这是用户在 2024-4-15 15:59 为 https://app.immersivetranslate.com/pdf-pro/6d5bcc21-ad62-422c-b878-562b91bae1e1 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_04_15_d309eca20d18ff00e0b5g

Reducing the Dietary Acid Load: How a More Alkaline Diet Benefits Patients With Chronic Kidney Disease
降低膳食酸负荷:碱性饮食如何使慢性肾病患者受益

Caroline Passey, BSc, RD, PhD
Caroline Passey,理学学士,RD,博士

Abstract 抽象

It has been proposed that a low-protein diet will slow progression of chronic kidney disease although studies have not always supported this belief. The accepted practice is that to of protein comes from high biological value (HBV) protein, but this limits patient choice and patients struggle to follow the diet. When a diet with only HBV protein was trialed, there was a significant increase in serum bicarbonate, and patients preferred the diet. The dietary advice given in predialysis clinics was changed. HBV protein was restricted to approximately of total protein, bread and cereal foods were allowed freely, and fruits and vegetables (F&V) were encouraged. Patients who followed the diet have seen a slowing of progression and occasionally regression of their renal function. Both observations and scientific literature indicate that this is because of a reduction in the acid content of the diet. When foods are metabolized, most proteins produce acid, and most F&V produce alkali. A typical -century diet produces 50 to per day which the kidney is challenged to excrete. Acid is excreted with phosphate and is limited to about per day. With chronic kidney disease, this falls progressively to below per day. Historically, ammonium excretion was believed to be excretion of acid , but it is now understood to be a by-product in the neutralization of acid by glutamine. The remaining acid is neutralized or stored within the body. Bone and muscle are lost in order to neutralize the acid. Acid also accumulates within cells, and serum bicarbonate falls. The author postulates that reducing the acid load through a low-protein diet with greater use of vegetable proteins and increased F&V intake will slow progression or occasionally improve renal function while maintaining the nutritional status of the individual.
有人提出,低蛋白饮食会减缓慢性肾病的进展,尽管研究并不总是支持这一观点。公认的做法是蛋白质 来自高生物价值 (HBV) 蛋白质,但这限制了患者的选择,患者难以遵循饮食。当试验仅 含有HBV蛋白的饮食时,血清碳酸氢盐显着增加,患者更喜欢这种饮食。透析前门诊的饮食建议发生了变化。HBV蛋白被限制在总蛋白的大约 范围内,面包和谷类食品被允许自由食用,水果和蔬菜(F&V)被鼓励。遵循饮食的患者已经看到他们的肾功能进展减慢,偶尔消退。观察和科学文献都表明,这是因为饮食中酸含量的降低。当食物被代谢时,大多数蛋白质会产生酸,大多数F&V会产生碱。典型的 世纪饮食每天产生 50 到 肾脏排泄的挑战。酸用磷酸盐排泄,限制在每天左右 。对于慢性肾病,这一数字逐渐下降到每天以下 。从历史上看,铵的排泄被认为是酸 的排泄,但现在它被理解为谷氨酰胺中和酸的副产物。剩余的酸被中和或储存在体内。骨骼和肌肉流失以中和酸。酸也会在细胞内积聚,血清碳酸氢盐会下降。 作者假设,通过低蛋白饮食、更多地使用植物蛋白和增加 F&V 摄入量来减少酸负荷将减缓进展或偶尔改善肾功能,同时保持个体的营养状况。

๑ 2016 by the National Kidney Foundation, Inc. All rights reserved.
๑ 2016 年由美国国家肾脏基金会保留所有权利。

Introduction 介绍

L OW-PROTEIN DIETS (LPDS) have been used in the management of chronic kidney disease (CKD) for more than 100 years. Originally these diets were prescribed to reduce uremic symptoms and improve well-being. Since the 1980s, these diets have been prescribed to slow progression of CKD. The composition of these diets has been debated over the years with regard to both the quantity and type of protein consumed and even whether they should be prescribed at all. Since the late 1960s, the most widely used LPD has been the protein diet or protein per kilogram ideal body weight (IBW). It has been recommended that to of the protein should come from high biological value (HBV) proteins to ensure that the diet provides sufficient essential amino acids to meet protein requirements. Studies using this diet did not show significant slowing of progression and,
100 多年来,L 蛋白饮食 (LPDS) 一直用于慢性肾脏病 (CKD) 的治疗。最初,这些饮食是为了减轻尿毒症症状和改善健康状况。自 1980 年代以来,这些饮食已被规定用于减缓 CKD 的进展。 多年来,这些饮食的组成一直在争论所消耗 的蛋白质的数量和类型,甚至是否应该开处方。 自 1960 年代后期以来,使用最广泛的 LPD 是 蛋白质饮食或 每公斤理想体重 (IBW) 的蛋白质。有人建议 ,蛋白质应来自高生物价值(HBV)的蛋白质,以确保饮食提供足够的必需氨基酸来满足蛋白质需求。 使用这种饮食的研究没有显示进展明显减慢, 并且,
Nutrition and Dietetic Department, Wessex Kidney Centre, Portsmouth Hospitals NHS Trust, Portsmouth, Hampshire, United Kingdom.
英国汉普郡朴茨茅斯医院NHS信托基金威塞克斯肾脏中心营养和饮食部。
Support: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
支持:这项研究没有从公共、商业或非营利部门的资助机构获得任何具体资助。
Financial Disclosure: The authors declare that they have no relevant financial interests.
财务披露:作者声明他们没有相关的财务利益。
Address correspondence to Dr Caroline Passey, BSc, RD, PhD, Lead Renal Dietitian, Queen Alexandra Hospital, Southwick Hill Road, Portsmouth, Hampshire PO6 3LY, United Kingdom. E-mail: caroline.passey@porthosp.nhs.uk
地址:Caroline Passey博士,BSc,RD,PhD,首席肾脏营养师,Queen Alexandra Hospital, Southwick Hill Road, Portsmouth, Hampshire PO6 3LY, United Kingdom。电子邮件: caroline.passey@porthosp.nhs.uk
(C) 2016 by the National Kidney Foundation, Inc. All rights reserved.
(C) 2016 年由美国国家肾脏基金会 (National Kidney Foundation, Inc.) 提供。保留所有权利。
http://dx.doi.org/10.1053/j.jrn.2016.11.006 therefore, many dietitians and medical practitioners may be reluctant to advocate their use.
http://dx.doi.org/10.1053/j.jrn.2016.11.006 因此,许多营养师和医生可能不愿意提倡使用它们。
The recommendation that to of the protein should come from HBV proteins means that most of the protein comes from animal foods and limits the consumption of bread and cereal (low biological value protein or LBV) foods resulting in low energy intake. Special lowprotein foods and energy supplements are used to meet the recommended energy intakes IBW/ IBW). However, patients do not like these special foods, and most patients struggle to follow the diet.
建议 蛋白质应来自HBV蛋白,这意味着大部分蛋白质来自动物性食物,并限制了面包和谷物(低生物价值蛋白质或LBV)食物的消费,导致能量摄入量低。特殊的低蛋白食物和能量补充剂用于满足推荐的能量摄入 量 IBW/ IBW)。然而,患者不喜欢这些特殊食物,大多数患者都难以遵循饮食习惯。
Study and observation of a newly defined LPD with more LBV protein foods has allowed improved dietary flexibility and compliance, but also highlighted the importance of dietary acid load in CKD. This is very significant (Fig. 1). A reduced ability to excrete acid in CKD causes an ongoing accumulation of acid within the body with deleterious effects on muscle mass and bone disease. By reducing the acid load, through a LPD with greater use of LBV proteins and increased fruit and vegetable (F&V) intake, the author postulates that progression to end-stage renal disease can be slowed or improved, while maintaining the nutritional status of the individual. Patients also feel better and have improved appetite.
研究和观察含有更多LBV蛋白食物的新定义的LPD可以提高饮食的灵活性和依从性,但也强调了膳食酸负荷在CKD中的重要性。 这非常重要(图 1)。慢性肾病患者排泄酸的能力降低会导致体内酸持续积聚,对肌肉质量和骨骼疾病产生有害影响。通过减少酸负荷,通过更多地使用LBV蛋白和增加水果和蔬菜(F&V)摄入量的LPD,作者假设可以减缓或改善终末期肾病的进展,同时保持个体的营养状况。患者也感觉好转,食欲也有所改善。
The approach used for this article has been based on personal observations of several hundred patients following an adapted LPD. These observations were not measured or quantified. They were carried out in a clinical setting
本文使用的方法基于对数百名患者在适应 LPD 后的个人观察。这些观察结果没有被测量或量化。它们是在临床环境中进行的
Figure 1. Consequences of a diet with a high dietary acid content in patients with CKD.
图 1.CKD患者饮食酸含量高的后果。
with patients who were showing subtle changes in health which were difficult to quantify. However, when these patients are seen over many years and personally known to the dietetic team, a confidence arose that there would be a scientific reason behind these observations. This led to the exploration of the alkaline diet.
患者表现出难以量化的健康状况的微妙变化。然而,当这些患者被观察多年并为饮食团队所熟知时,人们相信这些观察结果背后是有科学原因的。这导致了对碱性饮食的探索。

