in M. bovis BCG, is absent in the Δnat strain. SEM (C) also shows the difference in size of the bacilli. Cord formation (arrow) in M. bovis BCG is missing when the nat gene is deleted. Bar is 1 μm for all frames.
当 nat 基因被删除时,单个牛支原体 BCG 巴斯德细胞的形态和超微结构会发生改变。纵向 (A) 和横向 (B) TEM 图像显示,牛支原体 BCG 的大小在删除 nat 基因后发生了变化。牛支原体 BCG 中存在的外细胞壁(箭头)在 Δnat 菌株中不存在。 SEM (C) 还显示了杆菌大小的差异。当 nat 基因被删除时,牛支原体 BCG 中的索状形成(箭头)就会缺失。所有帧的条形均为 1 μm。

Figure 2.

Morphology and ultrastructure of individual M. bovis BCG Pasteur cells are modified when the nat gene is deleted. Longitudinal (A) and transverse (B) TEM images show that the size of M. bovis BCG is altered on deleting the nat gene. The outer cell wall (arrow), present in M. bovis BCG, is absent in the Δnat strain. SEM (C) also shows the difference in size of the bacilli. Cord formation (arrow) in M. bovis BCG is missing when the nat gene is deleted. Bar is 1 μm for all frames.

Close modal

TEM also reveals the much smoother surface of the M. bovis BCG Δnat cells compared with those of the parental strain (Fig. 2, A and B). Moreover, it is clear from the scanning electron micrographs that the M. bovis BCG Δnat strain lacks cord formation, which is clearly visible in the parental cells (Fig. 2 C).
TEM 还显示,与亲本菌株相比,牛支原体 BCG Δnat 细胞的表面更加光滑(图 2,A 和 B)。此外,从扫描电子显微照片中可以清楚地看出,牛分枝杆菌BCG Δnat菌株缺乏索状形成,这在亲本细胞中清晰可见(图2C)。

NAT Is Required for Normal Synthesis of Mycolic Acids, Complex Lipids, and Glycolipids in M. bovis BCG Pasteur.
NAT 是牛分枝杆菌 BCG 巴斯德中分枝酸、复合脂质和糖脂正常合成所必需的。

The effects of deleting nat on the morphology of the individual cells suggest that the cell wall might be altered. Therefore, we compared the lipid composition of the parental and M. bovis BCG Δnat cells at the same stage of the growth cycle. These comparisons show a distinct difference in the total lipid composition of the M. bovis BCG Δnat strain (Fig. 3, A–C). The mutant appeared to have very reduced quantities of a number of complex lipids and glycolipids, which were identified in the wild-type as phthiocerol dimycocerosate (PDIM), menaquinone (MK), glucose monomycolate (GMM), and trehalose dimycolate or cord factor (CF) using two-dimensional TLC (Fig. 3, A and B). We further analyzed the delipidated cell walls to compare bound mycolic acids (Fig. 3 C). There appears to be very little mycolic acid present within M. bovis BCG Δnat, either in extractable lipids or bound to the cell wall (Fig. 3, A and B). However, the presence of normal mycolic acid production and complex lipid patterns is restored on complementation with M. tuberculosis nat. The cultures used for mycolic acid analyses were plated out to ensure no contamination by nonmycobacterial organisms had occurred. It is these cultures that are illustrated in Fig. 1 A. We see no visible difference between the Δnat and parental strain among other extractable components of the cell wall, particularly the phospholipids (Fig. 3 E), although the amount of extractable fatty acid is slightly diminished in the M. bovis BCG Δnat strain (Fig. 3 D).
删除 nat 对单个细胞形态的影响表明细胞壁可能发生改变。因此,我们比较了亲本和牛支原体 BCG Δnat 细胞在生长周期同一阶段的脂质组成。这些比较显示牛支原体 BCG Δnat 菌株的总脂质组成存在明显差异(图 3,A-C)。该突变体的多种复合脂质和糖脂的数量似乎非常减少,这些复合脂质和糖脂在野生型中被鉴定为硫醇二霉菌酸酯(PDIM)、甲基萘醌(MK)、葡萄糖单霉菌酸酯(GMM)和海藻糖二霉菌酸酯或索状因子。 CF)使用二维薄层色谱(图 3,A 和 B)。我们进一步分析了脱脂的细胞壁以比较结合的分枝菌酸(图3C)。牛分枝杆菌 BCG Δnat 中似乎存在很少的分枝菌酸,无论是在可提取的脂质中还是与细胞壁结合(图 3,A 和 B)。然而,正常的分枝菌酸产生和复杂的脂质模式的存在在与结核分枝杆菌 nat 的补充后得以恢复。将用于分枝杆菌酸分析的培养物铺板以确保没有发生非分枝杆菌生物体的污染。这些培养物如图 1 A 所示。我们发现 Δnat 菌株和亲本菌株在细胞壁的其他可提取成分中没有明显差异,特别是磷脂(图 3 E),尽管可提取脂肪酸的量不同。在牛分枝杆菌 BCG Δnat 菌株中略有减弱(图 3D)。

Figure 3. 图 3.
Figure 3. Total lipid and mycolate profile of M. bovis BCG Pasteur is changed when the nat gene is deleted. Analysis of total lipids by two-dimensional TLC shows that tri-acyl glycerol (TAG), MK, and PDIM (A), as well as CF and GMM (B), are present in M. bovis BCG (WT), but missing from the corresponding Δnat BCG strain (NAT KO). All of these complex lipids are restored by complementation with nat (KO+NAT). Separation of mycolates from the same dry weight of delipidated cells by one-dimensional TLC from WT, NATKO, and KO+NAT, shows that the synthesis of mycolate in WT is perturbed by deletion of the nat gene and is fully restored when the M. tuberculosis nat gene is introduced (C). Analyses of fatty acids and multi-acetylated trehaloses (D) and of phospholipids (E) shows very little change between the M. bovis BCG (WT) and Δnat BCG strain (NAT KO). Analyses were performed using the same biomass of the parental and mutant cultures. TAG, tri-acyl glycerol; MK, menaquinone; PDIM, pthiocerol dimycocerosate; CF, cord factor; GMM, glucose monomycolate; MAMES, mycolic acid methyl esters; FAMES, fatty acid methyl esters; MAT, multi-acylated trehaloses; F, Fatty acids; PIMs, phosphatidyl-inositol mannosides; PE, phosphatidyl ethanolamines.
View largeDownload slide
查看大的下载幻灯片
Figure 3. Total lipid and mycolate profile of M. bovis BCG Pasteur is changed when the nat gene is deleted. Analysis of total lipids by two-dimensional TLC shows that tri-acyl glycerol (TAG), MK, and PDIM (A), as well as CF and GMM (B), are present in M. bovis BCG (WT), but missing from the corresponding Δnat BCG strain (NAT KO). All of these complex lipids are restored by complementation with nat (KO+NAT). Separation of mycolates from the same dry weight of delipidated cells by one-dimensional TLC from WT, NATKO, and KO+NAT, shows that the synthesis of mycolate in WT is perturbed by deletion of the nat gene and is fully restored when the M. tuberculosis nat gene is introduced (C). Analyses of fatty acids and multi-acetylated trehaloses (D) and of phospholipids (E) shows very little change between the M. bovis BCG (WT) and Δnat BCG strain (NAT KO). Analyses were performed using the same biomass of the parental and mutant cultures. TAG, tri-acyl glycerol; MK, menaquinone; PDIM, pthiocerol dimycocerosate; CF, cord factor; GMM, glucose monomycolate; MAMES, mycolic acid methyl esters; FAMES, fatty acid methyl esters; MAT, multi-acylated trehaloses; F, Fatty acids; PIMs, phosphatidyl-inositol mannosides; PE, phosphatidyl ethanolamines.
View largeDownload slide
查看大的下载幻灯片

