这是用户在 2024-5-26 16:21 为 https://pubs.acs.org/doi/10.1021/acs.orglett.4c01059 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
Relay Catalysis for Selective Aerobic Oxidative Esterification of Primary Alcohols with Methanol
CONTENT TYPES
RETURN TO ISSUEPREVLetterNEXT
返回到问题前一封信下一封信

Relay Catalysis for Selective Aerobic Oxidative Esterification of Primary Alcohols with Methanol
利用继承催化剂实现一氧化氧化醇与甲醇的选择性酯化

  • Yibo Yu 于一波
    Yibo Yu
    Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    More by Yibo Yu
  • Jie Lin 杰琳
    Jie Lin 杰琳
    Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    复旦大学化学系分子识别与合成研究中心,中国上海 200433 号 220 号邯郸路
    More by Jie Lin 更多由林杰
  • Anni Qin 安妮秦
    Anni Qin
    Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    More by Anni Qin
  • Huanan Wang 华南王
    Huanan Wang
    Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    More by Huanan Wang
  • Jie Wang 杰王
    Jie Wang
    Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    More by Jie Wang
  • Weiyi Wang 王伟一
    Weiyi Wang
    Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    More by Weiyi Wang
  • Guolin Wu 吴国林
    Guolin Wu
    Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    More by Guolin Wu
  • Qian Zhang 前章
    Qian Zhang
    Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    More by Qian Zhang
  • Hui Qian* 回钱
    Hui Qian
    Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    *E-mail: qian_hui@fudan.edu.cn
    More by Hui Qian
  • , and  ,并
  • Shengming Ma* 生命吗*
    Shengming Ma
    Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
    *E-mail: masm@sioc.ac.cn
    More by Shengming Ma
Cite this: Org. Lett. 2024, 26, 16, 3469–3474
引用此文献:Org. Lett.2024, 26, 16, 3469–3474.
Publication Date (Web):April 15, 2024
出版日期:2024 年 4 月 15 日
https://doi.org/10.1021/acs.orglett.4c01059
Copyright © 2024 American Chemical Society
版权所有 © 2024 年美国化学学会
  • Subscribed

Article Views 文章浏览量

1495

Altmetric Altmetric Altmetric

1

Citations 引用

-
LEARN ABOUT THESE METRICS
了解这些指标
PDF (2 MB)  PDF(2 MB)
Supporting Info (1)» 支持信息(1)»
SUBJECTS: 主题:

Abstract 摘要

Esters are bulk and fine chemicals and ubiquitous in polymers, bioactive compounds, and natural products. Their traditional synthetic approach is the esterification of carboxylic acids or their activated derivatives with alcohols. Herein, a bimetallic relay catalytic protocol was developed for the aerobic esterification of one alcohol in the presence of a slowly oxidizing alcohol, which has been identified as methanol. A concise synthesis of phlomic acid was executed to demonstrate the practicality and potential of this reaction.
酯是大宗和精细化学品,在聚合物、生物活性化合物和天然产物中无处不在。它们的传统合成方法是羧酸或其活化衍生物与醇的酯化反应。在此,开发了一种双金属继电催化协议,用于在缓慢氧化的醇(已确定为甲醇)存在下进行一种醇的空气酯化反应。执行了富洛酸的简明合成,以展示该反应的实用性和潜力。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物受您机构订阅条款许可。请求再次使用权限。

Due to the global concern of natural resources and the environment, (1) more and more attention has been paid to enforce sustainable development of the whole society, thus, there is a great demand of the development of green production technology for the commodity chemicals and functional molecules. (2) Traditional oxidation reactions are an essential reaction for both the academic laboratory and industry, requiring at least stoichiometric amounts of oxidants, causing serious environmental burden. For this reason, catalytic aerobic oxidations, which use oxygen as the oxidant, have been actively pursued. The catalytic aerobic oxidations of primary alcohols, especially catalysis by transition metals such as Pd, (3a,b) Au, (3c,d) Ru, (3e,f) Cu, (3g,h) Fe, (3i,j) etc., affording aldehydes or carboxylic acids have been well developed (Figure 1B). (4) On the other hand, carboxylic acid esters are one of essential chemicals due to their widespread existence in bulk and fine chemicals, polymers, natural products, and drug molecules. (5a) For some typical examples of methyl esters, see Figure 1A. The traditional approach is esterification of carboxylic acids and their derivatives, such as acyl halides, anhydrides, etc., with alcohols (Figure 1C). (5) Dehydrogenative cross-coupling of alcohols to esters at high temperature is also a very useful strategy. (6) The more ideal approach would be the aerobic oxidative esterification of the primary alcohol in the presence of another alcohol, but the accompanying challenges are (1) the selectivity issues referring to diversified oxidation byproducts including aldehydes and carboxylic acids and (2) the selectivity issues forming four esters C1C4 via both cross-esterification and self-esterification (Figure 1D). (7−10) We proposed a concept of relay catalysis (11) with catalytic recipes A and B (Figure 1E). The catalytic recipe A could recognize the difference of the two primary alcohols, which oxidize one to aldehyde and leave the other one untouched. Then the catalytic recipe B is responsible for the 1,2-addition of the in situ formed aldehyde with the unreacted alcohol to form the semiacetal and its subsequent oxidation to the target ester. Thus, the goal is to identify the suitable relay catalysis and the slowly oxidizing alcohol. Here we report our successful development of such a bimetallic protocol of Fe and Bi for the highly selective aerobic oxidative cross esterification of alcohols with MeOH, which was identified as the very slowly oxidizing primary alcohol, with the help of a catalytic amount of TEMPO (Figure 1F).
由于全球对自然资源和环境的关注,(1)越来越多的关注被付诸于整个社会的可持续发展,因此,对商品化学品和功能分子的绿色生产技术的发展有着巨大需求。 (2)传统的氧化反应对于学术实验室和工业都是必不可少的反应,需要至少化学计量的氧化剂,造成严重的环境负担。因此,利用氧气作为氧化剂的催化空气氧化反应一直受到积极追求。特别是过渡金属如 Pd(3a,b),Au(3c,d),Ru(3e,f),Cu(3g,h),Fe(3i,j)等的催化空气氧化一级醇,得到醛或羧酸已经得到很好的发展(图 1B)。 (4)另一方面,由于羧酸酯在大宗和精细化学品、聚合物、天然产物和药物分子中的广泛存在,它们是必不可少的化学品之一。 (5a)有关甲酯的一些典型示例,请参见图 1A。 传统方法是酯化羧酸及其衍生物,如酰卤、酐等,与醇发生反应(图 1C)。(5) 在高温下醇的脱氢交叉偶联生成酯也是一种非常有用的策略。(6) 更理想的方法是在另一种醇的存在下,通过空气氧化酯化一级醇,但伴随的挑战是(1) 选择性问题,包括醛和羧酸等多样化氧化副产物,以及(2) 选择性问题,形成四种酯 C1-C4,既通过交叉酯化又通过自身酯化(图 1D)。(7-10) 我们提出了一个中继催化的概念(11),使用催化配方 A 和 B(图 1E)。催化配方 A 能够识别两种一级醇的差异,将其中一种氧化为醛,而另一种则不受影响。然后,催化配方 B 负责将原位生成的醛与未反应的醇进行 1,2-加成反应,形成半缩醛,随后氧化为目标酯。 因此,目标是确定适合的中继催化和缓慢氧化的醇。在这里,我们报告了我们成功开发的 Fe 和 Bi 的双金属协同催化协议,用于高选择性的醇与 MeOH 的氧化交叉酯化反应,MeOH 被确定为非常缓慢氧化的初级醇,在 TEMPO 的催化剂量的帮助下(图 1F)。

