作为一个图书馆,NLM 提供对科学文献的访问。被纳入 NLM 数据库并不意味着 NLM 或国家卫生研究院对内容的认可或同意。
Learn more: PMC Disclaimer | PMC Copyright Notice
了解更多:PMC 免责声明 | PMC 版权声明
Mapping neural circuit biotypes to symptoms and behavioral dimensions of depression and anxiety
将神经回路生物型映射到抑郁和焦虑的症状及行为维度
安德烈亚·N·戈德斯坦-皮卡斯基,†,1,2 塔莉·M·巴尔,†,1 佐伊·萨马拉,‡,1 布鲁克·R·斯塔维兰德,‡,1 阿里埃尔·S·凯勒,‡,1,4 斯科特·L·弗莱明,‡,1,3 凯瑟琳·A·格里赞齐奥,‡,1 贝利·霍尔特-戈塞林,1,‡ 帕特里克·斯特茨,1,2,‡ 马军,5,6,‡ 和利安娜·M·威廉姆斯*,1,2
Andrea N Goldstein-Piekarski
1Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
2Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
Tali M Ball
1Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
Zoe Samara
1Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
Brooke R Staveland
1Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
Arielle S. Keller
1Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
4Graduate Program in Neurosciences, Stanford University, Stanford, CA, USA
Scott L Fleming
1Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
3Biomedical Informatics, Stanford University, Stanford, CA, USA
Katherine A Grisanzio
1Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
Bailey Holt-Gosselin
1Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
Patrick Stetz
1Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
2Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
Jun Ma
5Department of Medicine, University of Illinois at Chicago
6Institute for Health Research and Policy, University of Illinois at Chicago
Leanne M Williams
1Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
2Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
ARTICLE INFORMATION
LMW designed the study, imaging and conceptualized the image processing system and theoretically motivated analytic approach. ANG-P, TMB, ZS, and LMW implemented the theoretically motivated analytic approach. ANG-P, BRS, and PS with LMW implemented the image processing system. KAG and LMW implemented the phenotype battery and construct analyses for the primary sample. KAG and BHG collected data for the primary and generalizability samples. LMW designed and oversaw the antidepressant treatment study design, JM and LMW designed and oversaw the behavioral intervention treatment study design, and BRS and ASK implemented the treatment analyses and illustration. ANG-P, TMB, ZS, BRS, KAG, SLF, and LMW analyzed data. ANG-P, TMB, ZS, ASK, and LMW wrote the paper. KAG, SLF, BRS, BHG, PS, and JM critically reviewed the paper.该文章的出版商最终编辑版本可在生物精神病学免费获取
Associated Data 相关数据
- Supplementary Materials 补充材料
- GUID: 46687ACE-7812-4BE2-AB1A-70F529225E3F
Abstract 摘要
Background: 背景:
Despite tremendous advances in characterizing human neural circuits that govern emotional and cognitive functions impaired in depression and anxiety, we lack a circuit-based taxonomy for depression and anxiety that captures transdiagnostic heterogeneity and informs clinical decision-making.
尽管在表征调节抑郁和焦虑中受损的情感和认知功能的人类神经回路方面取得了巨大的进展,但我们缺乏一种基于回路的抑郁和焦虑分类法,无法捕捉跨诊断的异质性并为临床决策提供信息。
Methods: 方法:
We developed and tested a novel system for quantifying six brain circuits reproducibly and at the individual patient level. We implemented standardized circuit definitions relative to a healthy reference sample, and algorithms to generate circuit clinical scores for the overall circuit and its constituent regions.
我们开发并测试了一种新系统,以可重复的方式在个体患者水平上量化六个脑回路。我们实施了相对于健康参考样本的标准化回路定义,以及生成整体回路及其组成区域的临床评分的算法。
Results: 结果:
In new data from primary and generalizability samples of depression and anxiety (n=250), we demonstrate that overall disconnections within task-free salience and default mode circuits map onto symptoms of anxious avoidance, loss of pleasure, threat dysregulation, and negative emotional biases – core characteristics that transcend diagnoses – and poorer daily function. Regional dysfunctions within task-evoked cognitive control and affective circuits may implicate symptoms of cognitive and valence-congruent emotional functions. Circuit dysfunction scores also distinguish response to antidepressant and behavioral intervention treatments in an independent sample (n=205).
在来自抑郁和焦虑的主要和可推广样本的新数据中(n=250),我们展示了任务无关的显著性和默认模式回路中的整体断连与焦虑回避、快乐丧失、威胁失调和负面情绪偏见的症状相关——这些是超越诊断的核心特征——以及较差的日常功能。任务诱发的认知控制和情感回路中的区域功能障碍可能与认知和情感一致的情绪功能的症状相关。回路功能障碍评分还区分了对抗抑郁药和行为干预治疗的反应,在一个独立样本中(n=205)。
Conclusions: 结论:
Our findings articulate circuit dimensions that relate to trans-diagnostic symptoms across mood and anxiety disorders. Our novel system offers a foundation for deploying standardized circuit assessments across research groups, trials, and clinics to advance more precise classifications and treatment targets for psychiatry.
我们的研究结果阐明了与情绪和焦虑障碍相关的跨诊断症状的回路维度。我们的新系统为在研究小组、试验和诊所中部署标准化的回路评估提供了基础,以推动精神病学更精确的分类和治疗目标。
关键词:功能性脑回路成像,生物类型,临床转化,精准心理健康,抑郁,焦虑
INTRODUCTION 引言
Advances in non-invasive functional brain imaging suggest that distinct types of brain circuit dysfunctions may underlie the clinical expression of depression and anxiety disorders. Yet, we lack a method for quantifying clinical brain circuit metrics in a subject-level manner to facilitate actionable decisions. To make progress toward this goal, we leveraged multiple samples of depression and anxiety to develop and test a subject-level image system suitable for clinical applications.
非侵入性功能性脑成像的进展表明,不同类型的脑回路功能障碍可能是抑郁症和焦虑症临床表现的基础。然而,我们缺乏一种方法来以个体水平量化临床脑回路指标,以促进可行的决策。为了朝着这个目标取得进展,我们利用多种抑郁症和焦虑症样本开发并测试了一种适合临床应用的个体水平影像系统。
Our approach was informed by a prior theoretical synthesis of functional brain imaging studies that implicate dysfunction across six large-scale circuits in the clinical features of depression and anxiety and in their treatment (1, 2) (Figure 1). These prior studies have typically focused on case-control designs to understand group average dysfunctions which, arguably, might conflate multiple underlying profiles of subject-level dysfunction. In the prior synthesis we sought to parse types of circuit dysfunction that might contribute to specific clinical features and treatment outcomes. In the task-free state, intrinsic hyper-connectivity of the default mode circuit implicates rumination, while hypo-connectivity may reflect different symptoms and poorer antidepressant outcomes (1, 2). Hypo-connectivity of insula and amygdala within the salience circuit is observed across mood and anxiety disorders, particularly implicating social anxiety, and anxious avoidance (1, 2). When evoked by tasks using threat stimuli, heightened amygdala activation and reduced amygdala-prefrontal connectivity has been observed across disorders, suggesting a common underlying threat-related circuit disruption (1, 2). Within the positive affective circuit, striatal hypo-activation is implicated in reward-related behaviors characteristic of anhedonia (1, 2). Frontoparietal attention circuit hypo-connectivity implicates poor attention symptoms in both depression and anxiety. Under task conditions, frontal hypo-activation within the cognitive control circuit is indicative of more task-specific cognitive symptoms (1, 2).
我们的方法受到先前功能性脑成像研究的理论综合的启发,这些研究涉及抑郁和焦虑的临床特征及其治疗中六个大规模回路的功能障碍(1,2)(图 1)。这些先前的研究通常集中于病例对照设计,以理解组平均功能障碍,这可能会混淆多个潜在的个体功能障碍特征。在先前的综合中,我们试图解析可能导致特定临床特征和治疗结果的回路功能障碍类型。在无任务状态下,默认模式回路的内在超连接性与反刍思维相关,而低连接性可能反映不同的症状和较差的抗抑郁药物结果(1,2)。在显著性回路中,岛叶和杏仁核的低连接性在情绪和焦虑障碍中被观察到,特别涉及社交焦虑和焦虑回避(1,2)。 当使用威胁刺激的任务被引发时,观察到杏仁核激活增强和杏仁核-前额叶连接减少,这在各种障碍中都有出现,提示存在共同的潜在威胁相关回路破坏(1,2)。在积极情感回路中,纹状体低激活与特征性无快感的奖励相关行为有关(1,2)。前顶叶注意回路低连接性与抑郁和焦虑中的注意力差症状有关。在任务条件下,认知控制回路中的前额低激活表明更多特定于任务的认知症状(1,2)。
Informed by our theoretical synthesis (2), we tested the working hypotheses that specific types of circuit clinical function show a one-to-one association with specific clinical phenotypes (Figure 1). To test these hypotheses, we developed standardized definitions of activation and connectivity for six circuits of interest and a new method for quantifying circuit clinical scores for each circuit for each subject, expressed in standard deviation units from a healthy reference sample. We leveraged multiple samples, spanning healthy subjects, untreated clinical subjects and subjects tested in both pharmacological and behavioral intervention trials, each assessed with common circuit and clinical data elements. These multiple samples afforded us the opportunity to address challenges inherent in developing a subject-level imaging system, including the lack of well-powered samples for which data can be pooled and used to test generalizability. Circuit clinical scores were tested for hypothesized associations with symptom and behavioral phenotypes in untreated samples. Circuit associations with daily function were also explored, relevant to the disabling effects of depression and anxiety (3). To further test the clinical relevance of our system, we evaluated whether circuit clinical scores distinguish intervention response outcomes.