Total lipid and mycolate profile of M. bovis BCG Pasteur is changed when the nat gene is deleted. Analysis of total lipids by two-dimensional TLC shows that tri-acyl glycerol (TAG), MK, and PDIM (A), as well as CF and GMM (B), are present in M. bovis BCG (WT), but missing from the corresponding Δnat BCG strain (NAT KO). All of these complex lipids are restored by complementation with nat (KO+NAT). Separation of mycolates from the same dry weight of delipidated cells by one-dimensional TLC from WT, NATKO, and KO+NAT, shows that the synthesis of mycolate in WT is perturbed by deletion of the nat gene and is fully restored when the M. tuberculosis nat gene is introduced (C). Analyses of fatty acids and multi-acetylated trehaloses (D) and of phospholipids (E) shows very little change between the M. bovis BCG (WT) and Δnat BCG strain (NAT KO). Analyses were performed using the same biomass of the parental and mutant cultures. TAG, tri-acyl glycerol; MK, menaquinone; PDIM, pthiocerol dimycocerosate; CF, cord factor; GMM, glucose monomycolate; MAMES, mycolic acid methyl esters; FAMES, fatty acid methyl esters; MAT, multi-acylated trehaloses; F, Fatty acids; PIMs, phosphatidyl-inositol mannosides; PE, phosphatidyl ethanolamines.
当 nat 基因被删除时,牛支原体 BCG 巴斯德的总脂质和霉菌酸谱会发生变化。通过二维 TLC 分析总脂质表明,牛分枝杆菌 BCG (WT) 中存在三酰基甘油 (TAG)、MK 和 PDIM (A),以及 CF 和 GMM (B),但缺失来自相应的 Δnat BCG 菌株 (NAT KO)。所有这些复合脂质均通过与 nat (KO+NAT) 互补而恢复。通过一维 TLC 从 WT、NATKO 和 KO+NAT 中从相同干重的脱脂细胞中分离霉菌酸盐,表明 WT 中霉菌酸盐的合成因 nat 基因的缺失而受到干扰,而当 M.结核病nat基因被引入(C)。脂肪酸和多乙酰化海藻糖 (D) 以及磷脂 (E) 的分析显示牛分枝杆菌 BCG (WT) 和 Δnat BCG 菌株 (NAT KO) 之间的变化非常小。使用亲本和突变体培养物的相同生物量进行分析。 TAG,三酰基甘油; MK、甲萘醌; PDIM,硫代蜡醇二霉菌酯; CF,帘线系数; GMM,葡萄糖单霉菌酸盐; MAMES,霉菌酸甲酯; FAMES,脂肪酸甲酯; MAT,多酰化海藻糖; F、脂肪酸; PIM、磷脂酰肌醇甘露糖苷; PE,磷脂酰乙醇胺。

Figure 3.

Total lipid and mycolate profile of M. bovis BCG Pasteur is changed when the nat gene is deleted. Analysis of total lipids by two-dimensional TLC shows that tri-acyl glycerol (TAG), MK, and PDIM (A), as well as CF and GMM (B), are present in M. bovis BCG (WT), but missing from the corresponding Δnat BCG strain (NAT KO). All of these complex lipids are restored by complementation with nat (KO+NAT). Separation of mycolates from the same dry weight of delipidated cells by one-dimensional TLC from WT, NATKO, and KO+NAT, shows that the synthesis of mycolate in WT is perturbed by deletion of the nat gene and is fully restored when the M. tuberculosis nat gene is introduced (C). Analyses of fatty acids and multi-acetylated trehaloses (D) and of phospholipids (E) shows very little change between the M. bovis BCG (WT) and Δnat BCG strain (NAT KO). Analyses were performed using the same biomass of the parental and mutant cultures. TAG, tri-acyl glycerol; MK, menaquinone; PDIM, pthiocerol dimycocerosate; CF, cord factor; GMM, glucose monomycolate; MAMES, mycolic acid methyl esters; FAMES, fatty acid methyl esters; MAT, multi-acylated trehaloses; F, Fatty acids; PIMs, phosphatidyl-inositol mannosides; PE, phosphatidyl ethanolamines.

Close modal

M. bovis BCG Pasteur Δnat Is More Sensitive toward Intracellular Killing within Macrophages.
M. bovis BCG Pasteur Δnat 对巨噬细胞内的细胞内杀伤更敏感。

When unopsonized M. bovis BCG or M. bovis BCG Δnat bacilli are incubated with the mouse macrophage cell line (RAW 264.7), we observed no difference in cellular uptake (Fig. 4, A and B) into macrophages. Experiments with elicited macrophages showed the same results. However, intracellular M. bovis BCG Δnat bacilli are killed after 3 d, whereas the wild-type strain is not (Fig. 4 C). Opsonization does not appear to alter the marked difference in intracellular killing, although after opsonization there is a fivefold increase in the number of M. bovis BCG cells taken up for both the M. bovis BCG and M. bovis BCG Δnat bacilli.
当未调理的牛支原体 BCG 或牛支原体 BCG Δnat 杆菌与小鼠巨噬细胞系 (RAW 264.7) 一起孵育时,我们观察到巨噬细胞的细胞摄取没有差异(图 4,A 和 B)。用引发的巨噬细胞进行的实验显示了相同的结果。然而,细胞内牛支原体 BCG Δnat 杆菌在 3 天后被杀死,而野生型菌株则不然(图 4 C)。调理作用似乎不会改变细胞内杀伤的显着差异,尽管在调理作用后,牛分枝杆菌BCG和牛分枝杆菌BCG Δnat杆菌所吸收的牛分枝杆菌BCG细胞数量增加了五倍。

Figure 4. 图 4.
Figure 4. Deleting the nat gene affects the intracellular killing of M. bovis BCG Pasteur in macrophages. Infection of mouse macrophage cell line RAW showing that the uptake of M. bovis BCG (WT) and M. bovis BCG Δnat (NATKO) into RAW cells is the same, and there is an equal increase in uptake for both M. bovis BCG and the corresponding Δnat mutant after opsonization (OPS). (A) Fluorimetric assay. (B) FACS®. Upper right quadrants of B show RAW cells that have taken up FITC-BCG. (C) Intracellular killing assay. The mouse macrophage cell line RAW was infected and samples were taken at the times indicated, plated on agar, and CFUs were counted, showing that M. bovis BCG with and without opsonization can survive and is able to grow within macrophages after 7 d, whereas M. bovis BCG Δnat with and without opsonization are killed between 2 and 72 h after infection. ▴, wild-type strain; ▪, Δnat strain. Solid lines are opsonized and dotted lines are unopsonized.
View largeDownload slide
查看大的下载幻灯片
Figure 4. Deleting the nat gene affects the intracellular killing of M. bovis BCG Pasteur in macrophages. Infection of mouse macrophage cell line RAW showing that the uptake of M. bovis BCG (WT) and M. bovis BCG Δnat (NATKO) into RAW cells is the same, and there is an equal increase in uptake for both M. bovis BCG and the corresponding Δnat mutant after opsonization (OPS). (A) Fluorimetric assay. (B) FACS®. Upper right quadrants of B show RAW cells that have taken up FITC-BCG. (C) Intracellular killing assay. The mouse macrophage cell line RAW was infected and samples were taken at the times indicated, plated on agar, and CFUs were counted, showing that M. bovis BCG with and without opsonization can survive and is able to grow within macrophages after 7 d, whereas M. bovis BCG Δnat with and without opsonization are killed between 2 and 72 h after infection. ▴, wild-type strain; ▪, Δnat strain. Solid lines are opsonized and dotted lines are unopsonized.
View largeDownload slide
查看大的下载幻灯片
Figure 4. Deleting the nat gene affects the intracellular killing of M. bovis BCG Pasteur in macrophages. Infection of mouse macrophage cell line RAW showing that the uptake of M. bovis BCG (WT) and M. bovis BCG Δnat (NATKO) into RAW cells is the same, and there is an equal increase in uptake for both M. bovis BCG and the corresponding Δnat mutant after opsonization (OPS). (A) Fluorimetric assay. (B) FACS®. Upper right quadrants of B show RAW cells that have taken up FITC-BCG. (C) Intracellular killing assay. The mouse macrophage cell line RAW was infected and samples were taken at the times indicated, plated on agar, and CFUs were counted, showing that M. bovis BCG with and without opsonization can survive and is able to grow within macrophages after 7 d, whereas M. bovis BCG Δnat with and without opsonization are killed between 2 and 72 h after infection. ▴, wild-type strain; ▪, Δnat strain. Solid lines are opsonized and dotted lines are unopsonized.
View largeDownload slide
查看大的下载幻灯片