Figure 1 图 1

Figure 1. Approaches for the synthesis of esters. (A) Selected important methyl esters. (B) The state of the art of aerobic oxidation of primary alcohols. (C) Traditional approaches for the synthesis of esters. (D) The challenges for the esterification of two alcohols. (E) The concept of relay catalysis for selective aerobic esterification. (F) This work: aerobic cross esterification of primary alcohols with methanol.
图 1. 酯合成方法。(A) 选择重要的甲酯。(B) 一级醇的空气氧化的最新技术。(C) 酯合成的传统方法。(D) 两种醇酯化的挑战。(E) 选择性空气酯化的中继催化概念。(F) 本研究:一级醇与甲醇的空气交叉酯化。

Based on our hypothesis, the oxidative esterification of cetyl alcohol 1a with a series of different alcohols was conducted (Table 1). After tedious screening, BiCl3 has been identified as the potential cocatalyst together with Fe(NO3)3·9H2O and TEMPO for such a target transformation. (12) As reported, the reaction of 1a with benzyl alcohol 2a afforded the corresponding aldehydes 3a/8a (7) and the self-esterification product 5a/10a (9,10) (Table 1, entry 1); with n-BuOH, 51% of palmitaldehyde 3a and 32% of butyraldehyde 8b (7h) were obtained with 11% of recovery of 1a. Disappointingly, due to the overlap of signals for esters 6ab, 5a, and 11ba, the specific yield of cross-esterification product 6ab was not able to be determined, and only the combined yield of three esters 6ab, 5a, and 11ba was available (Table 1, entry 2, for detail, see Supporting Information). Interestingly, with n-propanol, we surely observed the formation of the cross-esterification product 6ac (Table 1, entry 3); with ethanol, the yield of the cross-esterification product 6ad was improved to 14% (Table 1, entry 4). Surprisingly, the reaction with methanol afforded 6ae in 83% yield highly selectively (Table 1, entry 5). As a comparison, 49% of alcohol 1a was recovered and 45% of acetone 8f was detected when the sterically more hindered i-propanol was applied instead of methanol (Table 1, entry 6). Thus, methanol was identified as the slowly oxidizing alcohol for the target transformation. (13,14) For more detailed optimizations on the reaction of 1a in the presence of methanol, see the Supporting Information (Table S2–8).
根据我们的假设,已进行了十六醇 1a 与一系列不同醇类的氧化酯化反应(表 1)。经过繁琐的筛选,已确定 BiCl0 作为潜在的辅助催化剂,与 Fe(NO1)2·9H3O 和 TEMPO 一起用于这种目标转化。(12)据报道,1a 与苄醇 2a 的反应产生了相应的醛 3a/8a(7)和自酯化产物 5a/10a(9,10)(表 1,入口 1);与正丁醇反应,得到了 51%的棕榈醛 3a 和 32%的丁醛 8b(7h),回收了 11%的 1a。令人失望的是,由于酯 6ab、5a 和 11ba 的信号重叠,无法确定交叉酯化产物 6ab 的特异产率,只能获得三种酯 6ab、5a 和 11ba 的综合产率(表 1,入口 2,详见支持信息)。有趣的是,用正丙醇,我们确实观察到了交叉酯化产物 6ac 的形成(表 1,入口 3);用乙醇,交叉酯化产物 6ad 的产率提高到 14%(表 1,入口 4)。 出乎意料的是,与甲醇反应高度选择性地得到了 6ae,收率为 83%(表 1,第 5 项)。作为对比,当使用受空间位阻影响更大的异丙醇代替甲醇时,醇 1a 的 49%被回收,检测到了乙酮 8f 的 45%(表 1,第 6 项)。因此,甲醇被确定为目标转化中氧化速度较慢的醇。(13,14)有关在甲醇存在下对 1a 反应的更详细优化,请参阅支持信息(表 S2–8)。

Table 1. Identification of the Slowly Oxidizing Alcoholsa
表 1. 缓慢氧化醇的鉴定 a
a

The reaction was conducted with 1a (1.0 mmol), R′CH2OH (5.0 mmol), Fe(NO3)3·9H2O (6 mol %), nitroxyl (5 mol %), and Lewis acid (10 mol %) in 3 mL of solvent at T °C for 48 h with an O2 balloon. The NMR yield and recovery were determined by 1H NMR analysis using dibromomethane as the internal standard.


a 反应在 1a(1.0 mmol)、R′CH 2 OH(5.0 mmol)、Fe(NO 3 ) 3 ·9H 2 O(6 mol %)、亚硝基(5 mol %)和 Lewis 酸(10 mol %)在 3 mL 溶剂中,在 T °C 下进行 48 小时,使用 O 2 气球。NMR 收率和回收率通过使用二溴甲烷作为内部标准进行 1 H NMR 分析来确定。
b

Combined yield of 6ab, 5a, and 11ba based on alcohol 1a.


基于酒精 1a,6ab、5a 和 11ba 的综合产量。
c

Combined yield of 5a and 11ca based on alcohol 1a.


基于酒精 1a 的 5a 和 11ca 的综合产量。
d

ND = not determined.


d ND = 未确定。

With the optimized reaction conditions in hand, we explored the generality of this method for the aerobic synthesis of methyl carboxylates from different primary alcohols (Scheme 1). Nonfunctionalized aliphatic alcohols and 3-cyclohexylpropanol performed well, with methyl esters 6ae6de being isolated in 73–75% yields. Aliphatic alcohols with different carbon chains containing phenyl also worked, providing 6ee6he in up to 79% yields. Additionally, 3-arylpropanols incorporating either electron-withdrawing or electron-donating groups, such as cyano, nitro, trifluoromethyl, chloro, and methoxy, were all smoothly oxidized to corresponding products 6ie6me in moderate yields with these functional groups untouched. It was worth noting that the yield of 6ie was increased from 48% to 54% with a slightly lower concentration. In addition, a variety of functional groups in alkyl alcohols, such as various ethers, highly reactive functionalities toward methanol, including bromo, iodo, MsO, TsO, amides, and even diverse esters, were well tolerated, affording 6ne6ze in moderate to good yields.
有了优化的反应条件,我们探索了这种方法在不同一级醇(方案 1)中用于空气合成甲基羧酸酯的普适性。非官能化的脂肪族醇和 3-环己基丙醇表现良好,得到的甲酯 6ae-6de 的收率为 73-75%。含有苯基的不同碳链的脂肪族醇也有效,提供 6ee-6he,收率高达 79%。此外,含有电子吸引或电子供给基团的 3-芳基丙醇,如氰基、硝基、三氟甲基、氯和甲氧基,都顺利氧化为相应产物 6ie-6me,收率适中,这些官能团保持不变。值得注意的是,通过略低的浓度,6ie 的产率从 48%增加到 54%。此外,烷基醇中的各种官能团,如各种醚、对甲醇高度反应的官能团,包括溴、碘、MsO、TsO、酰胺,甚至多样的酯,都能很好地耐受,产率适中至良好,得到 6ne-6ze。