A New LPD 新的LPD

A new LPD ( protein IBW/day) was designed with only protein from HBV proteins, and nitrogen balance studies were used to compare this diet with the conventional LPD in a group of patients with CKD. On the new LPD, essential amino acid requirements were met, and nitrogen balance was not significantly different although 5 of the 7 patients were in more positive nitrogen balance on the new LPD. Serum bicarbonate increased significantly with the new LPD but all other biochemical and hematological parameters were unchanged. Total energy intake was similar on both diets, but energy obtained from normal foods increased from day day) to day day; on the new LPD. In addition, patients preferred the flexibility of the new diet.
设计了一种新的LPD( 蛋白质 IBW/天),仅 使用来自HBV蛋白的蛋白质,并使用氮平衡研究将这种饮食与一组CKD患者的常规LPD 进行比较。 在新的LPD上,满足必需氨基酸要求,并且氮平衡没有显着差异,尽管7名患者中有5名在新的LPD上处于更积极的氮平衡状态。血清碳酸氢盐随着新LPD的升高而显著 增加,但所有其他生化和血液学参数均未改变。两种饮食的总能量摄入量相似,但从正常食物中获得的能量从 一天 一天 都在增加; 在新的 LPD 上。此外,患者更喜欢新饮食的灵活性。

Encouraging Observations in the Predialysis Clinic
透析前临床的令人鼓舞的观察结果

In 2008, after the positive response from patients to the new LPD, the diet was adapted for routine use in patients attending our predialysis clinics (glomerular filtration rate [GFR] minute). HBV proteins are restricted to approximately of protein intake (0.6-0.8 g protein/ IBW), bread and cereal foods are allowed freely for energy, and F&V actively encouraged. It is observed that many patients in the predialysis clinics have low intakes of ; however, their consumption is essential to help reduce the acid load. Patients who followed the new diet reported improved appetite and well-being. Subtle improvements with regard to progression of CKD were noticed (personal observation), and more patients had stable (Fig. 2), or occasionally, improved renal function (Fig. 3). The positive effect on patients following the revised LPD has prompted the investigation of acid-base balance in greater detail and the crucial role played by diet.
2008 年,在患者对新 LPD 的积极反应之后,该饮食被调整为就诊透析前诊所的患者的常规使用(肾小球滤过率 [GFR] 分钟)。HBV蛋白被限制在大约 蛋白质摄入量(0.6-0.8克蛋白质/ IBW),面包和谷类食品可以自由获取能量,并积极鼓励F&V。据观察,透析前门诊的许多患者摄入 量较低;然而,它们的消耗对于帮助减少酸负荷至关重要。遵循新饮食的患者报告说食欲和幸福感有所改善。注意到CKD进展的细微改善(个人观察),更多的患者病情稳定(图2),或偶尔改善肾功能(图3)。修订后的 LPD 对患者的积极影响促使人们更详细地研究酸碱平衡以及饮食所起的关键作用。

Background 背景

The acid and alkaline nature of food were recognized more than a century ago. Sherman et al. quantified the potential amounts of acid and alkali by measuring the alkaline ash content of a variety of foods. They suggested that the acid and alkaline elements of the diet should balance each other. Early "nephrologists" (1920s and 1930s) recognized that kidney patients suffered from an excess of acidity. Alkaline diets were used successfully in the treatment of chronic nephritis and hypertension, and patients felt better. However, this aspect of diet seems to have disappeared from mainstream medicine and nutrition, although continued to be advocated by the popular press. Recently, following extensive studies in animal CKD models, Wesson et al. developed the hypothesis that increasing consumption reduces kidney damage and slows progression of CKD. This has been substantiated by them in a number of human studies.
一个多世纪前,人们就认识到食物的酸性和碱性。Sherman等人通过测量各种食物的碱性灰分含量来量化酸和碱的潜在量。 他们建议饮食中的酸性和碱性元素应该相互平衡。早期的“肾病学家”(1920 年代和 1930 年代)认识到肾病患者的酸度过高。碱性饮食成功用于治疗慢性肾炎和高血压,患者感觉好转。 然而,饮食的这一方面似乎已经从主流医学和营养学中消失了,尽管大众媒体继续提倡。 最近,在对动物CKD模型进行广泛研究后, Wesson等人提出了一个假设,即增加 消费可以减少肾脏损伤并减缓CKD的进展。他们在一些人体研究中证实了这一点。

Acid and Alkaline Foods
酸性和碱性食物

When foods containing protein are metabolized, most proteins release acid hydrogen ions) because of the metabolism of amino acids. The amount of acid depends on which amino acids are present: some amino acids are neutral, some acidic, and some alkaline. Lysine, arginine, and histidine are acidic, and when metabolized in the liver generate hydrochloric acid (plus glucose and urea). The amino acids, cysteine and methionine, contain sulfur and are converted to sulfuric acid:
当含有蛋白质的食物被代谢时,由于氨基酸的代谢,大多数蛋白质会释放酸 性氢离子。酸的量取决于存在的氨基酸:有些氨基酸是中性的,有些是酸性的,有些是碱性的。赖氨酸、精氨酸和组氨酸呈酸性,在肝脏代谢时生成盐酸(加上葡萄糖和尿素)。半胱氨酸和蛋氨酸氨基酸含有硫并转化为硫酸:
Figure 2. Patient 1 (female, 77 years with hypertension, Type II diabetes, previous stroke and myocardial infarction, osteoarthritis and single functioning kidney) attended predialysis clinic in December 2012 (glomerular filtration rate: minute). Her diet was high in protein (large portions with main and snack meal) with moderate portions of fruits and vegetables. Protein portions were reduced (urea fell from 27 to in 2 months) and vegetable portions increased including regular salads. The patient has remained well, although troubled by her arthritis, for almost 4 years (recent GFR minute) and is no longer seen in predialysis clinics.
图2.患者1(女,77岁,高血压,II.型糖尿病,既往卒中和心肌梗死,骨关节炎和单功能肾)于2012年12月到透析前门诊就诊(肾小球滤过率: 分钟)。她的饮食中蛋白质含量高(主餐和零食占大部分),水果和蔬菜适量。蛋白质份量减少(尿素 从27份下降到2个月),蔬菜份量增加,包括普通沙拉。尽管受到关节炎的困扰,但患者一直保持良好状态近 4 年(最近的 GFR 分钟),并且不再在透析前诊所就诊。

Most F&V when metabolized produce alkali which neutralizes the acid. contain organic acids such as citric acid and organic salts, for example, potassium citrate. The organic acids, when metabolized, produce equal amounts of hydrogen and base ions, but the organic salts contain base ions but no hydrogen and, therefore, "mop up" hydrogen ions on their metabolism to carbon dioxide and water. This reduces the acid load:
大多数F&V在代谢时会产生碱,从而中和酸。 含有有机酸,如柠檬酸和有机盐,如柠檬酸钾。有机酸在代谢时会产生等量的氢和碱离子,但有机盐含有碱离子但不含氢,因此,氢离子在代谢过程中“清除”为二氧化碳和水。这减少了酸负荷:
Foods which contain phosphate, whether naturally or from food additives, can add acid to the diet. The acidity depends not on the phosphate anion but on the cation to which it is attached and the of the food. For example, phosphoric acid in cola drinks is acidic as is released, whereas the food additive trisodium phosphate is alkaline and will remove .
含有磷酸盐的食物,无论是天然的还是来自食品添加剂的,都会在饮食中增加酸。酸度不取决于磷酸根阴离子,而是取决于它所附着的阳离子和 食物的酸度。例如,可乐饮料中的磷酸 在释放时 是酸性的,而食品添加剂磷酸三钠 是碱性的,会去除
excreted as in the urine
像尿液 一样 排泄
in urine)  在尿液中)
Fats and sugars, unless incompletely metabolized, have only a small effect on acid-base balance.
脂肪和糖,除非代谢不完全,否则对酸碱平衡的影响很小。
Net endogenous acid production (NEAP) can be estimated from dietary constituents together with an estimation of organic acids generated from diet and metabolism and excreted in the urine. A number of formulae exist for
内源性酸净产生量(NEAP)可以从膳食成分中估算出来,也可以从饮食和新陈代谢中产生并从尿液中排出的有机酸的估算值。存在许多公式