Deleting the nat gene affects the intracellular killing of M. bovis BCG Pasteur in macrophages. Infection of mouse macrophage cell line RAW showing that the uptake of M. bovis BCG (WT) and M. bovis BCG Δnat (NATKO) into RAW cells is the same, and there is an equal increase in uptake for both M. bovis BCG and the corresponding Δnat mutant after opsonization (OPS). (A) Fluorimetric assay. (B) FACS®. Upper right quadrants of B show RAW cells that have taken up FITC-BCG. (C) Intracellular killing assay. The mouse macrophage cell line RAW was infected and samples were taken at the times indicated, plated on agar, and CFUs were counted, showing that M. bovis BCG with and without opsonization can survive and is able to grow within macrophages after 7 d, whereas M. bovis BCG Δnat with and without opsonization are killed between 2 and 72 h after infection. ▴, wild-type strain; ▪, Δnat strain. Solid lines are opsonized and dotted lines are unopsonized.
删除 nat 基因会影响巨噬细胞中牛支原体 BCG 巴斯德的细胞内杀伤作用。小鼠巨噬细胞系 RAW 的感染表明,RAW 细胞对牛分枝杆菌 BCG (WT) 和牛分枝杆菌 BCG Δnat (NATKO) 的摄取量是相同的,并且牛分枝杆菌 BCG 和 BCG 的摄取量都有相同的增加。调理作用(OPS)后相应的Δnat突变体。 (A) 荧光测定。 (B)流式细胞仪 ® 。 B 的右上象限显示已吸收 FITC-BCG 的 RAW 细胞。 (C) 细胞内杀伤测定。感染小鼠巨噬细胞系 RAW,并在指定时间取样,铺在琼脂上,并对 CFU 进行计数,表明无论有或没有调理作用,牛分枝杆菌 BCG 都可以存活并能够在 7 天后在巨噬细胞内生长,而无论有或没有调理作用,牛支原体 BCG Δnat 在感染后 2 至 72 小时内被杀死。 ▴、野生型菌株; ▪, Δnat 应变。实线是调理性的,虚线是非调理性的。

Figure 4.

Deleting the nat gene affects the intracellular killing of M. bovis BCG Pasteur in macrophages. Infection of mouse macrophage cell line RAW showing that the uptake of M. bovis BCG (WT) and M. bovis BCG Δnat (NATKO) into RAW cells is the same, and there is an equal increase in uptake for both M. bovis BCG and the corresponding Δnat mutant after opsonization (OPS). (A) Fluorimetric assay. (B) FACS®. Upper right quadrants of B show RAW cells that have taken up FITC-BCG. (C) Intracellular killing assay. The mouse macrophage cell line RAW was infected and samples were taken at the times indicated, plated on agar, and CFUs were counted, showing that M. bovis BCG with and without opsonization can survive and is able to grow within macrophages after 7 d, whereas M. bovis BCG Δnat with and without opsonization are killed between 2 and 72 h after infection. ▴, wild-type strain; ▪, Δnat strain. Solid lines are opsonized and dotted lines are unopsonized.

Close modal

M. bovis BCG Pasteur Δnat Is More Susceptible to Antibiotics.
牛分枝杆菌 BCG Pasteur Δnat 对抗生素更敏感。

We reasoned that the change in the composition of the cell wall of M. bovis BCG Δnat strain would result in greater accessibility of antibiotics. We show this is the case using the antibiotics hygromycin and gentamycin. These antibiotics are approximately one order of magnitude more effective in the strains with the nat gene deleted (Table I). Studies with β lactam antibiotics show that deletion of nat increases susceptibility only marginally.
我们推断,牛支原体 BCG Δnat 菌株细胞壁组成的变化将导致抗生素更容易获得。我们使用抗生素潮霉素和庆大霉素来证明这种情况。这些抗生素在 nat 基因缺失的菌株中的效果大约高一个数量级(表 I)。 β 内酰胺类抗生素的研究表明,删除 nat 仅略微增加敏感性。

Table I.  表一.

Knocking out nat Affects Sensitivity of M. bovis BCG Pasteur to a Variety of Antibiotics
敲除 nat 会影响牛支原体 BCG 巴斯德对多种抗生素的敏感性



Ampicillin 氨苄西林

Cloxacillin 邻氯西林

Carbenicillin 羧苄青霉素

Gentamycin 庆大霉素

Hygromycin 潮霉素
Concentration 专注
WT
KO
WT
KO
WT
KO
WT
KO
WT
KO
Control  控制+++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 
5 μg/ml  5微克/毫升+++ +++ +++ +++ +++ +++ +++ +++ 
10 μg/ml  10微克/毫升+++ +++ +++ +++ +++ +++ +++ − +++ − 
20 μg/ml  20微克/毫升+++ ++ +++ +++ +++ +++ − +++ − 
30 μg/ml  30微克/毫升+++ ++ +++ ++ +++ +++ − − 
40 μg/ml  40微克/毫升++ − ++ − +++ − − 
50 μg/ml 50微克/毫升
 

 

 

 

 
+
 

 
+
 

 

 

 


Ampicillin

Cloxacillin

Carbenicillin

Gentamycin

Hygromycin
Concentration
WT
KO
WT
KO
WT
KO
WT
KO
WT
KO
Control +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 
5 μg/ml +++ +++ +++ +++ +++ +++ +++ +++ 
10 μg/ml +++ +++ +++ +++ +++ +++ +++ − +++ − 
20 μg/ml +++ ++ +++ +++ +++ +++ − +++ − 
30 μg/ml +++ ++ +++ ++ +++ +++ − − 
40 μg/ml ++ − ++ − +++ − − 
50 μg/ml
 

 

 

 

 
+
 

 
+
 

 

 

 

M. bovis BCG (WT) and M. bovis BCG with nat deleted (KO) were plated at 102 cells/well on 7H10 OADC agar-containing antibiotics as indicated, in six-well plates. Cell growth was recorded after 14 d at 37°C. Good growth (+++), poor growth (+), and no visible growth (−) are indicated.
将牛支原体 BCG (WT) 和 nat 删除 (KO) 的牛支原体 BCG 以 10 2 细胞/孔铺在六孔板中,如所示的含有抗生素的 7H10 OADC 琼脂上。 37°C 14 天后记录细胞生长。指示生长良好(+++)、生长不良(+)和无可见生长(-)。

The M. bovis BCG Δnat strain is twofold more sensitive to INH than the parental strain of M. bovis BCG Pasteur (Fig. 5). The growth of the Δnat strain was inhibited at a twofold lower INH concentration than the wild-type, whereas the complemented strain was indistinguishable from the wild-type in its INH sensitivity.
牛分枝杆菌 BCG Δnat 菌株对 INH 的敏感性是牛分枝杆菌 BCG 巴斯德亲本菌株的两倍(图 5)。 Δnat 菌株的生长在比野生型低两倍的 INH 浓度下受到抑制,而补充菌株的 INH 敏感性与野生型没有区别。

