Mesoporous platinum@copper selenide-based NIR-II photothermal agents with photothermal conversion efficiency over 80% for photoacoustic imaging and targeted cancer therapy
介孔鉑@硒化銅基NIR-II光熱劑,光熱轉換效率超過80%,用於光聲成像和標靶癌症治療
Highlight 強調
- •A mesoporous platinum@copper selenide-based NIR-II photothermal agent was prepared.
製備了介孔鉑@硒化銅基近紅外線-II光熱劑。 - •This photothermal agent has the photothermal conversion efficiency over 80%.
此光熱劑的光熱轉換效率達80%以上。 - •This photothermal agent was used for NIR-II photoacoustic imaging and targeted cancer therapy.
此光熱劑用於 NIR-II 光聲成像和標靶癌症治療。 - •This photothermal agent provides new insights into the design of novel multifunctional biomedical nanomaterials.
這種光熱劑為新型多功能生物醫學奈米材料的設計提供了新的見解。
Abstract 抽象的
提高光熱轉換效率(PCE)是提高光熱治療療效的關鍵。然而,目前製備高PCE光熱劑的功能化或合成方法過於複雜,大大阻礙了光熱療法的發展。在這項研究中,我們開發了一種靶向腫瘤的花狀奈米複合材料,稱為介孔鉑奈米顆粒@Cu 2- x Se-AS1411(MPNPs@Cu 2- x Se-AS1411,表示為MPCSA ),具有顯著的高解析度光聲PCE( PA)成像引導光熱/化學動力學治療腫瘤消融。我們發現 MPNP 作為傳遞 PA 造影劑的載體。 Cu 2- x Se 奈米片由於其在 NIR-II 區域具有強大的局部表面等離子體共振特性,成為有前途的近紅外線 II (NIR-II) PA 成像和光熱/化學動力學治療劑。胺修飾的AS1411適配體連接到花狀MPNPs@Cu 2- x Se表面,可以靶向4T1細胞表面的核仁蛋白,實現MPCSA在小鼠腫瘤部位的累積。值得注意的是,這些MPCSA奈米花在1064 nm雷射照射下表現出高達82.33%的優異PCE,從而實現高效的癌細胞消融並極大地阻礙體內腫瘤生長。這項研究為影像引導的準確癌症診斷和標靶癌症治療鋪平了道路。
Keywords 關鍵字
1. Introduction 一、簡介
光照射是一種常見的外部和遠端刺激,為癌症光療的療效提供了巨大的優勢。近紅外光觸發光熱療法(PTT)因其非侵入性特徵以及能夠穿透深層組織並通過局部加熱效應在復雜的血管化腫瘤微環境(TME)中消融腫瘤的能力而引起了人們的廣泛關注[1] , [2 ] 。利用近紅外光作為外部刺激可以同時控制局部加熱效應的空間和時間,從而最大限度地減少有害的副作用。局域表面等離子體共振(LSPR)是指限制在界面處的等離子體材料中自由載子的集體或相干振盪[3] 。利用空間輪廓固有的亞波長特性的優勢,局部表面等離子體共振可以在奈米材料尺度上累積光和能量,大大增強光與物質的相互作用,從而產生局部增強的電磁場。