Scheme 1 方案 1

Scheme 1. Substrate Scopea
方案 1. 基底范围 a

aThe reaction was conducted with 1 (1.0 mmol), MeOH (5.0 mmol), Fe(NO3)3·9H2O (6 mol %), TEMPO (5 mol %), and BiCl3 (10 mol %) in 3 mL of DCE at 50 °C for 48 h with an O2 balloon.
反应在 50°C 下进行,使用 1(1.0 毫摩尔)、MeOH(5.0 毫摩尔)、Fe(NO3)3·9H2O(6 摩尔%)、TEMPO(5 摩尔%)和 BiCl3(10 摩尔%)在 3 毫升 DCE 中进行,使用 O2 气球反应 48 小时。

b4 mL of DCE were used.
使用了 4 毫升 DCE。

cThe reaction time was 60 h, 47% isolated yield.
反应时间为 60 小时,分离收率为 47%。

dNMR yield under standard conditions.
d 标准条件下的 NMR 收率。

e8 mol % each of Fe(NO3)3·9H2O and TEMPO were used.
使用了 Fe(NO3)3·9H2O 和 TEMPO 各 8 摩尔%。

f4 mmol of MeOH were used.
使用了 4 毫摩尔的甲醇。

g8 mol % of Fe(NO3)3·9H2O was used.
使用了 8 摩尔%的 Fe(NO3)3·9H2O。

h5 mmol scale reaction.
5 毫摩尔比例的反应。

i10 mol % of TEMPO was used.
使用了 10 摩尔%的 TEMPO。

jNMR yield of the aldehydes in parentheses determined by 1H NMR analysis using dibromomethane as the internal standard.
用二溴甲烷作为内标准,通过 1 H NMR 分析确定括号中醛的 NMR 收率。

kNMR yield of the acetal determined by 1H NMR analysis using dibromomethane as the internal standard.
使用二溴甲烷作为内标,通过 1 H NMR 分析确定缩醛的 k NMR 收率。

The C═C bond was readily accommodated, providing 6Ae and 6Be smoothly. In addition, both terminal and internal C–C triple bonds were compatible, providing the corresponding methyl esters 6Ce6He in satisfactory yields. The corresponding aldehyde and acetal were also formed in 17% NMR yield, respectively, under standard conditions, accounting for the lower yield for 6Ge. Notably, methyl oct-2-ynoate 6He, which is commonly used as flavoring agents to prepare cucumber, banana, strawberry, peach, etc., was obtained easily from the corresponding alcohol 1H under the standard conditions in 64% yield. The reactions of branched alcohols 1I and 1J with methanol were much slower, affording the methyl esters 6Ie and 6Je in 44% and 33% yield, respectively, together with the related aldehydes 3I and 3J, which could be attributed to the increased steric hindrance. By applying the present protocol following enantioselective allenation of alkynes reaction (EATA), (12d,15) a three-step concise synthesis of phlomic acid isolated from Phlomis in 1997 (16) has been realized successfully. First, a 5 mmol scale reaction afforded methyl hept-6-ynoate 6Ce in 65% isolated yield, which underwent EATA reaction with dodecaldehyde 3c in the presence of (S)-dimethylprolinol (S)-12. Pholmic acid (Ra)-13 was obtained by hydrolysis in the presence of KOH in 59% total yield with 97% ee.
C═C 键容易适应,顺利提供 6Ae 和 6Be。此外,末端和内部的 C–C 三键也是兼容的,提供了相应的甲酸甲酯 6Ce–6He,收率令人满意。相应的醛和缩醛在标准条件下分别以 17%的 NMR 收率形成,解释了 6Ge 的较低收率。值得注意的是,常用作调味剂以制备黄瓜、香蕉、草莓、桃子等的甲基辛-2-炔酸甲酯 6He,可在标准条件下从相应的醇 1H 中轻松获得,收率为 64%。支链醇 1I 和 1J 与甲醇的反应速度要慢得多,分别以 44%和 33%的收率提供了甲酸甲酯 6Ie 和 6Je,以及相关的醛 3I 和 3J,这可能归因于增加的立体位阻。通过应用当前的协议,遵循烯丙基选择性炔烃反应(EATA),成功实现了从 1997 年 Phlomis 中分离的 phlomic 酸的三步简洁合成。 首先,5 mmol 的反应产生了甲酸庚-6-炔酸甲酯 6Ce,收率为 65%,随后在(S)-二甲基丙氨醇(S)-12 存在下,与十二醛 3c 发生了 EATA 反应。在 KOH 存在下水解后,得到了酚酸(R a )-13,总产率为 59%,ee 值为 97%。

In conclusion, we have successfully developed a BiCl3 and iron nitrate cocatalyzed selective oxidative esterification of primary alcohols in the presence of methanol with molecular oxygen as an environmentally benign oxidant with the help of TEMPO. A wide range of alcohols bearing various highly reactive functional groups, such as halogens, ethers, esters, amide, C═C, C≡C, etc., may be converted to the corresponding methyl esters in moderate to high yields. A highly concise three-step enantioselective synthesis of phlomic acid has been achieved by using the current protocol as the key step. Further studies are being actively pursued in our laboratory.
总之,我们成功地开发了一种 BiCl 3 和硝酸铁共催化的选择性氧化酯化初级醇的方法,在甲醇存在下,以分子氧作为环境友好的氧化剂,在 TEMPO 的帮助下。各种含有各种高度反应性官能团的醇,如卤素、醚、酯、酰胺、C═C、C≡C 等,可以在中等到高收率下转化为相应的甲酯。通过使用当前方案作为关键步骤,已经实现了对 phlomic 酸的高度简洁的三步对映选择性合成。我们实验室正在积极进行进一步的研究。

Data Availability 数据可用性

ARTICLE SECTIONS
Jump To
 文章章节跳转至

The data underlying this study are available in the published article and its Supporting Information
该研究的数据可在已发表的文章及其支持信息中获得

Supporting Information 支持信息

ARTICLE SECTIONS
Jump To
 文章章节跳转至

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.4c01059.
支持信息可免费获取,网址为 https://pubs.acs.org/doi/10.1021/acs.orglett.4c01059。

  • Optimizations, experimental procedures, and NMR spectra for obtained compounds (PDF)
    获得化合物的优化、实验程序和 NMR 光谱(PDF)

Terms & Conditions  条款和条件

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件可在无需订阅 ACS Web Editions 的情况下获得。这些文件可以按文章进行下载以供研究使用(如果与相关文章链接的有公共使用许可证,该许可证可能允许其他用途)。其他用途的许可可以通过通过 RightsLink 许可系统的请求获得 ACS 的许可:http://pubs.acs.org/page/copyright/permissions.html。

Author Information 作者信息

ARTICLE SECTIONS
Jump To
 文章章节跳转至

  • Corresponding Authors
    • Hui Qian - Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. ChinaOrcidhttps://orcid.org/0000-0002-5606-9213 Email: qian_hui@fudan.edu.cn
    • Shengming Ma - Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. ChinaState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. ChinaOrcidhttps://orcid.org/0000-0002-2866-2431 Email: masm@sioc.ac.cn
  • Authors
    • Yibo Yu - Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    • Jie Lin - Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    • Anni Qin - Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    • Huanan Wang - Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    • Jie Wang - Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    • Weiyi Wang - Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    • Guolin Wu - Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
    • Qian Zhang - Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
  • Author Contributions

    These authors contributed equally.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

Financial support from National Key R&D Program of China (Grant No. 2022YFA1503200) and National Natural Science Foundation of China (Grant No. 21988101) are greatly appreciated.

This article references 16 other publications.