Figure 5. 图 5.
Figure 5. Deleting nat affects sensitivity of M. bovis BCG Pasteur to INH. Mid-log phase cultures of M. bovis BCG (▴), M. bovis BCG Δnat (▪), and M. bovis BCG Δnat complemented with nat (♦) were grown in the presence of differing concentrations of INH. The growth was determined after 4 d and is expressed relative to the corresponding strain cultured without INH. Mean values of three determinations are shown and the SD is within the symbol.
View large Download slide
查看大的下载幻灯片

Deleting nat affects sensitivity of M. bovis BCG Pasteur to INH. Mid-log phase cultures of M. bovis BCG (▴), M. bovis BCG Δnat (▪), and M. bovis BCG Δnat complemented with nat (♦) were grown in the presence of differing concentrations of INH. The growth was determined after 4 d and is expressed relative to the corresponding strain cultured without INH. Mean values of three determinations are shown and the SD is within the symbol.
删除 nat 会影响牛支原体 BCG Pasteur 对 INH 的敏感性。牛分枝杆菌 BCG (▴)、牛分枝杆菌 BCG Δnat (▪) 和用 nat 补充的牛分枝杆菌 BCG Δnat (♦) 的对数中期培养物在不同浓度的 INH 存在下生长。 4天后测定生长情况,并相对于不含INH培养的相应菌株进行表达。显示了三个测定的平均值,并且 SD 在符号内。

Figure 5.

Deleting nat affects sensitivity of M. bovis BCG Pasteur to INH. Mid-log phase cultures of M. bovis BCG (▴), M. bovis BCG Δnat (▪), and M. bovis BCG Δnat complemented with nat (♦) were grown in the presence of differing concentrations of INH. The growth was determined after 4 d and is expressed relative to the corresponding strain cultured without INH. Mean values of three determinations are shown and the SD is within the symbol.

Close modal

To investigate the endogenous role of NAT in mycobacteria, we deleted the nat gene from M. bovis BCG Pasteur and observed phenotypic changes on (a) growth, (b) ultrastructure and cell morphology, (c) cell wall lipid composition, and (d) intracellular killing of M. bovis BCG Pasteur by mouse macrophages. Deletion of nat affects growth of M. bovis BCG Pasteur on plates and retards the growth in liquid culture by increasing the duration of the lag phase. It has been demonstrated that the nat gene in certain clinical isolates of M. tuberculosis (from amongst a related group of isolates that share a particular IS1160 genotype and are known as family 28) harbor a mutation (33) in the nat gene that renders the NAT protein less active (14). Observations on the growth of these clinical isolates have repeatedly demonstrated that they grow exceptionally slowly on agar and in liquid culture. Although the members of family 28 harbor other mutations, these data indicate that NAT activity may influence growth of M. tuberculosis as well as of M. bovis BCG. We have recently generated a strain of M. tuberculosis H37Rv in which the nat gene has been deleted and have observed that the effect on colony morphology mirrors our results on the effect of deleting the nat gene in M. bovis BCG.
为了研究 NAT 在分枝杆菌中的内源性作用,我们从牛分枝杆菌 BCG 巴斯德中删除了 nat 基因,并观察了 (a) 生长、(b) 超微结构和细胞形态、(c) 细胞壁脂质组成和 (d) 的表型变化。 ) 小鼠巨噬细胞对牛分枝杆菌 BCG 巴斯德的细胞内杀伤。 nat 的删除会影响牛支原体 BCG 巴斯德在平板上的生长,并通过增加滞后期的持续时间来延迟液体培养物中的生长。已经证明,结核分枝杆菌的某些临床分离株(来自共享特定 IS1160 基因型并被称为家族 28 的一组相关分离株)的 nat 基因在 nat 基因中存在突变 (33),从而导致NAT 蛋白活性较低 (14)。对这些临床分离株生长的观察多次表明它们在琼脂和液体培养物中生长异常缓慢。尽管家族 28 的成员存在其他突变,但这些数据表明 NAT 活性可能影响结核分枝杆菌和牛分枝杆菌 BCG 的生长。我们最近生成了结核分枝杆菌 H37Rv 菌株,其中 nat 基因已被删除,并观察到对菌落形态的影响反映了我们对牛分枝杆菌 BCG 中删除 nat 基因的影响的结果。

The ultrastructure of M. bovis BCG Pasteur is affected when nat is deleted and the cell wall is greatly diminished as observed in TEM. Biochemical analysis of the cell wall lipids clearly shows that the M. bovis BCG Δnat mutant has less mycolic acids and other mycolic acid derivatives like GMM and CF as well as other complex lipids, such as PDIM and MK. Consistent with the lack of CF, we have found cord formation is absent in M. bovis BCG Δnat mutant from ultrastructural analysis by SEM. Studies of these cell wall components of mycobacteria are also consistent with the biochemical findings. PDIM, which is found only in pathogenic mycobacteria, is required for growth in the lungs of mice and is associated with virulence (34). Mycobacterial GMM is a target of the human immune response to mycobacteria (35) and CF is able to stimulate innate, early adaptive, and both humoral and cellular adaptive immunity (36), and induces prolonged mycobacterial survival (37). MK is a component of the respiratory chain of mycobacteria. The effects of environmental conditions on the structure and function of the respiratory chain are beginning to be understood (38). MK appears to be essential (39) and its level in the Δnat strain might be below the level of detection in the experiments presented here. We have found that the changes in mycolates and associated complex lipids from the cell wall is associated with increased sensitivity of mycobacteria to intracellular killing by mouse macrophages, regardless of opsonization. Dilapidation of M. tuberculosis similarly affects survival in bone marrow–derived macrophages (40). It is not certain how a decrease in the content of complex lipids contributes to the observed phenotype or whether the pattern of lipid changes is a primary defect or a secondary effect as a result of interference of normal mycolic acid synthesis, for example through shedding. It is possible that NAT has a role in maintaining homeostasis of acetyl-CoA, a central metabolite in lipid synthesis and hence its lack would affect different synthetic pathways. In this context, it has been observed that a truncation mutant of NAT that catalyses hydrolysis of acetyl-CoA is toxic to E. coli (41). The effects of deleting the nat gene on lipid biosynthesis in M. bovis BCG is not universal. Although mycolic acids and their methyl esters are greatly affected, fatty acids are only diminished slightly. These data suggest that NAT may play a role in extension of the chain length of fatty acids before esterification. The biochemical mechanisms of extension of fatty acyl chains is dependent on chain length (11) and in this context it might be significant that in preliminary experiments, we have found NAT associated with the cell membrane fraction under certain growth conditions.
当 nat 被删除时,牛支原体 BCG 巴斯德的超微结构会受到影响,并且如 TEM 中观察到的细胞壁大大减少。细胞壁脂质的生化分析清楚地表明,牛分枝杆菌 BCG Δnat 突变体具有较少的分枝菌酸和其他分枝菌酸衍生物(如 GMM 和 CF)以及其他复杂脂质(如 PDIM 和 MK)。与 CF 的缺乏一致,我们通过 SEM 的超微结构分析发现牛分枝杆菌 BCG Δnat 突变体中不存在索状形成。对分枝杆菌这些细胞壁成分的研究也与生化结果一致。 PDIM 仅存在于致病性分枝杆菌中,是小鼠肺部生长所必需的,并且与毒力相关 (34)。分枝杆菌 GMM 是人类对分枝杆菌免疫反应的目标 (35),而 CF 能够刺激先天性、早期适应性以及体液和细胞适应性免疫 (36),并诱导分枝杆菌存活时间延长 (37)。 MK 是分枝杆菌呼吸链的组成部分。人们开始了解环境条件对呼吸链结构和功能的影响(38)。 MK 似乎是必需的 (39),其在 Δnat 菌株中的水平可能低于此处介绍的实验中的检测水平。我们发现,无论调理作用如何,细胞壁分枝杆菌和相关复合脂质的变化与分枝杆菌对小鼠巨噬细胞细胞内杀伤的敏感性增加有关。结核分枝杆菌的损坏同样会影响骨髓来源的巨噬细胞的存活率(40)。 目前尚不清楚复合脂质含量的减少如何影响观察到的表型,也不确定脂质变化的模式是主要缺陷还是由于干扰正常分枝菌酸合成(例如通过脱落)而产生的次要影响。 NAT 可能在维持乙酰辅酶 A 的稳态中发挥作用,乙酰辅酶A是脂质合成的中心代谢物,因此它的缺乏会影响不同的合成途径。在这种情况下,据观察,催化乙酰辅酶 A 水解的 NAT 截短突变体对大肠杆菌有毒 (41)。删除 nat 基因对牛分枝杆菌 BCG 脂质生物合成的影响并不普遍。尽管分枝菌酸及其甲酯受到很大影响,但脂肪酸仅略有减少。这些数据表明,NAT 可能在酯化前延长脂肪酸链长方面发挥作用。脂肪酰链延伸的生化机制取决于链长度 (11),在这种情况下,在初步实验中,我们发现 NAT 在某些生长条件下与细胞膜部分相关,这一点可能很重要。