當皮膚、肌肉、脂肪和血液等生物組織受到近紅外線照射時,腫瘤部位累積的等離子體光熱劑會發生光熱轉換,同時導致局部溫度迅速升高,甚至導致局部溫度升高。下,從而消融癌細胞並抑制腫瘤生長。 迄今為止,大多數光熱劑已製備用於探索第一個近紅外線生物窗口(NIR-I,650-900 nm),表現出淺組織穿透和較差的光熱轉換效率(PCE) [4 ] , [5 ] 。例如,傳統的有機光熱材料吲哚菁綠、酞菁、卟啉、聚苯胺等都存在PCE不足和嚴重的光漂白問題,極大地阻礙了其應用[6] 。此外,碳基光熱奈米材料,包括碳奈米管[7] 、碳奈米點[8]和還原氧化石墨烯[9] ,光吸收係數低,需要複雜的合成和功能化過程。與NIR-I光照射相比,第二次NIR-II光照射(NIR-II,1000-1400 nm)在1.0 W/cm 2的功率密度下可導致更高的皮膚最大允許暴露量。 NIR-II等離子體無機奈米材料,即貴金屬、半導體及其雜化結構,由於其固有的特性,如優異的光穩定性、顯著的PCE、簡單的功能化過程、可調諧等,與其他光熱劑相比,表現出更大的臨床轉化潛力。 因此,有必要設計和建構一種新型無機製劑,與PTT和其他腫瘤治療相結合,以提高療效。
光聲(PA)成像是一種有前途的生物醫學成像技術,它結合了傳統光學成像和超音波成像方式的優點[10] 。當生物組織受到脈衝雷射照射時,內源性或外源性造影劑會將光轉化為熱。隨後,生物組織經歷熱彈性膨脹,從而產生聲波,聲波可以透過超音波換能器收集,並透過數據處理技術轉化為 PA 圖像[11] 、 [12] 。一般來說,最佳的PA造影劑具有高組織滲透性、出色的靈敏度、優異的光穩定性、優異的生物相容性和生物降解性[13] 、 [14] 、 [15] 。然而,傳統的PA影像主要使用可見光範圍(400-650 nm)或NIR-I區域的PA造影劑[16] 。生物組織會發生強烈的光學吸收和散射,從而導致穿透深度淺和對比度低[17] 。 與可見光和NIR-I相比,NIR-II生物窗口中的PA成像可以減少生物組織上嚴重的光散射,削弱背景訊號幹擾,提供強PA訊號,穿透深度可達7厘米,穿透深度可達100-100倍。到目前為止,一些材料,包括碳奈米管[20] 、硫化銅/硒化物[21] 、 [22] 、金奈米材料[23]和共軛聚合物[24] ,已被用作NIR-II PA的生物活性探針影像引導的癌症診斷和治療。然而,迄今為止,關於具有優異靶向性和治療效果的NIR-II PA探針的設計和構建的報導還很少。如今,開發具有增強標靶功效的新型 PA 探針至關重要。
癌症是全世界人類最嚴重的疾病之一,也是人類死亡的主要原因[25] 。在癌症治療方面,傳統的單一模式治療方法有治療效果不佳、標靶性差、對生物組織毒性大、易復發等缺點。採用多模式合併治療可以有效解決上述障礙。 TME與癌症疾病的生長、進展和發展有關,在腫瘤的發生和進化中發揮關鍵作用。與正常組織微環境相比,TME在許多方面具有一些獨特的特徵,包括缺氧[26] 、穀胱甘肽(GSH)水平升高[27]和低pH環境[28] 。因此,開發多模式聯合癌症治療方法以克服障礙並提高療效至關重要。
如今,化學動力學療法(CDT)已成為基於芬頓/類芬頓反應的有效治療抗癌方法。與透過雷射照射活化產生活性氧(ROS)的光動力療法相比,CDT是一種持久性癌症治療方法,直接利用內源性化學能在缺氧條件下觸發ROS產生[16] , [29] 。多價過渡金屬,特別是鐵、銅和錳,參與芬頓/芬頓樣反應,可以提高腫瘤組織中細胞內ROS的含量[30] 。具體地,高價過渡金屬(例如Cu 2+ 、Fe 3+和Mn 4+ )具有可逆的氧化還原特性,因此它們可以用來去除還原物質。隨後,還原的過渡金屬離子可用於芬頓/類芬頓反應。值得注意的是,Cu +催化的類芬頓反應可以在有利的反應條件(中性和弱酸性條件)下發生。 Cu +催化的類 Fenton 反應最大·OH 生成速率比 Fe 2+催化的高 160 倍,因此能夠大大增強 CDT 效果,阻止腫瘤組織的生長和進展[31] 。 因此,迫切需要開發一種具有優異PCE和對癌細胞具有優異靶向能力的新型無機製劑,用於NIR-II介導的PA成像和PTT/CDT,這對於推進科學研究和臨床應用至關重要。
在先前的研究中,介孔二氧化矽通常用作藥物載體[32] 。然而,與介孔二氧化矽相比,介孔鉑奈米顆粒(MPNP)最近已被探索用於生物醫學應用。 MPNP作為藥物載體具有多種優勢[33] 、 [34] 、 [35] 、 [36] ,包括優異的光熱轉換效率、光熱穩定性[36] ,以及由於其慣性驅動的體內反應性而具有優異的生物相容性和低細胞毒性。在這項研究中,使用Pluronic F-127(PF-127)合成的具有介孔結構和大表面積的MPNP可以作為其他奈米材料的載體,為癌症治療鋪平了道路。
AS1411 適體是一種富含 G 的四鏈體 26 聚體 DNA 序列,能夠靶向在 4T1 腫瘤細胞細胞膜上過度表現的核仁素[38] 、 [39] 。 AS1411是最先進的單股DNA適配體之一,已在臨床試驗中選擇並顯示對腫瘤細胞的選擇性攝取[40] 。具有低細胞毒性的AS1411在癌症治療的藥物傳遞方面具有廣泛的潛在應用[41] , [42] 。先前的研究表明,AS1411修飾的奈米材料可以特異性靶向4T1癌細胞,從而增強靶向能力和治療效果[43] , [44] , [45] 。因此,具有優異標靶能力的AS1411修飾奈米材料的設計和應用為開發NIR-II PA成像引導的PTT/CDT試劑提供了有前景的途徑。
在這項工作中,我們開發了一種腫瘤靶向花狀奈米複合材料MPNPs@Cu 2- x Se-AS1411(MPCSA),具有卓越的腫瘤消融能力和優異的生物相容性。此奈米複合材料的合成方案與應用如方案1所示。用PF-127合成的MPNPs具有較大的比表面積。基於此優勢,Cu 2- x Se奈米片被原位合成並在MPNPs上自組裝,產生具有均勻花狀形態的MPNPs@Cu 2- x Se(MPCS)。 Cu 2- x Se 是一種本徵 p 型半導體,具有高密度的自由載流子,在生物 NIR-II 視窗中表現出強局部表面等離子體共振,從而顯著增強 PCE 和 PA 成像訊號。值得注意的是,體外光熱性能研究表明,MPCSA可以在1分鐘內達到70°C,並且在1064 nm雷射照射下具有高達82.33%的PCE。因此,可以輕鬆製備三維MPCS奈米花,從而產生更大的比表面積、更強的PA訊號、MPNPs增強的PCE和銅空位引起的LSPR效應以及更高的腫瘤累積效率。透過利用AS1411-NH 2核仁素適體標靶4T1腫瘤細胞表面的核仁素,與AS1411-NH 2適體綴合的MPCS在4T1荷瘤小鼠的腫瘤部位快速累積。最後,MPCSA奈米複合材料被降解為金屬離子並透過代謝從小鼠體內消除。 我們的工作透過整合 NIR-II PA 成像和 PTT/CDT 效應的功能,為增強 MPCSA 奈米複合材料的抗腫瘤效果提供了可行的方法。

Scheme 1. Schematic diagram of the synthesis of MPCSA and NIR-II PA imaging-guided photothermal/chemodynamic synergistic therapy of tumor tissues.
方案一。 MPCSA和NIR-II PA成像引導的腫瘤組織光熱/化學動力學協同治療的合成示意圖。
2. Experimental section 2.實驗部分
2.1. Materials 2.1.材料
Type | Sequence |
---|---|
AS1411 | 5′-(GGTGGTGGTGGTTGTGGTGGTGGTGG)-3′ |
AS1411-NH2-3′ | 5′-(GGTGGTGGTGGTTGTGGTGGTGGTGG)–NH2-3′ |
本研究中使用的所有化學品和試劑均為分析級,按原樣使用,無需任何進一步純化。聚乙烯吡咯烷酮 (PVP)、二氧化硒 (SeO 2 )、二水合氯化銅 (II) (CuCl 2 ·2H 2 O)、溴化鉀 (KBr)、六水合氯鉑酸 (H 2 PtCl 6 · 6H 2 O)、乙醇、鹽酸抗壞血酸(HCl)、5,5'-二硫代雙(2-硝基苯甲酸)(DTNB)及3,3',5,5'-四甲基聯苯胺( TMB)購自阿拉丁試劑有限公司。自索拉生物科技有限公司。 ',7'-二氯螢光素二乙酸酯
( | DCFH |
---|---|
- | DA |
) | ) |
-(GGTGGTGGTGGTTGTGGTGGTGGTGG)–NH 2 -3′ |
2.2. Characterization 2.2.表徵
透射電子顯微鏡 (TEM) 影像、元素分佈和尺寸分佈在 FEI Talos 200S TEM (Thermo Fisher Scientific Inc.) 上進行,加速電壓為 200 kV。流體動力學直徑和 Zeta 電位值在 Nano Zetasizer(Malvern Panalytical Ltd.)上記錄。紫外-可見光-近紅外線 (UV-Vis-NIR) 吸收光譜在室溫下使用 Agilent CARY 60 光譜儀(Agilent Technologies)記錄。 CCK-8 測定透過 EL800 酶標儀(Bio Tek 儀器)進行測試。 X 射線光電子能譜儀 (XPS) 結果透過 ESCALAB 250Xi XPS (Thermo Fisher Scientific Inc.) 獲得。粉末 X 射線衍射 (XRD) 圖案由 Rigaku D/max 2500/pc 衍射儀 (Rigaku) 使用 Cu Kα 輻射 (λ = 1.5406 Å) 測量。共焦細胞成像在 Zeiss LSM710 雷射掃描顯微鏡(Carl Zeiss AG)上進行。體外和體內NIR-II 光熱性能均透過紅外線熱成像相機(Optris Infrared Sensing,朴茨茅斯)和 1064 nm 雷射進行檢查。多光譜光聲斷層掃描 (MSOT)透過inVision 256-TF 影像系統 (iThera Medical GmbH) 進行記錄。
2.3. Synthesis of MPNPs 2.3. MPNPs的合成
在這項工作中,MPNP 是透過濕化學方法獲得的。在典型實驗中,將 KBr (2,000 mg)、PF-127 (900 mg) 和 AA (0.1 mol/L,30 mL) 依序加入 25 mL 去離子水中,然後進行超音波處理。隨後,將H 2 PtCl 6 ·6H 2 O(0.2 mol/L,1.5 mL)引入上述種子溶液中,然後在70 ℃下靜置15 h。透過離心(8,000 rpm,10 分鐘)收集合成的 Pt 奈米顆粒,用乙醇洗滌三次,並重新分散在乙醇(100 mL)和 HCl(200 μL)的混合物中。然後,在60℃下以磁力攪拌(500rpm)3小時,從Pt奈米粒子表面移除PF-127界面活性劑。最後,以離心(8,000 rpm,10 min)獲得MPNP,以乙醇洗滌三次,重新分散於40 mL乙醇中。
2.4. In-situ synthesis of Cu2-xSe on MPNPs
2.4. MPNPs上Cu 2- x Se 的原位合成
在生長 Cu 2- x Se 之前,將合成的 MPNP 離心(8,000 rpm,10 分鐘),用去離子水洗滌三次,然後重新分散在 7 mL 去離子水中,然後超音波處理幾分鐘。為了在 MPNP 上原位合成 Cu 2- x Se,將 PVP (1.2 g) 溶解在 135 mL 去離子水中。隨後,將1.5mL製備好的MPNP溶液加入PVP水溶液中,並將混合溶液以磁力攪拌5分鐘。然後,將AA(0.4mol/L,6mL)和SeO 2 (5.6mmol/L,1.2mL)依序加入混合溶液中並攪拌5分鐘。此外,將AA(0.4mol/L,12mL)和CuCl 2 ·2H 2 O(11.2mmol/L,1.2mL)加入混合物中,然後在室溫下攪拌48小時。最後,透過離心(12,000rpm,12分鐘)收集最終產物,並用去離子水洗滌3次。在真空條件下,MPCS 樣品在 60 °C 下乾燥過夜。
2.5. Synthesis of MPCSA nanocomposites
2.5. MPCSA奈米複合材料的合成
在典型程序中,將 MPCS (0.05 g) 溶解在 6 mL 去離子水中。隨後,加入AS1411-NH 2 -3'(100 μmol/L,0.4 mL),並在室溫下以1,500 rpm振盪24 h。使用離心(12,000rpm,15分鐘)收集最終產物並用去離子水洗滌三次。 MPCSA 在冷凍乾燥過程中進一步乾燥。
2.6. Peroxidase (POD)-mimic activity of MPCSA
2.6。 MPCSA 的過氧化物酶 (POD) 模擬活性
採用 TMB (0.5 mM) 作為 ROS 指示劑來測量 H 2 O 2存在下 MPCSA 的 POD 模擬活性。然後,透過紫外-可見光吸收光譜記錄混合物和僅 MPCSA 溶液的吸光度值。
2.7. GSH depletion with MPCSA nanocomposites
2.7. MPCSA 奈米複合材料去除 GSH
2.8. Cell culture and cytotoxicity assessment
2.9. In vitro targeting ability of MPCSA to 4T1 cancer cells
2.10. Detection of intracellular hydroxyl radicals
2.11. Animal model and animal ethics
2.12. In vitro and in vivo PA imaging
2.13. In vitro photothermal performance of MPCSA
2.14. Evaluation of the photothermal therapeutic effect of MPCSA
2.15. Histological examination
2.16. Statistical analysis
3. Results and discussion
3.1. Synthesis and characterizations of MPCSA

Fig. 1. Characterization of MPNPs, Cu2-xSe and MPCSA. (a-c) TEM images of (a) MPNPs, (b) Cu2-xSe and (c) MPCSA. (d-h) EDS elemental mappings of MPCSA. (i) Size distribution histogram of MPCSA measured by TEM.

Fig. 2. Characterization of MPNPs, Cu2-xSe, and MPCSA. (a) UV–Vis–NIR spectra of MPNPs and MPCSA. (b) UV–Vis–NIR spectra of MPCSA from 100 to 500 μg/mL. (c) XRD patterns of MPCSA, MPCS, Cu2-xSe, and MPNPs. Standard XRD patterns of Pt (JCPDS No.87–0636) is used as reference. (d) Full-scan XPS spectrum of the MPCSA nano-flowers. (e-f) High-resolution XPS spectrum of MPCSA in (e) Pt 4f region, (f) Cu 2p region, and (g) Se 3d region. The light grey curve indicates the experimental XPS result, and other color curves indicate its corresponding deconvoluted spectra.
3.2. Biocompatibility of MPCSA

Fig. 3. Biocompatibility of MPCSA. (a) Cell viability of HL-7702 and 4T1 cells at varying concentrations of MPCSA after incubation for 24 h. (b) Cell viability of HL-7702 and 4T1 cells under different treatments: 1, Control; 2, PBS+Laser; 3, MPCSA; 4, MPCSA+Laser. Remark: Each treatment was repeated thrice. All data were shown in mean ± standard deviation. The untreated cells were included in the control groups. (c) The tumor cell targeting ability of MPCSA. The CLSM image after incubation of MPCSA (400 μg/mL) with HL-7702 or 4T1 cells for 0.5 h, respectively (λexcitation = 638 nm). (d) Fluorescence images of HL-7702 and 4T1 cells co-stained by Calcein-AM/PI under various treatments. The concentration of MPCSA is 400 μg/mL. (e, f) The mean fluorescence intensity of HL-7702 (e) and 4T1 cells (f) co-stained by Calcien-AM (green fluorescence) and PI (red fluoresence) in Fig. 3d quantified by Image J, respectively. (****p < 0.0001) (g) The mean fluorescence intensity of HL-7702 and 4T1 cells incubated with Cy5-AS1411-MPCS in Fig. 3c quantified by Image J. (***p < 0.001) (h) Schematic illustration of the flower-like Cy5-AS1411-MPCS targeting to the nucleolar protein on the surface of 4T1 cells.
3.3. NIR-II plasmon-enhanced •OH generation

Fig. 4. (a) Diagram of MPCSA reacting with GSH to generate •OH to oxidize TMB. (b) UV–Vis spectra of formation of •OH radicals after different treatments with commercial TMB as the indicator. (c) UV–Vis spectra of GSH depletion in the existence of MPCSA plus H2O2 over time with commercial DTNB as the indicator. (d) The mean fluorescence intensity of DCF (green fluorescence) quantified by Image J corresponding to Fig. 4e (***p < 0.001). (e) Detection of intracellular •OH levels in 4T1 cells under different conditions by staining with commercial DCFH-DA probe. The nuclei of 4T1 cells were stained with DAPI.
3.4. In vitro photothermal properties of MPCSA and in vivo photothermal-enhanced CDT for tumors

Fig. 5. Photothermal properties of MPCSA and in vivo anti-tumor treatment with MPCSA on 4T1-tumor-bearing mice. (a) Schematic diagram of testing in vitro photothermal properties of MPCSA upon laser irradiation. (b) Thermal images of PBS and MPCSA solution at different concentrations. (c) Photothermal response of MPCSA at different concentrations upon 1064-nm laser irradiation. (d) Photothermal response of MPCSA subjected to three 1064-nm laser irradiation on/off cycles. (e) A complete heating and cooling cycle of MPCSA at 400 μg/mL upon 1064 nm laser irradiation, and the associated time constant τ obtained from the positive linear relationship between −ln(θ) and time data. (f) Thermal image of the mice upon 1064-nm laser irradiation at 0, 1, 2, 3, 4, and 5 min after injection of PBS or MPCSA solution (8 mg/kg). (g) Photothermal response at the tumor site after intravenous injection of PBS or MPCSA solution (8 mg/kg) upon 1064-nm laser irradiation.
3.5. NIR-II guided in vitro and in vivo PA imaging of MPCSA

Fig. 6. NIR-II guided in vitro and in vivo PA imaging of MPCSA. (a) In vitro PA imaging of MPCSA at different concentrations upon 1064-nm laser irradiations. (b) PA intensity of different concentrations of MPCSA is depicted in a bar chart. (c) PA signal intensity of MPCSA is linearly dependent on the MPCSA concentration. (d) In vivo PA imaging of tumor tissues after intravenous injection of MPCSA into 4T1-tumor-bearing mouse at varying time points (λ = 1064 nm). (e) PA signal intensity of tumor tissues corresponding to (d).
3.6. PTT effect of MPCSA for targeting in vivo tumor ablation

Fig. 7. In vivo anti-tumor effect with MPCSA on 4T1-tumor-bearing mice. (a) Schematic depiction of the in vivo studies on BALB/C nude mice. (b) Representative digital photos of the 4T1 tumor-bearing mice taken from four groups at the 0, 8th, and 16th day, respectively. (c) Relative tumor volume collected from mice under different treatments. (***p < 0.001) (d) Photograph of dissected tumor tissues at the 16th day. (e) Mouse body weight changes with the prolongation of time under above-mentioned treatments. (f) H&E staining of the collected major organs at the end point.
4. Conclusion
CRediT authorship contribution statement
Declaration of competing interest
Acknowledgments
Appendix A. Supplementary data
Supplementary Data 1.
References
- [1]Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancerChem. Soc. Rev., 48 (7) (2019), pp. 2053-2108
- [2]Photothermal nanomaterials: a powerful light-to-heat converterChem. Rev., 123 (11) (2023), pp. 6891-6952
- [3]Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared windowJ. Am. Chem. Soc., 136 (44) (2014), pp. 15684-15693
- [4]Exfoliated FePS3 nanosheets for T1-weighted magnetic resonance imaging-guided near-infrared photothermal therapy in vivoSci. China Mater., 64 (10) (2021), pp. 2613-2623
- [5]Hydrothermal synthesis of novel rhombic dodecahedral SnS nanocrystals for highly efficient photothermal therapyChem. Commun., 55 (19) (2019), pp. 2789-2792
- [6]Organic molecule-based photothermal agents: an expanding photothermal therapy universeChem. Soc. Rev., 47 (7) (2018), pp. 2280-2297
- [7]In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubesACS Nano, 3 (11) (2009), pp. 3707-3713
- [8]Renal-clearable nickel-doped carbon dots with boosted photothermal conversion efficiency for multimodal imaging-guided cancer therapy in the second near-infrared biowindowAdv. Funct. Mater., 31 (26) (2021), p. 2100549
- [9]Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapyJ. Am. Chem. Soc., 133 (17) (2011), pp. 6825-6831
- [10]Photoacoustic imaging: contrast agents and their biomedical applicationsAdv. Mater., 31 (6) (2019), p. 1805875
- [11]Biomedical photoacoustic imaging for molecular detection and disease diagnosis: “always-on” and “turn-on” probesAdv. Sci., 9 (25) (2022), p. 2202384
- [12]In situ nanozyme-amplified NIR-II phototheranostics for tumor-specific imaging and therapyAdv. Funct. Mater., 31 (37) (2021), p. 2103765
- [13]Advanced photoacoustic imaging applications of near-infrared absorbing organic nanoparticlesSmall, 13 (30) (2017), p. 1700710
- [14]Nanomaterials for photoacoustic imaging in the second near-infrared windowBiomater. Sci., 7 (2) (2019), pp. 472-479
- [15]Ultrathin two-dimensional plasmonic PtAg nanosheets for broadband phototheranostics in both NIR-I and NIR-II biowindowsAdv. Sci., 8 (17) (2021), p. 2100386
- [16]A unique multifunctional nanoenzyme tailored for triggering tumor microenvironment activated NIR-II photoacoustic imaging and chemodynamic/photothermal combined therapyAdv. Healthcare Mater., 11 (3) (2022), p. 2102073
- [17]Photoacoustic tomography: in vivo imaging from organelles to organsScience, 335 (6075) (2012), pp. 1458-1462
- [18]A practical guide to photoacoustic tomography in the life sciencesNat. Methods, 13 (8) (2016), pp. 627-638
- [19]Nanoaggregate probe for breast cancer metastasis through multispectral optoacoustic tomography and aggregation-induced NIR-I/II fluorescence imagingAngew. Chem. Int. Ed., 59 (25) (2020), pp. 10111-10121
- [20]Carbon nanotubes as photoacoustic molecular imaging agents in living miceNat. Nanotechnol., 3 (9) (2008), pp. 557-562
- [21]Degradable and excretable ultrasmall transition metal selenide nanodots for high-performance computed tomography bioimaging-guided photonic tumor nanomedicine in NIR-II biowindowAdv. Funct. Mater., 31 (13) (2021), p. 2008591
- [22]The in situ sulfidation of Cu2O by endogenous H2S for colon cancer theranosticsAngew. Chem. Int. Ed., 57 (48) (2018), pp. 15782-15786
- [23]Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical windowNat. Nanotechnol., 14 (5) (2019), pp. 465-472
- [24]Degradable pseudo conjugated polymer nanoparticles with NIR-II photothermal effect and cationic quaternary phosphonium structural bacteriostasis for anti-infection therapyAdv. Sci., 9 (16) (2022), p. 2200732
- [25]A perspective on cancer cell metastasisScience, 331 (6024) (2011), pp. 1559-1564
- [26]Rhenium(I) coordinated carbon nitride as type II immunogenic cell death inducers for enhancing photoimmunotherapy against triple-negative breast cancerChem. Eng. J., 485 (2024), Article 150154
- [27]A single composition architecture-based nanoprobe for ratiometric photoacoustic imaging of glutathione (GSH) in living miceSmall, 14 (11) (2018), p. 1703400
- [28]The acidic tumor microenvironment: a target for smart cancer nano-theranosticsNatl. Sci. Rev., 5 (2) (2018), pp. 269-286
- [29]DNA-templated Ag@Pd nanoclusters for NIR-II photoacoustic imaging-guided photothermal-augmented nanocatalytic therapyAdv. Healthcare Mater., 12 (22) (2023), p. 2300267
- [30]Near-infrared II plasmonic phototheranostics with glutathione depletion for multimodal imaging-guided hypoxia-tolerant chemodynamic-photocatalytic-photothermal cancer therapy triggered by a single laserSmall, 18 (4) (2022), p. 2105638
- [31]Recent progress in the development of near-infrared fluorescent probes for bioimaging applicationsChem. Soc. Rev., 43 (1) (2014), pp. 16-29
- [32]Dendritic mesoporous nanoparticles: structure, synthesis and propertiesAngew. Chem. Int. Ed., 61 (12) (2022), p. e202112752
- [33]A porous bimetallic Au@Pt core–shell oxygen generator to enhance hypoxia-dampened tumor chemotherapy synergized with NIR-II photothermal therapyACS Nano, 16 (7) (2022), pp. 10711-10728
- [34]Mesoporous PtPd nanoparticles for ligand-mediated and imaging-guided chemo-photothermal therapy of breast cancerNano Res., 13 (6) (2020), pp. 1739-1748
- [35]Shape-regulated photothermal-catalytic tumor therapy using polydopamine@Pt nanozymes with the elicitation of an immune responseSmall, 2309096 (2023)
- [36]Noble metal nanomaterials for NIR-triggered photothermal therapy in cancerAdv. Healthcare Mater., 10 (6) (2021), p. 2001806
- [37]Computed tomography and photoacoustic imaging guided photodynamic therapy against breast cancer based on mesoporous platinum with insitu oxygen generation abilityActa Pharm. Sin. b., 10 (9) (2020), pp. 1719-1729
- [38]Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis cancer therapyJ. Control. Release, 320 (2020), pp. 392-403
- [39]Proteomic and transcriptome profiling of G-quadruplex aptamers developed for cell internalizationAnal. Chem., 93 (14) (2021), pp. 5744-5753
- [40]Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug deliveryACS Appl. Mater. Interfaces, 9 (42) (2017), pp. 36695-36701
- [41]Aptamer photoregulation in vivoProc. Natl. Acad. Sci. u. s. a., 111 (48) (2014), pp. 17099-17103
- [42]Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activationMol. Oncol., 9 (7) (2015), pp. 1392-1405
- [43]A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanismCancer Res., 70 (21) (2010), pp. 8617-8629
- [44]Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomasBiomaterials, 35 (12) (2014), pp. 3840-3850
- [45]An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistanceJ. Control. Release, 208 (2015), pp. 42-51
- [46]A mixed-valence biotinylated Cu(i/ii) complex for tumor-targeted chemodynamic therapy accompanied by GSH depletionInorg. Chem. Front., 10 (14) (2023), pp. 4045-4053
- [47]Spatially controlled preparation of layered metallic–semiconducting metal chalcogenide heterostructuresACS Nano, 15 (7) (2021), pp. 12171-12179
- [48]AS1411 aptamer modified carbon dots via polyethylenimine-assisted strategy for efficient targeted cancer cell imagingCell Prolif., 53 (1) (2020), p. e12713
- [49]The oxidation of platinum under wet conditions observed by electrochemical X-ray photoelectron spectroscopyJ. Am. Chem. Soc., 141 (16) (2019), pp. 6537-6544
- [50]Efficient electrocatalytic reduction of CO2 to ethanol enhanced by spacing effect of Cu-Cu in Cu2-xSe nanosheetsAdv. Funct. Mater., 33 (25) (2023), p. 2214946
- [51]H2O2 self-supply and glutathione depletion engineering nanoassemblies for NIR-II photoacoustic imaging of tumor tissues and photothermal-enhanced gas starvation-primed chemodynamic therapyACS Appl. Mater. Interfaces, 15 (32) (2023), pp. 38309-38322
- [52]A smart near-infrared carbon dot-metal organic framework assemblies for tumor microenvironment-activated cancer imaging and chemodynamic-photothermal combined therapyAdv. Healthcare Mater., 11 (12) (2022), p. 2102759
- [53]Chemodynamic therapy agents Cu(II) complexes of quinoline derivatives induced ER stress and mitochondria-mediated apoptosis in SK-OV-3 cellsEur. J. Med. Chem., 223 (2021), Article 113636
- [54]Microscale heat transfer transduced by surface plasmon resonant gold nanoparticlesJ. Phys. Chem. C, 111 (9) (2007), pp. 3636-3641
Cited by (1)
- 1
- These authors contributed equally.