  1. 1
    United Nations World Commission on Environment and Development (WCED). Our Common Future (The Brundtland Report), Annex to General Assembly document A/42/427; Oxford Univ. Press: Oxford, 1987.
  2. 2
    Poliakoff, M.; Licence, P. Green chemistry. Nature 2007, 450, 810,  DOI: 10.1038/450810a
  3. 3

    For selected seminal reports on aerobic oxidation of alcohols via transition-metal catalysis, see the following articles. With Pd catalysts:

    (a) Blackburn, T. F.; Schwartz, J. Homogeneous catalytic oxidation of secondary alcohols to ketones by molecular oxygen under mild conditions. J. Chem. Soc., Chem. Commun. 1977, 157,  DOI: 10.1039/c39770000157
    (b) Fiege, H.; Wedemeyer, K. Activation of Oxidations with Oxygen on Platinum Metals Using the Example of the Conversion of 2-Phenoxyethanols to Phenoxyacetic Acids. Angew. Chem., Int. Ed. Engl. 1981, 20, 783,  DOI: 10.1002/anie.198107831

    With Au catalysts:

    (c) Milone, C.; Ingoglia, R.; Neri, G.; Pistone, A.; Galvagno, S. Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol. Appl. Catal., A 2001, 211, 251,  DOI: 10.1016/S0926-860X(00)00875-9
    (d) Prati, L.; Rossi, M. Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J. Catal. 1998, 176, 552,  DOI: 10.1006/jcat.1998.2078

    With Ru catalysts:

    (e) Matsumoto, M.; Ito, S. Ruthenium-catalysed oxidation of allyl alcohols by molecular oxygen. J. Chem. Soc., Chem. Commun. 1981, 907,  DOI: 10.1039/c39810000907
    (f) Murahashi, S.; Naota, T.; Hirai, N. Aerobic oxidation of alcohols with ruthenium-cobalt bimetallic catalyst in the presence of aldehydes. J. Org. Chem. 1993, 58, 7318,  DOI: 10.1021/jo00078a002

    With Cu catalysts:

    (g) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion. J. Am. Chem. Soc. 1984, 106, 3374,  DOI: 10.1021/ja00323a064
    (h) Yu, Y.; Zhai, D.; Zhou, Z.; Jiang, S.; Qian, H.; Ma, S. Copper-catalyzed aerobic oxidation of primary alcohols to carboxylic acids. Chem. Commun. 2023, 59, 5281,  DOI: 10.1039/D3CC00963G

    With Fe catalysts:

    (i) Martín, S. E.; Suárez, D. o. F. Catalytic aerobic oxidation of alcohols by Fe(NO3)3–FeBr3. Tetrahedron Lett. 2002, 43, 4475,  DOI: 10.1016/S0040-4039(02)00829-8
    (j) Naik, R.; Joshi, P.; Deshpande, R. K. Polymer encapsulation of metallophthalocyanines: efficient catalysts for aerobic oxidation of alcohols. Catal. Commun. 2004, 5, 195,  DOI: 10.1016/j.catcom.2004.02.002
  4. 4

    For selected books on oxidation of alcohols, see:

    (a) Tojo, G.; Fernández, M. Oxidation of alcohols to aldehydes and ketones: A guide to current common practice; Springer: New York, 2006.
    (b) Tojo, G.; Fernández, M. Oxidation of primary alcohols to carboxylic acids: A guide to current common practice; Springer: New York, 2007.

    For selected recent reviews on aerobic oxidation of alcohols, see:

    (c) Parmeggiani, C.; Matassini, C.; Cardona, F. A step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supports. Green Chem. 2017, 19, 2030,  DOI: 10.1039/C7GC00406K
    (d) Hazra, S.; Malik, E.; Nair, A.; Tiwari, V.; Dolui, P.; Elias, A. J. Catalytic Oxidation of Alcohols and Amines to Value-Added Chemicals using Water as the Solvent. Chem.─Asian J. 2020, 15, 1916,  DOI: 10.1002/asia.202000299
    (e) An, G.; Zhang, X.; Zhang, C.; Gao, H.; Liu, S.; Qin, G.; Qi, H.; Kasemchainan, J.; Zhang, J.; Wang, G. Metal-organic-framework-based materials as green catalysts for alcohol oxidation. Chin. J. Catal. 2023, 50, 126,  DOI: 10.1016/S1872-2067(23)64451-1
  5. 5
    (a) Otera, J.; Nishikido, J. Esterification: Method, Reactions, and Applications; Wiley-VCH: Weinheim, 2010.
    (b) Carey, F. A.; Sundbery, R. G. Advanced Organic Chemistry, Part B: Reactions and Synthsis, 5th ed.; Springer: New York, 2007.
    (c) Ekoue-Kovi, K.; Wolf, C. One-Pot Oxidative Esterification and Amidation of Aldehydes. Chem.─Eur. J. 2008, 14, 6302,  DOI: 10.1002/chem.200800353
    (d) Tang, S.; Yuan, J.; Liu, C.; Lei, A. Direct oxidative esterification of alcohols. Dalton Trans. 2014, 43, 13460,  DOI: 10.1039/C4DT01133C
  6. 6

    For a seminal report on dehydrogenative esterification of primary alcohols, see:

    Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Facile Conversion of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Complexes. J. Am. Chem. Soc. 2005, 127, 10840,  DOI: 10.1021/ja052862b
  7. 7
    (a) Hao, Y.; Chong, Y.; Li, S.; Yang, H. Controlled Synthesis of Au Nanoparticles in the Nanocages of SBA-16: Improved Activity and Enhanced Recyclability for the Oxidative Esterification of Alcohols. J. Phys. Chem. C 2012, 116, 6512,  DOI: 10.1021/jp2093252
    (b) Parreira, L. A.; Bogdanchikova, N.; Pestryakov, A.; Zepeda, T. A.; Tuzovskaya, I.; Farías, M. H.; Gusevskaya, E. V. Nanocrystalline gold supported on Fe-, Ti- and Ce-modified hexagonal mesoporous silica as a catalyst for the aerobic oxidative esterification of benzyl alcohol. Appl. Catal., A 2011, 397, 145,  DOI: 10.1016/j.apcata.2011.02.028
    (c) Liu, P.; Li, C.; Hensen, E. J. M. Efficient Tandem Synthesis of Methyl Esters and Imines by Using Versatile Hydrotalcite-Supported Gold Nanoparticles. Chem.─Eur. J. 2012, 18, 12122,  DOI: 10.1002/chem.201202077
    (d) Buonerba, A.; Noschese, A.; Grassi, A. Highly Efficient Direct Aerobic Oxidative Esterification of Cinnamyl Alcohol with Alkyl Alcohols Catalysed by Gold Nanoparticles Incarcerated in a Nanoporous Polymer Matrix: A Tool for Investigating the Role of the Polymer Host. Chem.─Eur. J. 2014, 20, 5478,  DOI: 10.1002/chem.201303880
    (e) Wei, H.; Li, J.; Yu, J.; Zheng, J.; Su, H.; Wang, X. Gold nanoparticles supported on metal oxides as catalysts for the direct oxidative esterification of alcohols under mild conditions. Inorg. Chim. Acta 2015, 427, 33,  DOI: 10.1016/j.ica.2014.11.024
    (f) Verma, S.; Verma, D.; Sinha, A. K.; Jain, S. L. Palladium complex immobilized on graphene oxide–magnetic nanoparticle composites for ester synthesis by aerobic oxidative esterification of alcohols. Appl. Catal., A 2015, 489, 17,  DOI: 10.1016/j.apcata.2014.10.004
    (g) Wang, L.; Li, J.; Dai, W.; Lv, Y.; Zhang, Y.; Gao, S. Facile and efficient gold-catalyzed aerobic oxidative esterification of activated alcohols. Green Chem. 2014, 16, 2164,  DOI: 10.1039/c3gc42075b
    (h) Liu, C.; Wang, J.; Meng, L.; Deng, Y.; Li, Y.; Lei, A. Palladium-Catalyzed Aerobic Oxidative Direct Esterification of Alcohols. Angew. Chem., Int. Ed. 2011, 50, 5144,  DOI: 10.1002/anie.201008073