Figure 3. Patient 2 (male, 74 year old, with ischemic/hypertensive nephrosclerosis, severe cardiac dysfunction, and previous myocardial infarction) attended predialysis clinic in June 2009 (glomerular filtration rate [GFR]: minute). His diet was high in protein with some fruit but few vegetables and no potatoes. He was advised on a lowprotein diet with added vegetables but no other changes in treatment were made. Protein intake reduced (urea fell from 36 to over the first year) and GFR began to improve. Improvements in cardiac function were also noted and he remained relatively well, until dying from a chest infection 4 years 6 months after his first clinic visit (GFR: minute).
图3.患者2(男,74岁,缺血性/高血压性肾硬化、严重心功能不全、既往心肌梗死)于2009年6月到透析前门诊就诊(肾小球滤过率[GFR]: 分钟)。他的饮食中蛋白质含量高,有一些水果,但蔬菜很少,也没有土豆。医生建议他采用低蛋白饮食和添加蔬菜,但治疗没有做出其他改变。蛋白质摄入量减少(尿素从36 下降到第一年),GFR开始改善。还注意到心脏功能的改善,他一直保持相对健康,直到他第一次门诊就诊后 4 年 6 个月死于胸部感染(GFR: 分钟)。
Table 1. Estimation of Net Endogenous Acid Production (NEAP)
表 1.内源酸净产量(NEAP)估算
Acid production can be estimated from diet or measured in the urine: Estimated NEAP = NAE (all mEq/d)
胃酸的产生可以从饮食中估计或在尿液中测量:估计的 NEAP = NAE(所有 mEq/d)
Diet: Several formulae have been proposed to estimate NEAP. Two of these are as follows:
饮食:已经提出了几种公式来估计NEAP。其中两个如下:
Frassetto NEAP protein potassium
Frassetto NEAP蛋白
Remer NEAP (mEq/d) PRAL + OA
Remer NEAP (mEq/d) PRAL + OA
where PRAL day protein phosphorus potassium
其中PRAL 蛋白
magnesium calcium
镁钙
or  
Urine:  尿:
BSA, body surface area; BW, body weight; , bicarbonate; NAE, net acid excretion; NEAP, net endogenous acid production; , ammonium; , estimate of organic acid production; PRAL, potential renal acid load; TA, titratable acid.
BSA, 体表面积;BW, 体重; 碳酸氢盐;NAE, 净酸排泄;NEAP, 内源酸净产量; 铵; ,有机酸产量的估计;PRAL,潜在肾酸负荷;TA,可滴定酸。
this (Table 1). In Remer's formula, the potential renal acid load (PRAL) of foods is estimated and this is a useful tool to compare foods (Table 2). A typical -century diet releases 50 to per day (PRAL of diet (vegan) to +50 (diet rich in animal protein/cereal foods and low F&V) plus from endogenous metabolism]).
这(表1)。 在Remer的公式中,估计了食物的潜在肾酸负荷(PRAL),这是比较食物的有用工具(表2)。典型的 世纪饮食每天释放 50 至 (饮食 的 PRAL (素食主义者) 至 +50(富含动物蛋白/谷物食品和低 F&V 的饮食)加上 内源性代谢])。

The Role of the Kidney in Maintaining Acid-Base Balance
肾脏在维持酸碱平衡中的作用

The kidney helps maintain acid-base balance by 3 main mechanisms: (1) excretion of acid, (2) neutralization of acid and (3) excretion of anions.
肾脏通过3种主要机制帮助维持酸碱平衡:(1)酸的排泄,(2)酸的中和和(3)阴离子的排泄。

Excretion of Acid 酸的排泄

Dietary acid has to be excreted by the kidney. Phosphate is the primary buffer in the urine and accepts ions . The quantity of phosphate excreted is mainly dependent on dietary phosphate and usually varies between 10 and day. About of the phosphate filtered at the glomerulus is in the monohydrate form and will remove ions. The remaining phosphate is already present in the diprotic form and therefore unable to remove additional hydrogen. When the of the urine falls, creatinine, urate, and other anions filtered at the glomerulus act as urinary buffers, removing additional hydrogen ions. Acid excreted with phosphate and other urinary buffers is known as titratable acid (TA).
膳食酸必须由肾脏排泄。磷酸盐是尿液中的主要缓冲液,接受 离子 。磷酸盐排泄量主要取决于膳食磷酸盐,通常在10天和 10天之间变化。 在肾小球处过滤的磷酸盐大约 是一水合物形式 ,将去除 离子。剩余的磷酸盐已经以二质子子形式 存在,因此无法去除额外的氢。 当尿液下降时,在肾小球过滤的肌酐、尿酸盐和其他阴离子充当尿液缓冲器,去除额外的氢离子。用磷酸盐和其他尿液缓冲液排泄的酸称为可滴定酸 (TA)。

Neutralization of Acid 酸的中和作用

Historically, it was believed that ammonia was also a urinary buffer accepting and thus increasing acid excretion. However, it is now recognized that the remaining acid is not excreted but only neutralized within the kidney and ammonium is a by-product of this. Neutralization of acid occurs through the metabolism of glutamine. In the proximal tubule of the kidney, glutamine is taken from the blood stream and broken down to alphaketoglutarate and ammonium. consumes on its metabolism to glucose, thus reducing the acid
从历史上看,人们认为氨也是一种尿液缓冲剂,可以接受 并增加酸排泄。然而,现在人们认识到,剩余的酸不会排泄,而只会在肾脏内中和,而铵是其副产品。 酸的中和是通过谷氨酰胺的代谢发生的。在肾脏的近端肾小管中,谷氨酰胺从血流中取出并分解为α酮戊二酸 和铵。 消耗其代谢为葡萄糖,从而减少酸
Table 2. The Potential Renal Acid Load (PRAL) of Food (mEq/3.5 oz [100 g] and per Average Portion Size)
表 2.食物的潜在肾酸负荷 (PRAL)(mEq/3.5 oz [100 g] 和每份平均份量)
Food Type
PRAL mEq per Edible
每个 食用的 PRAL mEq
Portion
PRAL mEq per Average Portion Size
每份平均份量的 PRAL mEq
(oz of Portion
(盎司 份量
Hard cheese, for example, cheddar
硬奶酪,例如切达干酪
20
Camembert and similar "soft" cheeses
卡门培尔奶酪和类似的“软”奶酪
15
Meat-all types 所有类型的肉类 8
Fish-all types 鱼类种类 8
Pasta-raw, white 意大利面生,白色 8
White bread 6
White rice-raw 白米生米 4.5 raw weight
Eggs 4
Biscuits 3
Peas, beans, lentils 豌豆、豆类、扁豆 portion
Milk 0.7
Red wine -2.4
Vegetables -2.8 portion
Fruits -3
Potatoes -4 size
PRAL protein phosphorus potassium magnesium calcium (mg/d).
PRAL 蛋白 钙(mg/d)。

load and the ammonium is excreted into the lumen of the nephron:
负载,铵被排泄到肾单位的管腔中:
This ammonium is recycled in the loop of Henle via a medullary shunt, a mechanism that allows fine tuning of acid excretion and may allow additional distal to be excreted without lowering the of the urine. When the diet is very acidic, there are small increases in TA, limited by the amount of phosphate in the diet, but significant increases in ammonium excretion which can increase 10 -fold. This gives flexibility to the body allowing it to neutralize large acid loads. However, ammonium excretion takes several days to maximize as glutamine uptake is stimulated in the proximal tubule together with increased production of the enzymes converting glutamine to
这种铵通过髓质分流在Henle环中循环,这种机制可以微调酸排泄 ,并可能允许在不降低尿液的情况下 排出额外的远端 当饮食非常酸性时,TA略有增加,受饮食中磷酸盐含量的限制,但铵排泄显着增加,可以增加10倍。 这为身体提供了灵活性,使其能够中和大量的酸负荷。然而,铵排泄需要几天时间才能最大化,因为谷氨酰胺的摄取在近端小管中被刺激,同时将谷氨酰胺 转化为

Excretion of Anions 阴离子的排泄

Some organic anions like citrate, oxalate, and urate are excreted in the urine, and this is a loss of alkali to the body as some of these anions, for example, citrate could have been metabolized to alkaline end products. Others, like urate and oxalate, are end products of metabolism. The amount of organic anion excreted is estimated for body surface area and is part of NEAP calculations (Table 2). Organic anion excretion is considered to be fairly constant, although recent studies suggest significant increases of organic anions occur with increased intakes of protein and certain When the urine is very acidic, some of these anions will be excreted in the urine with as organic acids and will be measured as part of TA excretion.
一些有机阴离子,如柠檬酸盐、草酸盐和尿酸盐,通过尿液排泄,这是对身体的碱损失,因为其中一些阴离子,例如柠檬酸盐,可能已经代谢成碱性终产物。其他的,如尿酸盐和草酸盐,是新陈代谢的最终产物。排泄的有机阴离子量是针对体表面积估算的,是NEAP计算的一部分(表2)。有机阴离子排泄被认为是相当恒定的,尽管最近的研究表明,随着蛋白质摄入量的增加,有机阴离子会显着增加,并且当 尿液呈非常酸性时,其中一些阴离子会以 有机酸的形式从尿液中排出,并将作为 TA 排泄的一部分进行测量。
The total amount of acid excreted and neutralized by the kidney can be measured directly from 24-hour urine samples and is known as net acid excretion (NAE).
肾脏排泄和中和的酸总量可以直接从 24 小时尿液样本中测量,称为净酸排泄 (NAE)。
When eating an acidic diet, the amount of bicarbonate excreted is negligible to conserve alkali.
吃酸性饮食时,排泄的碳酸氢盐量可以忽略不计,以保存碱。

How Diet Affects Excretion and Neutralization of Acid in Young Healthy Adults
饮食如何影响年轻健康成年人的排泄和酸的中和作用