INH is a substrate of NAT and hence INH is indisputably a NAT ligand (42). We have obtained a three-dimensional crystallographic structure of NAT with INH bound (unpublished data). The precise target of INH in mycobacteria leading to inhibition of mycolic acid synthesis has been the subject of continued debate (43, 44). Studies that we have performed with pure proteins suggest that KatG and NAT compete for INH, supporting the interpretation that NAT acts to control the amount of active INH available and hence modulates INH sensitivity. The interest in mycolic acids stems from their exclusivity to mycobacteria, making these biosynthetic pathways obvious targets for antimycobacterial drugs. Routes leading to mycolic acid biosynthesis are not fully established (45, 46), although studies with a viable strain of Mycobacterium smegmatis defective in mycolate biosynthesis (5) as well as Mycobacterium aurum treated with INH (47) suggest that mycobacterial cells can survive with severely reduced mycolic acid content of the cell wall. A reduction in mycolates makes these organisms more permeable and is in agreement with the results presented here on increased sensitivity to antibiotics in the Δnat strain of M. bovis BCG Pasteur.
INH 是 NAT 的底物,因此 INH 无疑是 NAT 配体 (42)。我们获得了具有INH结合的NAT的三维晶体结构(未发表的数据)。 INH 在分枝杆菌中的精确靶标导致分枝杆菌酸合成的抑制一直是争论的主题 (43, 44)。我们用纯蛋白质进行的研究表明,KatG 和 NAT 竞争 INH,这支持了这样的解释:NAT 的作用是控制可用的活性 INH 的量,从而调节 INH 敏感性。对分枝杆菌酸的兴趣源于其对分枝杆菌的排他性,使得这些生物合成途径成为抗分枝杆菌药物的明显靶标。导致分枝菌酸生物合成的途径尚未完全确定 (45, 46),尽管对分枝菌酸生物合成缺陷的耻垢分枝杆菌活菌株的研究 (5) 以及用异烟肼处理的金黄色分枝杆菌 (47) 表明,分枝杆菌细胞可以在细胞壁分枝菌酸含量严重降低。霉菌酸盐的减少使得这些生物体更具渗透性,并且与本文中关于牛分枝杆菌 BCG 巴斯德的 Δnat 菌株对抗生素敏感性增加的结果一致。

Although INH is a substrate for M. tuberculosis NAT (14), NAT is unlikely to be an additional target for INH. Nevertheless, a reduction in mycolic acid as well as decreasing the effectiveness of the cell wall as a barrier to protein extrusion (47), mirrors the ultrastructural effects we have observed on deleting the nat gene. These data, together with the increased intracellular killing by macrophages of M. bovis BCG Pasteur Δnat, indicate that specifically targeting the NAT protein may serve both to increase the effectiveness of combination therapy by an order of magnitude and shorten the treatment time for active infection through inhibiting cell wall biosynthesis.
尽管 INH 是结核分枝杆菌 NAT 的底物 (14),但 NAT 不太可能成为 INH 的其他靶标。然而,分枝菌酸的减少以及细胞壁作为蛋白质挤出屏障的有效性的降低(47),反映了我们在删除 nat 基因时观察到的超微结构效应。这些数据,加上牛分枝杆菌 BCG Pasteur Δnat 巨噬细胞增加的细胞内杀伤作用,表明特异性靶向 NAT 蛋白可能既可以将联合治疗的有效性提高一个数量级,又可以通过以下方式缩短活动性感染的治疗时间:抑制细胞壁生物合成。

To target the NAT protein, we have developed a high throughput assay (48) and are using this with combinatorial chemistry and modeling on the NAT 3-D structure (42) to generate compounds to test both on mycobacterial growth in culture and mycobacterial killing in macrophages.
为了靶向 NAT 蛋白,我们开发了一种高通量测定法 (48),并将其与组合化学和 NAT 3-D 结构建模 (42) 结合使用,以生成化合物来测试培养物中分枝杆菌的生长和杀灭分枝杆菌的情况。巨噬细胞。

We thank Mimi Mo and Drs. F. Pompeo, J. Harris, and P. Deepalakshmi for assistance.
我们感谢咪咪莫和博士。 F. Pompeo、J. Harris 和 P. Deepalakshmi 寻求帮助。

S. Bhakta is a Wellcome Travelling Research Fellow and G.S. Besra is a Lister Institute-Jenner Research Fellow. We acknowledge support from the Wellcome Trust and Medical Research Council, Biotechnology and Biological Sciences Research Council, and GlaxoSmithKline for a studentship for A.M. Upton.
S. Bhakta 是 Wellcome 旅行研究员,G.S. Besra 是 Lister Institute-Jenner 研究员。我们感谢威康信托和医学研究委员会、生物技术和生物科学研究委员会以及葛兰素史克公司对 A.M. 学生奖学金的支持。厄普顿。

1
Dye, C., S. Scheele, P. Dolin, V. Pathania, and M.C. Raviglione.
1999
. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project.
JAMA.
282
:
677
–686.

1Dye, C.、S. Scheele、P. Dolin、V. Pathania 和 M.C.拉维廖内。 1999 年。共识声明。全球结核病负担:按国家估计的发病率、患病率和死亡率。世界卫生组织全球监测和监测项目。贾马。 282:677–686。
2
Bloom, B.R., and C.J. Murray.
1992
. Tuberculosis: commentary on a reemergent killer.
Science.
257
:
1055
–1064.

2布鲁姆、B.R. 和 C.J. 默里。 1992. 结核病:对重新出现的杀手的评论。科学。 257:1055–1064。
3
Bass, J.B., Jr., L.S. Farer, P.C. Hopewell, R. O'Brien, R.F. Jacobs, F. Ruben, D.E. Snider, Jr., and G. Thornton.
1994
. Treatment of tuberculosis and tuberculosis infection in adults and children. American Thoracic Society and The Centers for Disease Control and Prevention.
Am. J. Respir. Crit. Care Med.
149
:
1359
–1374.

3巴斯,J.B.,Jr.,L.S.法勒,P.C.霍普韦尔,R.奥布莱恩,R.F.雅各布斯 (Jacobs),F. 鲁本 (Ruben),D.E.斯奈德,Jr.,和 G. 桑顿。 1994.成人和儿童结核病和结核感染的治疗。美国胸科学会和疾病控制与预防中心。是。 J.呼吸。暴击。护理医学。 149:1359–1374。
4
Mitchison, D.A.
1998
. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis.
Int. J. Tuberc. Lung Dis.
2
:
10
–15.