    For Cu-catalyzed aerobic oxidative esterification of ethylene glycol with primary or secondary alcohols to a mixture of oxalic acid diesters and byproducts (aldehydes/ketones and homoesterification products), see:

    (i) Morino, Y.; Yatabe, T.; Suzuki, K.; Yamaguchi, K. Cu/N-Oxyl-catalyzed aerobic oxidative esterification to oxalic acid diesters from ethylene glycol via highly selective intermolecular alcohol oxidation. Green Chem. 2022, 24, 2017,  DOI: 10.1039/D1GC04001D
  8. 8
    (a) Oliveira, R. L.; Kiyohara, P. K.; Rossi, L. M. Clean preparation of methyl esters in one-step oxidative esterification of primary alcohols catalyzed by supported gold nanoparticles. Green Chem. 2009, 11, 1366,  DOI: 10.1039/b902499a
    (b) Nielsen, I. S.; Taarning, E.; Egeblad, K.; Madsen, R.; Christensen, C. H. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst. Catal. Lett. 2007, 116, 35,  DOI: 10.1007/s10562-007-9086-9
  9. 9
    Liu, M.; Zhang, Z.; Liu, H.; Xie, Z.; Mei, Q.; Han, B. Transformation of alcohols to esters promoted by hydrogen bonds using oxygen as the oxidant under metal-free conditions. Sci. Adv. 2018, 4, eaas9319  DOI: 10.1126/sciadv.aas9319
  10. 10
    (a) Liu, G.; Li, G.; Song, H. Direct Synthesis of Methyl Propionate from n-Propyl Alcohol and Methanol Using Gold Catalysts. Catal. Lett. 2009, 128, 493,  DOI: 10.1007/s10562-008-9782-0
    (b) Su, F.-Z.; Ni, J.; Sun, H.; Cao, Y.; He, H.-Y.; Fan, K.-N. Gold Supported on Nanocrystalline β-Ga2O3 as a Versatile Bifunctional Catalyst for Facile Oxidative Transformation of Alcohols, Aldehydes, and Acetals into Esters. Chem.─Eur. J. 2008, 14, 7131,  DOI: 10.1002/chem.200800982
    (c) Caporaso, M.; Cravotto, G.; Georgakopoulos, S.; Heropoulos, G.; Martina, K.; Tagliapietra, S. Pd/C-catalyzed aerobic oxidative esterification of alcohols and aldehydes: a highly efficient microwave-assisted green protocol. Beilstein J. Org. Chem. 2014, 10, 1454,  DOI: 10.3762/bjoc.10.149
  11. 11
    Martínez, S.; Veth, L.; Lainer, B.; Dydio, P. Challenges and opportunities in multicatalysis. ACS Catal. 2021, 11, 3891,  DOI: 10.1021/acscatal.0c05725
  12. 12
    (a) Ma, S.; Liu, J.; Li, S.; Chen, B.; Cheng, J.; Kuang, J.; Liu, Y.; Wan, B.; Wang, Y.; Ye, J.; Yu, Q.; Yuan, W.; Yu, S. Development of a General and Practical Iron Nitrate/TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones: Catalysis with Table Salt. Adv. Synth. Catal. 2011, 353, 1005,  DOI: 10.1002/adsc.201100033
    (b) Wang, L.; Shang, S.; Li, G.; Ren, L.; Lv, Y.; Gao, S. Iron/ABNO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones under Ambient Atmosphere. J. Org. Chem. 2016, 81, 2189,  DOI: 10.1021/acs.joc.6b00009
    (c) Hong, M.; Min, J.; Wu, S.; Cui, H.; Zhao, Y.; Li, J.; Wang, S. Metal Nitrate Catalysis for Selective Oxidation of 5-Hydroxymethylfurfural into 2,5-Diformylfuran under Oxygen Atmosphere. ACS Omega 2019, 4, 7054,  DOI: 10.1021/acsomega.9b00391
    (d) Jiang, X.; Zhang, J.; Ma, S. Iron Catalysis for Room-Temperature Aerobic Oxidation of Alcohols to Carboxylic Acids. J. Am. Chem. Soc. 2016, 138, 8344,  DOI: 10.1021/jacs.6b03948
    (e) Nutting, J. E.; Mao, K.; Stahl, S. S. Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity. J. Am. Chem. Soc. 2021, 143, 10565,  DOI: 10.1021/jacs.1c05224
    (f) Li, J.; Liu, J.; Fu, C.; Ma, S. Fe(III)-Catalyzed Aerobic Oxidation of 1,4-Diols. Chin. J. Chem. 2023, 41, 1963,  DOI: 10.1002/cjoc.202200768
  13. 13

    For reports on aerobic oxidative cross-esterification of activated benzylic alcohols and cinnamyl alcohols with noble-metal catalysts, see:

    (a) Miyamura, H.; Yasukawa, T.; Kobayashi, S. Aerobic oxidative esterification of alcohols catalyzed by polymer-incarcerated gold nanoclusters under ambient conditions. Green Chem. 2010, 12, 776,  DOI: 10.1039/b926877d
    (b) Chng, L. L.; Yang, J.; Ying, J. Y. Efficient Synthesis of Amides and Esters from Alcohols under Aerobic Ambient Conditions Catalyzed by a Au/Mesoporous Al2O3 Nanocatalyst. ChemSusChem 2015, 8, 1916,  DOI: 10.1002/cssc.201403469
    (c) Xiao, Q.; Liu, Z.; Bo, A.; Zavahir, S.; Sarina, S.; Bottle, S.; Riches, J. D.; Zhu, H. Catalytic Transformation of Aliphatic Alcohols to Corresponding Esters in O2 under Neutral Conditions Using Visible-Light Irradiation. J. Am. Chem. Soc. 2015, 137, 1956,  DOI: 10.1021/ja511619c
    (d) Mondal, P.; Salam, N.; Mondal, A.; Ghosh, K.; Tuhina, K.; Islam, S. M. A highly active recyclable gold–graphene nanocomposite material for oxidative esterification and Suzuki cross-coupling reactions in green pathway. J. Colloid Interface Sci. 2015, 459, 97,  DOI: 10.1016/j.jcis.2015.07.072
    (e) Tsai, C.-H.; Xu, M.; Kunal, P.; Trewyn, B. G. Aerobic oxidative esterification of primary alcohols over Pd-Au bimetallic catalysts supported on mesoporous silica nanoparticles. Catal. Today 2018, 306, 81,  DOI: 10.1016/j.cattod.2017.01.046
    (f) Li, F.; Li, X.-L.; Li, C.; Shi, J.; Fu, Y. Aerobic oxidative esterification of 5-hydroxymethylfurfural to dimethyl furan-2,5-dicarboxylate by using homogeneous and heterogeneous PdCoBi/C catalysts under atmospheric oxygen. Green Chem. 2018, 20, 3050,  DOI: 10.1039/C8GC01393D
    (g) Salam, N.; Banerjee, B.; Roy, A. S.; Mondal, P.; Roy, S.; Bhaumik, A.; Islam, S. M. Silver nanoparticles embedded over mesoporous organic polymer as highly efficient and reusable nanocatalyst for the reduction of nitroarenes and aerobic oxidative esterification of alcohols. Appl. Catal., A 2014, 477, 184,  DOI: 10.1016/j.apcata.2014.03.014
    (h) Gowrisankar, S.; Neumann, H.; Beller, M. General and Selective Palladium-Catalyzed Oxidative Esterification of Alcohols. Angew. Chem., Int. Ed. 2011, 50, 5139,  DOI: 10.1002/anie.201008035
    (i) Luo, F.; Pan, C.; Cheng, J.; Chen, F. Palladium/NHC-catalyzed tandem benzylic oxidation/oxidative esterification of benzylic alcohols with phenols. Tetrahedron 2011, 67, 5878,  DOI: 10.1016/j.tet.2011.06.060
    (j) Bai, X.-F.; Ye, F.; Zheng, L.-S.; Lai, G.-Q.; Xia, C.-G.; Xu, L.-W. Hydrosilane and bismuth-accelerated palladium catalyzed aerobic oxidative esterification of benzylic alcohols with air. Chem. Commun. 2012, 48, 8592,  DOI: 10.1039/c2cc34117d
    (k) Hu, Y.; Li, B. Efficient and selective palladium-catalyzed direct oxidative esterification of benzylic alcohols under aerobic conditions. Tetrahedron 2017, 73, 7301,  DOI: 10.1016/j.tet.2017.11.025
  14. 14