根据我们的理论综合(2),我们测试了特定类型的回路临床功能与特定临床表型之间存在一对一关联的工作假设(图 1)。为了测试这些假设,我们为六个感兴趣的回路开发了激活和连接性的标准化定义,并为每个受试者的每个回路量化回路临床评分的新方法,该评分以健康参考样本的标准差单位表示。我们利用多个样本,包括健康受试者、未治疗的临床受试者以及在药物和行为干预试验中测试的受试者,每个受试者都评估了共同的回路和临床数据元素。这些多个样本使我们能够解决开发受试者级成像系统固有的挑战,包括缺乏可以汇总并用于测试普遍性的强大样本。回路临床评分在未治疗样本中被测试与症状和行为表型的假设关联。 与日常功能相关的回路关联也进行了探讨,这与抑郁和焦虑的致残效应有关(3)。为了进一步测试我们系统的临床相关性,我们评估了回路临床评分是否能区分干预反应结果。
METHODS 方法
Samples 样本
The study comprised four samples assessed with common measures (Tables S1, S2; Methods S2):
该研究包括四个样本,使用常见测量进行评估(表 S1,S2;方法 S2):
- Healthy reference sample of 95 adults recruited at the same two sites as clinical subjects.
健康参考样本由 95 名成年人组成,招募于与临床受试者相同的两个地点。 - Primary clinical sample of 160 adults with symptoms of depression and anxiety, randomly stratified into subsamples A (70%; n=112) and B (30%; n=48) powered to detect circuit-phenotype associations of small-to-medium size at alpha = 0.05, and control for over-estimated effect sizes (4).
主要临床样本为 160 名有抑郁和焦虑症状的成年人,随机分层为子样本 A(70%;n=112)和 B(30%;n=48),具备检测小到中等效应大小的回路-表型关联的能力,显著性水平为α = 0.05,并控制过高估计的效应大小(4)。 - Generalizability sample of 90 adults with clinical characteristics like the primary sample, yet independently recruited.
一般化样本由 90 名具有与主要样本相似的临床特征的成年人组成,但独立招募。 - Treatment sample of 205 adults, enrolled in randomized controlled trials of antidepressant pharmacotherapy for major depressive disorder (n=137) (5, 6) or behavioral intervention for clinically significant depressive symptoms and obesity (n=68) (7), in which treatment response was defined as ≥50% reduction in symptom severity.
205 名成年人治疗样本,参与了针对重度抑郁症的抗抑郁药物治疗的随机对照试验(n=137)(5, 6)或针对临床显著抑郁症状和肥胖的行为干预(n=68)(7),其中治疗反应定义为症状严重程度减少≥50%。
Subjects provided written informed consent. Procedures were approved by the Stanford University Institutional Review Board (IRB 27937 and 41837) or Western Sydney Area Health Service Human Research Ethics Committee.
受试者提供了书面知情同意。程序已获得斯坦福大学机构审查委员会(IRB 27937 和 41837)或西悉尼地区健康服务人类研究伦理委员会的批准。
Derivation of Circuits 回路的推导
A consensus definition was generated for circuits of interest using the meta-analytic database Neurosynth.org (8) with search terms “Default Mode, Salience, Attention, Threat, Reward, and Cognitive Control”, and uniformity maps with a false discovery rate (FDR) threshold of .01 (Figure 2A; Methods S3, S4a).
使用元分析数据库 Neurosynth.org(8)生成了感兴趣回路的共识定义,搜索词为“默认模式、显著性、注意力、威胁、奖励和认知控制”,并使用假发现率(FDR)阈值为 0.01 的均匀性图(图 2A;方法 S3,S4a)。
Resulting region pairs were quantified for intrinsic functional connectivity after regressing out task effects (9). Task-evoked activation was quantified for regions of interest, and functional connectivity using psychophysiological interactions between these regions, for the contrasts of sad versus neutral and threat versus neutral faces for negative affect circuita, happy versus neutral faces for positive affect circuit, and NoGo versus Go trials for cognitive control circuit (Methods S4c) (Figure 2B).
结果区域对在去除任务效应后被量化为内在功能连接(9)。任务诱发的激活被量化为感兴趣区域的激活,并使用这些区域之间的心理生理交互来量化功能连接,针对负面情感回路的悲伤与中性面孔对比、威胁与中性面孔对比,积极情感回路的快乐与中性面孔对比,以及认知控制回路的 NoGo 与 Go 试验对比(方法 S4c)(图 2B)。
These regional quantifications were evaluated against quality control and psychometric criteria (Figure 2C). We excluded regions with gray matter overlap of <50%, temporal signal-to-noise ratios (tSNRs) below standard deviation criteria (Methods S4) and regions of intrinsic connectivity with inadequate internal consistency (Figure 2D; Methods S4). The refined set of regions (Figure 2E) were assigned standard anatomical definitions (Tables S3A, B).
这些区域量化结果经过质量控制和心理测量标准的评估(图 2C)。我们排除了灰质重叠小于 50%的区域、时间信噪比(tSNR)低于标准差标准的区域(方法 S4)以及内部一致性不足的内在连接区域(图 2D;方法 S4)。经过精炼的区域集(图 2E)被赋予标准解剖定义(表 S3A,B)。
Derivation of Circuit Clinical Scores
回路临床评分的推导
Subject-level circuit clinical scores were computed for the subset of regions that met quality and psychometric criteria and that are also implicated in our theoretical synthesis of dysfunctions in depression and anxiety (2) (Figure 2F; S4A). In these circuit clinical scores, activation and connectivity were expressed in standard deviation units relative to the healthy reference sample and reference mean of zero (Figure 3, row 2; Methods S5B). Global circuit clinical scores were computed for each subject by averaging component regional scores once the direction of functional connectivity component scores were oriented reflect the hypothesized direction of dysfunction (Figure 3; row 3). Components were weighted evenly given evidence for the reliability of circuit averages (10) and lack of evidence for differential contributions. Internal consistency for global and regional circuit clinical scores was adequate (Figure S5) and global scores were mutually independent, supporting their validity as canonical circuit constructs (Figure S6).
受试者级别的回路临床评分是针对满足质量和心理测量标准的区域子集计算的,这些区域也与我们对抑郁和焦虑功能障碍的理论综合有关(2)(图 2F;S4A)。在这些回路临床评分中,激活和连接性以相对于健康参考样本和参考均值为零的标准差单位表示(图 3,第 2 行;方法 S5B)。全脑回路临床评分是通过在功能连接性成分评分的方向调整为假设的功能障碍方向后,对每个受试者的成分区域评分进行平均计算的(图 3;第 3 行)。鉴于回路平均值的可靠性证据(10)和缺乏差异贡献的证据,各成分的权重是均匀的。全脑和区域回路临床评分的内部一致性是足够的(图 S5),全脑评分是相互独立的,支持其作为典型回路构造的有效性(图 S6)。
Content and Construct Validation of Clinical Phenotypes
临床表型的内容和构建验证
Symptom Phenotypes
To operationalize symptom phenotypes, we followed a content validation procedure (11). Items from scales with broad symptom coverage (Methods S6A; Table S6) were assigned to clinical phenotypes implicated in our theoretical taxonomy (2) and refined by principal component analysis (PCA), yielding six phenotypes labeled ‘rumination’, ‘anxious avoidance’, ‘threat dysfunction’, ‘anhedonia’, ‘negative bias’, and ‘inattention-cognitive dyscontrol’ (Methods S6B; Table S7). Phenotypes were quantified as the average of standardized scores for each subject (Methods S6C).