The composition of the diet directly affects TA and ammonium excretion to maintain acid-base balance. Schuette has studied how changes in protein and phosphate affect urinary acid excretion under metabolic conditions (Fig. 4). A constant diet with day of F&V and protein from mixed protein sources were provided. When protein intake was trebled (mainly animal protein), there were small increases in TA excretion but significant increases in ammonium excretion. When phosphate intake was increased using an acidic form of phosphate, arginine phosphate, TA excretion trebled with small increases in ammonium excretion. Increases of similar magnitude were seen when protein and phosphate intakes were increased simultaneously. Other studies have shown that if phosphate intake is increased using a neutral form of phosphate, a source that does not contribute to the acid load, then TA increases significantly but ammonium excretion is halved. If soya protein replaces meat protein, ammonium excretion falls significantly (no data on TA). When large doses of sodium bicarbonate day) are given, this neutralizes dietary acid resulting in minimal ammonium and TA excretion and increased bicarbonate excretion.
饮食的组成直接影响TA和铵的排泄,以维持酸碱平衡。Schuette研究了蛋白质和磷酸盐的变化如何影响代谢条件下的尿酸排泄(图4)。 提供了 一天的 F&V 和混合蛋白质来源的恒定饮食。当蛋白质摄入量增加三倍(主要是动物蛋白)时,TA排泄量略有增加,但铵排泄量显著增加。当使用酸性形式的磷酸盐,磷酸精氨酸增加磷酸盐摄入量时,TA排泄量增加了两倍,铵排泄量略有增加。当蛋白质和磷酸盐摄入量同时增加时,也观察到类似幅度的增加。其他研究表明,如果使用中性形式的磷酸盐增加磷酸盐摄入量,这种来源对酸负荷没有贡献,那么 TA 显着增加,但铵排泄量减半。 如果大豆蛋白取代肉类蛋白,铵态排泄量显著下降(没有TA数据)。 给予大剂量的碳酸氢钠时,这会中和膳食酸,导致铵和 TA 排泄最少,碳酸氢盐排泄增加。

How CKD Affects Excretion and Neutralization of Acid
慢性肾病如何影响酸的排泄和中和作用

As GFR falls, the ability of the kidney to excrete and neutralize acid reduces significantly and progressively (Fig. 5). After an acid load (ammonium chloride), TA is about of that found in normal subjects. This is reflected in the modest levels of TA day) reported in patients with CKD stage 3 and 4 , on a free diet. Further reductions in TA are said to occur in CKD stage 5.
随着肾小球滤过率的下降,肾脏排泄和中和酸的能力显着且逐渐下降(图5)。 在酸负荷(氯化铵)之后,TA与正常受试者中的TA大致 相同。 这反映在 CKD 3 期和 4 期患者中报告的适度 TA 日水平,自由饮食。 据说 TA 的进一步减少发生在 CKD 第 5 阶段。
In CKD, ammonium excretion is significantly impaired. Vallet has shown that patients with CKD stage 4 on a free diet had an ammonium excretion of / day (see Fig. 5). This is significantly less ammonium than Schuette recorded with healthy adults on either a protein per day day) or protein per day day) in a diet which contained a significant amount of portions). Higher ammonium excretion would be needed when intake is lower. When large doses of sodium bicarbonate day) are given to patients with CKD, both TA and ammonium excretion fall to almost 0 , as shown in normal patients.
在慢性肾病中,铵排泄严重受损。 Vallet已经表明,自由饮食的CKD 4期患者的铵排泄量为 /天(见图5)。 这比健康成年人在每天 蛋白质或 每天 的蛋白质中记录的铵要少得多),在含有大量 份量的饮食中)。当摄入量较低时 ,需要更高的铵排泄量。当对CKD患者给予大剂量的碳酸 氢钠时,TA和铵的排泄量都下降到几乎为0,如正常患者所示。
The reduction in TA and ammonium excretion seen in CKD may be offset, to some extent, by a reduction in organic anion excretion (alkali), as CKD develops but this has not been quantified.
随着 CKD 的发展,CKD 中 TA 和铵排泄的减少可能会在一定程度上被有机阴离子排泄(碱)的减少所抵消,但这尚未被量化。

How Excess Dietary Acid Damages the Kidney
过量的膳食酸如何损害肾脏

Recent studies show that higher NEAP is associated with faster decline in CKD, and that when dietary acid is neutralized with alkali or increased consumption of , this reduces markers of kidney injury and progression of disease. Kidney damage and progression of CKD may be due to increased angiotensin II and endothelin, both required for the excretion of acid. Increased concentrations of renin-angiotensin-
最近的研究表明,较高的NEAP与CKD的更快下降有关, 并且当膳食酸被碱中和或增加消耗 时,这会减少肾损伤和疾病进展的标志物。 肾脏损伤和 CKD 的进展可能是由于血管紧张素 II 和内皮素增加所致, 这两者都是排泄酸所必需的。 肾素-血管紧张素浓度升高-
Figure 4. Titratable acid and ammonium excretion in healthy adults on diets of varying protein and phosphorus content. Reprinted with permission from Schuette et al. aldosterone system are linked to pathology seen with CKD: increased GFR, renal hypertrophy, proteinuria, tubulointerstitial damage, glomerulosclerosis, inflammation (interleukin 6), and reactive oxygen species. High cortical ammonia concentrations may also cause tubular toxicity and kidney damage. A more vegetable-based diet also alters the gut flora, and this may result in increased production of short chain fatty acids (alkali) and in the production of less nephrotoxic substances. Slowing of progression may also be through the lowering of blood pressure.
图4.不同蛋白质和磷含量的饮食中健康成人的可滴定酸和铵排泄。经 Schuette 等人许可转载。 醛固酮系统与 CKD 的病理学有关:GFR 升高、肾肥大、蛋白尿、肾小管间质损伤、肾小球硬化、炎症(白细胞介素 6)和活性氧。 高皮质氨浓度也可能导致肾小管毒性和肾脏损伤。 以蔬菜为主的饮食也会改变肠道菌群,这可能导致短链脂肪酸(碱) 的产生增加和肾毒性物质的产生减少。 减缓进展也可能通过降低血压来实现。

Evidence for Accumulation of Acid Within the Body
体内酸积聚的证据

As CKD progresses, there is a slow but progressive retention of acid unless dietary intake is significantly altered. Goodman found that CKD patients on diets of 0.6 to protein per kilogram retained per day. In other studies, CKD patients, on an unrestricted diet, retained 12 to per day. Wesson found that acid retention occurs as early as CKD stage 2 in his patients, but these patients were eating very acidic diets (PRAL 62); so this may not be replicated in all patients. Vallet estimates that patients with CKD stages 1 and 2 were able to excrete all the acid in their diets but were retaining acid in CKD stage Patients with normal renal function will retain acid when given a large acid load.
随着慢性肾病的进展,除非饮食摄入量显著改变,否则酸潴留缓慢但渐进。古德曼发现,CKD患者每天的饮食中每公斤保留 0.6至 蛋白质。 在其他研究中,CKD患者在不受限制的饮食中,每天保留12至12 Wesson 发现,他的患者早在CKD第2阶段就出现了酸潴留,但这些患者正在吃非常酸性的饮食(PRAL 62);因此,这可能不会在所有患者中复制。Vallet 估计,CKD 1 期和 2 期患者能够排泄饮食中的所有酸,但在 CKD 阶段 保留酸 肾功能正常的患者在给予大量酸时会保留酸。

How Does the Body Maintain pH
身体如何维持pH值

To maintain health, the of the extracellular fluid must be maintained within tight limits ( : 7.35-7.45). Neutralization, buffering, and storage of acid within the body occur to achieve this.
为了保持健康, 细胞外液必须保持在严格的限制内( :7.35-7.45)。为了实现这一目标,发生了体内酸的中和、缓冲和储存。
As serum bicarbonate concentrations fall, muscle protein degrades to neutralize the dietary acid. The rate of catabolism is inversely proportional to the degree of acidosis.
随着血清碳酸氢盐浓度的下降,肌肉蛋白降解以中和膳食酸。 分解代谢的速率与酸中毒的程度成反比。
Figure 5. Titratable acid and ammonium excretion in patients with chronic kidney disease on an unrestricted diet, according to measured glomerular filtration rate. Reprinted with permission from Wrong et al.
图5.根据测量的肾小球滤过率,不受限制饮食的慢性肾病患者的可滴定酸和铵排泄量。经 Wrong 等人许可转载。
The amino acids released are used for the hepatic synthesis of glutamine. Muscle wasting is evident in to of patients with CKD and increases as GFR falls.
释放的氨基酸用于谷氨酰胺的肝脏合成。CKD患者的肌肉萎缩明显 ,并随着GFR的下降而增加。
Acid is also buffered on the reactive surfaces of bone and connective tissues. Sodium, potassium, and calcium are released from the bone surface and bone resorption occurs, releasing calcium, bicarbonate, and phosphate in exchange for hydrogen. This contributes to the mineral and bone disorders seen in CKD patients.
酸也缓冲在骨骼和结缔组织的反应表面上。 钠、钾和钙从骨表面释放并发生骨吸收,释放钙、碳酸氢盐和磷酸盐以换取氢气。这导致了慢性肾病患者的矿物质和骨骼疾病。
Acid is buffered and stored throughout the body. Studies suggest that about of the retained acid is buffered intracellularly with an additional 30% interstitially; but this probably varies with the circumstances. Within blood, acid is buffered with bicarbonate, hemoglobin, plasma proteins, and phosphate. Most patients with GFR minute have low serum bicarbonate However, serum bicarbonate often remains stable despite continuous acid loading because of all the additional buffering and storage within the body.
酸被缓冲并储存在全身。研究表明,大约 保留的酸在细胞内缓冲,另外 30% 在间隙缓冲;但这可能因情况而异。 在血液中,酸被碳酸氢盐、血红蛋白、血浆蛋白和磷酸盐缓冲。大多数 GFR 分钟患者血清碳酸氢盐水平较低 然而,尽管持续有酸负荷,但血清碳酸氢盐通常保持稳定,因为体内有所有额外的缓冲和储存。
Acid is buffered within cells. The acid diffuses passively across the cell membrane into the intracellular fluid : 6.9-7.2). Low intracellular is associated with increased sodium hydrogen exchanger activity (NHE1) and cellular dysfunction. Acid also enters the interstitial space (part of the extracellular space), which has little buffering capacity. In the interstitial space, hormones and neurotransmitters regulate cell function. Low interstitial contributes to insulin resistance, a problem evident in CKD patients as they approach dialysis.
酸在细胞内缓冲。酸被动地穿过细胞膜扩散到细胞内液 中:6.9-7.2)。细胞 内低与钠氢交换器活性 (NHE1) 增加和细胞功能障碍有关。 酸也进入间质空间(细胞外空间的一部分),其缓冲能力很小。在间质空间中,激素和神经递质调节细胞功能。低间质 会导致胰岛素抵抗, 这是 CKD 患者在接近透析时面临的一个明显问题。