4 米奇森,D.A. 1998. 结核病短期化疗期间依从性差如何导致耐药性的出现。国际。 J.图博克。肺疾病。 2:10-15。
5
Liu, J., and H. Nikaido.
1999
. A mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids accumulates meromycolates.
Proc. Natl. Acad. Sci. USA.
96
:
4011
–4016.

5Liu, J. 和 H. Nikaido。 1999. 分枝杆菌酸生物合成缺陷的突变体会积累分枝菌酸盐。过程。国家。阿卡德。科学。美国。 96:4011–4016。
6
Winder, F.G., and P.B. Collins.
1970
. Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis.
J. Gen. Microbiol.
63
:
41
–48.

6Winder、F.G. 和 P.B.柯林斯. 1970.异烟肼对结核分枝杆菌中分枝菌酸合成的抑制。 J. Gen.微生物学。 63:41-48。
7
Wang, L., and K. Takayama.
1972
. Relationship between the uptake of isoniazid and its action on in vivo mycolic acid synthesis in Mycobacterium tuberculosis.
Antimicrob. Agents Chemother.
2
:
438
–441.

7Wang, L. 和 K. Takayama。 1972.结核分枝杆菌中异烟肼的摄取及其对体内分枝菌酸合成的作用之间的关系。抗菌剂。特工化疗。 2:438-441。
8
Takayama, K., H.K. Schnoes, E.L. Armstrong, and R.W. Boyle.
1975
. Site of inhibitory action of isoniazid in the synthesis of mycolic acids in Mycobacterium tuberculosis.
J. Lipid Res.
16
:
308
–317.

8香港高山市施诺斯,E.L.阿姆斯特朗和 R.W.博伊尔。 1975.异烟肼对结核分枝杆菌分枝杆菌酸合成的抑制作用位点。 J.脂质研究。 16:308-317。
9
Wheeler, P.R., and P.M. Anderson.
1996
. Determination of the primary target for isoniazid in mycobacterial mycolic acid biosynthesis with Mycobacterium aurum A+.
Biochem. J.
318
:
451
–457.

9Wheeler,P.R. 和 P.M.安德森. 1996.用金分枝杆菌A+确定分枝杆菌分枝菌酸生物合成中异烟肼的主要靶标。生物化学。约翰福音 318:451-457。
10
Sacchettini, J.C., and J.S. Blanchard.
1996
. The structure and function of the isoniazid target in M. tuberculosis.
Res. Microbiol.
147
:
36
–43.

10J.C. 萨切蒂尼和 J.S.布兰查德. 1996.结核分枝杆菌中异烟肼靶标的结构和功能。资源。微生物。 147:36-43。
11
Kremer, L., L.G. Dover, H.R. Morbidoni, C. Vilcheze, W.N. Maughan, A. Baulard, S.C. Tu, N. Honore, V. Deretic, J.C. Sacchettini, et al.
2003
. Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria.
J. Biol. Chem.
278
:
20547
–20554.

11Kremer,L.,L.G. Dover、H.R. Morbidoni、C. Vilcheze、W.N. Maughan、A. Baulard、S.C. Tu、N. Honore、V. Deretic、J.C. Sacchettini 等人。 2003. 抑制 InhA 活性(而非 KasA 活性)可诱导分枝杆菌中含有 KasA 的复合物的形成。 J.Biol。化学。 278:20547–20554。
12
Quemard, A., C. Lacave, and G. Laneelle.
1991
. Isoniazid inhibition of mycolic acid synthesis by cell extracts of sensitive and resistant strains of Mycobacterium aurum.
Antimicrob. Agents Chemother.
35
:
1035
–1039.

12Quemard, A.、C. Lacave 和 G. Laneelle。 1991.金分枝杆菌敏感和耐药菌株的细胞提取物异烟肼抑制分枝菌酸合成。抗菌剂。特工化疗。 35:1035–1039。
13
Slayden, R.A., and C.E. Barry III.
2000
. The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis.
Microbes Infect.
2
:
659
–669.

13Slayden,R.A. 和 C.E. Barry III。 2000.结核分枝杆菌异烟肼耐药性的遗传学和生物化学。微生物感染。 2:659–669。
14
Upton, A.M., A. Mushtaq, T.C. Victor, S.L. Sampson, J. Sandy, D.M. Smith, P.V. van Helden, and E. Sim.
2001
. Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism.
Mol. Microbiol.
42
:
309
–317.

14 厄普顿,A.M.,A.穆什塔克,T.C.维克多,S.L.桑普森,J. 桑迪,D.M.史密斯,P.V.范赫尔登和E.西姆。 2001.结核分枝杆菌的芳胺N-乙酰转移酶是一种多态性酶,也是异烟肼代谢的位点。摩尔。微生物。 42:309-317。
15
Payton, M., R. Auty, R. Delgoda, M. Everett, and E. Sim.
1999
. Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance.
J. Bacteriol.
181
:
1343
–1347.

15Payton, M.、R. Auty、R. Delgoda、M. Everett 和 E. Sim。 1999. 耻垢分枝杆菌和结核分枝杆菌芳基胺 N-乙酰转移酶基因的克隆和表征:表达增加导致异烟肼耐药。 J.细菌。 181:1343–1347。
16
Payton, M., A. Mushtaq, T.W. Yu, L.J. Wu, J. Sinclair, and E. Sim.
2001
. Eubacterial arylamine N-acetyltransferases-identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues.
Microbiol.
147
:
1137
–1147.

16佩顿,M.,A.穆什塔克,T.W. Yu、L.J. Wu、J. Sinclair 和 E. Sim。 2001.真细菌芳胺N-乙酰转移酶-具有保守活性位点半胱氨酸、组氨酸和天冬氨酸残基的蛋白质家族18个成员的鉴定和比较。微生物。 147:1137–1147。
17
Sim, E., M. Payton, M. Noble, and R. Minchin.
2000
. An update on genetic, structural and functional studies of arylamine N-acetyltransferases in eucaryotes and procaryotes.
Hum. Mol. Genet.
9
:
2435
–2441.

17Sim、E.、M. Payton、M. Noble 和 R. Minchin。 2000.真核生物和原核生物中芳胺N-乙酰转移酶的遗传、结构和功能研究的最新进展。哼。摩尔。热内特. 9:2435–2441。
18
Price-Evans, D.A., K.A. Manley, and V.A. McKusick.
1960
. Genetic control of isoniazid metabolism in man.
Br. Med. J.
2
:
485
–491.

18普莱斯-埃文斯,D.A.,K.A.曼利和 V.A.麦库斯克。 1960.人类异烟肼代谢的基因控制。 Br。医学。约翰福音 2:485-491。
19
Deguchi, T.
1992
. Physiology and molecular biology of arylamine N-acetyltransferases.
Biomed. Res.
13
:
231
–242.

19Deguchi, T. 1992。芳胺 N-乙酰转移酶的生理学和分子生物学。生物医学。资源。 13:231-242。
20
Bernstein, J., W.A. Lott, B.A. Steinberg, and H.L. Yale.
1952
. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds.
Am. Rev. Tuberc.
65
:
357
–364.

20Bernstein, J.、W.A. Lott, B.A.斯坦伯格和 H.L.耶鲁大学。 1952.实验性结核病的化疗。 V. 异烟酸酰肼(nydrazid)及相关化合物。是。牧师图博克。 65:357–364。
21
Payton, M., C. Gifford, P. Schartau, C. Hagemeier, A. Mushtaq, S. Lucas, K. Pinter, and E. Sim.
2001
. Evidence towards the role of arylamine N-acetyltransferase in Mycobacterium smegmatis and development of a specific antiserum against the homologous enzyme of Mycobacterium tuberculosis.
Microbiol.
147
:
3295
–3302.