症状表型 为了操作化症状表型,我们遵循了内容验证程序(11)。来自具有广泛症状覆盖的量表的项目(方法 S6A;表 S6)被分配到我们理论分类法中涉及的临床表型(2),并通过主成分分析(PCA)进行了细化,得出了六个表型,分别标记为“反刍”、“焦虑回避”、“威胁功能障碍”、“快感缺失”、“负面偏见”和“注意力-认知失控”(方法 S6B;表 S7)。表型被量化为每个受试者标准化分数的平均值(方法 S6C)。
Behavioral Phenotypes
An equivalent content validation procedure was used to operationalize behavioral phenotypes based on tests assessing general and emotional cognition (Methods S7A) (12). For general cognition, five constructs aligned with a prior PCA conducted during test development (12) - sustained attention (N-Back Continuous Performance Test), response inhibition (Go-NoGo), information processing speed (Stroop and Trails-B), executive function (Maze) and working memory (Digit Span) - and a sixth included an interference measure unavailable during test development (Methods S7B; Table S8). For emotional cognition, eight constructs aligned with a prior PCA (12, 13): speed for explicit identification of sad, threat, disgust, and happy expressions; and implicit priming of face recognition biased by these expressions (Methods S7B; Table S9). Phenotypes were computed as the averaged standardized test score for each subject (Methods S7C).
行为表型 使用等效内容验证程序来操作化基于评估一般和情感认知的测试的行为表型(方法 S7A)(12)。对于一般认知,五个构念与测试开发期间进行的先前 PCA 对齐(12) - 持续注意力(N-Back 连续表现测试)、反应抑制(Go-NoGo)、信息处理速度(Stroop 和 Trails-B)、执行功能(迷宫)和工作记忆(数字跨度) - 第六个包括在测试开发期间不可用的干扰测量(方法 S7B;表 S8)。对于情感认知,八个构念与先前的 PCA 对齐(12,13):明确识别悲伤、威胁、厌恶和快乐表情的速度;以及这些表情偏向的面部识别的隐性启动(方法 S7B;表 S9)。表型计算为每个受试者的平均标准化测试分数(方法 S7C)。
Daily Function
Daily function was assessed by the Satisfaction With Life Scale (14) and Social and Occupational Functioning Assessment Scale (15) (Methods S8, Table S10).
日常功能通过生活满意度量表(14)和社会及职业功能评估量表(15)进行评估(方法 S8,表 S10)。
Circuit Clinical Scores and Phenotypes
回路临床评分和表型
Hypothesized one-to-one mapping between circuit clinical scores and phenotypes (Figure 1) was tested using regression models with age, sex, and number of censored fMRI volumes included as covariates. Results were evaluated for statistical significance and for clinical meaningfulness, according to effect size and generalizability of effects within confidence limits. We used the Benjamini-Hochberg procedure to control the false discovery rate (16) for each family of global and regional circuit scores (Results S1). FDR-adjusted p-values and m-values for each result in Table 1 are presented in Table S11. Effect sizes were expressed as standardized beta coefficient values, indicating the magnitude of change in phenotype associated with one standard deviation change in the circuit predictor. Following the principle that these effect sizes can be interpreted similarly to correlations (17), <0.2 was considered a weak effect, ≥0.2 and ≤0.5 a moderate effect, and >0.5 a strong effect.
假设的回路临床评分与表型之间的一对一映射(图 1)使用回归模型进行测试,年龄、性别和被审查的 fMRI 体积数量作为协变量。根据效应大小和在置信区间内的效应的普遍性,评估结果的统计显著性和临床意义。我们使用 Benjamini-Hochberg 程序控制每个全脑和区域回路评分家族的假发现率(16)(结果 S1)。表 1 中每个结果的 FDR 调整 p 值和 m 值在表 S11 中呈现。效应大小以标准化的 beta 系数值表示,指示与回路预测变量的一个标准差变化相关的表型变化的大小。遵循这些效应大小可以类似于相关性的原则(17),<0.2 被视为弱效应,≥0.2 且≤0.5 为中等效应,>0.5 为强效应。
Table 1. 表 1。
1. Results of models testing hypothesized predictions at the Global Circuit level 1. 在全脑回路层面测试假设预测的模型结果 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Primary 主要 Sample A 样本 A | Primary 主要 Sample B 样本 B | Generalizability Sample | ||||||||
Global Circuit Clinical Score Predictor 全脑回路临床评分预测器 | Dependent Variable 因变量 | Domain 领域 | β (ES) | 95% CI 95% 置信区间 | t | p | β (ES) | Within CI 在 CI 内 | β (ES) | Within CI |
Salience 显著性 | Anxious Avoidance 焦虑回避 | Symptoms 症状 | −0.26 | [0.09, 0.44] | −2.98 | 0.008a | 0.15 | yes 是 | 0.11 | yes |
2. Results of models testing non-hypothesized predictions at the Global Circuit level 2. 在全脑回路层面测试非假设预测的模型结果 | ||||||||||
Primary 主要 Sample A 样本 A | Primary 主要 Sample B 样本 B | Generalizability Sample | ||||||||
Global Circuit Clinical Score Predictor 全脑回路临床评分预测器 | Dependent Variable 因变量 | Domain 领域 | β (ES) | 95% CI 95% 置信区间 | t | p | β (ES) | Within CI 在 CI 内 | β (ES) | Within CI |
Default Mode 默认模式 | Negative Bias 负偏见 | Symptoms 症状 | −0.25 | [−0.40, −0.07] | −2.59 | 0.009a | 0.14 | −0.05 | ||
Default Mode 默认模式 | Anhedonia 快感缺失 | Symptoms 症状 | −0.24 | [−0.40, −0.06] | −2.50 | 0.010a | 0.05 | −0.09 | yes | |
Salience 显著性 | Inattention/Cognitive Dyscontrol 注意力缺陷/认知失调 | Symptoms 症状 | −0.19 | [0.01, 0.35] | −2.03 | 0.031a | 0.15 | yes 是 | 0.17 | yes |
Salience 显著性 | Negative Bias 负偏见 | Symptoms 症状 | −0.26 | [0.07, 0.45] | −2.78 | 0.008a | 0.16 | yes 是 | 0.17 | yes |
Salience 显著性 | Threat Dysregulation 威胁失调 | Symptoms 症状 | −0.23 | [0.06, 0.39] | −2.43 | 0.011a | 0.16 | yes 是 | 0.05 | |
Salience 显著性 | Anhedonia 快感缺失 | Symptoms 症状 | −0.27 | [0.06, 0.47] | −2.87 | 0.006a | 0.10 | yes 是 | 0.09 | yes |
Salience 显著性 | Satisfaction with life 生活满意度 | Function 功能 | −0.24 | [−0.42, −0.06] | −2.58 | 0.009a | −0.09 | yes 是 | −0.05 | |
3. Results of models testing hypothesized predictions at the Regional Circuit level 3. 区域回路层面假设预测模型测试结果 | ||||||||||
Primary 主要 Sample A 样本 A | Primary 主要 Sample B 样本 B | Generalizability Sample | ||||||||
Regional Circuit Predictor 区域回路预测器 | Dependent Variable 因变量 | Domain 领域 | β (ES) | 95% CI 95% 置信区间 | t | p | β (ES) | Within CI 在 CI 内 | β (ES) | Within CI |
Default Mode: L AG-amPFC connectivity 默认模式:L AG-amPFC 连接性 | Rumination 反刍 | Symptoms 症状 | −0.21 | [−0.38, −0.01] | −2.39 | 0.029 | −0.07 | yes 是 | 0.04 | |
Salience: L AI –L Amy connectivity 显著性:左侧前扣带皮层-左侧杏仁体连接性 | Anxious Avoidance 焦虑回避 | Symptoms 症状 | −0.26 | [−0.42, −0.11] | −2.96 | 0.006a | −0.23 | yes 是 | −0.17 | yes |
Negative Affect (Sad): L AI activation 负面情感(悲伤):L AI 激活 | Negative Bias 负偏见 | Symptoms 症状 | −0.20 | [−0.37, −0.01] | −2.15 | 0.027 | −0.17 | yes 是 | −0.06 | yes |
Negative Affect (Sad): R AI activation 负面情绪(悲伤):R AI 激活 | Negative Bias 负偏见 | Symptoms 症状 | −0.21 | [−0.38, −0.01] | −2.15 | 0.029 | −0.23 | yes 是 | −0.14 | yes |
Negative Affect (C-Threat): R Amy activation 负面情绪(C-威胁):右侧杏仁体激活 | Threat Speed 威胁速度 | Behavior 行为 | −0.19 | [−0.34, −0.04] | −2.15 | 0.047 | −0.18 | yes 是 | −0.04 | |
Positive Affect (Happy): R VS activation 积极情感(快乐):R VS 激活 | Happy Speed 快乐速度 | Behavior 行为 | −0.20 | [−0.34, −0.06] | −2.28 | 0.045 | −0.06 | yes 是 | −0.05 | |
Cognitive Control: ACC activation 认知控制:前扣带皮层激活 | Inattention/Cognitive Dyscontrol 注意力缺陷/认知失调 | Symptoms 症状 | −0.26 | [−0.41, −0.06] | −2.69 | 0.013 | 0.08 | −0.16 | yes | |
