{:[P=P^(**)e^(-(Delta H)/(R))((1)/(T)-(1)/(T^(**)))],[P^(**):" initial "P" ad "T^(**)],[P:" final "P" at "T]:}\begin{aligned}
& P=P^{*} e^{-\frac{\Delta H}{R}}\left(\frac{1}{T}-\frac{1}{T^{*}}\right) \\
& P^{*}: \text { initial } P \text { ad } T^{*} \\
& P: \text { final } P \text { at } T
\end{aligned}
Ex: normal b.p. of benzene is 353K,Delta vap H=30.8kJ353 \mathrm{~K}, \Delta \operatorname{vap} H=30.8 \mathrm{~kJ} 苯的正常沸點是 353K,Delta vap H=30.8kJ353 \mathrm{~K}, \Delta \operatorname{vap} H=30.8 \mathrm{~kJ}
Plase find vapor prossure of benzene at 293 K 請查找在 293 K 下苯的蒸氣壓
Sol: -(Delta H)/(R)((1)/(T_(2))-(1)/(T_(1)))=-(30800)/(8.314)((1)/(293)-(1)/(353))=-2.14-\frac{\Delta H}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)=-\frac{30800}{8.314}\left(\frac{1}{293}-\frac{1}{353}\right)=-2.14
1 mole H_(2)O(ℓ)H_{2} \mathrm{O}(\ell) at 25^(@)C,V_(m)=(18cm^(3))/((mol))25^{\circ} \mathrm{C}, V_{m}=\frac{18 \mathrm{~cm}^{3}}{\mathrm{~mol}} 1 摩爾 H_(2)O(ℓ)H_{2} \mathrm{O}(\ell) 在 25^(@)C,V_(m)=(18cm^(3))/((mol))25^{\circ} \mathrm{C}, V_{m}=\frac{18 \mathrm{~cm}^{3}}{\mathrm{~mol}}
add I mole H_(2)O(ℓ)\mathrm{H}_{2} \mathrm{O}(\ell) to a large volume of ethanol, 將 I 摩爾 H_(2)O(ℓ)\mathrm{H}_{2} \mathrm{O}(\ell) 添加到大量乙醇中,
14cm^(3)14 \mathrm{~cm}^{3} is the parthal molar volume in ethanol 14cm^(3)14 \mathrm{~cm}^{3} 是乙醇中的部分摩爾體積
the volume occupied by molecules A depends on the identity of molecules BB surrounding AA 分子 A 所佔的體積取決於圍繞 AA 的分子 BB 的身份
H_(2)O\mathrm{H}_{2} \mathrm{O} are held apart by H -bond in C_(2)H_(5)OH,H\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{H}-bond break S hence Vm(H_(2)O)darr\operatorname{Vm}\left(\mathrm{H}_{2} \mathrm{O}\right) \downarrow H_(2)O\mathrm{H}_{2} \mathrm{O} 由氫鍵分開,在 C_(2)H_(5)OH,H\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{H} 鍵斷裂 S 因此 Vm(H_(2)O)darr\operatorname{Vm}\left(\mathrm{H}_{2} \mathrm{O}\right) \downarrow
|(Q^(A))/(B)|\left|\frac{Q^{A}}{B}\right|
Parthal volume of AA in BB
=V_(A+B)-V_(B)=V_(A)=V_{A+B}-V_{B}=V_{A}
change in composition changes T.P. properties of AA and BB 成分的變化改變了 AA 和 BB 的 T.P.性質
Definition of Parthal molar volume Parthal 體積的定義
To find P.M.V. plot total volume verses composition the find slope V_(J)=((del V)/(deln_(j)))_(P*T,n^('))V_{J}=\left(\frac{\partial V}{\partial n_{j}}\right)_{P \cdot T, n^{\prime}} 要找到 P.M.V. 繪製總體積與組成的圖,找到斜率 V_(J)=((del V)/(deln_(j)))_(P*T,n^('))V_{J}=\left(\frac{\partial V}{\partial n_{j}}\right)_{P \cdot T, n^{\prime}} n^(')=n^{\prime}= amount of other componemt n^(')=n^{\prime}= 其他組件的數量
( n_(B)n_{B} )
vitotal volume of sample 樣本的總體積 n_(A)n_{A} : amount of AA n_(A)n_{A} : AA 的數量 V_(A)V_{A} : slope of the plot of total VV as n_(A)n_{A} changes as n_(A)n_{A} changes V_(A)V_{A} : 總 VV 隨著 n_(A)n_{A} 變化而變化時的斜率 n_(A)n_{A} rarr\rightarrow could be NeGATIVE rarr\rightarrow 可能是負面的
{:[(dn_(A))/(∣v^(dixture))],[=V_(A)dn_(A)+V_(B)dn_(B)]:}\begin{aligned}
& \frac{d n_{A}}{\mid v^{d i x t u r e}} \\
&=V_{A} d n_{A}+V_{B} d n_{B}
\end{aligned}
V=int_(0)^(n_(A))gamma_(A)dn_(A)+int_(0)^(n_(B))gamma_(B)dn_(B)V=\int_{0}^{n_{A}} \gamma_{A} d n_{A}+\int_{0}^{n_{B}} \gamma_{B} d n_{B}
total wlancl of mixture =sqrtAn_(A)+gamma_(B)n_(B)=\sqrt{A} n_{A}+\gamma_{B} n_{B}
(valid regardless of how solution is prepared) (無論解決方案如何準備均有效)
Ex: at 25^(@)C,rho25^{\circ} \mathrm{C}, \rho of 50wt%50 \mathrm{wt} \% ethanol/water solution is 在 25^(@)C,rho25^{\circ} \mathrm{C}, \rho 的 50wt%50 \mathrm{wt} \% 乙醇/水溶液中是 0.914g//Cm^(3)0.914 \mathrm{~g} / \mathrm{Cm}^{3} given