Putting it Into Practice
付诸实践

The dietary advice given to patients in predialysis clinic is summarized in Table 3. There are additional elements to be taken into account.
透析前门诊对患者的饮食建议总结于表3。 还有其他因素需要考虑。

Not All F&V are Alkaline
并非所有的F&V都是碱性的

The predominate anions in are citrate and malate, and when metabolized, they release bicarbonate and thus contribute alkali to the body. In general, the amount of potassium present reflects the alkalizing ability of the F&V; thus, potatoes and squash have high alkalizing ability, and apples and pears have less alkalizing ability. However, contain a wide variety of organic anions and not all those present will contribute alkali. For example, oxalate and tartrate anions cannot be metabolized. When these anions are present in large proportions in a food, for example, spinach contains more than oxalate, then the potassium oxalate cannot be metabolized so does not provide any alkali and any oxalic acid present in the food will release and thus add acid to the body. Some fruits (e.g., cranberries, prunes, plums, and some berries) contain benzoic and quinic acid which are metabolized by gut bacteria to hippuric acid and also increase acid excretion. However, the organic acid content of different is not well documented and varies considerably with the variety, growing and storage conditions, and ripeness of the F&V. The absorption of anions may also be affected by the cooking methods used and other dietary constituents. Until there is a better understanding of this only with high oxalate content has been discouraged.
其中 的主要阴离子是柠檬酸盐和苹果酸盐,当代谢时,它们会释放碳酸氢盐,从而为身体提供碱。一般来说,钾的含量反映了F&V的碱化能力,因此,马铃薯和南瓜的碱化能力较高,而苹果和梨的碱化能力较低。然而,含有各种各样的有机阴离子, 并不是所有存在的有机阴离子都会产生碱。例如,草酸盐和酒石酸盐阴离子不能代谢。当这些阴离子大量存在于食物中时,例如,菠菜含有的不仅仅是 草酸盐,那么草酸钾就不能被代谢,因此不提供任何碱,食物中存在的任何草酸都会释放 出来,从而向身体添加酸。一些水果(例如蔓越莓、李子、李子和一些浆果)含有苯甲酸和奎宁酸,它们被肠道细菌代谢为马尿酸,也会增加酸的排泄。 然而,不同的 有机酸含量没有得到很好的记录,并且随着品种、生长和储存条件以及 F&V 的成熟度而有很大差异。阴离子的吸收也可能受到所用烹饪方法和其他膳食成分的影响。在对此有更好的理解之前,只有 草酸盐含量高的人才被鼓励。

Salt Increases Acidosis 盐会增加酸中毒

Patients are advised to follow a "no added salt" diet. Studies have shown that dietary salt independently increases acid load and lowers serum bicarbonate, and this can account for between and of the acid load of the diet. Patients in predialysis clinics have often reduced their intake of "added salt" but may continue to include many processed foods.
建议患者遵循“不添加盐”饮食。研究表明,膳食盐可以独立地增加酸负荷并降低血清碳酸氢盐,这可以解释饮食的酸负荷。 透析前诊所的患者经常减少“添加盐”的摄入量,但可能会继续包括许多加工食品。

Acid Inducing Food and Drink
酸性食物和饮料

Carbonated drinks, including fizzy water, contain carbonic acid ( : 2-5) and those containing phosphoric acid , that is, Cola have some of the highest levels of acidity. Patients are advised to stop these and switch to tap water ( : 7.4). Phosphate-based additives are used widely, and some of these are acidic; for example, calcium acid pyrophosphate used in meat and potato products. Including more fresh and natural foods in the diet should help reduce these.
碳酸饮料,包括碳酸水,含有碳酸( :2-5)和含有磷酸 的饮料,即可乐的酸度最高。建议患者停止服用这些药物并改用自来水( :7.4)。磷酸盐基添加剂被广泛使用,其中一些是酸性的;例如,用于肉类和马铃薯制品的焦磷 酸钙。在饮食中加入更多新鲜和天然的食物应该有助于减少这些食物。

Consideration of Potassium Intake
钾摄入量的考虑

Advocating a more alkaline diet to patients with advanced CKD is challenging. The alkaline elements of the diet come with potassium; so the quantity advocated has to be carefully considered for each patient, taking into consideration prescribed medication, serum potassium, current dietary intake, and how the dietary changes advocated will affect total potassium intake. For patients on Angiotensin-converting enzyme inhibitors, Angiotensin receptor blockers or potassium sparing diuretics, often presenting with a raised serum potassium, there is more limited ability to alkalize the diet. Patients are given the usual dietary advice to avoid high-potassium foods and to boil vegetables to reduce potassium content although this also reduces the alkaline elements. However, patients are still encouraged to include the beneficial vegetables and fruit within their dietary restrictions. Hyperkalemia has been seen in a few patients, most often as a result of ongoing reduction in renal function rather than as a direct consequence of the dietary advice.
为晚期 CKD 患者提倡碱性饮食具有挑战性。饮食中的碱性元素含有钾;因此,必须仔细考虑每位患者所倡导的钾量,同时考虑处方药、血清钾、当前的饮食摄入量以及所倡导的饮食变化将如何影响总钾摄入量。对于使用血管紧张素转换酶抑制剂、血管紧张素受体阻滞剂或保钾利尿剂的患者,通常表现为血清钾升高,对饮食进行碱化的能力更为有限。患者通常的饮食建议是避免高钾食物,煮蔬菜以减少钾含量,尽管这也会减少碱性元素。 然而,仍然鼓励患者将有益的蔬菜和水果纳入他们的饮食限制中。高钾血症见于少数患者,最常见的原因是肾功能持续下降,而不是饮食建议的直接后果。

Potential Benefits of a More Alkaline Diet
碱性饮食的潜在好处

The LPD, with increased F&V, lowers NEAP and reduces the amount of acid to be managed by the kidneys. This lowers the stimulation of Angiotensin II, aldosterone, and endothelin, which are required to excrete dietary acid and reduces the accumulation of ammonia within the kidney. These measures reduce kidney damage. Regression of CKD may then be possible, as observed in Patient 2 (Fig. 3). Improvement in renal function in response to diet has been
随着 F&V 的增加,LPD 降低了 NEAP 并减少了肾脏要管理的酸量。这降低了血管紧张素 II、醛固酮和内皮素的刺激,这些物质是排泄膳食酸所必需的,并减少了肾脏内氨的积累。这些措施可减少肾脏损伤。CKD的消退是可能的,如患者2所观察到的(图3)。饮食对肾功能的改善
Table 3. Outline of Dietary Recommendations Given to Patients in Predialysis Clinics to Lower Dietary Acid Load
表 3.透析前门诊为降低膳食酸负荷而给予患者的饮食建议概述
Food and Drinks 食品和饮料 Advice PRAL Value (Approximate)
PRAL值(近似值)
Potatoes, sweet potatoes, butternut squash
土豆、红薯、胡桃南瓜
protein)
Have 1 portion oz a day (unless
每天吃 1 份盎司(除非
raised serum potassium) 血清钾升高)
-6 to -8.0
Green leafy vegetables, for example, kale, broccoli,
绿叶蔬菜,例如羽衣甘蓝、西兰花、
Brussel sprouts, cabbage. Onions, garlic, celery,
抱子甘蓝,卷心菜。洋葱、大蒜、芹菜、
zucchini, rutabaga. Salad vegetables, for
西葫芦,大头菜。沙拉蔬菜,用于
example, lettuce, cucumber, radish, bell pepper,
例如,生菜、黄瓜、萝卜、甜椒、
arugula. Sprouted seeds.
芝麻 菜。发芽的种子。
Have 2 to 3 portions at 2 meals a day
每天两餐,每份 2 到 3 份
(advice individualized according to serum
(根据血清 提供个体化建议
concentration) 浓度)
-9 to -13.5
Spinach, sorrel, chard, beetroot
菠菜、酢浆草、甜菜、甜菜根
Avoid due to oxalate content
避免因草酸盐含量
Peas, sweet corn 豌豆、甜玉米 Avoid as acidic due to protein content
避免因蛋白质含量而呈酸性
Fruit
Have 2 to 4 portions ( 3 oz a day (advice
每天 2 到 4 份(3 盎司 )(建议
individualized according to serum
根据血清 进行个体化
concentration) 浓度)
-5 to -10
Rhubarb Avoid due to oxalate content
避免因草酸盐含量
1/2 pint milk (280 mL)/yogurt daily (9 g protein)
每日 1/2 品脱牛奶 (280 mL)/酸奶(9 g 蛋白质)
Less acidic than other animal proteins because of
酸性低于其他动物蛋白,因为
citrate in milk and lactate in fermented products.
牛奶中的柠檬酸盐和发酵产品中的乳酸盐。
2.8
2-4 oz (50-100 g) meat or fish (12-24 g protein)
2-4盎司(50-100克)肉或鱼(12-24克蛋白质)
Or equivalent protein portion as egg. Discourage
或相当于鸡蛋的蛋白质部分。阻止
cheese because of high PRAL.
奶酪,因为PRAL高。
Lentils, beans, or chick peas. Almonds or hazelnuts
扁豆、豆类或鹰嘴豆。杏仁或榛子
Encouraged to include as alternative to some
鼓励将其作为某些
animal protein meals as lower PRAL ( quantities
动物蛋白粉作为较低的PRAL( 数量
of acidic amino acids) and less damaging.
酸性氨基酸)和破坏性较小。
Bread, breakfast cereals, rice, pasta, biscuits,
面包、早餐麦片、米饭、意大利面、饼干、
cakes, pastry (10-20 g protein)
蛋糕、糕点(10-20克蛋白质)
Wholemeal/wholegrain foods are encouraged
鼓励全麦/全麦食品
(lower PRAL) but limited quantities advocated
(较低的PRAL),但提倡的数量有限
when patient trying to lose weight.
当患者试图减肥时。
All foods acidic but provide essential energy for
所有食物都是酸性的,但提供必需的能量
patients with advanced CKD and are generally
晚期 CKD 患者,通常
low in potassium. 钾含量低。
Fats and oils 脂肪和油
Mono and polyunsaturated oils encouraged.
鼓励使用单不饱和油和多不饱和油。
Allowed freely 允许自由
Sugar and preserves 糖和蜜饯
Allowed freely (unless diabetic or trying to lose
允许自由(除非患有糖尿病或试图失去
weight)
Fizzy drinks including diet drinks and carbonated
碳酸饮料,包括无糖饮料和碳酸饮料
water
Avoid. Acidic because of carbonic
避免。由于碳酸而呈酸性
acid phosphoric acid
性磷酸
Salt No added salt (as inhibits acid excretion)
不添加盐(抑制酸排泄)
Total PRAL +5 to -15
Total protein  总蛋白
CKD, chronic kidney disease; PRAL, potential renal acid load.
CKD,慢性肾病;PRAL,潜在的肾酸负荷。
observed previously and attributed to reduced secretion of Angiotensin II. A more alkaline diet will also reduce the accumulation of acid and reduce the metabolic complications associated with CKD such as muscle wasting, bone disease, and insulin resistance.
先前观察到并归因于血管紧张素 II 分泌减少。 碱性饮食还可以减少酸的积累,减少与CKD相关的代谢并发症,如肌肉萎缩、骨骼疾病和胰岛素抵抗。
Patients feel better. Uremic symptoms are reduced with a conventional LPD but would appear to be further reduced with a more alkaline diet. Patients treated by Lyon in the 1930s felt significantly better on an alkaline diet than an acidic diet, although both diets contained the same amount of protein ( protein per kilogram).
患者感觉好多了。使用常规 LPD 可减轻尿毒症症状,但使用碱性较强的饮食似乎会进一步减轻。里昂在 1930 年代治疗的患者在碱性饮食中感觉明显好于酸性饮食,尽管两种饮食都含有相同数量的蛋白质(每公斤 蛋白质)。

Conclusion 结论

Studies using conventional LPDs to slow progression of CKD have not been as affective as expected. A revised LPD was trialed with less animal protein and more F&V. This resulted in some patients showing stable renal function, and a few patients have improved renal function. Patients felt better. Further research went into trying to explain this. This took the form of an exploration of acid base.
使用常规 LPD 减缓 CKD 进展的研究效果不如预期。对修订后的 LPD 进行了试验,其中动物蛋白更少,F&V更多。这导致一些患者表现出稳定的肾功能,少数患者的肾功能得到改善。患者感觉好多了。进一步的研究试图解释这一点。这采取了对酸碱的探索的形式。

The investigation revealed that in healthy kidneys, there is a limited ability to excrete dietary acid and excess acid is neutralized in the kidneys. But in CKD, both the ability to excrete acid and ammonia, a by-product of the neutralization of acid is significantly impaired. The mechanisms associated with this contribute to the ongoing damage to the kidney. Some acid is retained in the body with deleterious effect. Therefore, the balance between the acid and alkaline foods in our diet is absolutely crucial. This aspect of diet is not part of mainstream dietetic or nutritional teaching. Reducing the acid load of the diet offers an exciting new approach to treating patients with CKD.
调查显示,在健康的肾脏中,排泄膳食酸的能力有限,多余的酸在肾脏中被中和。但在CKD中,排泄酸和氨(酸中和的副产物)的能力都显着受损。与此相关的机制会导致对肾脏的持续损害。一些酸滞留在体内,具有有害作用。因此,我们饮食中酸性和碱性食物之间的平衡绝对至关重要。饮食的这一方面不是主流饮食或营养教学的一部分。减少饮食中的酸负荷为治疗CKD患者提供了一种令人兴奋的新方法。

Practical Application 实际应用

An LPD with increased use of vegetable protein and more fruit and vegetables lowers dietary acid intake and reduces the amount of acid to be managed by the kidneys. This reduces kidney damage and may slow progression of CKD. This may also help preserve muscle mass and bone structure. Patients feel better.
增加植物蛋白和更多水果和蔬菜使用的LPD会降低膳食酸的摄入量,并减少肾脏管理的酸量。这减少了肾脏损伤,并可能减缓慢性肾病的进展。这也可能有助于保持肌肉质量和骨骼结构。患者感觉好多了。

References 引用

  1. Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. Engl Med, 1982;307:652-659.
    布伦纳 BM、迈耶 TW、霍斯特特 TH。膳食蛋白质摄入量和肾脏疾病的进展性:血流动力学介导的肾小球损伤在进行性肾小球硬化症衰老、肾脏消融和内源性肾病发病机制中的作用。 英国 医学,1982;307:652-659。
  2. Ritz E, Mehls O, Gilli G, Heuck CC. Protein restriction in the conservative management of uremia. Am J Clin Nutr. 1978;31:1703-1711.
    Ritz E, Mehls O, Gilli G, Heuck CC. 尿毒症保守治疗中的蛋白质限制。Am J Clin Nutr.1978;31:1703-1711.
  3. Bircher G. The conservative management of chronic renal failure: results of a recent survey. J Ren Nutr. 1998;8:83-87.
    Bircher G.慢性肾功能衰竭的保守治疗:最近的一项调查结果。J 任 Nutr.1998;8:83-87.
  4. Maroni BJ. Requirements for protein, calories and fat in the predialysis patient. In: Mitch WE, Klahr S, eds. The Handbook of Nutrition and the Kidney. 3rd ed Philadelphia, USA: Lippincott-Raven; 1998:144-164.
    马罗尼 BJ。透析前患者对蛋白质、卡路里和脂肪的需求。在:Mitch WE,Klahr S,编辑。营养与肾脏手册。美国费城第 3 版:Lippincott-Raven;1998:144-164.
  5. Fouque D, Laville M. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst Rev. 2009:CD001892.
    Fouque D, Laville M. 非糖尿病成人慢性肾病的低蛋白饮食。Cochrane数据库系统修订版2009:CD001892。
  6. Cianciaruso B, Capuano A, D’Amaro E, Nastasi A, Bellizzi V, Bovi G. Dietary compliance to a low protein diet: four years experience of a single unit in the Naples area. In: Albertazzi A, Cappelli P, Del Rosso G, Di Paolo B, Evangelista M, Palmieri P, eds. Nutritional and Pharmacolgical Strategies in Chronic Renal Failure 81. Basel: Karger; 1990:107-114.
    Cianciaruso B, Capuano A, D'Amaro E, Nastasi A, Bellizzi V, Bovi G. 低蛋白饮食的饮食依从性:在那不勒斯地区单个单位的四年经验。在:Albertazzi A,Cappelli P,Del Rosso G,Di Paolo B,Evangelista M,Palmieri P,编辑。慢性肾功能衰竭的营养和药理策略 81.巴塞尔:Karger;1990:107-114.
  7. Passey CMI. Evaluation of Dietary Management of Adults With Chronic Kidney Disease. Great Britain: University of Portsmouth; 2004.
    Passey CMI.成人慢性肾病饮食管理评估。英国:朴茨茅斯大学;2004.
  8. Sherman HC, Gettler AO. The balance of acid-forming and baseforming elements in foods, and its relation to ammonia metabolism. Biol Chem. 1912;11:323-338.
    谢尔曼 HC,盖特勒 AO。食品中酸形成元素和碱形成元素的平衡及其与氨代谢的关系。 生物化学 1912;11:323-338。
  9. Sansum WD, Blatherwick NR, Smith FH. The use of basic diets in the treatment of nephritis. JAMA. 1923;81:883-886.
    Sansum WD、Blatherwick NR、Smith FH。使用基本饮食治疗肾炎。贾马。1923;81:883-886.
  10. Marrack JR. Alkali deficit in nephritis. The Lancet. 1923;2:604-606.
    Marrack JR. 肾炎中的碱缺乏。柳叶刀。1923;2:604-606.
  11. Lyon DM, Dunlop DM, Stewart CP. The effect of acidic and basic diets in chronic nephritis. Edinb Med J. 1931;38:87-108 .
    里昂 DM、邓禄普 DM、斯图尔特 CP。酸性和基本饮食对慢性肾炎的影响。Edinb Med J. 1931 年;38:87-108 .
  12. Grant D, Jean J. Food Combining for Health. Great Britain: HarperCollins Publishers; 1984
    Grant D, Jean J. 食品组合健康。英国:HarperCollins Publishers;1984
  13. Young RO, Young SR. The pH Miracle. Great Britain: Piatkus; 2002.
    年轻的RO,年轻的SR。pH值奇迹。英国:Piatkus;2002.
  14. Wesson DE, Nathan T, Rose T, Simoni J, Tran RM. Dietary protein induces endothelin-mediated kidney injury through enhanced intrinsic acid production. Kidney Int. 2007;71:210-217.
    Wesson DE, Nathan T, Rose T, Simoni J, Tran RM. 膳食蛋白质通过增强内源酸的产生诱导内皮素介导的肾损伤。肾脏国际 2007;71:210-217。
  15. Phisitkul S, Hacker C, Simoni J, Tran RM, Wesson DE. Dietary protein causes a decline in the glomerular filtration rate of the remnant kidney mediated by metabolic acidosis and endothelin receptors. Kidney Int. 2008;73:192-199.
    Phisitkul S、黑客 C、Simoni J、Tran RM、Wesson DE。膳食蛋白质导致代谢性酸中毒和内皮素受体介导的残余肾脏肾小球滤过率下降。肾脏国际 2008;73:192-199。
  16. Wesson DE, Simoni J. Increased tissue acid mediates a progressive decline in the glomerular filtration rate of animals with reduced nephron mass. Kidney Int. 2009;75:929-935.
    Wesson DE, Simoni J. 组织酸的增加介导肾单位质量减少的动物肾小球滤过率的逐渐下降。肾脏国际 2009;75:929-935。
  17. Wesson DE, Simoni J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int. 2010;78:1128-1135.
    Wesson DE, Simoni J. 肾衰竭期间的酸潴留会诱导内皮素和醛固酮的产生,从而导致进行性 GFR 下降,碱饮食改善了这种情况。肾脏国际 2010;78:1128-1135。
  18. Goraya N, Jo CH, Simoni J, Wesson DE. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012;81:86-93.
    戈拉亚 N、乔 CH、西蒙尼 J、韦森 DE。在高血压肾病导致肾小球滤过率中度降低的患者中,用水果和蔬菜或碳酸氢盐减少膳食酸可减轻肾损伤。肾脏国际 2012;81:86-93。
  19. Goraya N, Simoni J, Jo CH, Wesson DE. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol. 2013;8:371-381.
    戈拉亚 N、西蒙尼 J、乔 CH、韦森 DE。用水果和蔬菜或碳酸氢钠治疗 CKD 4 期高血压肾病代谢性酸中毒的比较。Clin J Am Soc 肾素。2013;8:371-381.
  20. Goraya N, Simoni J, Jo CH, Wesson DE. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014;86:1031-1038.
    戈拉亚 N、西蒙尼 J、乔 CH、韦森 DE。用水果和蔬菜或口服碳酸氢盐治疗 3 期慢性肾病患者的代谢性酸中毒可降低尿血管紧张素原并保持肾小球滤过率。肾脏国际 2014;86:1031-1038。
  21. Frassetto LA, Todd KM, Morris RC Jr, Sebastian A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am J Clin Nutr. 1998;68:576-583.
    Frassetto LA, Todd KM, Morris RC Jr, Sebastian A. 从饮食钾和蛋白质含量估计人类内源性非碳酸净产量。Am J Clin Nutr.1998;68:576-583.
  22. Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc. 1995;95:791-797.
    Remer T, Manz F. 食物的潜在肾酸负荷及其对尿液 pH 值的影响。J Am 饮食协会 1995;95:791-797。
  23. Remer T, Dimitriou T, Manz F. Dietary potential renal acid load and renal net acid excretion in adolescents in healthy free living children and adolescents. Am J Clin Nutr. 2003;77:1255-1260.
    Remer T, Dimitriou T, Manz F. 健康自由生活儿童和青少年青少年的饮食潜在肾酸负荷和肾净酸排泄。Am J Clin Nutr.2003;77:1255-1260.
  24. Abelow B. Understanding Acid-Base. United States: Lippincott Williams and Wilkins; 1998.
    Abelow B. 了解酸碱。美国:利平科特·威廉姆斯和威尔金斯;1998.
  25. Halperin ML, Jungas RL. Metabolic production and renal disposal of hydrogen ions. Kidney Int. 1983;24:709-713.
    Halperin ML,Jungas RL。氢离子的代谢产生和肾脏处置。肾脏国际 1983;24:709-713。
  26. Halperin ML, Dhaldi SC, Kamel KS. Physiology of acid-base balance: links with kidney stone prevention. Semin Nephrol. 2006;26:441-446.
    Halperin ML、Dhaldi SC、Kamel KS。酸碱平衡的生理学:与肾结石预防的联系。塞明肾酚。2006;26:441-446.
  27. Hamm LL, Simon EE. Roles and mechanisms of urinary buffer excretion. Am J Physiol Ren Physiol. 1987;253:F595-F605.
    哈姆 LL,西蒙 EE。尿缓冲排泄的作用和机制。Am J Physiol 任 Physiol. 1987;253:F595-F605型
  28. Ibrahim H, Lee YJ, Curthoys NP. Renal response to metabolic acidosis: role of mRNA stabilization. Kidney Int. 2008;73:11-18.
    易卜拉欣 H、李 YJ、Curthoys NP。肾脏对代谢性酸中毒的反应:mRNA稳定的作用。肾脏国际 2008;73:11-18。
  29. Frassetto LA, Shi L, Schloetter M, Sebastian A, Remer T. Established dietary estimates of net acid production do not predict measured net acid excretion in patients with Type 2 diabetes on Paleolithic-Hunter-Gatherertype diets. Eur J Clin Nutr. 2013;67:899-903.
    Frassetto LA, Shi L, Schloetter M, Sebastian A, Remer T. 已建立的净酸产量的膳食估计值并不能预测旧石器时代-狩猎-采集型饮食中 2 型糖尿病患者测量的净酸排泄量。Eur J Clin Nutr.2013;67:899-903.
  30. Schuette SA, Hegsted M, Zemel MB, Linkswiler HM. Renal acid, urinary cyclic AMP, and hydroxyproline excretion as affected by level of protein, sulfur amino acid, and phosphorus intake. Nutr. 1981;111:2106-2116.
    Schuette SA, Hegsted M, Zemel MB, Linkswiler HM. 肾酸、尿环腺苷酸和羟脯氨酸排泄受蛋白质、硫氨基酸和磷摄入量水平的影响。 营养。1981;111:2106-2116.
  31. Relman AS, Lennon EJ, Lemann J Jr. Endogenous production of fixed acid and the measurement of the net balance of acid in normal subjects. J Clin Invest. 1961;40:1621-1630.
    Relman AS, Lennon EJ, Lemann J Jr. 固定酸的内源性产生和正常受试者酸净平衡的测量。J 临床投资。1961;40:1621-1630.
  32. Gausseres N, Catala I, Mahe S, et al. Whole-body protein turnover in humans fed a soy protein-rich vegetable diet. Eur J Clin Nut. 1997;51:308-311.
    Gausseres N, Catala I, Mahe S, et al.喂食富含大豆蛋白的蔬菜饮食的人类的全身蛋白质周转率。Eur J 克林螺母。1997;51:308-311.
  33. Lemann J Jr, Lennon EJ, Goodman AD, Litzow JR, Relman AS. The net balance of acid in subjects given large loads of acid or alkali. J Clin Invest. 1965;44:507-517.
    Lemann J Jr、Lennon EJ、Goodman AD、Litzow JR、Relman AS。给予大量酸或碱的受试者的酸的净平衡。J 临床投资。1965;44:507-517.
  34. Vallet M, Metzger M, Haymann J-P, et al. Urinary ammonia and longterm outcomes in chronic kidney disease. Kidney Int. 2015;88:137-145. http://dx.doi.org/10.1038/ki.2015.52 .
  35. Wrong O, Davies HEF. The excretion of acid in renal disease. QJ Med. 1959;28:259-315.
    错了O,戴维斯HEF。肾病中酸的排泄。QJ 医学 1959;28:259-315。
  36. Uribarri J, Douyon H, Oh MS. A re-evaluation of the urinary parameters of acid production and excretion in patients with chronic renal acidosis. Kidney Int. 1995;47:624-627.
    Uribarri J, Douyon H, Oh MS.重新评估慢性肾性酸中毒患者泌酸和排泄的尿参数。肾脏国际 1995;47:624-627。
  37. Goodman AD, Lemann JJ, Lennon EJ, Relman AS. Production, excretion, and net balance of fixed acid in patients with renal acidosis. J Clin Invest. 1965;44:495-506.
    古德曼 AD、莱曼 JJ、列侬 EJ、雷尔曼 AS。肾性酸中毒患者固定酸的产生、排泄和净平衡。J 临床投资。1965;44:495-506.
  38. Uribarri J, Zia M, Mahmood J, Marcus RA, Oh MS. Acid production in chronic hemodialysis patients. J Am Soc Nephrol. 1998;9:114-120.
    Uribarri J, Zia M, Mahmood J, Marcus RA, Oh MS. 慢性血液透析患者的酸产生。J Am Soc 肾素。1998;9:114-120.
  39. Banerjee T, Crews DC, Wesson DE, et al. High dietary acid load predicts ESRD among adults with CKD. Am Soc Nephrol. 2015;26:1693-1700.
    Banerjee T、Crews DC、Wesson DE 等人。高膳食酸负荷可预测 CKD 成人患者的 ESRD。 Am Soc 肾酚。2015;26:1693-1700.
  40. Scialla JJ, Appel LJ, Astor BC, et al. Net endogenous acid production is associated with a faster decline in GFR in African Americans. Kidney Int. 2012;82:106-112.
    Scialla JJ、Appel LJ、Astor BC 等。内源性酸净产量与非裔美国人的GFR下降速度更快有关。肾脏国际 2012;82:106-112。
  41. Mahajan A, Simoni J, Sheather SJ, Broglio KR, Rajab MH, Wesson DE. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int. 2010;78:303-309.
    Mahajan A、Simoni J、Sheather SJ、Broglio KR、Rajab MH、Wesson DE。每日口服碳酸氢钠可减缓肾小球滤过率在早期高血压肾病中的下降。肾脏国际 2010;78:303-309。
  42. Brito-Ashurst I, Varagunam M, Raftery M, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20:2075-2084.
    Brito-Ashurst I, Varagunam M, Raftery M, Yaqoob MM. 补充碳酸氢盐可减缓慢性肾病的进展并改善营养状况。J Am Soc 肾素。2009;20:2075-2084.
  43. Ruster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol. 2006;17:2985-2991.
    Ruster C, Wolf G. 肾素-血管紧张素-醛固酮系统与肾脏疾病进展。J Am Soc 肾素。2006;17:2985-2991.
  44. Wesson DE. Endogenous endothelins mediate increased acidification in remnant kidneys. J Am Soc Nephrol. 2001;12:1826-1835.
    韦森 DE.内源性内皮素介导残余肾脏酸化增加。J Am Soc 肾素。2001;12:1826-1835.
  45. Dhaun N, Goddard J, Webb DJ. The endothelin system and its antagonism in chronic kidney disease. J Am Soc Nephrol. 2006;17:943-955.
    Dhaun N、戈达德 J、韦伯 DJ。内皮素系统及其在慢性肾病中的拮抗作用。J Am Soc 肾素。2006;17:943-955.
  46. Nath KA, Hostetter M, Hostetter T. Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J Clin Invest. 1985;76:667-675.
    Nath KA, Hostetter M, Hostetter T. 大鼠慢性肾小管间质疾病的病理生理学。膳食酸负荷、氨和补体成分 C3 的相互作用。J 临床投资。1985;76:667-675.
  47. Demigne C, Sabboh H, Puel C, Remesy C, Coxam V. Organic anions and potassium salts in nutrition and metabolism. Nutr Res Rev. 2004;17:249258 .
    Demigne C, Sabboh H, Puel C, Remesy C, Coxam V. 营养和代谢中的有机阴离子和钾盐。营养研究修订版 2004;17:249258 .
  48. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25:657-670.
    拉梅扎尼 A,拉吉 DS。肠道微生物组、肾脏疾病和有针对性的干预措施。J Am Soc 肾素。2014;25:657-670.
  49. Litzow JR, Lemann J Jr, Lennon EJ. The effect of treatment of acidosis on calcium balance in patients with chronic azotemic renal disease. Clin Invest. 1967;46:280-286.
    Litzow JR、Lemann J Jr、Lennon EJ。酸中毒治疗对慢性氮质血症肾病患者钙平衡的影响。 临床投资。1967;46:280-286.
  50. Wesson DE, Simoni J, Broglio K, Sheather S. Acid retention accompanies reduced GFR in humans and increases plasma levels of endothelin and aldosterone. Am J Physiol Ren Physiol. 2011;300:F830-F837.
    Wesson DE, Simoni J, Broglio K, Sheather S. 酸潴留伴随着人类 GFR 的降低,并增加内皮素和醛固酮的血浆水平。Am J 生理学 任 生理学. 2011;300:F830-F837型
  51. Lemann JJr, Litzow JR, Lennon EJ. The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. Clin Invest. 1966;45:1608-1614.
    莱曼 JJr、利佐 JR、列侬 EJ。慢性酸负荷对正常人的影响:骨矿物质参与防御慢性代谢性酸中毒的进一步证据。 临床投资。1966;45:1608-1614.
  52. Ballmer PE, McNurlan MA, Hulter HN, Anderson SE, Garlick PJ, Krapf R. Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest. 1995;95:39-45.
    Ballmer PE, McNurlan MA, Hulter HN, Anderson SE, Garlick PJ, Krapf R. 慢性代谢性酸中毒会降低白蛋白合成并诱导人体负氮平衡。J 临床投资。1995;95:39-45.
  53. Garibotto G, Russo R, Sofia A, et al. Skeletal muscle protein synthesis and degradation in patients with chronic renal failure. Kidney Int. 1994;45:1432-1439.
    Garibotto G、Russo R、Sofia A 等人。慢性肾功能衰竭患者的骨骼肌蛋白质合成和降解。肾脏国际 1994;45:1432-1439。
  54. Kopple JD, Greene T, Chumlea WC, et al. Relationship between nutritional status and the glomerular filtration rate: results from the MDRD study. Kidney Int. 2000;57:1688-1703.
    Kopple JD、Greene T、Chumlea WC 等。营养状况与肾小球滤过率之间的关系:MDRD研究的结果。肾脏国际 2000;57:1688-1703。
  55. Bushinsky DA. Acid-base imbalance and the skeleton. Eur J Nutr. 2001;40:238-244
    布辛斯基 DA。酸碱失衡和骨架。Eur J Nutr.2001;40:238-244
  56. Schwartz WB, Jenson RL, Relman AS. The disposition of acid administered to sodium-depleted subjects: the renal response and the role of the whole body buffers. J Clin Invest. 1954;33:587-597.
    Schwartz WB、Jenson RL、Relman AS。施用给钠耗尽受试者的酸的处置:肾脏反应和全身缓冲的作用。J 临床投资。1954;33:587-597.
  57. Kraut JA, Kurtz I. Metabolic acidosis of CKD: diagnosis, clinical characteristics and treatment. Am J Kidney Dis. 2005;45:978-993.
    CKD的代谢性酸中毒:诊断,临床特征和治疗。美国肾脏疾病杂志 2005;45:978-993。
  58. Wu D, Kraut JA. Role of NHE1 in the cellular dysfunction of acute metabolic acidosis. Am J Nephrol. 2014;40:36-42.
    吴 D, 克劳特 JA.NHE1在急性代谢性酸中毒细胞功能障碍中的作用。我是 J Nephrol。2014;40:36-42.
  59. Marunaka Y. Roles of interstitial fluid in diabetes mellitus: glycolisis and mitochondrial function. World J Diabetes. 2015;6:125-135.
    间质液 在糖尿病中的作用:糖酵解和线粒体功能。世界糖尿病杂志。2015;6:125-135.
  60. Goraya N, Wesson DE. Dietary protein as kidney protection: quality or quantity. J Am Soc Nephrol. 2016;27:1869-1879.
    戈拉亚 N,韦森 DE。膳食蛋白质作为肾脏保护:质量或数量。J Am Soc 肾素。2016;27:1869-1879.
  61. Locatelli F. Is the type of protein in the diet more important than its quantity for slowing progression of chronic renal insufficiency? Nephrol Dial Transpl. 1997;1997:391-393.
    洛卡特利 F.饮食中的蛋白质类型是否比其数量更重要,以减缓慢性肾功能不全的进展?肾 (Nephrol) 刻度盘 Transpl.1997;1997:391-393.
  62. Blatherwick NR, Long LM. Studies of urinary acidity: II. The increased acidity produced by eating prunes and cranberries. J Biol Chem. 1923;57:815-818.
    布拉瑟威克 NR,长 LM。尿酸度研究:II.食用李子和蔓越莓产生的酸度增加。生物化学杂志 1923;57:815-818。
  63. Frassetto LA, Morris RC Jr, Sebastian A. Dietary sodium chloride intake independently predicts the degree of hyperchloremic metabolic acidosis in healthy humans consuming a net acid-producing diet. Am J Physiol Ren Physiol. 2007;293:F521-F525.
    Frassetto LA, Morris RC Jr, Sebastian A. 膳食氯化钠摄入量可独立预测食用净产酸饮食的健康人高氯性代谢性酸中毒的程度。Am J 生理学 任 生理学. 2007;293:F521-F525。
  64. Gillooly M, Bothwell T, Torrance J, et al. The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br J Nutr. 1983;49:331-342.
    Gillooly M、Bothwell T、Torrance J 等人。有机酸、植酸盐和多酚对蔬菜中铁吸收的影响。Br J Nutr.1983;49:331-342.
  65. Ruggenenti P, Perna A, Benini R, et al. In chronic nephropathies prolonged ACE inhibition can induce remission: dynamics of time-dependent changes in GFR. J Am Soc Nephrol. 1999;10:997-1006.
    Ruggenenti P、Perna A、Benini R 等人。在慢性肾病中,延长血管紧张素转换酶抑制可诱导缓解:GFR随时间依赖性变化的动态变化。J Am Soc 肾素。1999;10:997-1006.
  66. Kopple JD, Shinaberger JH, Coburn JW, Sorensen MK, Rubini ME. Evaluating modified protein diets in uremia. J Am Diet Assoc. 1969;54:481-485.
    Kopple JD、Shinaberger JH、Coburn JW、Sorensen MK、Rubini ME。评估尿毒症中的改良蛋白质饮食。J Am 饮食协会 1969;54:481-485。