    For the reports on Pd-catalyzed aerobic oxidative cross-esterification with the promotion of bases, see:

    Powell, A. B.; Stahl, S. S. Aerobic Oxidation of Diverse Primary Alcohols to Methyl Esters with a Readily Accessible Heterogeneous Pd/Bi/Te Catalyst. Org. Lett. 2013, 15, 5072,  DOI: 10.1021/ol402428e
  15. 15
    (a) Huang, X.; Ma, S. Allenation of terminal alkynes with aldehydes and ketones. Acc. Chem. Res. 2019, 52, 1301,  DOI: 10.1021/acs.accounts.9b00023
    (b) Huang, X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Zhang, J.; Ma, S. General CuBr2-catalyzed highly enantioselective approach for optically active allenols from terminal alkynols. Chem. Commun. 2015, 51, 6956,  DOI: 10.1039/C5CC00697J
    (c) Tang, X.; Huang, X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Tang, Y.; Zhang, J.; Yu, Q.; Fu, C.; Ma, S. CuBr2-catalyzed enantioselective routes to highly functionalized and naturally occurring allenes. Org. Chem. Front. 2015, 2, 688,  DOI: 10.1039/C5QO00084J
  16. 16
    Aitzetmüller, K.; Tsevegsüren, N.; Vosmann, K. A New Allenic Fatty Acid in Phlomis (Lamiaceae) Seed Oil. Lipid/Fett 1997, 99, 74,  DOI: 10.1002/lipi.19970990304

Cited By

ARTICLE SECTIONS
Jump To

This article has not yet been cited by other publications.

  • Abstract 摘要

    Figure 1 图 1

    Figure 1. Approaches for the synthesis of esters. (A) Selected important methyl esters. (B) The state of the art of aerobic oxidation of primary alcohols. (C) Traditional approaches for the synthesis of esters. (D) The challenges for the esterification of two alcohols. (E) The concept of relay catalysis for selective aerobic esterification. (F) This work: aerobic cross esterification of primary alcohols with methanol.
    图 1. 酯合成方法。(A) 选择重要的甲酯。(B) 一级醇的空气氧化的最新技术。(C) 酯合成的传统方法。(D) 两种醇酯化的挑战。(E) 选择性空气酯化的中继催化概念。(F) 本研究:一级醇与甲醇的空气交叉酯化。

    Scheme 1

    Scheme 1. Substrate Scopea

    aThe reaction was conducted with 1 (1.0 mmol), MeOH (5.0 mmol), Fe(NO3)3·9H2O (6 mol %), TEMPO (5 mol %), and BiCl3 (10 mol %) in 3 mL of DCE at 50 °C for 48 h with an O2 balloon.

    b4 mL of DCE were used.

    cThe reaction time was 60 h, 47% isolated yield.

    dNMR yield under standard conditions.

    e8 mol % each of Fe(NO3)3·9H2O and TEMPO were used.

    f4 mmol of MeOH were used.

    g8 mol % of Fe(NO3)3·9H2O was used.

    h5 mmol scale reaction.

    i10 mol % of TEMPO was used.

    jNMR yield of the aldehydes in parentheses determined by 1H NMR analysis using dibromomethane as the internal standard.

    kNMR yield of the acetal determined by 1H NMR analysis using dibromomethane as the internal standard.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 16 other publications.

    1. 1
      United Nations World Commission on Environment and Development (WCED). Our Common Future (The Brundtland Report), Annex to General Assembly document A/42/427; Oxford Univ. Press: Oxford, 1987.
    2. 2
      Poliakoff, M.; Licence, P. Green chemistry. Nature 2007, 450, 810,  DOI: 10.1038/450810a
    3. 3

      For selected seminal reports on aerobic oxidation of alcohols via transition-metal catalysis, see the following articles. With Pd catalysts:

      (a) Blackburn, T. F.; Schwartz, J. Homogeneous catalytic oxidation of secondary alcohols to ketones by molecular oxygen under mild conditions. J. Chem. Soc., Chem. Commun. 1977, 157,  DOI: 10.1039/c39770000157
      (b) Fiege, H.; Wedemeyer, K. Activation of Oxidations with Oxygen on Platinum Metals Using the Example of the Conversion of 2-Phenoxyethanols to Phenoxyacetic Acids. Angew. Chem., Int. Ed. Engl. 1981, 20, 783,  DOI: 10.1002/anie.198107831

      With Au catalysts:

      (c) Milone, C.; Ingoglia, R.; Neri, G.; Pistone, A.; Galvagno, S. Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol. Appl. Catal., A 2001, 211, 251,  DOI: 10.1016/S0926-860X(00)00875-9
      (d) Prati, L.; Rossi, M. Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J. Catal. 1998, 176, 552,  DOI: 10.1006/jcat.1998.2078

      With Ru catalysts:

      (e) Matsumoto, M.; Ito, S. Ruthenium-catalysed oxidation of allyl alcohols by molecular oxygen. J. Chem. Soc., Chem. Commun. 1981, 907,  DOI: 10.1039/c39810000907
      (f) Murahashi, S.; Naota, T.; Hirai, N. Aerobic oxidation of alcohols with ruthenium-cobalt bimetallic catalyst in the presence of aldehydes. J. Org. Chem. 1993, 58, 7318,  DOI: 10.1021/jo00078a002

      With Cu catalysts:

      (g) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion. J. Am. Chem. Soc. 1984, 106, 3374,  DOI: 10.1021/ja00323a064
      (h) Yu, Y.; Zhai, D.; Zhou, Z.; Jiang, S.; Qian, H.; Ma, S. Copper-catalyzed aerobic oxidation of primary alcohols to carboxylic acids. Chem. Commun. 2023, 59, 5281,  DOI: 10.1039/D3CC00963G

      With Fe catalysts:

      (i) Martín, S. E.; Suárez, D. o. F. Catalytic aerobic oxidation of alcohols by Fe(NO3)3–FeBr3. Tetrahedron Lett. 2002, 43, 4475,  DOI: 10.1016/S0040-4039(02)00829-8
      (j) Naik, R.; Joshi, P.; Deshpande, R. K. Polymer encapsulation of metallophthalocyanines: efficient catalysts for aerobic oxidation of alcohols. Catal. Commun. 2004, 5, 195,  DOI: 10.1016/j.catcom.2004.02.002
    4. 4

      For selected books on oxidation of alcohols, see:

      (a) Tojo, G.; Fernández, M. Oxidation of alcohols to aldehydes and ketones: A guide to current common practice; Springer: New York, 2006.
      (b) Tojo, G.; Fernández, M. Oxidation of primary alcohols to carboxylic acids: A guide to current common practice; Springer: New York, 2007.