V_(Mg50_(4)//H_(2)O)=-1.4cm^(3)//molV_{M g 50_{4} / \mathrm{H}_{2} \mathrm{O}}=-1.4 \mathrm{~cm}^{3} / \mathrm{mol}
salt breaks H -bond in water 鹽打破水中的氫鍵
Ex: Add ethanol to 1 kg water at 25^(@)C25^{\circ} \mathrm{C}, a polynominal fit to the total volume of mixture is 在 25^(@)C25^{\circ} \mathrm{C} 時將乙醇添加到 1 公斤水中,混合物的總體積的多項式擬合為
へ n_(n)n_{n} (mole)
total vol. of amount of ethanol 乙醇的總體積量
mixuture (cm^(3))\left(\mathrm{cm}^{3}\right) 混合物 (cm^(3))\left(\mathrm{cm}^{3}\right)
What is the P.M.V of ethanol 乙醇的 P.M.V 是多少
sol: r_(E)=((del V)/(del ne))=(del V)/(del x)=55-0.72 x+0.09X^(2)r_{E}=\left(\frac{\partial V}{\partial n e}\right)=\frac{\partial V}{\partial x}=55-0.72 x+0.09 X^{2}
for r_(w)r_{w} you need V=f(x)V=f(x) 對於 r_(w)r_{w} ,你需要 V=f(x)V=f(x)
n_(w)^(9)n_{w}^{9}
Partial molar M\mathcal{M} can be used in any extensive state function 部分摩爾 M\mathcal{M} 可以用於任何廣延狀態函數
Partial Molar any extensive state function 部分摩爾任何廣延狀態函數
Partial Molar Gibbs Engy 部分摩爾吉布斯能量
In a mixture, chemical potential (mu)(\mu) is used as P.M. Gibbs Engy. 在混合物中,化學勢能 (mu)(\mu) 被用作 P.M. 吉布斯能。
M\mathcal{M} of a substance changes at the composition does 物質的成分改變時 M\mathcal{M} 會變化
General quad dG=VdP-SdT+u_(A)dn_(A)+u_(B)dn_(B)+dots dots\quad d G=V d P-S d T+u_{A} d n_{A}+u_{B} d n_{B}+\ldots \ldots 一般 quad dG=VdP-SdT+u_(A)dn_(A)+u_(B)dn_(B)+dots dots\quad d G=V d P-S d T+u_{A} d n_{A}+u_{B} d n_{B}+\ldots \ldots
‘physical’ (chemical composition) change ‘物理’(化學成分)變化
when § (T) {:[dG=U_(A)dn_(A)+U_(B)dn_(B)+dots],[max" non-expansion work "]:}\begin{aligned} d G & =U_{A} d n_{A}+U_{B} d n_{B}+\ldots \\ \max & \text { non-expansion work }\end{aligned}
During a chem reaction as reactants are converted to products, non-expansion work (dwadd) arises from changing composition. Mixing at (T) 在化學反應中,當反應物轉化為產品時,因成分變化而產生的非膨脹功(dwadd)會出現。在(T)下混合。
(1)
:.Delta\therefore \Delta mix G < 0G<0 for all compositions :.Delta\therefore \Delta 混合 G < 0G<0 以適用於所有作品 =>\Rightarrow mixing of perfect gas is Always spontaneous in all compositions =>\Rightarrow 完美氣體的混合在所有組成中總是自發的
{:[Delta_("mix ")^(G)=G_(f)-G_(A)=n_(A)RT ln((P_(A))/(P))+n_(B)RT ln((P_(B))/(P))(],[=nRT(x_(A)ln x_(A)+x_(B)ln x_(B))B],[n_(A)","P(n_(B))/(T,P)]:}\begin{aligned}
\Delta_{\text {mix }}^{G}=G_{f}-G_{A} & =n_{A} R T \ln \frac{P_{A}}{P}+n_{B} R T \ln \frac{P_{B}}{P}( \\
& =n R T\left(x_{A} \ln x_{A}+x_{B} \ln x_{B}\right) \mathbb{B} \\
n_{A}, P & \frac{n_{B}}{T, P}
\end{aligned}
mixing perfect gas initially at same press & temp Delta_("mix ")S=-nR(X_(A)ln X_(A)+X_(B)ln X_(B)) > 0\Delta_{\text {mix }} S=-n R\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)>0 for all composition 在相同壓力和溫度下混合完美氣體 Delta_("mix ")S=-nR(X_(A)ln X_(A)+X_(B)ln X_(B)) > 0\Delta_{\text {mix }} S=-n R\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)>0 以獲得所有成分
Ex: For equal amount of pertect gases mixed at PP with total amount of nn moles 例如:在 PP 的條件下混合相等量的保護氣體,總量為 nn 摩爾
{:{:[" chem pot of "],[" A in vapor "]:}quad[[u^(**)],[p^(**):" pure "j][[" chem pot "],[" vapor "p]:}:}\begin{aligned}
& \begin{array}{l}
\text { chem pot of } \\
\text { A in vapor }
\end{array} \quad\left[\begin{array} { l }
{ u ^ { * } } \\
{ p ^ { * } : \text { pure } j }
\end{array} \left[\begin{array}{l}
\text { chem pot } \\
\text { vapor } p
\end{array}\right.\right.