21Payton, M.、C. Gifford、P. Schartau、C. Hagemeier、A. Mushtaq、S. Lucas、K. Pinter 和 E. Sim。 2001. 芳基胺 N-乙酰转移酶在耻垢分枝杆菌中作用的证据以及针对结核分枝杆菌同源酶的特异性抗血清的开发。微生物。 147:3295–3302。
22
Cole, S.T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S.V. Gordon, K. Eiglmeier, S. Gas, C.E. Barry III, et al.
1998
. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.
Nature.
393
:
537
–544.

22Cole, S.T.、R. Brosch、J. Parkhill、T. Garnier、C. Churcher、D. Harris、S.V. Gordon、K. Eiglmeier、S. Gas、C.E. Barry III 等人。 1998. 从完整的基因组序列中解读结核分枝杆菌的生物学特性。自然。 393:537–544。
23
Garnier, T., K. Eiglmeier, J.C. Camus, N. Medina, H. Mansoor, M. Pryor, S. Duthoy, S. Grondin, C. Lacroix, C. Monsempe, et al.
2003
. The complete genome sequence of Mycobacterium bovis.
Proc. Natl. Acad. Sci. USA.
100
:
7877
–7882.

23Garnier、T.、K. Eiglmeier、J.C. Camus、N. Medina、H. Mansoor、M. Pryor、S. Duthoy、S. Grondin、C. Lacroix、C. Monsempe 等人。 2003.牛分枝杆菌的完整基因组序列。过程。国家。阿卡德。科学。美国。 100:7877–7882。
24
De Smet, K.A., K.E. Kempsell, A. Gallagher, K. Duncan, and D.B. Young.
1999
. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis.
Microbiol.
145
:
3177
–3184.

24De Smet,K.A.,K.E.肯普塞尔、A. 加拉格尔、K. 邓肯和 D.B.年轻的。 1999.单个氨基酸残基的改变逆转了结核分枝杆菌重组 MurA 的磷霉素抗性。微生物。 145:3177–3184。
25
Parish, T., and N.G. Stoker.
2000
. Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement.
Microbiol.
146
:
1969
–1975.

25Parish、T. 和 N.G.斯托克。 2000.使用灵活盒法通过基因替换产生双未标记结核分枝杆菌tlyA plcABC突变体。微生物。 146:1969–1975。
26
Roberts, G., D.G. Muttucumaru, and T. Parish.
2003
. Control of the acetamidase gene of Mycobacterium smegmatis by multiple regulators.
FEMS Microbiol. Lett.
221
:
131
–136.

26 罗伯茨,G.,D.G.穆图库马鲁和 T.帕里什。 2003.多重调节剂对耻垢分枝杆菌乙酰胺酶基因的控制。 FEMS 微生物。莱特。 221:131-136。
27
Etienne, G., C. Villeneuve, H. Billman-Jacobe, C. Astarie-Dequeker, M.A. Dupont, and M. Daffe.
2002
. The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis.
Microbiol.
148
:
3089
–3100.

27Etienne, G.、C. Villeneuve、H. Billman-Jacobe、C. Astarie-Dequeker、M.A. Dupont 和 M. Daffe。 2002.糖肽脂的缺失对耻垢分枝杆菌的超微结构、细胞表面和细胞壁特性以及吞噬作用的影响。微生物。 148:3089–3100。
28
Klegerman, M.E., P.O. Devadoss, J.L. Garrido, H.R. Reyes, and M.J. Groves.
1996
. Chemical and ultrastructural investigations of Mycobacterium bovis BCG: implications for the molecular structure of the mycobacterial cell envelope.
FEMS Immunol. Med. Microbiol.
15
:
213
–222.

28克莱格曼,M.E.,P.O.德瓦多斯、J.L. 加里多、H.R. 雷耶斯和 M.J. 格罗夫斯。 1996.牛分枝杆菌卡介苗的化学和超微结构研究:对分枝杆菌细胞包膜分子结构的影响。 FEMS 免疫学。医学。微生物。 15:213-222。
29
Besra, G.S.
1998
. Preparation of cell-wall fractions from mycobacteria.
Methods Mol. Biol.
101
:
91
–107.

29Besra, G.S. 1998。从分枝杆菌中制备细胞壁组分。方法分子。生物。 101:91-107。
30
Gordon, S. 1996. The myeloid system. Weir's Handbook of Experimental Immunology Volume IV. L.A. Herzenberg, D.M. Weir, and C. Blackwell, editors. Blackwell Science, Oxford. 153.1–153.9.

30Gordon, S. 1996。骨髓系统。威尔的实验免疫学手册第四卷。 L.A.赫尔岑伯格,D.M. Weir 和 C. Blackwell,编辑。布莱克韦尔科学,牛津。 153.1–153.9。
31
Van Hooijdonk, C.A., C.P. Glade, and P.E. Van Erp.
1994
. TO-PRO-3 iodide: a novel HeNe laser-excitable DNA stain as an alternative for propidium iodide in multiparameter flow cytometry.
Cytometry.
17
:
185
–189.

31Van Hooijdonk,C.A.,C.P.格莱德和体育运动。范·埃尔普. 1994. TO-PRO-3 碘化物:一种新型 HeNe 激光激发 DNA 染色剂,可作为多参数流式细胞术中碘化丙啶的替代品。细胞计数法。 17:185-189。
32
Martinez-Pomares, L., J.A. Mahoney, R. Kaposzta, S.A. Linehan, P.D. Stahl, and S. Gordon.
1998
. A functional soluble form of the murine mannose receptor is produced by macrophages in vitro and is present in mouse serum.
J. Biol. Chem.
273
:
23376
–23380.

32马丁内斯-波马雷斯,L.,J.A. Mahoney, R. Kaposzta, S.A. Linehan, P.D.斯塔尔和S.戈登。 1998. 小鼠甘露糖受体的功能性可溶形式由巨噬细胞在体外产生并存在于小鼠血清中。 J.Biol。化学。 273:23376–23380。
33
Warren, R.M., S.L. Sampson, M. Richardson, G.D. Van Der Spuy, C.J. Lombard, T.C. Victor, and P.D. van Helden.
2000
. Mapping of IS6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity.
Mol. Microbiol.
37
:
1405
–1416.

33 沃伦,R.M.,S.L. Sampson, M. Richardson, G.D. Van Der Spuy, C.J. Lombard, T.C.维克多和 P.D.范赫尔登. 2000. 结核分枝杆菌临床分离株中 IS6110 侧翼区域的定位证明了基因组可塑性。摩尔。微生物。 37:1405–1416。
34
Cox, J.S., B. Chen, M. McNeil, and W.R. Jacobs, Jr.
1999
. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice.
Nature.
402
:
79
–83.

34Cox, J.S.、B. Chen、M. McNeil 和 W.R. Jacobs, Jr. 1999。复合脂质决定小鼠结核分枝杆菌的组织特异性复制。自然。 402:79-83。
35
Moody, D.B., B.B. Reinhold, M.R. Guy, E.M. Beckman, D.E. Frederique, S.T. Furlong, S. Ye, V.N. Reinhold, P.A. Sieling, R.L. Modlin, et al.
1997
. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells.
Science.
278
:
283
–286.

35Moody, D.B.、B.B. Reinhold、M.R. Guy、E.M. Beckman, D.E.弗雷德里克,S.T.弗隆,S. Ye,V.N.莱因霍尔德,P.A.西林 (R.L. Modlin) 等人。 1997. CD1b 限制性 T 细胞识别糖脂抗原的结构要求。科学。 278:283-286。
36
Ryll, R., Y. Kumazawa, and I. Yano.
2001
. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids–a review.
Microbiol. Immunol.
45
:
801
–811.