      For selected recent reviews on aerobic oxidation of alcohols, see:

      (c) Parmeggiani, C.; Matassini, C.; Cardona, F. A step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supports. Green Chem. 2017, 19, 2030,  DOI: 10.1039/C7GC00406K
      (d) Hazra, S.; Malik, E.; Nair, A.; Tiwari, V.; Dolui, P.; Elias, A. J. Catalytic Oxidation of Alcohols and Amines to Value-Added Chemicals using Water as the Solvent. Chem.─Asian J. 2020, 15, 1916,  DOI: 10.1002/asia.202000299
      (e) An, G.; Zhang, X.; Zhang, C.; Gao, H.; Liu, S.; Qin, G.; Qi, H.; Kasemchainan, J.; Zhang, J.; Wang, G. Metal-organic-framework-based materials as green catalysts for alcohol oxidation. Chin. J. Catal. 2023, 50, 126,  DOI: 10.1016/S1872-2067(23)64451-1
    5. 5
      (a) Otera, J.; Nishikido, J. Esterification: Method, Reactions, and Applications; Wiley-VCH: Weinheim, 2010.
      (b) Carey, F. A.; Sundbery, R. G. Advanced Organic Chemistry, Part B: Reactions and Synthsis, 5th ed.; Springer: New York, 2007.
      (c) Ekoue-Kovi, K.; Wolf, C. One-Pot Oxidative Esterification and Amidation of Aldehydes. Chem.─Eur. J. 2008, 14, 6302,  DOI: 10.1002/chem.200800353
      (d) Tang, S.; Yuan, J.; Liu, C.; Lei, A. Direct oxidative esterification of alcohols. Dalton Trans. 2014, 43, 13460,  DOI: 10.1039/C4DT01133C
    6. 6

      For a seminal report on dehydrogenative esterification of primary alcohols, see:

      Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Facile Conversion of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Complexes. J. Am. Chem. Soc. 2005, 127, 10840,  DOI: 10.1021/ja052862b
    7. 7
      (a) Hao, Y.; Chong, Y.; Li, S.; Yang, H. Controlled Synthesis of Au Nanoparticles in the Nanocages of SBA-16: Improved Activity and Enhanced Recyclability for the Oxidative Esterification of Alcohols. J. Phys. Chem. C 2012, 116, 6512,  DOI: 10.1021/jp2093252
      (b) Parreira, L. A.; Bogdanchikova, N.; Pestryakov, A.; Zepeda, T. A.; Tuzovskaya, I.; Farías, M. H.; Gusevskaya, E. V. Nanocrystalline gold supported on Fe-, Ti- and Ce-modified hexagonal mesoporous silica as a catalyst for the aerobic oxidative esterification of benzyl alcohol. Appl. Catal., A 2011, 397, 145,  DOI: 10.1016/j.apcata.2011.02.028
      (c) Liu, P.; Li, C.; Hensen, E. J. M. Efficient Tandem Synthesis of Methyl Esters and Imines by Using Versatile Hydrotalcite-Supported Gold Nanoparticles. Chem.─Eur. J. 2012, 18, 12122,  DOI: 10.1002/chem.201202077
      (d) Buonerba, A.; Noschese, A.; Grassi, A. Highly Efficient Direct Aerobic Oxidative Esterification of Cinnamyl Alcohol with Alkyl Alcohols Catalysed by Gold Nanoparticles Incarcerated in a Nanoporous Polymer Matrix: A Tool for Investigating the Role of the Polymer Host. Chem.─Eur. J. 2014, 20, 5478,  DOI: 10.1002/chem.201303880
      (e) Wei, H.; Li, J.; Yu, J.; Zheng, J.; Su, H.; Wang, X. Gold nanoparticles supported on metal oxides as catalysts for the direct oxidative esterification of alcohols under mild conditions. Inorg. Chim. Acta 2015, 427, 33,  DOI: 10.1016/j.ica.2014.11.024
      (f) Verma, S.; Verma, D.; Sinha, A. K.; Jain, S. L. Palladium complex immobilized on graphene oxide–magnetic nanoparticle composites for ester synthesis by aerobic oxidative esterification of alcohols. Appl. Catal., A 2015, 489, 17,  DOI: 10.1016/j.apcata.2014.10.004
      (g) Wang, L.; Li, J.; Dai, W.; Lv, Y.; Zhang, Y.; Gao, S. Facile and efficient gold-catalyzed aerobic oxidative esterification of activated alcohols. Green Chem. 2014, 16, 2164,  DOI: 10.1039/c3gc42075b
      (h) Liu, C.; Wang, J.; Meng, L.; Deng, Y.; Li, Y.; Lei, A. Palladium-Catalyzed Aerobic Oxidative Direct Esterification of Alcohols. Angew. Chem., Int. Ed. 2011, 50, 5144,  DOI: 10.1002/anie.201008073

      For Cu-catalyzed aerobic oxidative esterification of ethylene glycol with primary or secondary alcohols to a mixture of oxalic acid diesters and byproducts (aldehydes/ketones and homoesterification products), see:

      (i) Morino, Y.; Yatabe, T.; Suzuki, K.; Yamaguchi, K. Cu/N-Oxyl-catalyzed aerobic oxidative esterification to oxalic acid diesters from ethylene glycol via highly selective intermolecular alcohol oxidation. Green Chem. 2022, 24, 2017,  DOI: 10.1039/D1GC04001D
    8. 8
      (a) Oliveira, R. L.; Kiyohara, P. K.; Rossi, L. M. Clean preparation of methyl esters in one-step oxidative esterification of primary alcohols catalyzed by supported gold nanoparticles. Green Chem. 2009, 11, 1366,  DOI: 10.1039/b902499a
      (b) Nielsen, I. S.; Taarning, E.; Egeblad, K.; Madsen, R.; Christensen, C. H. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst. Catal. Lett. 2007, 116, 35,  DOI: 10.1007/s10562-007-9086-9
    9. 9
      Liu, M.; Zhang, Z.; Liu, H.; Xie, Z.; Mei, Q.; Han, B. Transformation of alcohols to esters promoted by hydrogen bonds using oxygen as the oxidant under metal-free conditions. Sci. Adv. 2018, 4, eaas9319  DOI: 10.1126/sciadv.aas9319
    10. 10
      (a) Liu, G.; Li, G.; Song, H. Direct Synthesis of Methyl Propionate from n-Propyl Alcohol and Methanol Using Gold Catalysts. Catal. Lett. 2009, 128, 493,  DOI: 10.1007/s10562-008-9782-0
      (b) Su, F.-Z.; Ni, J.; Sun, H.; Cao, Y.; He, H.-Y.; Fan, K.-N. Gold Supported on Nanocrystalline β-Ga2O3 as a Versatile Bifunctional Catalyst for Facile Oxidative Transformation of Alcohols, Aldehydes, and Acetals into Esters. Chem.─Eur. J. 2008, 14, 7131,  DOI: 10.1002/chem.200800982
      (c) Caporaso, M.; Cravotto, G.; Georgakopoulos, S.; Heropoulos, G.; Martina, K.; Tagliapietra, S. Pd/C-catalyzed aerobic oxidative esterification of alcohols and aldehydes: a highly efficient microwave-assisted green protocol. Beilstein J. Org. Chem. 2014, 10, 1454,  DOI: 10.3762/bjoc.10.149
    11. 11
      Martínez, S.; Veth, L.; Lainer, B.; Dydio, P. Challenges and opportunities in multicatalysis. ACS Catal. 2021, 11, 3891,  DOI: 10.1021/acscatal.0c05725
    12. 12
      (a) Ma, S.; Liu, J.; Li, S.; Chen, B.; Cheng, J.; Kuang, J.; Liu, Y.; Wan, B.; Wang, Y.; Ye, J.; Yu, Q.; Yuan, W.; Yu, S. Development of a General and Practical Iron Nitrate/TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones: Catalysis with Table Salt. Adv. Synth. Catal. 2011, 353, 1005,  DOI: 10.1002/adsc.201100033
      (b) Wang, L.; Shang, S.; Li, G.; Ren, L.; Lv, Y.; Gao, S. Iron/ABNO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones under Ambient Atmosphere. J. Org. Chem. 2016, 81, 2189,  DOI: 10.1021/acs.joc.6b00009
      (c) Hong, M.; Min, J.; Wu, S.; Cui, H.; Zhao, Y.; Li, J.; Wang, S. Metal Nitrate Catalysis for Selective Oxidation of 5-Hydroxymethylfurfural into 2,5-Diformylfuran under Oxygen Atmosphere. ACS Omega 2019, 4, 7054,  DOI: 10.1021/acsomega.9b00391
      (d) Jiang, X.; Zhang, J.; Ma, S. Iron Catalysis for Room-Temperature Aerobic Oxidation of Alcohols to Carboxylic Acids. J. Am. Chem. Soc. 2016, 138, 8344,  DOI: 10.1021/jacs.6b03948
      (e) Nutting, J. E.; Mao, K.; Stahl, S. S. Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity. J. Am. Chem. Soc. 2021, 143, 10565,  DOI: 10.1021/jacs.1c05224
      (f) Li, J.; Liu, J.; Fu, C.; Ma, S. Fe(III)-Catalyzed Aerobic Oxidation of 1,4-Diols. Chin. J. Chem. 2023, 41, 1963,  DOI: 10.1002/cjoc.202200768
    13. 13