\end{aligned}
Ideal soln 理想溶液
mu_(A)^(**)=mu_(A)^(**)+RT ln((p_(A)^(**))/(p^(theta)))(" pure "A)\mu_{A}^{*}=\mu_{A}^{*}+R T \ln \frac{p_{A}^{*}}{p^{\theta}}(\text { pure } A)
add B
{:[M_(A)=M_(A)^(theta)+RT ln((P_(A))/(P^(**)))(B!=A)],[DeltaM_(A)=M_(A)-M_(A)^(theta)=RT ln((P_(A))/(P_(A)^(**)))]:}\begin{aligned}
& M_{A}=M_{A}^{\theta}+R T \ln \frac{P_{A}}{P^{*}}(B \neq A) \\
& \Delta M_{A}=M_{A}-M_{A}^{\theta}=R T \ln \frac{P_{A}}{P_{A}^{*}}
\end{aligned}
u_(A)=u_(A)^(**)+RT ln x_(A)u_{A}=u_{A}^{*}+R T \ln x_{A} chem pot of AA in an ideal soln or real soln u_(A)=u_(A)^(**)+RT ln x_(A)u_{A}=u_{A}^{*}+R T \ln x_{A} 化學容器的 AA 在理想溶液或實際溶液中
with [B]rarr0[B] \rightarrow 0
Raoult’s Law 拉烏爾定律
P_(A)=X_(A)P_(A)^(**)P_{A}=X_{A} P_{A}^{*}
mole froction of A in liquid phase 液相中 A 的摩爾分率
Ex: Rcoult’s Law
at T=20^(@)CquadP_("benz ")^(**)=75T=20^{\circ} \mathrm{C} \quad P_{\text {benz }}^{*}=75 torr 在 T=20^(@)CquadP_("benz ")^(**)=75T=20^{\circ} \mathrm{C} \quad P_{\text {benz }}^{*}=75 托爾
y_(benz)=(38)/(49)=0.78,y_(m*b)=(21)/(49)=0.22y_{b e n z}=\frac{38}{49}=0.78, y_{m \cdot b}=\frac{21}{49}=0.22
yy : molar froction in gas phase yy : 氣相中的摩爾分數 rarr\rightarrow more volatile specie becomes richer in gas phase rarr\rightarrow 更揮發的物種在氣相中變得更富含氣體
Ideal Dilute solution 理想稀釋溶液 == Real solutions with low solute conc == 低溶質濃度的實際解決方案
[solvent obeys Raoult’s Law 溶劑遵循拉烏爾定律
( ^(B)P_(B)=X_(B)K_(B){ }^{B} P_{B}=X_{B} K_{B}
A K_(B)(K_{B}( press unit) : Henry’s Law constant A K_(B)(K_{B}( press unit) : 亨利定律常數
(Empirical) (經驗的)
other Expressions of Henry’s Law 亨利定律的其他表達式
:.\therefore ideal soln fulls betwen P_(A)^(**)&P_(B)^(**)P_{A}^{*} \& P_{B}^{*} :.\therefore 理想解滿足 P_(A)^(**)&P_(B)^(**)P_{A}^{*} \& P_{B}^{*} 之間
(1) at low [B](X_(B)rarr0)[B]\left(X_{B} \rightarrow 0\right) (1) 在低 [B](X_(B)rarr0)[B]\left(X_{B} \rightarrow 0\right)
solvent molecules (A) are in an environment similar to pure solnet 溶劑分子 (A) 位於類似於純溶劑的環境中
P_(A)∼P_(A)^(**)P_{A} \sim P_{A}^{*}
(2) at low [B] (2) 在低 [B]
solute molecules in a complete different environment 在完全不同的環境中的溶質分子 :.P_(B)\therefore P_{B} largely deviates form P_(B)^(**)P_{B}^{*} :.P_(B)\therefore P_{B} 在很大程度上偏離了 P_(B)^(**)P_{B}^{*}
(3) if A∼BA \sim B molecular structure similar them A+BA+B froms ideal soln that fllows Raoult’s Law (3) 如果 A∼BA \sim B 的分子結構類似它們 A+BA+B 形成理想溶液,則遵循拉烏爾定律
Ex: The vapor PP of chloromethane at various mole fractions in a mixture at 25^(@)C25^{\circ} \mathrm{C} was found as: 例:在 25^(@)C25^{\circ} \mathrm{C} 的混合物中,氯甲烷的蒸氣 PP 在不同的摩爾分數下被發現為:
Real solutions 實際解決方案
Interactions between AA and BB molecules A-A!=A-B!=B-BA-A \neq A-B \neq B-B AA 和 BB 分子 A-A!=A-B!=B-BA-A \neq A-B \neq B-B 之間的相互作用
if Delta_("mixH ")\Delta_{\text {mixH }} is large and postive Delta_("mix ")\Delta_{\text {mix }} is large and nasative 如果 Delta_("mixH ")\Delta_{\text {mixH }} 很大且正數 Delta_("mix ")\Delta_{\text {mix }} 很大且為負數 =>Delta_("mix ")G > 0\Rightarrow \Delta_{\text {mix }} G>0 spontaneous seperation =>Delta_("mix ")G > 0\Rightarrow \Delta_{\text {mix }} G>0 自發分離
Fimmiscible or partially miscible Heating T uarrT \uparrow increase solnbility 不相容或部分相容 加熱 T uarrT \uparrow 增加溶解度
Driving force for mixing is the increase of S(Delta S > 0)S(\Delta S>0) 混合的驅動力是 S(Delta S > 0)S(\Delta S>0) 的增加
Colligative Properties 依數 依數的性質
The propertios that depend only on the number of solute purticlos present NOT their identity normally happens in dilute solutions 依賴於溶質粒子數量而非其身份的性質通常發生在稀溶液中 =>\Rightarrow vapor pree darr,bp uarr\downarrow, b p \uparrow, osmosis P uarrP \uparrow from the presence of solnte mp darrm p \downarrow =>\Rightarrow 蒸氣 pree darr,bp uarr\downarrow, b p \uparrow ,滲透 P uarrP \uparrow 來自 solnte 的存在 mp darrm p \downarrow
Colligative property is based on 2 assumptions 共濟性質基於兩個假設
(1) solute is not volatile ( p^(**)=0p^{*}=0 ) (1) 溶質不揮發 ( p^(**)=0p^{*}=0 )
(2) Solute does not dissolve in solid solvent rarr\rightarrow solvent and solute seperate when solution freezes (2) 溶質不溶解於固體溶劑 rarr\rightarrow 溶劑和溶質在溶液凍結時分開
The 2 assumptions 這兩個假設 rarr\rightarrow solute has no influenu on vapor and solid rarr\rightarrow 溶質對蒸氣和固體沒有影響 rarr\rightarrow only liq line shifts when solute is added rarr\rightarrow 只有在添加溶質時,液體線會移動 rarr\rightarrow the presence of solute results in the decrease of chemical potential of liquid solvent 溶質的存在導致液體溶劑的化學勢能降低
spontaneous mixing 自發混合 rarr\rightarrow Solvent energy becomes more disperse after mixing, hence there’s less driving force to vaporize & freeze 溶劑能量在混合後變得更加分散,因此蒸發和冷凍的驅動力減少
Phase diagiam of binany systems 二元系統的相圖
Aa X_(A)X_{A} goes from 0rarr1,P0 \rightarrow 1, P goes P_(B)^(**)rarrP_(A)^(**)P_{B}^{*} \rightarrow P_{A}^{*} composition in vapor Aa X_(A)X_{A} 從 0rarr1,P0 \rightarrow 1, P 到 P_(B)^(**)rarrP_(A)^(**)P_{B}^{*} \rightarrow P_{A}^{*} 的蒸氣組成
composition in vapor varies with composition in liquid 氣相中的組成隨液相中的組成而變化
for P_(A)^(**) > P_(B)^(**)P_{A}^{*}>P_{B}^{*} (A more volatile) 對於 P_(A)^(**) > P_(B)^(**)P_{A}^{*}>P_{B}^{*} (更具波動性)
for points betwee Lan V Lines, the system has two phase present 對於 Lan V 線之間的點,系統有兩個階段
mole fraction 摩爾分率 P_(A)=VaporpressofamixturewithcompositionX_(A)P_{A}=V a p o r ~ p r e s s ~ o f ~ a ~ m i x t u r e ~ w i t h ~ c o m p o s i t i o n ~ X_{A} y_(A)y_{A} : comp of vapor in egm with the lig at press P_(A)P_{A} y_(A)y_{A} : 在壓力下,與液體的蒸氣組成 P_(A)P_{A}
(molar fraction of AA ) a_(1)(p_(1))a_{1}\left(p_{1}\right) : liq phase, a_(1)(p_(1))a_{1}\left(p_{1}\right) : 液相, a_(1)^(')a_{1}^{\prime} : vapor phase in eqm with a_(1)a_{1} vapor pressure p_(1)p_{1} a_(1)^(')a_{1}^{\prime} : 與 a_(1)a_{1} 的蒸氣壓 p_(1)p_{1} 處於平衡的蒸氣相
(tiny amount of vapor present) (存在微量蒸氣) P_(2)P_{2} : composition of l_(iq)=a_(2),Vapor=a_(2)^(')l_{i q}=a_{2}, ~ V a p o r=a_{2}^{\prime} P_(2)P_{2} : l_(iq)=a_(2),Vapor=a_(2)^(')l_{i q}=a_{2}, ~ V a p o r=a_{2}^{\prime} 的組成 P_(3):11quadl_(iq)=a_(3)P_{3}: 11 \quad l_{i q}=a_{3}, Vapor =a_(3)^(')=a_{3}{ }^{\prime}
(tiny amount of liquid prsent) (存在微量液體)
P4: vapor phase only P4:僅蒸氣相
from aa, lower the pressure while overall composition stays the same 從 aa ,降低壓力,同時整體成分保持不變
Ex: 例:
(Table of T V.S. Z_(A)Z_{A} )
What is the composition of lig and vapor phase when X_(M)=0.25X_{M}=0.25 當 X_(M)=0.25X_{M}=0.25 時,液相和氣相的組成是什麼
x_(0)=0.25x_{0}=0.25
The Levev Rule Levev 規則
The two-phase region between alpha\alpha and beta\beta represent the amount of alpha\alpha and beta\beta guautitatualy alpha\alpha 和 beta\beta 之間的兩相區域代表了 alpha\alpha 和 beta\beta 的量 alpha,beta\alpha, \beta in equilibrium alpha,beta\alpha, \beta 在平衡中
n_(A)l_(a)=n_(B)l_(B)n_{A} l_{a}=n_{B} l_{B}
ll horizontal distance ll 水平距離 n_(alpha),n_(beta)n_{\alpha}, n_{\beta} : two amount of alpha\alpha and beta\beta phase n_(alpha),n_(beta)n_{\alpha}, n_{\beta} : 兩個 alpha\alpha 和 beta\beta 相位的數量
Ex: a sample was prepared to be x_(A)=0.4x_{A}=0.4 with two phase 例如:樣本已準備好以 x_(A)=0.4x_{A}=0.4 進行兩相處理
in eqm: alpha\alpha and B quadx_(A,alpha)=0.6B \quad x_{A, \alpha}=0.6
x_(A,B)=0,2x_{A, B}=0,2
the ration of the amount of two phase = ? 兩相的量的比率 = ?
sol:
Temperature - composition diagram 溫度 - 成分圖 rarr\rightarrow for seperation or distillation of two compounds with difterout b.P. rarr\rightarrow 用於分離或蒸餾兩種具有不同沸點的化合物。
(a) Distillation of A+BA+B (a) A+BA+B 的蒸餾
a_(1)a_{1} iheated to a_(2)a_{2}a_(1)a_{1} 加熱至 a_(2)a_{2} a_(1)a_{1} : liq composition a_(1)a_{1} : 液體成分 a_(2)^(')a_{2}^{\prime} : vapor a_(2)^(')a_{2}^{\prime} : 蒸氣 T_(2)T_{2} : b.P. of original mixture T_(2)T_{2} : 原始混合物的 b.P. a_(2)rarra_(2)^(')a_{2} \rightarrow a_{2}^{\prime} : continue heatira T_(2)T_{2} a_(2)rarra_(2)^(')a_{2} \rightarrow a_{2}^{\prime} : 繼續 heatira T_(2)T_{2}
until L/v egm 直到 L/v egm
i y_(i) > x_(i)=>Ay_{i}>x_{i} \Rightarrow A more volatile then BB, i.e. bp(A) < bp(B)b p(A)<b p(B) 我 y_(i) > x_(i)=>Ay_{i}>x_{i} \Rightarrow A 比 BB 更不穩定,即 bp(A) < bp(B)b p(A)<b p(B)
Take vapor a_(2)^(')a_{2}^{\prime} and condense to a_(3)(xa_(3)=ya_(2)^('))a_(3)a_{3}\left(x a_{3}=y a_{2}^{\prime}\right) a_{3} heat at T_(3)T_{3} to reach L//vL / v eqm a_(3)^(')(ya_(3)^(') > x_(a_(3)))a_{3}^{\prime}\left(y a_{3}^{\prime}>x_{a_{3}}\right) 將蒸氣 a_(2)^(')a_{2}^{\prime} 凝結至 a_(3)(xa_(3)=ya_(2)^('))a_(3)a_{3}\left(x a_{3}=y a_{2}^{\prime}\right) a_{3} ,在 T_(3)T_{3} 加熱以達到 L//vL / v 平衡 a_(3)^(')(ya_(3)^(') > x_(a_(3)))a_{3}^{\prime}\left(y a_{3}^{\prime}>x_{a_{3}}\right)
Take vapor a_(3)^(')a_{3}^{\prime} and condense 將蒸氣 a_(3)^(')a_{3}^{\prime} 凝結
pure A (vapor) and pure B (liqq) 純 A (蒸氣) 和純 B (液體) =>\Rightarrow frational distillation 分餾
simple distillation 簡單蒸餾 rarr\rightarrow seperate volatile solvent from non-volatile solute rarr\rightarrow 分離揮發性溶劑與非揮發性溶質 rarr\rightarrow with draw vapor and condense rarr\rightarrow 以抽取蒸氣並凝結
Theoretical plate number 理論塔板數
= number used to expross efficiency of a fractioning column = 用於表達分餾塔效率的數字
Sometimes minimum occurs in phase diagrams (T-X)(T-X) when unfavorable interaction between AA and BB increase the vapor of the mixture and lower Tbp 有時在相圖中,當 AA 和 BB 之間的不利相互作用增加混合物的蒸氣並降低 Tbp 時,會出現最小值 (T-X)(T-X)
A+BA+B : A less volatile heating at b.P. shifts to less A (more B) a_(1)a_{1} heats and boils at a_(2),a_(2)-a_(2)^(')a_{2}, a_{2}-a_{2}^{\prime} egm, remove a_(2)^(')a_{2}^{\prime} remaining mixture x_(A)uarra_(2)^(')x_{A} \uparrow a_{2}^{\prime} condenses to a_(3),a_(3)-a_(3)^(')a_{3}, a_{3}-a_{3}^{\prime} eqm, a_(3)^(')a_{3}^{\prime} condense a_(4)a_{4} composition eventnally shifts to bb and NOT beyond b: composition of azeotrope A+BA+B : 較不揮發的加熱在 b.P. 轉向較少 A (更多 B) a_(1)a_{1} 加熱並在 a_(2),a_(2)-a_(2)^(')a_{2}, a_{2}-a_{2}^{\prime} egm 沸騰,去除 a_(2)^(')a_{2}^{\prime} 剩餘混合物 x_(A)uarra_(2)^(')x_{A} \uparrow a_{2}^{\prime} 凝結為 a_(3),a_(3)-a_(3)^(')a_{3}, a_{3}-a_{3}^{\prime} eqm, a_(3)^(')a_{3}^{\prime} 凝結 a_(4)a_{4} 成分最終轉向 bb 而不超過 b:共沸物的成分
Tb: b.P. of azeotrope
at bb, distillation can no longer be used to seporate AA and BB 在 bb 時,蒸餾不再能用來分離 AA 和 BB A+BA+B A more volatile A+BA+B 更具波動性
mixture boils at 98^(@)C98^{\circ} \mathrm{C} (bp water =100^(@)C=100^{\circ} \mathrm{C}, bp phenylamin =184^(@)C=184^{\circ} \mathrm{C} ) 混合物在 98^(@)C98^{\circ} \mathrm{C} 沸騰(水的沸點 =100^(@)C=100^{\circ} \mathrm{C} ,苯胺的沸點 =184^(@)C=184^{\circ} \mathrm{C} )
(d) Partially miscible (d) 部分可混溶
L-L phase diagrom L-L 相位圖
(1) B completely dissolve in A rarr1A \rightarrow 1 phase (1) B 完全溶解於 A rarr1A \rightarrow 1 相
(8) B stops dissolving in A rarr2A \rightarrow 2 phase in eqm (8) B 在平衡中停止在 A rarr2A \rightarrow 2 相中溶解
A staturated in B BB staturated in AA BB 飽和於 AA
when T uarrT \uparrow miscibility uarr,2\uparrow, 2 phase region narrows 當 T uarrT \uparrow 混溶性 uarr,2\uparrow, 2 相區域變窄
when T=T= Tuc, thermal energy >potential energy rarr\rightarrow I phase 當 T=T= Tuc,熱能 > 潛能 rarr\rightarrow I 相
(3) Seperation of 2 phases (3) 兩相分離 AA-rich phase, composition a^(')a^{\prime} AA -富相,成分 a^(')a^{\prime}
B" "quada^(')" \quad a^{\prime}
=" loweos "+" temp "+" hat "=\text { loweos }+ \text { temp }+ \text { hat }
phase seperation occurs 相分離發生
when P=1P=1
low energy molecules form weak complex as T uarr,P=2T \uparrow, P=2, high energy breaks up complex (ex: double cream) 低能量分子形成弱複合物如 T uarr,P=2T \uparrow, P=2 ,高能量則會破壞複合物(例如:雙重奶油)
some systems have both 一些系統同時擁有兩者
Tuc and TLC Tuc 和 TLC
Distillation of Partially Miscible Liquids 部分混溶液體的蒸餾
Common combinations: Partially miscible liquids form low-boiling azeotope that becomes fully miscible 常見組合:部分可混溶的液體形成低沸點的共沸物,隨後變為完全可混溶
-before -之前
after boil. 煮沸後。
when we remove b_(1)b_{1} to condense to b_(2)b_{2} remaining liq becomes richer in B 當我們去除 b_(1)b_{1} 以濃縮至 b_(2)b_{2} 時,剩餘的液體變得更富含 B
vapor gradually becomes richer in A until the formation of azeotrope 蒸氣逐漸在 A 中變得更濃,直到形成共沸物
II Fully Miscible after boil (no TLC) II 完全混溶於煮沸後(無薄層色譜)
vapor and liq have same composition (trace) quad(X_(e_(2))=y_(e_(2)))\quad\left(X_{e_{2}}=y_{e_{2}}\right)rarr\rightarrow azeotrope 蒸氣和液體具有相同的成分(微量) quad(X_(e_(2))=y_(e_(2)))\quad\left(X_{e_{2}}=y_{e_{2}}\right)rarr\rightarrow 共沸物
Ex: T(k)T(k)
a_(1)longrightarrowa_(2)longleftrightarrowb_(1)(a_{1} \longrightarrow a_{2} \longleftrightarrow b_{1}( less in A)A)a_(1)longrightarrowa_(2)longleftrightarrowb_(1)(a_{1} \longrightarrow a_{2} \longleftrightarrow b_{1}( 在 A)A) 中更少 b_(p)=350Kb_{p}=350 \mathrm{~K}
remove b_(1)b_{1} vapor rarr\rightarrow remaining liq richer in A lambdaA \lambda 去除 b_(1)b_{1} 蒸氣 rarr\rightarrow 剩餘液體更富含 A lambdaA \lambda
(1) The boiling range of the original liq((350k)/(390k))\operatorname{liq}\binom{350 \mathrm{k}}{390 \mathrm{k}} (1) 原始 liq((350k)/(390k))\operatorname{liq}\binom{350 \mathrm{k}}{390 \mathrm{k}} 的沸點範圍
(2) The composition of vapor during boil Y_(A)=0.66∼0.95Y_{A}=0.66 \sim 0.95 (2) 沸騰時的蒸氣組成 Y_(A)=0.66∼0.95Y_{A}=0.66 \sim 0.95 '11\prime 11
liq X_(A)=0.95∼0.99X_{A}=0.95 \sim 0.99
(3) bb, condeses ( 1^("st ")1^{\text {st }} distillate) (3) bb , 凝縮 ( 1^("st ")1^{\text {st }} 蒸餾液)
{:[" at "330K(x","y)=(0.87","0.49)","(L)/(V)=(0.66-0.49)/(0.87-0.66)=(0.17)/(0.21)],[" at "320K","3O/","(V)/(L)=(0.80-0.66)/(0.66-0.45)=(0.14)/(0.21)]:}\begin{aligned}
& \text { at } 330 \mathrm{~K}(x, y)=(0.87,0.49), \frac{L}{V}=\frac{0.66-0.49}{0.87-0.66}=\frac{0.17}{0.21} \\
& \text { at } 320 \mathrm{~K}, 3 \varnothing, \frac{V}{L}=\frac{0.80-0.66}{0.66-0.45}=\frac{0.14}{0.21}
\end{aligned}
at 298K(B-rich(x_(A)=0.2,x_(B)=0.8))/(A-rich(x_(A)=0.9,x_(B)=0.1))=(0.9-0.66)/(0.66-0.2)A-rich phi(x_(A)=0.8,X_(B)=0.2),B-richphi(x_(A)=0.3:}298 \mathrm{~K} \frac{B-\operatorname{rich}\left(x_{A}=0.2, x_{B}=0.8\right)}{A-r i c h\left(x_{A}=0.9, x_{B}=0.1\right)}=\frac{0.9-0.66}{0.66-0.2} A-r i c h \phi\left(x_{A}=0.8, X_{B}=0.2\right), B-r i c h ~ \phi\left(x_{A}=0.3\right. 在 298K(B-rich(x_(A)=0.2,x_(B)=0.8))/(A-rich(x_(A)=0.9,x_(B)=0.1))=(0.9-0.66)/(0.66-0.2)A-rich phi(x_(A)=0.8,X_(B)=0.2),B-richphi(x_(A)=0.3:}298 \mathrm{~K} \frac{B-\operatorname{rich}\left(x_{A}=0.2, x_{B}=0.8\right)}{A-r i c h\left(x_{A}=0.9, x_{B}=0.1\right)}=\frac{0.9-0.66}{0.66-0.2} A-r i c h \phi\left(x_{A}=0.8, X_{B}=0.2\right), B-r i c h ~ \phi\left(x_{A}=0.3\right.
=(0.24)/(0.46)=\frac{0.24}{0.46}
(L_(A)-rich)/(L_(B)-" rich ")=(0.66-0.3)/(0.8-0.66)=(0.36)/(0.14)\frac{L_{A}-r i c h}{L_{B}-\text { rich }}=\frac{0.66-0.3}{0.8-0.66}=\frac{0.36}{0.14}
Ex: when C_(1)(X_(A)=0,4)C_{1}\left(X_{A}=0,4\right) boils to C_(4)C_{4}
C_(1,2" liq ")O/,(B-r_(ich))/(A-r_(ich))=(0.9-0.4)/(0.4-0.2)=(5)/(2)C_{1,2 \text { liq }} \varnothing, \frac{B-r_{i c h}}{A-r_{i c h}}=\frac{0.9-0.4}{0.4-0.2}=\frac{5}{2}
Phase Diagram of Ternary System 三元系相圖
phase rule F=C-P+2F=C-P+2 相位規則 F=C-P+2F=C-P+2
C=3quad F=3-p+2=5-pC=3 \quad F=3-p+2=5-p
if (1)(D) F^(')=5-P-2=3-PF^{\prime}=5-P-2=3-P
on a 3phi3 \phi diogram 在一個 3phi3 \phi 圖表上 P=1quadF^(')=2P=1 \quad F^{\prime}=2 area means single phi\phi in eam P=1quadF^(')=2P=1 \quad F^{\prime}=2 區域表示單一 phi\phi 在 eam P=2quadF^(')=1P=2 \quad F^{\prime}=1 line means 2phi2 \phi in eqm P=2quadF^(')=1P=2 \quad F^{\prime}=1 行表示 2phi2 \phi 在 eqm 中 P=3quadF^(')=0P=3 \quad F^{\prime}=0 a point means 3phi3 \phi in egm P=3quadF^(')=0P=3 \quad F^{\prime}=0 一個點意味著 3phi3 \phi 在 egm 中
Triangular Phase Diagram 三角相圖
mole fraction x_(A)+x_(B)+x_(C)=1x_{A}+x_{B}+x_{C}=1 摩爾分率 x_(A)+x_(B)+x_(C)=1x_{A}+x_{B}+x_{C}=1
equilateral /_\\triangle at any point PP 等邊 /_\\triangle 在任何點 PP
0.4
( w+Cw+C only) ( x_(c)=0.4x_{c}=0.4 ) a_(1)rarra_(2)=add Aa_{1} \rightarrow a_{2}=\operatorname{add} A to help W//CW / C dissolve in each other ( more W in C-rich phi\phi ) a_(1)rarra_(2)=add Aa_{1} \rightarrow a_{2}=\operatorname{add} A 以幫助 W//CW / C 彼此溶解(在富含 C 的 phi\phi 中更多 W) a_(3):Lphi_(s)a_{3}: L \phi_{s}, but c-rich phic-r i c h \phi in trace amount (lever rule) a_(3):Lphi_(s)a_{3}: L \phi_{s} ,但 c-rich phic-r i c h \phi 以微量存在(杠杆法則) a_(4)a_{4} : single O/\varnothinga_(4)a_{4} : 單一 O/\varnothing
p: plaitpoint 褶點
: the composition of C - rich are identīcal C - rich 的成分是相同的
tie-line (a_(2)^(')-a_(2)^(''))\left(a_{2}^{\prime}-a_{2}^{\prime \prime}\right) :the two ends of the line vepresent the composition of the two phi_(s)\phi_{s} in egm(empirical) tie-line (a_(2)^(')-a_(2)^(''))\left(a_{2}^{\prime}-a_{2}^{\prime \prime}\right) :該線的兩端代表兩個 phi_(s)\phi_{s} 在 egm(經驗)中的組成 a_(2)^('')a_{2}^{\prime \prime} closer to AA-pealc than a^('')a^{\prime \prime} :more AA in ww-rich phi\phi a_(2)^('')a_{2}^{\prime \prime} 更接近 AA -pealc 比 a^('')a^{\prime \prime} :更多 AA 在 ww -豐富 phi\phi
Ex:point Z(X_(A)=0.18)Z\left(X_{A}=0.18\right) composition of two phi_(S)\phi_{S} and the ratio? Ex:點 Z(X_(A)=0.18)Z\left(X_{A}=0.18\right) 由兩個 phi_(S)\phi_{S} 的組成及比例?
{:[a_(2)^(')(x_(c),x_(w),x_(A))=(0.2","0.57","0.23)],[a_(2)^('')(x_(c),x_(w),x_(A))=(0.82","0.08","0.1)],[(a_(2)^(')-z(c-rich))/(z-a_(2)^('')(w-rich))=(R(" 測量 "))/(R_(("測 ")" 星 "))]:}\begin{aligned}
& a_{2}^{\prime}\left(x_{c}, x_{w}, x_{A}\right)=(0.2,0.57,0.23) \\
& a_{2}^{\prime \prime}\left(x_{c}, x_{w}, x_{A}\right)=(0.82,0.08,0.1) \\
& \frac{a_{2}^{\prime}-z(c-r i c h)}{z-a_{2}^{\prime \prime}(w-r i c h)}=\frac{R(\text { 測量 })}{\left.R_{(\text {測 }} \text { 星 }\right)}
\end{aligned}測量測星