36Ryll, R.、Y. Kumazawa 和 I. Yano。 2001.海藻糖二霉菌酸酯(索状因子)和其他含霉菌酸糖脂的免疫学特性——综述。微生物。免疫学。 45:801-811。
37
Nuzzo, I., M. Galdiero, C. Bentivoglio, R. Galdiero, and C. Romano Carratelli.
2002
. Apoptosis modulation by mycolic acid, tuberculostearic acid and trehalose 6,6′-dimycolate.
J. Infect.
44
:
229
–235.

37Nuzzo, I.、M. Galdiero、C. Bentivoglio、R. Galdiero 和 C. Romano Carratelli。 2002.分枝菌酸、结核硬脂酸和海藻糖 6,6'-二霉菌酸酯调节细胞凋亡。 J.感染。 44:229-235。
38
Kana, B.D., E.A. Weinstein, D. Avarbock, S.S. Dawes, H. Rubin, and V. Mizrahi.
2001
. Characterization of the cydAB-encoded cytochrome bd oxidase from Mycobacterium smegmatis.
J. Bacteriol.
183
:
7076
–7086.

38Kana,B.D.,E.A.韦恩斯坦、D. 阿瓦博克、S.S. 道斯、H. 鲁宾和 V. 米兹拉希。 2001. 来自耻垢分枝杆菌的 cydAB 编码的细胞色素 bd 氧化酶的表征。 J.细菌。 183:7076–7086。
39
Truglio, J.J., K. Theis, Y. Feng, R. Gajda, C. Machutta, P.J. Tonge, and C. Kisker.
2003
. Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis.
J. Biol. Chem.
278
:
42352
–42360.

39Truglio、J.J.、K. Theis、Y. Feng、R. Gajda、C. Machutta、P.J. Tonge 和 C. Kisker。 2003. 结核分枝杆菌 MenB 的晶体结构,维生素 K2 生物合成中的关键酶。 J.Biol。化学。 278:42352–42360。
40
Indrigo, J., R.L. Hunter, Jr., and J.K. Actor.
2002
. Influence of trehalose 6,6′-dimycolate (TDM) during mycobacterial infection of bone marrow macrophages.
Microbiol.
148
:
1991
–1998.

40Indrigo, J.、R.L. Hunter, Jr. 和 J.K.演员。 2002.海藻糖6,6'-二霉菌酸酯(TDM)对骨髓巨噬细胞分枝杆菌感染的影响。微生物。 148:1991–1998。
41
Mushtaq, A., M. Payton, and E. Sim.
2002
. The COOH terminus of arylamine N-acetyltransferase from Salmonella typhimurium controls enzymic activity.
J. Biol. Chem.
277
:
12175
–12181.

41Mushtaq, A.、M. Payton 和 E. Sim。 2002.来自鼠伤寒沙门氏菌的芳胺N-乙酰转移酶的COOH末端控制酶活性。 J.Biol。化学。 277:12175–12181。
42
Sandy, J., A. Mushtaq, A. Kawamura, J. Sinclair, E. Sim, and M. Noble.
2002
. The structure of arylamine N-acetyltransferase from Mycobacterium smegmatis–an enzyme which inactivates the anti-tubercular drug, isoniazid.
J. Mol. Biol.
318
:
1071
–1083.

42Sandy, J.、A. Mushtaq、A. Kawamura、J. Sinclair、E. Sim 和 M. Noble。 2002. 来自耻垢分枝杆菌的芳胺 N-乙酰转移酶的结构——一种使抗结核药物异烟肼失活的酶。 J.莫尔。生物。 318:1071–1083。
43
Slayden, R.A., R.E. Lee, and C.E. Barry III.
2000
. Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis.
Mol. Microbiol.
38
:
514
–525.

43斯莱登,R.A.,R.E.李和 C.E. 巴里三世。 2000. 异烟肼影响结核分枝杆菌 II 型脂肪酸合酶系统的多个成分。摩尔。微生物。 38:514-525。
44
Larsen, M.H., C. Vilcheze, L. Kremer, G.S. Besra, L. Parsons, M. Salfinger, L. Heifets, M.H. Hazbon, D. Alland, J.C. Sacchettini, et al.
2002
. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis.
Mol. Microbiol.
46
:
453
–466.

44Larsen、M.H.、C. Vilcheze、L. Kremer、G.S. Besra、L. Parsons、M. Salfinger、L. Heifets、M.H. Hazbon、D. Alland、J.C. Sacchettini 等人。 2002. inhA 的过表达(而非 kasA)赋予耻垢分枝杆菌、牛分枝杆菌 BCG 和结核分枝杆菌对异烟肼和乙硫异烟胺的抗性。摩尔。微生物。 46:453–466。
45
Asselineau, C., J. Asselineau, G. Laneelle, and M.A. Laneelle.
2002
. The biosynthesis of mycolic acids by Mycobacteria: current and alternative hypotheses.
Prog. Lipid Res.
41
:
501
–523.

45Asselineau, C.、J. Asselineau、G. Laneelle 和 M.A. Laneelle。 2002.分枝杆菌生物合成分枝菌酸:当前和替代假设。程序。脂质研究。 41:501-523。
46
Barry, C.E., III, R.E. Lee, K. Mdluli, A.E. Sampson, B.G. Schroeder, R.A. Slayden, and Y. Yuan.
1998
. Mycolic acids: structure, biosynthesis and physiological functions.
Prog. Lipid Res.
37
:
143
–179.

46 巴里,C.E.,III,R.E. Lee, K. Mdluli, A.E. 桑普森,B.G.施罗德,R.A.斯莱登和 Y. Yuan。 1998.分枝菌酸:结构、生物合成和生理功能。程序。脂质研究。 37:143-179。
47
Bardou, F., A. Quemard, M.A. Dupont, C. Horn, G. Marchal, and M. Daffe.
1996
. Effects of isoniazid on ultrastructure of Mycobacterium aurum and Mycobacterium tuberculosis and on production of secreted proteins.
Antimicrob. Agents Chemother.
40
:
2459
–2467.

47Bardou, F.、A. Quemard、M.A. Dupont、C. Horn、G. Marchal 和 M. Daffe。 1996.异烟肼对金黄色分枝杆菌和结核分枝杆菌超微结构以及分泌蛋白产生的影响。抗菌剂。特工化疗。 40:2459–2467。
48
Brooke, E.W., S.G. Davies, A.W. Mulvaney, F. Pompeo, E. Sim, and R.J. Vickers.
2003
. An approach to identifying novel substrates of bacterial arylamine N-acetyltransferases.
Bioorg. Med. Chem.
11
:
1227
–1234.

48布鲁克,E.W.,S.G.戴维斯,A.W. Mulvaney、F. Pompeo、E. Sim 和 R.J.维克斯。 2003.一种鉴定细菌芳胺N-乙酰转移酶新底物的方法。生物组织。医学。化学。 11:1227–1234。

A. Upton's present address is The Rockefeller University, 1230 York Avenue, New York, NY 10021.
A.厄普顿目前的地址是洛克菲勒大学,1230 York Avenue, New York, NY 10021。

Abbreviations used in this paper: ADC, albumin-dextrose-catalase; CF, cord factor; GMM, glucose monomycolate; INH, isoniazid; MK, menaquinone; NAT, arylamine N-acetyltransferase; OADC, oleic acid–ADC; ORF, open reading frame; PDIM, phthiocerol dimycocerosate; SEM, scanning electron microscopy; TEM, transmission electron microscopy; TLC, thin layer chromatography.
本文使用的缩写:ADC,白蛋白-葡萄糖-过氧化氢酶; CF,帘线系数; GMM,葡萄糖单霉菌酸盐; INH,异烟肼; MK、甲萘醌; NAT,芳胺N-乙酰转移酶; OADC,油酸-ADC; ORF,开放阅读框; PDIM, phthiocerol dimycocerosate; SEM,扫描电子显微镜; TEM,透射电子显微镜; TLC,薄层色谱法。