4. Results of models testing non-hypothesized predictions at the Regional Circuit level 4. 区域回路层面模型测试非假设预测的结果 | ||||||||||
Primary 主要 Sample A 样本 A | Primary 主要 Sample B 样本 B | Generalizability Sample | ||||||||
Regional Circuit Predictor 区域回路预测器 | Dependent Variable 因变量 | Domain 领域 | β (ES) | 95% CI 95% 置信区间 | t | p | β (ES) | Within CI 在 CI 内 | β (ES) | Within CI |
Default Mode: R AG- amPFC connectivity 默认模式:右侧前额叶皮层连接性 | Negativity Bias 消极偏见 | Symptoms 症状 | −0.19 | [−0.37, −0.02] | −2.01 | 0.049 | 0.04 | 0.00 | ||
Salience: L AI–R AI connectivity 显著性:L AI–R AI 连接性 | Negativity Bias 消极偏见 | Symptoms 症状 | −0.30 | [−0.50, −0.10] | −3.28 | 0.002a | 0.07 | −0.29 | yes | |
Salience: L AI–R AI connectivity 显著性:L AI–R AI 连接性 | Threat Dysregulation 威胁失调 | Symptoms 症状 | −0.27 | [−0.51, −0.01] | −2.95 | 0.005a | −0.03 | yes 是 | −0.08 | yes |
Salience: L AI–R AI connectivity 显著性:L AI–R AI 连接性 | Anhedonia 快感缺失 | Symptoms 症状 | −0.33 | [−0.52, −0.12] | −3.57 | 0.001a | 0.01 | −0.25 | yes | |
Salience: L AI–L Amy connectivity 显著性:L AI–L Amy 连接性 | Satisfaction with life 生活满意度 | Function 功能 | 0.18 | [0.01, 0.37] | 1.98 | 0.049 | 0.23 | yes 是 | −0.12 | |
Salience: L AI–R AI connectivity 显著性:L AI–R AI 连接性 | Satisfaction with life 生活满意度 | Function 功能 | 0.24 | [0.03, 0.43] | 2.59 | 0.015a | 0.01 | 0.21 | yes |
1. Results of models testing hypothesized associations of Global Circuit Clinical Scores as Predictors and Phenotypes as Dependent Variables.
1. 模型测试全脑回路临床评分作为预测变量与表型作为因变量的假设关联的结果。
a 表示在主要样本 A 中满足家庭-wise FDR 校正为 0.05 的结果,而“是”表示关系在主要样本 B 和/或可推广样本中具有普遍性(即标准化的β系数β落在主要样本 A 的 95%区间内)。
Predictor and Dependent Variable are coded in the same color rerflectinig the reflect the presence of a hypothesized association (e.g. Salience: Circuit Clinical Score – Anxious Avoidance)
预测变量和因变量以相同颜色编码,反映假设关联的存在(例如:显著性:回路临床评分 – 焦虑回避)
2. Results of models testing non-hypothesized associations of Global Circuit Clinical Scores as Predictors and Phenotypes as Dependent Variables. aindicates results meeting family-wise FDR correction of 0.05 in Primary Sample A and ‘yes’ indicates instances where the relationship generalizes to Primary Sample B and/or Generalizability samples. Predictor and Dependent Variable are coded in different color rerflectinig a non-hypothesized association (e.g. Default Mode: Global Circuit Clinical Score – Negativity Bias).
2. 模型测试全脑回路临床评分作为预测变量和表型作为因变量的非假设关联的结果。a 表示在主要样本 A 中满足家庭错误发现率(FDR)校正为 0.05 的结果,而“是”表示关系推广到主要样本 B 和/或可推广样本的情况。预测变量和因变量以不同颜色编码,反映非假设关联(例如,默认模式:全脑回路临床评分 - 消极偏见)。
3. Results of models testing hypothesized associations of Regional Circuit Clinical Scores as Predictors and Phenotypes as Dependent Variables. aindicates results meeting family-wise FDR correction of 0.10 in the Primary Sample A and ‘yes’ indicates instances where the relationship generalizes to Primary Sample B and/or Generalizability samples.
3. 区域回路临床评分作为预测变量与表型作为因变量的假设关联模型测试结果。a 表示在主要样本 A 中满足家庭错误发现率(FDR)校正为 0.10 的结果,‘yes’表示关系推广到主要样本 B 和/或可推广样本的情况。
4. Results of models testing non-hypothesized associations of Regional Circuit Clinical Scores as Predictors and Phenotypes as Dependent Variables. aindicates results meeting family-wise FDR correction of 0.10 in the Primary Sample A and ‘yes’ indicates instances where the relationship generalizes to Primary Sample B and/or Generalizability samples.
4. 模型测试区域回路临床评分作为预测变量和表型作为因变量的非假设关联的结果。a 表示在主要样本 A 中满足家庭错误发现率(FDR)校正为 0.10 的结果,而“yes”表示关系推广到主要样本 B 和/或可推广样本的情况。
Abbreviations: 缩写:
β = Standardized beta coefficients; CI = Confidence Interval for the effect size represented by the value of β; ES = standardized effect size represented by the value of β, standardized beta coefficient for contribution of circuit dysfunction predictors to clinical phenotype.
β = 标准化贝塔系数;CI = 代表β值的效应大小的置信区间;ES = 代表β值的标准化效应大小,标准化贝塔系数用于回路功能障碍预测因子对临床表型的贡献。
Regional Abbreviations: 区域缩写:
ACC = Anterior Cingulate Cortex; AG = Angular Gyrus; AI = Anterior Insula; amPFC = anterior medial PreFrontal Cortex; Amy = Amygdala; C = Consicous; L= Left; R= Right; VS = ventral Striatum.
ACC = 前扣带皮层; AG = 角回; AI = 前岛叶; amPFC = 前内侧前额叶皮层; Amy = 杏仁体; C = 意识; L = 左; R = 右; VS = 腹侧纹状体.
First-order regression models, testing hypothesized global circuit–phenotype associations, were run in primary sample A. In these models, t-statistics were compared against the null distribution of t-scores derived by 1,000 random permutations (18) and significant effects were i by an FDR-corrected threshold of .05 (Table 1.1; Results S1A). Second-order regression models tested hypothesized regional circuit-phenotype associations and significant effects were defined by an FDR-corrected threshold of 0.1 (Table 1.2; Results S1B). Relationships surviving FDR correction in primary sample A were considered to have generalized if beta effect sizes of sample B and/or generalizability samples fell within the 95% bootstrapped confidence interval for sample A.
一阶回归模型在主要样本 A 中运行,测试假设的全脑回路-表型关联。在这些模型中,t 统计量与通过 1,000 次随机置换得出的 t 分数的零分布进行比较(18),显著效应通过 FDR 校正阈值 0.05 进行识别(表 1.1;结果 S1A)。二阶回归模型测试假设的区域回路-表型关联,显著效应通过 FDR 校正阈值 0.1 进行定义(表 1.2;结果 S1B)。在主要样本 A 中经过 FDR 校正的关系被认为是具有广泛性,如果样本 B 和/或广泛性样本的 beta 效应大小落在样本 A 的 95%自助法置信区间内。
Circuit Dysfunctions and Treatment Outcomes
回路功能障碍与治疗结果
Using logistic regression models, we first tested whether global circuit clinical scores are general predictors of response, over and above pre-treatment symptom severity. Next, we used interaction terms to evaluate global circuit clinical scores as differential predictors of response as a function of type of treatment: Selective Serotonin Reuptake Inhibitors (SSRIs: sertraline, escitalopram) or selective Serotonin-Norepinephrine Reuptake Inhibitor (SNRI: extended-release venlafaxine) for antidepressants, and active behavioral intervention (I-CARE) or usual care (U-CARE) for behavioral intervention. Parallel models were undertaken in hierarchical steps, evaluated by chi-squared tests for each set of global and regional circuit predictors. Significant effects were defined by an FDR-corrected threshold of 0.1 and tendencies at the uncorrected threshold of .05 were considered in supplemental analyses to inform future investigations. Effect sizes for regional predictors that contributed to treatment outcomes were reported.
使用逻辑回归模型,我们首先测试了全脑回路临床评分是否在预处理症状严重性之上是反应的普遍预测因子。接下来,我们使用交互项评估全脑回路临床评分作为反应的差异预测因子,具体取决于治疗类型:选择性血清素再摄取抑制剂(SSRIs:舍曲林,艾司西酞普兰)或选择性血清素-去甲肾上腺素再摄取抑制剂(SNRI:缓释文拉法辛)用于抗抑郁药,以及主动行为干预(I-CARE)或常规护理(U-CARE)用于行为干预。采用分层步骤进行平行模型,通过卡方检验评估每组全脑和区域回路预测因子。显著效应由 FDR 校正阈值 0.1 定义,未校正阈值 0.05 的倾向在补充分析中考虑,以为未来的研究提供信息。报告了对治疗结果有贡献的区域预测因子的效应大小。
RESULTS 结果
Circuit Clinical Scores and Phenotypes
回路临床评分和表型
An overall observation was that clinical phenotypes were associated with global circuit clinical scores in task-free conditions and with regional scores under task conditions (Table 1, Figure 4).
总体观察是,临床表型与无任务条件下的全脑回路临床评分相关,以及在任务条件下与区域评分相关(表 1,图 4)。
Default Mode Circuit 默认模式回路
Global default mode scores reflective of hyper-connectivity were not associated with rumination as operationalized by our phenotype. However, global default mode hypo-connectivity significantly predicted more severe negative bias and anhedonia at the FDR-adjusted threshold, with low-moderate effect size and consistent across the generalizability sample (Table 1.1; Figure 4).
全脑默认模式评分反映的超连接性与我们表型操作化的反刍思维无关。然而,全脑默认模式低连接性在 FDR 调整阈值下显著预测了更严重的负偏见和快感缺失,效应大小为低-中等,并在可推广样本中保持一致(表 1.1;图 4)。
Lower default mode connectivity specific to the left angular gyrus (AG) and anterior medial Prefrontal Cortex (dmPFC) was associated with more severe rumination (Table 1.2; Figure 5). Although this association did not meet the FDR-adjusted threshold, it replicated with low-moderate effect size across primary samples A and B (Table 1.3).
左侧角回(AG)和前内侧前额皮层(dmPFC)特定的默认模式连接降低与更严重的反刍相关(表 1.2;图 5)。尽管这种关联未达到 FDR 调整阈值,但在主要样本 A 和 B 中以低中等效应量进行了复制(表 1.3)。
Salience Circuit
Salience circuit hypo-connectivity significantly predicted more severe symptoms across phenotypes, including anxious avoidance (the hypothesized one-to-one association), negative bias, threat dysregulation, anhedonia, and inattention/cognitive dyscontrol at the FDR-adjusted threshold, consistent across samples (Table 1.1; Figure 4). The hypothesized association of salience circuit hypo-connectivity and anxious avoidance was of low-moderate effect size that was consistent across all samples (Table 1.1).
显著性回路 显著性回路的低连接性显著预测了各表型中更严重的症状,包括焦虑回避(假设的一对一关联)、负面偏见、威胁失调、快感缺失和注意力/认知失控,在 FDR 调整阈值下,在各样本中一致(表 1.1;图 4)。显著性回路低连接性与焦虑回避的假设关联具有低到中等的效应大小,在所有样本中一致(表 1.1)。
Greater salience circuit clinical scores were also significantly associated with worse satisfaction with life at the FDR-adjusted threshold, with low-moderate effect size and replicated in the primary sample B (Table 1.3; Results S1c).
更高的显著性回路临床评分在 FDR 调整阈值下也与生活满意度较低显著相关,效应大小为低-中等,并在主要样本 B 中得到了重复验证(表 1.3;结果 S1c)。
When considering regional connections, the association between hypo-connectivity and anxious avoidance was specific to the left anterior insula and left amygdala (Table 1.2; Figure 5). Left-right insula hypo-connectivity was associated with symptoms of negative bias, threat dysregulation, and anhedonia, as well as worse satisfaction with life at the FDR-adjusted threshold (Table 1.3).
在考虑区域连接时,低连接性与焦虑回避之间的关联特定于左前岛叶和左杏仁核(表 1.2;图 5)。左右岛叶低连接性与负偏见、威胁失调和快感缺失的症状相关,以及在 FDR 调整阈值下对生活满意度的更差评估(表 1.3)。
Attention Circuit
For the attention circuit, clinical phenotypes were not associated with global circuit clinical scores or regional connectivity.
注意回路 在注意回路中,临床表型与全脑回路临床评分或区域连接性无关。
Negative Affect Circuit
For the negative affect circuit evoked by sad stimuli, hypo-activation of the anterior insula, bilaterally, predicted more severe symptoms of negative bias (Table 1.2; Figure 5). These effects did not meet the adjusted alpha threshold but did meet criteria for a consistent effect size of low-moderate magnitude across primary A, primary B, and generalizability samples. Conversely, there was a tendency for threat-elicited right amygdala hyper-activation to predict accelerated responses to identifying these stimuli at the unadjusted alpha threshold with a weak effect size, consistent across primary samples A and B (Table 1.2; Figure 5).
负性情绪回路 对于由悲伤刺激引发的负性情绪回路,双侧前岛叶的低活性预测了更严重的负偏见症状(表 1.2;图 5)。这些效应未达到调整后的阿尔法阈值,但在主要样本 A、主要样本 B 和可推广性样本中满足了一致的低-中等效应量标准。相反,威胁引发的右侧杏仁核高活性倾向于预测在未调整的阿尔法阈值下对识别这些刺激的加速反应,效应量较弱,在主要样本 A 和 B 中一致(表 1.2;图 5)。
Positive Affect Circuit
The positive affect circuit probed by happy stimuli global circuit clinical scores was not associated with clinical phenotypes. Lower ventral striatal activation showed a tendency for association with slower responses to identifying happy faces at the uncorrected alpha threshold with low-moderate effect size, generalizable across two samples (Table 1.2, Figure 5).
积极情感回路 通过快乐刺激探测的积极情感回路全脑回路临床评分与临床表型无关。较低的腹侧纹状体激活显示出与识别快乐面孔的反应较慢之间的关联趋势,在未校正的阿尔法阈值下具有低-中等效应大小,且在两个样本中具有可推广性(表 1.2,图 5)。
Cognitive Control Circuit
Lower activation of the dorsal anterior cingulate cortex (dACC) showed a tendency toward association with more severe symptoms of inattention/cognitive dyscontrol at the unadjusted alpha level with low-moderate effect size consistent across primary A and generalizability samples (Table 1.2; Figure 5).
认知控制回路 背侧前扣带皮层(dACC)较低的激活显示出与更严重的注意力缺陷/认知失调症状之间的关联趋势,在未调整的显著性水平下,效应大小为低-中等,且在主要 A 样本和可推广样本中一致(表 1.2;图 5)。
Circuit Clinical Scores and Treatment Outcomes
回路临床评分和治疗结果
For pharmacotherapy, we observed regional circuit predictors that were differentially related to SSRI versus SNRI outcomes. Pre-treatment default mode connectivity significantly differentiated response outcomes for SSRIs versus SNRIs (p=0.002; Table S14). SNRI non-responders were distinguished by PCC-angular gyrus hyper-connectivity and SNRI responders by relative hypo-connectivity of these regions, whereas there was a tendency toward an opposing profile of hypo-connectivity in SSRI non-responders and hyper-connectivity in SSRI responders (interaction effect size reflecting the standard deviations increase in the log odds of response versus non-response for SSRI versus SNRI for one standard deviation increase in the predictor = −2.12; Table S17; Figure S8C).
在药物治疗方面,我们观察到区域回路预测因子与 SSRI 和 SNRI 结果的关系存在差异。治疗前的默认模式连接显著区分了 SSRI 与 SNRI 的反应结果(p=0.002;表 S14)。SNRI 非应答者通过 PCC-角回的超连接性被区分,而 SNRI 应答者则通过这些区域的相对低连接性被区分,另一方面,SSRI 非应答者则倾向于表现出低连接性,而 SSRI 应答者则表现出超连接性(交互效应大小反映了 SSRI 与 SNRI 的反应与非反应的对数几率的标准差增加,预测因子增加一个标准差时=−2.12;表 S17;图 S8C)。
Pre-treatment negative affect circuit scores differentiated responders to SSRIs versus SNRIs (Table S14) when elicited by both conscious and nonconscious threat. SSRI responders showed pre-treatment hyper-connectivity of the left amygdala and dACC, and hypo-connectivity of the right amygdala and dACC for conscious threat. SNRI responders showed hypo-activation of the right amygdala and comparative hyper-connectivity of the left amygdala and subgenual ACC for nonconscious threat (Table S17. Figure S8C).
预处理的负性情感回路评分区分了对 SSRIs 和 SNRIs 的反应者(表 S14),无论是在意识到的威胁还是非意识到的威胁下。SSRIs 反应者在意识到的威胁中显示出左侧杏仁核和 dACC 的超连接,以及右侧杏仁核和 dACC 的低连接。SNRIs 反应者在非意识到的威胁中显示出右侧杏仁核的低激活和左侧杏仁核与下前扣带皮层的相对超连接(表 S17,图 S8C)。
For the behavioral intervention, pre-treatment attention regional connectivity was a differential predictor of subsequent response to I-CARE versus U-CARE (Table S16). I-CARE responders showed hypo-connectivity between the left anterior inferior parietal lobule and left prefrontal cortex within the attention circuit, compared to responders in U-CARE (Table S17; Figure S8D).
对于行为干预,治疗前注意区域连接性是 I-CARE 与 U-CARE 后续反应的差异预测因子(表 S16)。与 U-CARE 的反应者相比,I-CARE 反应者在注意回路中显示出左前下顶叶小叶与左前额叶皮层之间的低连接性(表 S17;图 S8D)。
Affect circuit function was also a differential predictor of behavioral intervention outcomes (Table S16). I-CARE responders were distinguished by lower ventromedial PFC activation compared to non-responders, whereas the reverse was observed for U-CARE (Table S17; Figure S10D). Within the negative affect circuit elicited by threat relatively lower left amygdala activity distinguished response to I-CARE but non-response to U-CARE (Table S16, S17; Figure S10D).
情感回路功能也是行为干预结果的差异预测因子(表 S16)。I-CARE 响应者与非响应者相比,表现出较低的腹内侧前额叶激活,而 U-CARE 则观察到相反的情况(表 S17;图 S10D)。在威胁引发的负面情感回路中,相对较低的左侧杏仁核活动区分了对 I-CARE 的响应,但对 U-CARE 的非响应(表 S16,S17;图 S10D)。
DISCUSSION 讨论
We developed a reproducible image processing system for quantifying subject-level neural circuit metrics and tested these metrics for their clinical utility in showing relationships with clinical symptoms, behavior and social-occupational function, and treatment response. Our approach offers one step toward making precision advances in the mental health field, specifically for depressive and anxiety disorders that contribute disproportionately to illness burden and suicide.
我们开发了一个可重复的图像处理系统,用于量化个体神经回路指标,并测试了这些指标在显示与临床症状、行为和社会职业功能以及治疗反应之间关系的临床实用性。我们的方法为在心理健康领域,特别是对疾病负担和自杀贡献不成比例的抑郁症和焦虑症的精准进展迈出了重要一步。
Our image processing system integrates four key features: standardization, quality-controlled neuroanatomical definitions of functional brain circuits spanning task-free and task-evoked contexts, reproducible procedures for quantifying the activation of and connectivity between regions within each circuit with demonstrated consistency, and algorithms for computing metrics that quantify global and regional circuit clinical scores at the individual subject-level relative to a healthy reference sample. We tested this system in three samples of adults with a broad range of depression and anxiety symptoms, and systematically examined brain circuit-phenotype relations informed by our theoretical framework (2). We found limited evidence for the hypothesized one-to-one mappings between circuit clinical scores and specific phenotypes that reflect common assumptions in the field about neural-phenotype relationships. However, we did identify associations that suggest specific connectivity profiles – particularly within salience and default mode circuits – may give rise to multiple phenotype expressions, and that additional circuit activation and connectivity profiles are implicated in treatment response.
我们的图像处理系统集成了四个关键特征:标准化、质量控制的功能性脑回路神经解剖定义,涵盖无任务和任务诱发的情境;可重复的程序,用于量化每个回路内区域的激活和连接性,并显示出一致性;以及计算指标的算法,这些指标量化个体受试者相对于健康参考样本的全脑和区域回路临床评分。我们在三组具有广泛抑郁和焦虑症状的成年人中测试了该系统,并系统地检查了受我们理论框架启发的脑回路-表型关系(2)。我们发现,假设的回路临床评分与反映该领域关于神经-表型关系的共同假设的特定表型之间的一对一映射的证据有限。 然而,我们确实识别出了一些关联,表明特定的连接特征——特别是在显著性和默认模式回路内——可能导致多种表型表现,并且额外的回路激活和连接特征与治疗反应有关。
Within the task-free circuits, salience circuit clinical scores, especially hypo-connectivity between the anterior insula and the amygdala, was significantly predictive of anxious avoidance symptoms at the adjusted alpha level, and generalized across samples, consistent with hypotheses (2). Salience circuit hypo-connectivity within the insula also contributed significantly to symptoms of anhedonia, negative bias, and threat dysregulation, and generalized across at least one additional sample. These findings suggest a role for insula disconnection in features of negative bias and blunted positive emotion that impact daily function, consistent with findings from metabolic insula imaging (19). Global salience hypo-connectivity showed an additional significant association with inattention/cognitive dyscontrol symptoms that generalized across samples. Given prior evidence of functional interactions between salience and attention circuits (20) that may fluctuate with interoceptive and external events, future investigations that expand our current within-circuit focus to examine between-circuit connectivity are warranted.
在无任务回路中,显著性回路临床评分,特别是前岛叶与杏仁核之间的低连接性,在调整后的显著性水平下显著预测了焦虑回避症状,并在样本中广泛泛化,与假设一致(2)。岛叶内显著性回路的低连接性也显著影响了无快感、负偏见和威胁失调的症状,并在至少一个额外样本中广泛泛化。这些发现表明岛叶断连在负偏见和钝化积极情绪特征中的作用,这些特征影响日常功能,与代谢岛叶成像的发现一致(19)。全脑显著性低连接性与注意力/认知失控症状之间显示出额外的显著关联,并在样本中广泛泛化。鉴于先前证据表明显著性与注意力回路之间的功能交互(20)可能会随着内感受和外部事件的变化而波动,未来的研究应扩展我们当前的回路内关注,考察回路之间的连接性。
Although default mode hyper-connectivity was not predictive of rumination as hypothesized, global hypo-connectivity was significantly associated with negative bias and anhedonia at the adjusted alpha level. Such hypo-connectivity is consistent with emerging evidence for a default mode hypo-connectivity subtype of depression (21, 22) and the exploratory default mode biotype proposed in our theoretical framework (1, 2), informed by meta-analysis (23). We also note that our phenotype of rumination indexed ruminative worry in particular; future investigations with broader measures of ruminative response styles are required.
尽管默认模式超连接性并未如假设那样预测反刍,但全脑低连接性在调整后的阿尔法水平上与负偏差和快感缺失显著相关。这种低连接性与新兴证据一致,支持抑郁症的默认模式低连接性亚型(21, 22)以及我们理论框架中提出的探索性默认模式生物型(1, 2),该框架受到荟萃分析(23)的启发。我们还注意到,我们的反刍表型特别指向反刍性担忧;未来需要更广泛的反刍反应风格测量的研究。
Regarding pharmacological treatment, we found that pre-treatment hyper-connectivity of the posterior cingulate and angular gyrus within the default mode circuit distinguished non-responders from responders to the SNRI in particular. This observation of hyper-connectivity accords with prior findings for dulexotine, which also inhibits both serotonin and norepinephrine uptake and has been found to regularize pre-treatment default mode hyper-connectivity (24). It also extends upon prior posterior cingulate seed-based and whole-brain connectivity analyses of this dataset that implicate relatively intact default mode connectivity as a general predictor of antidepressant remission (25, 26). Further, SNRI responders were characterized by pre-treatment amygdala hypo-activation within the negative affect circuit, consistent with prior group-averaged findings in this dataset (27). The new finding that SNRI responders are distinguished by amygdala-subgenual anterior cingulate (ACC) hypo-connectivity for nonconscious threat, and SSRI responders by an opposing profile of amygdala-dorsal ACC hyper-connectivity for conscious threat, suggests that amygdala-ACC connectivity might reflect different functional states that are present prior to treatment and that respond to the different ways that the drug types act at the receptor level.
关于药物治疗,我们发现默认模式回路中后扣带皮层和角回的预处理超连接性能够区分对 SNRI 的反应者和非反应者。这一超连接性的观察与之前对度洛西汀的发现相符,度洛西汀同样抑制血清素和去甲肾上腺素的摄取,并已被发现能够规范化预处理的默认模式超连接性(24)。这也扩展了之前基于后扣带皮层的种子和全脑连接分析的结果,表明相对完整的默认模式连接性是抗抑郁药缓解的一般预测因子(25,26)。此外,SNRI 反应者的特征是负性情感回路中杏仁核的预处理低激活,与该数据集中之前的组平均发现一致(27)。 新的发现表明,SNRI 反应者通过杏仁核-下前扣带皮层(ACC)对非意识威胁的低连接性与众不同,而 SSRI 反应者则通过杏仁核-背侧 ACC 对意识威胁的高连接性表现出相反的特征,这表明杏仁核-ACC 连接性可能反映了治疗前存在的不同功能状态,并且对药物类型在受体水平上作用的不同方式作出反应。
For behavioral intervention, pre-treatment global hypo-connectivity within the attention circuit was a significant differential predictor of response to the active I-CARE condition, consistent with independent reports that such hypo-connectivity could inform selection for cognitive behavior therapy (28). Differential response to behavioral intervention was also distinguished by regional activation elicited by positive and negative affective stimuli. Although these treatment outcome relationships need to be confirmed in independent samples, they offer a starting point for personalized biomarker trials that require a standardized procedure for quantifying circuit dysfunction at the subject-level.
对于行为干预,治疗前注意回路的全脑低连接性是对主动 I-CARE 条件反应的重要差异预测因素,这与独立报告一致,即这种低连接性可以为认知行为疗法的选择提供信息(28)。对行为干预的差异反应还通过正负情感刺激引发的区域激活来区分。尽管这些治疗结果关系需要在独立样本中确认,但它们为个性化生物标志物试验提供了一个起点,这需要一个标准化程序来量化个体层面的回路功能障碍。
By focusing first on a discrete within-circuit, one-to-one mapping approach, our goal was to develop and evaluate a prototype for subject-level fMRI quantification suited to clinical applications. Taken together, our findings reveal minimal support for a model in which there is a discrete one-to-one mapping between the six circuits of interest and specific symptoms and behaviors implicated in dysfunction of these circuits, at least within the current samples and as based on our prior theoretical synthesis (1, 2). Yet, the findings do demonstrate the reproducibility of the method, and reveal significant and consistent effects for a specific subset of circuit-phenotype associations across samples and for circuit markers of treatment outcomes. Because our circuit clinical scores were validated in samples recruited to be representative of the community, with a range of symptom severity and comorbidities, the method arguably is applicable to the range of patients seen in the clinic (29).
通过首先关注离散的回路内一对一映射方法,我们的目标是开发和评估一个适合临床应用的受试者级 fMRI 定量原型。综合来看,我们的发现对一个模型提供了最小的支持,该模型认为六个感兴趣的回路与这些回路功能障碍所涉及的特定症状和行为之间存在离散的一对一映射,至少在当前样本中以及基于我们之前的理论综合(1, 2)。然而,研究结果确实展示了该方法的可重复性,并揭示了在样本之间以及治疗结果的回路标记方面,特定子集的回路-表型关联具有显著且一致的效应。由于我们的回路临床评分是在招募的样本中得到验证,这些样本代表了社区,具有不同的症状严重程度和共病情况,因此该方法可以说适用于临床中看到的各种患者(29)。
Both the null findings and non-hypothesized associations revealed by analyses, prompt the consideration of limitations, potential alternative explanations, and new directions for future investigation. A crucial consideration in determining circuit-phenotype outputs is the selection of inputs and samples for analysis. Although our recruitment approach achieved representative samples, the inclusion of mildly symptomatic subjects could have limited the opportunity to pinpoint circuit dysfunctions that manifest primarily in severely symptomatic phenotypes that are the focus of case: control designs. Future investigations, currently underway, focus on a strategy of enriching samples based on clinically relevant standard deviation thresholds for both circuit and clinical measures. Relatedly, although our samples spanned multiple diagnostic comorbidities, the most common diagnosis was generalized anxiety disorder, and MDD was three times more prevalent in the generalizability than in the primary sample. The preponderance of anxiety disorders in our sample may have contributed to the robust results for insula connectivity, in concert with the amygdala. This speculation accords with evidence that the insula, and the salience network it defines, serves a domain-general function that when disrupted can produce the diverse visceral, affective and cognitive features of anxiety (30). Future investigations might determine if these connections are disrupted during tasks that engage threat and other aspects of affective reactivity.
无论是无效发现还是分析中揭示的非假设关联,都促使我们考虑局限性、潜在的替代解释以及未来研究的新方向。在确定回路-表型输出时,一个关键的考虑因素是分析输入和样本的选择。尽管我们的招募方法实现了具有代表性的样本,但轻度症状患者的纳入可能限制了我们识别主要在重度症状表型中表现出的回路功能障碍的机会,而这些表型是病例对照设计的重点。当前正在进行的未来研究,专注于基于临床相关标准差阈值对回路和临床测量进行样本富集的策略。相关地,尽管我们的样本涵盖了多种诊断共病,但最常见的诊断是广泛性焦虑障碍,而重度抑郁症在可推广性样本中的患病率是主要样本的三倍。我们样本中焦虑障碍的优势可能有助于与杏仁核共同作用下的岛叶连接的稳健结果。 这种推测与证据相符,即岛叶及其定义的显著性网络具有领域通用功能,当其受到干扰时可能会产生焦虑的多样内脏、情感和认知特征(30)。未来的研究可能会确定在涉及威胁和其他情感反应方面的任务中,这些连接是否受到干扰。
Our clinical inputs were items from well-established symptom scales for which the focus is usually on total scores. Thus, one research product developed from this study is the classification of individual items, across these scales, according to clinical phenotypes suggested by our theoretical circuit taxonomy (1, 2). This classification was validated in the current sample, but we do acknowledge that limited item coverage for some phenotypes may have limited the capacity to identify robust associations with all circuits of interest. For example, the established scales we used lack coverage of ruminative response styles, threat dysregulation, inattention, and cognitive impairments, implicated by respective dysfunctions in the default mode, negative affect, attention, and cognitive control circuits. In ongoing analyses, we pursue symptom-specific scales, to further understand how symptom profiles are identified in the brain.
我们的临床输入来自于一些成熟的症状量表,这些量表通常关注总分。因此,从这项研究开发出的一个研究产品是根据我们理论回路分类法(1, 2)所建议的临床表型,对这些量表中的各个项目进行分类。该分类在当前样本中得到了验证,但我们确实承认,某些表型的项目覆盖有限可能限制了识别与所有感兴趣回路之间稳健关联的能力。例如,我们使用的已建立量表缺乏对反刍反应风格、威胁失调、注意力缺陷和认知障碍的覆盖,这些与默认模式、负性情感、注意力和认知控制回路的相应功能障碍有关。在正在进行的分析中,我们追求症状特异性量表,以进一步理解症状特征是如何在大脑中被识别的。
At the circuit level, it would likewise be important to expand our use of established tasks to include tasks designed to probe more specific circuit constructs, such as fMRI reward tasks. Future investigations are also warranted to expand our initial focus on a specific set of regions informed by prior knowledge (2) to additional regions informed by ongoing evidence. As regional inputs are added, the weighting of these inputs to the computation of global circuit clinical scores may also need refinement and we designed our circuit system to be flexible with the expectation of such refinement. To explore circuit-phenotype associations more fully it will be essential to extend our within-circuit approach to the testing of putative biotypes that include sub-nodes, between-circuit effects, and interactions within and between circuits (1, 2). For example, parsing of sub-nodes of the default mode circuit and their connectivity with negative affect circuits may allow for a better understanding of associations with ruminations, self-reflection and negative attributional biases (2, 31), and accounting for interactions between default mode, attention and cognitive control circuits may provide a more complete characterization of a cognitive dyscontrol biotype (32). Methodologically, it would be valuable to pursue direct tests of the impact of scanner, site, and functional localizers for more precise subject-level quantification (33) and to incorporate finer-grained age norms for more precise interpretation.
在回路层面,扩展我们使用已建立任务的范围以包括旨在探测更具体回路构造的任务(例如 fMRI 奖励任务)同样重要。未来的研究也有必要将我们最初关注的特定区域(基于先前知识)扩展到基于持续证据的其他区域。随着区域输入的增加,这些输入在计算全脑回路临床评分时的权重可能也需要进行调整,我们设计的回路系统具有灵活性,以期适应这种调整。为了更全面地探索回路-表型关联,扩展我们在回路内的方法以测试包括子节点、回路间效应以及回路内和回路间交互的假定生物类型将是至关重要的。 例如,解析默认模式回路的子节点及其与负面情感回路的连接可能有助于更好地理解与反刍、自我反思和负面归因偏差的关联(2, 31),而考虑默认模式、注意力和认知控制回路之间的相互作用可能提供对认知失控生物类型的更完整特征描述(32)。在方法论上,直接测试扫描仪、地点和功能定位器的影响以实现更精确的个体水平量化(33)将是有价值的,并且纳入更细致的年龄标准以便进行更精确的解释。
Our findings for treatment accord with the view that mechanistic circuit markers for clinical phenotypes may not be the same as those circuit markers that predict treatment outcomes, help select among multiple treatment options, and/or change with treatment (29). Precision medicine, prospective and repeat testing designs are needed to systematically help sort circuit dysfunctions according to these different clinical functions. Such designs will also allow for more precise characterization of which aspects of circuit dysfunction are more trait-like versus state-like and thus which are more amenable to change with treatment.
我们的治疗发现与以下观点一致:临床表型的机制回路标记可能与预测治疗结果、帮助在多种治疗选项中选择和/或随治疗而变化的回路标记不同(29)。需要精准医学、前瞻性和重复测试设计,以系统地帮助根据这些不同的临床功能对回路功能障碍进行分类。这些设计还将允许更精确地表征回路功能障碍的哪些方面更具特征性与状态性,从而确定哪些方面更容易随着治疗而改变。
Conclusion 结论
The functional image system developed and tested in this study offers one means by which our field can generate standardized subject-level imaging metrics across studies, sites, and samples. These metrics can serve as inputs into further subgroup classifications, computational models, and biomarker trials, to refine our understanding of the clinical function of these metrics. Clinically, such metrics offer a step toward the use of imaging tools to aid in the personalized clnical management of mood and anxiety.
本研究中开发和测试的功能影像系统提供了一种方法,使我们的领域能够在不同研究、地点和样本之间生成标准化的受试者级影像指标。这些指标可以作为进一步亚组分类、计算模型和生物标志物试验的输入,以深化我们对这些指标临床功能的理解。在临床上,这些指标为使用影像工具辅助个性化情绪和焦虑管理迈出了重要一步。
Resource Type 资源类型 | Specific Reagent or Resource 特定试剂或资源 | Source or Reference 来源或参考 | Identifiers 标识符 | Additional Information |
---|---|---|---|---|
Add additional rows as needed for each resource type 根据每种资源类型的需要添加额外的行 | Include species and sex when applicable. 在适用时包括物种和性别。 | Include name of manufacturer, company, repository, individual, or research lab. Include PMID or DOI for references; use “this paper” if new. 包括制造商、公司、仓库、个人或研究实验室的名称。包括 PMID 或 DOI 作为参考;如果是新论文,请使用“本文”。 | Include catalog numbers, stock numbers, database IDs or accession numbers, and/or RRIDs. RRIDs are highly encouraged; search for RRIDs at https://scicrunch.org/resources. 包括目录编号、库存编号、数据库 ID 或登录号,以及/或 RRID。强烈建议使用 RRID;请在 https://scicrunch.org/resources 上搜索 RRID。 | Include any additional information or notes if necessary. |
Antibody 抗体 | NA | |||
Bacterial or Viral Strain 细菌或病毒株 | NA | |||
Biological Sample 生物样本 | NA | |||
Cell Line 细胞系 | NA | |||
Chemical Compound, Drug 化学化合物,药物 | NA | |||
Commercial Assay Or Kit 商业测定或试剂盒 | NA | |||
Deposited Data; Public Database 存储数据;公共数据库 | NDA | NIMH Data Archive NIMH 数据档案 | https://nda.nih.gov/, Collection C2100 https://nda.nih.gov/, 收集 C2100 | |
Organism/Strain 生物/菌株 | NA | |||
Sequence-Based Reagent 序列基础试剂 | NA | N/A | ||
Software; Algorithm 软件;算法 | MATLAB-2014b | MathWorks | RRID:SCR_001622 | |
Software; Algorithm 软件;算法 | Singularity 3.2.1 奇点 3.2.1 | https://github.com/sylabs/singularity/releases/tag/v3.2.1 | N/A | |
Software; Algorithm 软件;算法 | FSL 5.0 | Analysis Group, FMRIB, Oxford, UK 分析组,FMRIB,牛津,英国 | RRID:SCR_002823 | |
Software; Algorithm 软件;算法 | SPM 8 | Wellcome Centre for Human Neuroimaging, UCL 欢迎中心人类神经影像学,伦敦大学学院 | RRID:SCR_007037 | |
Software; Algorithm 软件;算法 | AFNI 19.0.07 | NIMH Scientific and Statistical Computing Core NIMH 科学与统计计算核心 | RRID:SCR_005927 |
Supplementary Material 补充材料
Supplementary Materials 补充材料
点击这里查看。(27M, docx)
ACKNOWLEDGEMENTS AND DISCLOSURES
致谢与披露
This work was supported by the National Institutes of Health [grant numbers R01MH101496 (LMW; NCT02220309), UH2HL132368 (JM, LMW; NCT02246413), F32MH108299 (ANG-P), T32MH019938 (TMB), and K23MH113708 (TMB)]. Psychopharmacology data from iSPOT-D (NCT00693849) was sponsored by Brain Resource Ltd.
本研究得到了美国国立卫生研究院的支持 [拨款编号 R01MH101496 (LMW; NCT02220309), UH2HL132368 (JM, LMW; NCT02246413), F32MH108299 (ANG-P), T32MH019938 (TMB), 和 K23MH113708 (TMB)]。iSPOT-D (NCT00693849) 的精神药理学数据由 Brain Resource Ltd.赞助。
We acknowledge the contributions of Sarah Chang, BSc, to data acquisition and generating of sample tables and Carlos Correa, BCompSc, to software development of the image processing system. We acknowledge the editorial support of Jon Kilner, MS, MA (Pittsburgh, PA, USA).
我们感谢 Sarah Chang, BSc 在数据采集和样本表生成方面的贡献,以及 Carlos Correa, BCompSc 在图像处理系统软件开发方面的贡献。我们感谢 Jon Kilner, MS, MA(美国宾夕法尼亚州匹兹堡)的编辑支持。
The funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.
资助方在研究设计、数据收集、数据分析、数据解释或报告撰写中没有任何角色。通讯作者对研究中的所有数据拥有完全访问权限,并对提交出版的决定负最终责任。
The datasets for the primary sample analyzed during the current study are made available through the National Institutes of Health Database, NDA, https://nda.nih.gov/user/dashboard/collections.html, collection number C2100. The datasets for the generalizability sample analyzed during the current study will be made available from the corresponding author on reasonable request. Patients' whole-brain correlation matrices and our full analysis codes for the primary and generalizability samples are available from the corresponding author on reasonable request. The datasets for the treatments sample analyzed during the current study will be made available from the corresponding author on reasonable request after approval of a proposal. For the antidepressant data, reasonable requests will also require the permission of the study sponsor, Brain Resource Ltd. For the behavioral intervention data, study measures will be made available through the National Institutes of Health Science of Behavioral Change repository, https://scienceofbehaviorchange.org/measures/.
当前研究中分析的主要样本数据集通过国家卫生研究院数据库提供,NDA,https://nda.nih.gov/user/dashboard/collections.html,收藏编号 C2100。当前研究中分析的可推广性样本数据集将在合理请求下由通讯作者提供。患者的全脑相关矩阵以及我们对主要样本和可推广性样本的完整分析代码将在合理请求下由通讯作者提供。当前研究中分析的治疗样本数据集将在合理请求下由通讯作者提供,前提是提案获得批准。对于抗抑郁药数据,合理请求还需要研究赞助方 Brain Resource Ltd.的许可。对于行为干预数据,研究测量将通过国家卫生研究院行为变化科学库提供,https://scienceofbehaviorchange.org/measures/。
LMW declares US Pants. App. 10/034,645 and 15/820,338: Systems and methods for detecting complex networks in MRI image data. SLF declares consulting fees received from Youper, Inc within the last five years. All other authors report no biomedical financial interests or potential conflicts of interest.
LMW 声明美国专利申请 10/034,645 和 15/820,338:用于在 MRI 图像数据中检测复杂网络的系统和方法。SLF 声明在过去五年内从 Youper, Inc 收取的咨询费。所有其他作者报告没有生物医学财务利益或潜在的利益冲突。
Funding: 资金:
This work was supported by the National Institutes of Health [grant numbers R01MH101496 (LMW), UH2HL132368 (JM, LMW), F32MH108299 (ANG-P), T32MH019938 (TMB), and K23MH113708 (TMB)].
本研究得到了美国国立卫生研究院的支持 [拨款编号 R01MH101496 (LMW), UH2HL132368 (JM, LMW), F32MH108299 (ANG-P), T32MH019938 (TMB), 和 K23MH113708 (TMB)]。
Footnotes 脚注
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
aEquivalent threat vs neutral contrasts were undertaken for stimuli presented under conscious and nonconscious conditions.