      For reports on aerobic oxidative cross-esterification of activated benzylic alcohols and cinnamyl alcohols with noble-metal catalysts, see:

      (a) Miyamura, H.; Yasukawa, T.; Kobayashi, S. Aerobic oxidative esterification of alcohols catalyzed by polymer-incarcerated gold nanoclusters under ambient conditions. Green Chem. 2010, 12, 776,  DOI: 10.1039/b926877d
      (b) Chng, L. L.; Yang, J.; Ying, J. Y. Efficient Synthesis of Amides and Esters from Alcohols under Aerobic Ambient Conditions Catalyzed by a Au/Mesoporous Al2O3 Nanocatalyst. ChemSusChem 2015, 8, 1916,  DOI: 10.1002/cssc.201403469
      (c) Xiao, Q.; Liu, Z.; Bo, A.; Zavahir, S.; Sarina, S.; Bottle, S.; Riches, J. D.; Zhu, H. Catalytic Transformation of Aliphatic Alcohols to Corresponding Esters in O2 under Neutral Conditions Using Visible-Light Irradiation. J. Am. Chem. Soc. 2015, 137, 1956,  DOI: 10.1021/ja511619c
      (d) Mondal, P.; Salam, N.; Mondal, A.; Ghosh, K.; Tuhina, K.; Islam, S. M. A highly active recyclable gold–graphene nanocomposite material for oxidative esterification and Suzuki cross-coupling reactions in green pathway. J. Colloid Interface Sci. 2015, 459, 97,  DOI: 10.1016/j.jcis.2015.07.072
      (e) Tsai, C.-H.; Xu, M.; Kunal, P.; Trewyn, B. G. Aerobic oxidative esterification of primary alcohols over Pd-Au bimetallic catalysts supported on mesoporous silica nanoparticles. Catal. Today 2018, 306, 81,  DOI: 10.1016/j.cattod.2017.01.046
      (f) Li, F.; Li, X.-L.; Li, C.; Shi, J.; Fu, Y. Aerobic oxidative esterification of 5-hydroxymethylfurfural to dimethyl furan-2,5-dicarboxylate by using homogeneous and heterogeneous PdCoBi/C catalysts under atmospheric oxygen. Green Chem. 2018, 20, 3050,  DOI: 10.1039/C8GC01393D
      (g) Salam, N.; Banerjee, B.; Roy, A. S.; Mondal, P.; Roy, S.; Bhaumik, A.; Islam, S. M. Silver nanoparticles embedded over mesoporous organic polymer as highly efficient and reusable nanocatalyst for the reduction of nitroarenes and aerobic oxidative esterification of alcohols. Appl. Catal., A 2014, 477, 184,  DOI: 10.1016/j.apcata.2014.03.014
      (h) Gowrisankar, S.; Neumann, H.; Beller, M. General and Selective Palladium-Catalyzed Oxidative Esterification of Alcohols. Angew. Chem., Int. Ed. 2011, 50, 5139,  DOI: 10.1002/anie.201008035
      (i) Luo, F.; Pan, C.; Cheng, J.; Chen, F. Palladium/NHC-catalyzed tandem benzylic oxidation/oxidative esterification of benzylic alcohols with phenols. Tetrahedron 2011, 67, 5878,  DOI: 10.1016/j.tet.2011.06.060
      (j) Bai, X.-F.; Ye, F.; Zheng, L.-S.; Lai, G.-Q.; Xia, C.-G.; Xu, L.-W. Hydrosilane and bismuth-accelerated palladium catalyzed aerobic oxidative esterification of benzylic alcohols with air. Chem. Commun. 2012, 48, 8592,  DOI: 10.1039/c2cc34117d
      (k) Hu, Y.; Li, B. Efficient and selective palladium-catalyzed direct oxidative esterification of benzylic alcohols under aerobic conditions. Tetrahedron 2017, 73, 7301,  DOI: 10.1016/j.tet.2017.11.025
    14. 14

      For the reports on Pd-catalyzed aerobic oxidative cross-esterification with the promotion of bases, see:

      Powell, A. B.; Stahl, S. S. Aerobic Oxidation of Diverse Primary Alcohols to Methyl Esters with a Readily Accessible Heterogeneous Pd/Bi/Te Catalyst. Org. Lett. 2013, 15, 5072,  DOI: 10.1021/ol402428e
    15. 15
      (a) Huang, X.; Ma, S. Allenation of terminal alkynes with aldehydes and ketones. Acc. Chem. Res. 2019, 52, 1301,  DOI: 10.1021/acs.accounts.9b00023
      (b) Huang, X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Zhang, J.; Ma, S. General CuBr2-catalyzed highly enantioselective approach for optically active allenols from terminal alkynols. Chem. Commun. 2015, 51, 6956,  DOI: 10.1039/C5CC00697J
      (c) Tang, X.; Huang, X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Tang, Y.; Zhang, J.; Yu, Q.; Fu, C.; Ma, S. CuBr2-catalyzed enantioselective routes to highly functionalized and naturally occurring allenes. Org. Chem. Front. 2015, 2, 688,  DOI: 10.1039/C5QO00084J
    16. 16
      Aitzetmüller, K.; Tsevegsüren, N.; Vosmann, K. A New Allenic Fatty Acid in Phlomis (Lamiaceae) Seed Oil. Lipid/Fett 1997, 99, 74,  DOI: 10.1002/lipi.19970990304
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.4c01059.

    • Optimizations, experimental procedures, and NMR spectra for obtained compounds (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect