这是用户在 2024-4-25 17:12 为 https://app.immersivetranslate.com/pdf-pro/8fd8ea59-3dd2-470f-8fd0-d3290a4ec3a0 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_04_25_f6bb3409fea8e1eae56dg

MAINS: A Magnetic Field Aided Inertial Navigation System for Indoor Positioning
MAINS:用于室内定位的磁场辅助惯性导航系统

Chuan Huang, Student Member, IEEE, Gustaf Hendeby, Senior Member, IEEE, Hassen Fourati, Senior Member,
黄川,IEEE 学生会员;Gustaf Hendeby,IEEE 高级会员;Hassen Fourati,高级会员、
IEEE, Christophe Prieur, Fellow, IEEE, and Isaac Skog, Senior Member, IEEE
电气和电子工程师学会,Christophe Prieur,电气和电子工程师学会研究员,以及 Isaac Skog,电气和电子工程师学会高级会员

Abstract 摘要

A Magnetic field Aided Inertial Navigation System (MAINS) for indoor navigation is proposed in this paper. MAINS leverages an array of magnetometers to measure spatial variations in the magnetic field, which are then used to estimate the displacement and orientation changes of the system, thereby aiding the inertial navigation system (INS). Experiments show that MAINS significantly outperforms the stand-alone INS, demonstrating a remarkable two orders of magnitude reduction in position error. Furthermore, when compared to the state-ofthe-art magnetic-field-aided navigation approach, the proposed method exhibits slightly improved horizontal position accuracy. On the other hand, it has noticeably larger vertical error on datasets with large magnetic field variations. However, one of the main advantages of MAINS compared to the state-of-the-art is that it enables flexible sensor configurations. The experimental results show that the position error after 2 minutes of navigation in most cases is less than 3 meters when using an array of 30 magnetometers. Thus, the proposed navigation solution has the potential to solve one of the key challenges faced with current magnetic-field simultaneous localization and mapping (SLAM) solutions - the very limited allowable length of the exploration phase during which unvisited areas are mapped.
本文提出了一种用于室内导航的磁场辅助惯性导航系统(MAINS)。MAINS 利用磁力计阵列测量磁场的空间变化,然后利用磁场变化估算系统的位移和方向变化,从而辅助惯性导航系统(INS)。实验表明,MAINS 的性能明显优于独立的 INS,位置误差显著减少了两个数量级。此外,与最先进的磁场辅助导航方法相比,拟议方法的水平位置精度略有提高。另一方面,在磁场变化较大的数据集上,它的垂直误差明显增大。不过,与最先进的方法相比,MAINS 的主要优势之一是可以灵活配置传感器。实验结果表明,在使用 30 个磁力计阵列时,大多数情况下导航 2 分钟后的位置误差小于 3 米。因此,所提出的导航解决方案有可能解决目前磁场同步定位和绘图(SLAM)解决方案所面临的主要挑战之一,即绘制未访问区域地图的探索阶段的允许长度非常有限。

Index Terms-indoor positioning, magnetic field, error-state Kalman filter, aided navigation
索引术语--室内定位、磁场、误差状态卡尔曼滤波器、辅助导航

I. INTRODUCTION I.引言

The outdoor magnetic field is omnipresent, relatively stable, and almost homogenous. Due to these properties, it has been used in navigation for a long time, where the magnetic field is mainly used as a heading reference to correct errors from integrating noisy gyroscope measurements [1]. However, those techniques cannot be applied without modifications for indoor applications because the indoor magnetic field is not homogenous. An example of the variations in the magnitude of the magnetic field inside a building is shown in Fig. 1. The correlation between the position and the magnetic field can be seen. Therefore, the inhomogeneous magnetic field can be used as a reliable source for localization in Global Navigation Satellite System (GNSS) denied environments, such as indoors or underwater [2]. Indeed, recent years have witnessed many
室外磁场无处不在、相对稳定且几乎均匀。基于这些特性,磁场在导航领域的应用由来已久,磁场主要用作航向参考,以校正噪声陀螺仪测量的积分误差[1]。然而,由于室内磁场并不均匀,因此这些技术在室内应用时不能不做修改。图 1 举例说明了建筑物内磁场大小的变化。可以看出位置和磁场之间的相关性。因此,在室内或水下等拒绝全球导航卫星系统(GNSS)的环境中,不均匀磁场可用作定位的可靠来源[2]。事实上,近年来许多
This work has been funded by the Swedish Research Council (Vetenskapsrådet) project 2020-04253 "Tensor-field based localization".
这项工作得到了瑞典研究理事会(Vetenskapsrådet)2020-04253 "基于张量场的定位 "项目的资助。
Chuan Huang and Gustaf Hendeby are with Dept. of Electrical Engineering, Linköping University, (e-mail: chuan.huang @liu.se; gustaf.hendeby@liu.se).
Chuan Huang 和 Gustaf Hendeby 现就职于林雪平大学电子工程系(电子邮箱:chuan.huang @liu.se; gustaf.hendeby@liu.se)。
Hassen Fourati and Christophe Prieur are with the GIPSA-Lab, CNRS, Inria, Grenoble INP, University Grenoble Alpes, 38000 Grenoble, France (email: hassen.fourati@gipsa-lab.fr; christophe.prieur@gipsa-lab.fr)
Hassen Fourati和Christophe Prieur是法国格勒诺布尔阿尔卑斯大学格勒诺布尔国家科学研究中心(CNRS)GIPSA实验室的成员(电子邮箱:hassen.fourati@gipsa-lab.fr; christophe.prieur@gipsa-lab.fr)。
Isaac Skog is with Dept. of Electrical Engineering, Uppsala University, Uppsala, Sweden, and Dept. of Electrical Engineering Linköping University, Linköping, Sweden, and the Div. of Underwater Technology, Swedish Defence Research Agency (FOI), Kista, Sweden (e-mail: isaac.skog@ angstrom.uu.se).
Isaac Skog 现为瑞典乌普萨拉市乌普萨拉大学电气工程系、瑞典林雪平市林雪平大学电气工程系以及瑞典基斯塔市瑞典国防研究局 (FOI) 水下技术部人员(电子邮件:isaac.skog@ angstrom.uu.se)。
Fig. 1. Illustration of the magnetic-field magnitude variations inside a building. The field near the floor was measured with a magnetometer, whose location was tracked by camera-based tracking systems. The field measurement was then interpolated, and the field magnitude was projected on the floor.
图 1.建筑物内磁场大小变化示意图。地板附近的磁场是用磁力计测量的,磁力计的位置由摄像跟踪系统跟踪。然后对磁场测量结果进行内插,并将磁场大小投射到地板上。
successful applications in magnetic-field-based positioning, among which the magnetic-field-based SLAM has turned out to be a promising approach [3]-[5]. It enables the user to construct a magnetic field map while navigating and having drift-free positioning, provided revisiting the same region is possible. However, this technology relies heavily on the precision of the used odometric information. Otherwise, the position drift can be significant, making it challenging to reliably recognize the visited place and complete "loop closure" [6]. For instance, when an inertial navigation system with lowcost inertial sensors is used for doing the odometry, the error growth rate is typically on the order of 10 meters per minute [7], which means the system needs to revisit the same region within a minute to prevent the position drift from becoming too large to complete loop closure. Therefore, the permissible length of the exploration phases where new areas are mapped is extremely limited when using low-cost inertial sensors. Hence, to increase the usability of current magnetic-field-based SLAM solutions we need robust odometry techniques that have a low position drift rate.
在基于磁场的定位领域,有许多成功的应用,其中基于磁场的 SLAM 是一种很有前途的方法 [3]-[5]。它能让用户在导航时构建磁场图,并在可能重访同一区域的情况下实现无漂移定位。然而,这项技术在很大程度上依赖于所使用的里程测量信息的精确性。否则,位置漂移可能会很大,从而难以可靠地识别到访地点并完成 "闭环"[6]。例如,当使用带有低成本惯性传感器的惯性导航系统进行里程测量时,误差增长率通常为每分钟 10 米[7],这意味着系统需要在一分钟内重访同一区域,以防止位置漂移过大而无法完成闭环。因此,在使用低成本惯性传感器时,绘制新区域地图的探索阶段的允许长度极为有限。因此,为了提高当前基于磁场的 SLAM 解决方案的可用性,我们需要具有低位置漂移率的强大里程测量技术。
With this limitation in mind, the concept of combining inertial measurements and distributed magnetometry has been proposed and realized [8]. An array of magnetometers enables
考虑到这一局限性,人们提出并实现了将惯性测量与分布式磁强计相结合的概念[8]。磁强计阵列可以

the calculation of the gradients of the magnetic field, from which the body velocity can be estimated. On the other hand, the authors in [2] adopted a model-based approach, treating pose changes in subsequent timestamps as the parameters of the model to be estimated. The estimated pose change from the magnetic field measurements can be used to aid an inertial navigation system to reduce the position growth rate. In this paper, we present a method for tightly integrated magneticfield-aided inertial navigation. The resulting navigation system has, compared to a pure inertial navigation system, a significantly reduced error growth rate. Hence, the proposed navigation method has the potential to greatly extend the allowable length of the exploration phases in magnetic-fieldbased SLAM systems.
通过计算磁场梯度,可以估算出身体速度。另一方面,[2]中的作者采用了基于模型的方法,将后续时间戳中的姿势变化视为待估算模型的参数。从磁场测量中估算出的姿势变化可用于帮助惯性导航系统降低位置增长率。在本文中,我们介绍了一种紧密集成磁场辅助惯性导航的方法。与纯惯性导航系统相比,该导航系统的误差增长率显著降低。因此,所提出的导航方法有可能大大延长基于磁场的 SLAM 系统中探索阶段的允许长度。
Numerous methods for magnetic-field-based indoor positioning and navigation have been proposed. Current solutions are roughly categorized into three types: fingerprint-based methods, magnetic field SLAM, and magnetic field odometry. Fingerprint-based methods [9]-[11] generally rely on a premeasured magnetic field map to work, which greatly limits its usability. Therefore, we mainly discuss the latter two types, which are not constrained by a prior map.
人们提出了许多基于磁场的室内定位和导航方法。目前的解决方案大致分为三类:基于指纹的方法、磁场 SLAM 和磁场里程计。基于指纹的方法[9]-[11]一般依赖于预先测量的磁场地图,这大大限制了其可用性。因此,我们主要讨论后两类方法,它们不受事先地图的限制。
One of the first 2D magnetic field SLAM methods was proposed in [12], where the magnetic field strength map was constructed in hierarchical hexagonal tiles of different bin sizes. To generalize the motions to and cope with the complexity of representing the map, the authors in [3] selected a reduced-rank Gaussian process to represent the magnetic field map and used a Rao-blackwellized particle filter to estimate both the map and the location of the system. Later, in [5], the authors successfully achieved drift-free positioning using foot-mounted sensors with similar techniques. To achieve real-time processing, they used an EKF filter to update the magnetic field map based on its gradients [4]. Contrary to the "stochastic" loop closure mechanism in [3]-[5], where it reduces the uncertainty of the map in the revisited region, a "deterministic" one was employed in [13], where attitudeinvariant magnetic field information was used to detect loop closure and constraints on position estimates were formed. The aforementioned magnetic field SLAM solutions can achieve drift-free long-term large-scale positioning as long as frequent loop closure is possible.
最早的二维磁场 SLAM 方法之一是在 [12] 中提出的,在该方法中,磁场强度图是以不同粒度的分层六边形瓦片构建的。为了将运动推广到 并应对表示磁场图的复杂性,[3] 中的作者选择了秩降低的高斯过程来表示磁场图,并使用 Rao-blackwellized 粒子滤波器来估计磁场图和系统的位置。随后,在 [5] 中,作者使用类似的技术成功地利用脚踏式传感器实现了无漂移定位。为了实现实时处理,他们使用 EKF 滤波器根据梯度更新磁场图[4]。与[3]-[5]中的 "随机 "闭环机制相反,[13]中采用了 "确定 "闭环机制,即利用姿态不变的磁场信息来检测闭环,并形成位置估计的约束条件。只要能够频繁闭环,上述磁场 SLAM 解决方案就能实现无漂移的长期大尺度定位。
Magnetic field odometry, on the other hand, is a lightweight solution to provide odometric information with a magnetometer array. It does not construct a magnetic field map but provides odometric information based on local magnetic field properties. The seminal work [8] derived an equation that relates the body velocity and the gradient of the magnetic field, which can be calculated from the measurements from a set of spatially distributed magnetometers. Later, in [14], [15], the authors proposed an observer to estimate body velocity, proved its convergence, and showcased its usability for indoor localization. In subsequent works [16], [17], the authors incorporated inertial sensor biases and magnetic disturbance in the model and designed a filter based on the error-state Kalman filter (ESKF). To address the issue of the noisy magnetic field gradient, the authors in [18], [19] derived a differential equation for high-order derivatives of the magnetic field. They then developed a filtering algorithm comprising a primary filter which is used to estimate the gradient of the field. Later, the same authors [20], [21] proposed an AI-based solution where a Long Short-Term Memory (LSTM) model is used to create a pseudo-measurement of the inertial velocity of the target. The pseudo-measurement is used to handle adversarial situations where the states' observability is affected by the low gradient of the field and/or the target's velocity close to zero. The methods developed have demonstrated promising prospects in magnetic field odometry. However, they are susceptible to noise when computing the gradient, and observability issues arise from a weak magnetic field gradient or low target speed. To address this problem, [22] matches the waveforms from a pair of magnetometers in a sliding time window to reduce the influence of the temporary disappearance of the magnetic field gradient. Experiments show that the proposed method in [22] performs similarly to wheel odometry in magnetic-rich environments.
另一方面,磁场里程测量法是一种利用磁力计阵列提供里程测量信息的轻量级解决方案。它不构建磁场地图,而是根据当地磁场特性提供测距信息。开创性工作[8]推导出了一个人体速度与磁场梯度之间的关系式,该方程可通过一组空间分布式磁强计的测量值计算得出。随后,在 [14] 和 [15] 中,作者提出了一种估计人体速度的观测器,证明了其收敛性,并展示了其在室内定位中的可用性。在随后的作品[16]、[17]中,作者将惯性传感器偏差和磁干扰纳入模型,并设计了一个基于误差状态卡尔曼滤波器(ESKF)的滤波器。为了解决磁场梯度噪声问题,[18]、[19] 中的作者推导出了磁场高阶导数的微分方程。然后,他们开发了一种滤波算法,其中包括一个用于估计磁场梯度的初级滤波器。后来,同一作者[20]、[21]提出了一种基于人工智能的解决方案,即使用长短期记忆(LSTM)模型创建目标惯性速度的伪测量值。伪测量用于处理状态的可观测性受到场的低梯度和/或目标速度接近于零的影响的不利情况。所开发的方法在磁场里程测量中展现出了广阔的前景。然而,这些方法在计算梯度时容易受到噪声的影响,并且在磁场梯度较弱或目标速度较低时也会出现可观测性问题。为了解决这个问题,[22] 在一个滑动时间窗口中匹配一对磁力计的波形,以减少磁场梯度暂时消失的影响。实验表明,[22] 提出的方法在磁场丰富的环境中与车轮里程测量法的性能类似。
In a more recent work [23], a polynomial model was proposed to describe the local magnetic field and to develop a magnetic field odometry method. Presented experiential results showed that the model-based odometry approach can give a higher accuracy at low signal-to-noise ratios, compared to approaches in [8]. The model-based odometry approach was further explored in [2], where it was used to estimate both the translation and orientation change of the array. In the subsequent work [24], the authors included the magnetic field model in the state-space description of an INS system and developed a tightly-integrated magnetic-field-aided INS. Simulation results showed that it has a much slower drift rate than stand-alone INS.
最近的一项研究[23]提出了一个多项式模型来描述局部磁场,并开发了一种磁场测距方法。实验结果表明,与[8]中的方法相比,基于模型的里程测量方法在信噪比较低的情况下精度更高。文献[2]进一步探讨了基于模型的里程测量方法,并将其用于估计阵列的平移和方位变化。在随后的工作[24]中,作者将磁场模型纳入了 INS 系统的状态空间描述中,并开发了一种紧密集成的磁场辅助 INS。仿真结果表明,它的漂移率比独立的 INS 慢得多。

B. Contributions B.捐款

The contribution of this work is two-fold. Firstly, it extends the groundwork laid out in [24] by providing a thorough derivation and a comprehensive exposition of the proposed algorithm. Additionally, the performance of the proposed algorithm using real-world data was assessed and benchmarked against the state-of-the-art. Secondly, we have made the datasets used in our experiments and the source code for the proposed algorithm MAINS publicly available, in the hope that it will facilitate further research within the area of magnetic-field-based positioning. Both the datasets and the source code are available at https://github.com/Huang-Chuan/ MAINSvsMAGEKF.
这项工作有两方面的贡献。首先,它扩展了 [24] 中的基础工作,对所提出的算法进行了彻底的推导和全面的阐述。此外,我们还利用真实世界的数据对所提算法的性能进行了评估,并与最先进的算法进行了比较。其次,我们公开了实验中使用的数据集和拟议算法 MAINS 的源代码,希望能促进基于磁场定位领域的进一步研究。数据集和源代码均可在 https://github.com/Huang-Chuan/ MAINSvsMAGEKF 上获取。

II. System Modeling II.系统建模

Consider the problem of estimating the position and orientation of the sensor platform in Fig. 2, which consists of an inertial measurement unit (IMU) and an array of 30 magnetometers. To that end, a state-space model will be presented to realize a tightly-integrated magnetic-field aided inertial navigation system (INS).
图 2 中的传感器平台由一个惯性测量单元(IMU)和一个由 30 个磁力计组成的阵列组成。为此,将提出一个状态空间模型,以实现紧密集成的磁场辅助惯性导航系统(INS)。
Fig. 2. The sensor board used in the experiment. It has 30 PNI RM3100 magnetometers and an Osmium MIMU 4844 IMU mounted on the bottom side.
图 2.实验中使用的传感器板。它底部安装了 30 个 PNI RM3100 磁强计和一个 Osmium MIMU 4844 IMU。

A. Inertial Navigation Equations
A.惯性导航方程

Let the INS navigation state , the inertial measurements , and the process noise be defined as
让 INS 导航状态 、惯性测量 和过程噪声 分别定义为
respectively. Here, , and denote the position, velocity, and orientation (parameterized as a unit quaternion) at time , respectively. The superscript indicates that the vector is represented in the navigation frame. Moreover, and denote the accelerometer and gyroscope bias, respectively. Further, and denote the accelerometer and gyroscope measurements, respectively. Lastly, and denote the accelerometer and gyroscope measurement noise, respectively, and and denote the random walk process noise for the accelerometer and gyroscope biases, respectively. For an INS that uses low-cost sensors and moves at moderate velocities such that the effects of the transport rate, earth rotation, etc., can be neglected, the navigation equations are given by [25]
分别表示时间 时的位置、速度和方位(参数为单位四元数)。这里, 分别表示时间 时的位置、速度和方向(参数为单位四元数)。上标 表示矢量以导航框架表示。此外, 分别表示加速度计和陀螺仪偏置。此外, 分别表示加速度计和陀螺仪的测量值。最后, 分别表示加速度计和陀螺仪测量噪声, 分别表示加速度计和陀螺仪偏差的随机漫步过程噪声。对于使用低成本传感器并以中等速度移动的 INS,可以忽略传输速率、地球自转等的影响,其导航方程为 [25] 。
where 其中
and
Here, the subscript denotes the body frame at time , and denotes the rotation matrix that rotates a vector from the -frame to the -frame. Further, denotes the sampling period. Moreover, and denote the specific force and angular velocity, respectively. The vector denotes the local gravity. Furthermore, denotes quaternion multiplication, and is the operator that maps an axis-angle to a quaternion. Lastly, is modeled as a zeromean white Gaussian noise process with covariance matrix , where denotes the covariance matrix of the corresponding noise component and blkdiag (.) is an operator that creates a block diagnal matrix.
这里,下标 表示 时间的身体框架, 表示将矢量从 - 框架旋转到 - 框架的旋转矩阵。此外, 表示采样周期。此外, 分别表示比力和角速度。矢量 表示本地重力。此外, 表示四元数乘法, 是将轴角映射到四元数的算子。最后, 被模拟为具有协方差矩阵 的泽罗米白高斯噪声过程,其中 表示相应噪声分量的协方差矩阵,blkdiag (.) 是创建分块诊断矩阵的算子。

B. Magnetic Field Modeling
B.磁场建模

The magnetic field is a three-dimensional vector field whose properties are described by Maxwell's equations. Let be a model of the magnetic field at the location , parameterized by the parameter . When there is no free current in the space , the magnetic-field model should fulfill
磁场是一个三维矢量场,其特性由麦克斯韦方程组描述。让 成为 所在位置的磁场模型,参数为 。当空间 中没有自由电流时,磁场模型 应满足以下条件
for all . A polynomial magnetic field model, which fulfills (3), is given by [23]
。符合(3)的多项式磁场模型由 [23] 给出。
Here is the regression matrix defined in 23 . and is the coefficient of the polynomial model; for a order polynomial the model has unknown parameters [2]. Note that the model (4) can be defined in either the body frame or navigation frame. Within this paper, it will be defined in the body frame. Next, a procedure for transforming the model from the frame to the frame will be presented.
这里 是 23 中定义的回归矩阵, 是多项式模型的系数;对于 阶多项式,模型有 个未知参数[2]。请注意,模型 (4) 可以在车身框架或导航框架中定义。本文将在车身框架内对其进行定义。接下来,将介绍将模型从 帧转换到 帧的程序。
Let the magnetic field model (4) be associated with the frame, which means accepts locations expressed in -frame and outputs magnetic field vector in the same frame. Then denotes the magnetic field model associated with the -frame, i.e.,
让磁场模型(4)与 框架相关联,即 接受以 - 框架表示的位置 ,并在同一框架中输出磁场矢量。那么 表示与 - 框架相关的磁场模型,即:
When the body frame moves, the coefficient evolves over time along with the changes in the body frame. Let the relative body frame change from to be encoded by
当车身框架移动时,系数 会随着车身框架的变化而变化。假设从 的相对身体框架变化由以下方式编码
where and denote the translation and orientation change from the body frame to , respectively. Then the dynamics of can be found by expressing the magnetic field vector at a given location with the models at two consecutive times and aligning them in the same frame. The basic idea is illustrated in Fig. 3, from which the following two equalities can be identified
其中 分别表示从本体框架 的平移和方向变化。然后,通过用连续两个时间的模型来表示给定位置的磁场矢量,并将它们在同一帧中对齐,就可以找到 的动态。基本思路如图 3 所示,从中可以确定以下两个等式
Fig. 3. A 2D illustration of the geometric relationship between the body frames at two consecutive times. The applicable region of the magnetic field model at time is in blue, and the black dot indicates the location where the two models output the corresponding magnetic field in their own coordinate frames.
图 3.两个连续时间体帧之间几何关系的二维图示。 时磁场模型的适用区域 为蓝色,黑点表示两个模型在各自坐标系中输出相应磁场的位置。
Here denotes the rotation matrix that rotates a vector from the -frame to the -frame. The rotation matrix and translation are given by
表示旋转矩阵,它将一个向量从 - 框架旋转到 - 框架。旋转矩阵 和平移 由以下公式给出
Here is an operator that maps a vector in to a skewsymmetric matrix such that .
这里 是一个算子,它将 中的一个向量映射为一个偏对称矩阵,这样
Substituting the generic magnetic model in (7) with the proposed polynomial model (5) yields the equality
将 (7) 中的通用磁场模型代入所提出的多项式模型 (5),可以得到相等的结果
Note that for a given and represents 3 linear equations. Since is of dimension , which is greater than 3 , it is necessary to use more than one location vector to solve the equation system. In general, location vectors can be used to construct the equation system, i.e.,
请注意,给定的 表示 3 个线性方程。由于 的维数为 ,大于 3,因此需要使用多个位置向量 来求解方程组。一般来说,可以使用 位置向量来构建方程组,即:
Note that the location vectors can be chosen such that has full column rank, and they are fixed. Finally, it holds that
需要注意的是,位置向量 的选择可以使 具有全列秩,而且它们是固定的。最后,可以认为
where denotes the Moore-Penrose inverse of .
其中 表示 的摩尔-彭罗斯倒数。
Since the magnetic field model should describe the magnetic field locally, the update in 111 , which implicitly expands the applicable space of the model, will inevitably introduce additional modeling errors. To account for those errors, with a slight abuse of notation, the update of the polynomial coefficients of the magnetic field as the body frame change is modeled as
由于磁场模型应在局部描述磁场,因此 111 中的更新隐含地扩展了模型的适用空间 ,这将不可避免地带来额外的建模误差。为了考虑这些误差,略微滥用一下符号,磁场多项式系数在体框变化时的更新模型为
where is assumed to be a white Gaussian noise process with zero mean and covariance matrix . Hence, the dynamic model for the magnetic-field subsystem is
其中, 假设为均值为零且协方差矩阵为 的白高斯噪声过程。因此,磁场子系统的动态模型为
where 其中
Note that is a function of , and .
注意 的函数。

C. Magnetometer Array Measurement Model
C.磁强计阵列测量模型

Given the magnetic field model in (5), the measurement from the sensor in the magnetometer array at time can be modeled as
考虑到 (5) 中的磁场模型, 时磁力计阵列中 传感器的测量结果 可模拟为
where denotes the location of the magnetometer in the array. Further, denotes the measurement error, which includes both the measurement noise and the imperfections of the magnetic-field model. The error is assumed to be white and Gaussian distributed with covariance matrix .
其中 表示 磁强计在阵列中的位置。此外, 表示测量误差,其中包括测量噪声和磁场模型的缺陷。误差假定为白色高斯分布,协方差矩阵为

D. Complete System D.完整系统

Given the presented navigation equations and the magneticfield model, the dynamics and observations of the full system can be described by the following state-space model.
根据所给出的导航方程和磁场模型,整个系统的动态和观测结果可以用以下状态空间模型来描述。
Let the state vector , the process noise vector , and the measurement noise be defined as
假设状态矢量 、过程噪声矢量 和测量噪声 定义如下
respectively. Combining the models in (2), (13), and (15) gives the state-space model
分别为将 (2)、(13) 和 (15) 中的模型组合起来,就得到了状态空间模型
where 其中
and
Here, the process noise covariance and the measurement noise covariance are
这里,过程噪声协方差 和测量噪声协方差 分别为
Fig. 4. The flowchart of the state estimation algorithm.
图 4 状态估计算法流程图状态估计算法流程图。

III. State Estimation III.状态估计

The quaternion in the state vector does not belong to Euclidean space. Therefore, standard nonlinear filter algorithms, such as the extended Kalman filter and unscented Kalman filter, cannot be applied to the state-space model in (17) without appropriate modifications. The error state Kalman filter (ESKF) presented in [25] circumvents the problem by the use of "error quaternion", which is a small perturbation around the "estimated quaternion" expressed in . With reference to Fig. 4 the algorithm works by propagating an estimated state via the state transition model in (17a) and using a complementary Kalman filter to estimate the error state , which is then used to correct the estimated state . Since the ESKF is a standard algorithm, only the error propagation model that is unique to the state-space model in (17), will here be derived.
状态向量中的四元数 不属于欧几里得空间。因此,标准的非线性滤波算法,如扩展卡尔曼滤波器和无符号卡尔曼滤波器,在没有适当修改的情况下无法应用于 (17) 中的状态空间模型。文献[25]中提出的误差状态卡尔曼滤波器(ESKF)通过使用 "误差四元数 "规避了这一问题,"误差四元数 "是以 表示的 "估计四元数 "周围的小扰动。参照图 4,该算法的工作原理是通过 (17a) 中的状态转换模型传播估计状态 ,并使用互补卡尔曼滤波器估计误差状态 ,然后用误差状态修正估计状态 。由于 ESKF 是一种标准算法,因此这里将只推导 (17) 中状态空间模型所独有的误差传播模型。

A. Error State Definition
A.错误状态定义

The error state is defined as
误差状态 定义为
Here, for the position, velocity, sensor biases, and magnetic field model parameters, the standard additive error definition is used (e.g., ). On the other hand, the orientation error satisfies the equation . The true state and the estimated state relate to each other via
在此,对于位置、速度、传感器偏差和磁场模型参数,采用标准的加法误差定义(如 )。另一方面,方位误差 满足等式 。真实状态 和估计状态 通过以下方式相互关联
where the operator is defined by
其中,算子 的定义是

B. Inertial Error State Dynamics
B.惯性误差状态动力学

The dynamics of has been derived in [25] and are given by
的动力学参数已在 [25] 中得到,其计算公式为
where 其中
Here, and .
在此,

C. Magnetic Field Subsystem Error State Dynamics
C.磁场子系统误差状态动力学

To the first order, the errors in (13) propagate according to
在一阶,(13) 中的误差根据以下公式传播
where 其中
However, instead of expressing the error development in terms of , we would like to express it in terms of the orientation error , velocity error , accelerometer bias estimation error , and gyroscope bias estimation error . To do so, note that from we have
不过,我们希望用方向误差 、速度误差 、加速度计偏差估计误差 和陀螺仪偏差估计误差 来表示误差发展,而不是用 来表示。为此,我们可以从 中得到
where 其中
which gives that 得出
Here, the second and higher-order error terms have been neglected. Moreover, it holds that
这里,二阶和高阶误差项已被忽略。此外,可以认为
Bringing it all together gives the following expression for the magnetic field subsystem error state propagation
综上所述,磁场子系统误差状态传播的表达式如下
where 其中
Here, 给你
and
Combining (21) and (26) gives the complete state-space description for the error state, i.e.,
结合 (21) 和 (26) 可以得到误差状态的完整状态空间描述,即
where 其中
The Kalman filter can be applied to (27) to estimate the error state, which is then used to correct the estimated state. The complete description of the proposed ESKF is summarized in Algorithm 1
卡尔曼滤波器可用于 (27) 估计误差状态,然后用于修正估计状态。算法 1 概述了拟议 ESKF 的完整描述

D. Adaptation of the measurement noise covariance
D.测量噪声协方差的调整

As previously mentioned, the polynomial magnetic field model is not perfect. The model imperfections will vary with the complexity of the magnetic field and the covariance should vary accordingly. One possibility to make adapt to the complexity of the field is to assume and then fit the magnetic-field model to the current observations and estimate from the residual. That is, is estimated as [26],
如前所述,多项式磁场模型并不完美。模型的缺陷会随着磁场的复杂程度而变化,协方差 也应相应变化。要使 适应磁场的复杂性,一种可能的方法是假定 ,然后将磁场模型拟合到当前的观测数据 ,并根据残差估计 。也就是说, 的估计方法为 [26]、
where is given by
其中 由以下公式给出

IV. EXPERIMENTAL RESULTS
IV.实验结果

To evaluate the proposed method multiple experiments were conducted using the array in Fig. 2. In each experiment, the magnetometer array was first sitting still on the ground for a few seconds and then picked up by a person. The person then held it in his/her hands and walked in squares for a few laps before putting the board back on the ground. The true trajectory of the array was measured using a camera-based motion-tracking system. In total 8 datasets were recorded. The main characteristics of the different datasets are summarized in Table []
为了评估所提出的方法,我们使用图 2 中的阵列进行了多次实验。在每次实验中,磁力计阵列首先在地面上静止不动几秒钟,然后由一个人拿起。然后,该人将其拿在手中,走几圈方形路线,再将板放回地面。阵列的真实轨迹是通过基于摄像头的运动跟踪系统测量的。总共记录了 8 个数据集。表[]总结了不同数据集的主要特征。
The datasets were processed with three algorithms: a standalone INS; the proposed MAINS, and the method proposed in [19]. The positions measured by the motion-tracking system were first made available to all algorithms for 60 seconds to calibrate IMU biases and stabilize state estimates. Then all systems operated without position aiding for the rest trajectory. This is similar to the scenario of a user coming into a building where GNSS signals are lost. Since the method in [19] by default is designed to use 5 magnetometers, the same sensor configuration (the left in Fig. 5p) as in [19] was used when comparing the two algorithms; only the performance during the non-position-aiding part of the trajectory was evaluated. An example of the estimated trajectories estimated by the three algorithms and the corresponding positional errors are plotted in Fig. 6. Since MAINS supports using other sensor configurations than the square configuration, the performance of the proposed algorithm was also evaluated using all the sensors in the array (see Fig. 5). An example of the trajectory estimated when using all sensors is shown in Fig. 7. The results, in terms of root mean square (RMS) position and velocity errors, from processing all 8 datasets with the different sensor configurations and algorithms are summarized in Table III. The position errors at the end of the trajectories are also shown.
数据集由三种算法处理:独立的 INS、拟议的 MAINS 和 [19] 中提出的方法。运动跟踪系统测量的位置首先供所有算法使用 60 秒,以校准 IMU 偏差并稳定状态估计。然后,所有系统在没有位置辅助的情况下运行其余轨迹。这与用户进入一栋失去 GNSS 信号的大楼的情况类似。由于[19]中的方法默认使用 5 个磁力计,因此在比较两种算法时使用了与[19]中相同的传感器配置(图 5p 中的左侧);仅评估了轨迹中无位置辅助部分的性能。图 6 显示了三种算法估算的轨迹示例以及相应的位置误差。由于 MAINS 支持使用方形配置以外的其他传感器配置,因此还使用阵列中的所有传感器对所提算法的性能进行了评估(见图 5)。图 7 显示了使用所有传感器估算出的轨迹示例。表 III 总结了使用不同传感器配置和算法处理所有 8 个数据集的位置和速度误差均方根(RMS)结果。同时还显示了轨迹末端的位置误差。
TABLE I 表 I
INFORMATION ABOUT THE DATASETS
有关数据集的信息
Data sequence 数据序列 LP-1 LP-2 LP-3 NP-1 NP-2 NP-3 NT-1 NT-2
Trajectory length
轨迹长度
138.72 167.07 194.41 136.23 134.66 137.76 164.62 137.87
Trajectory duration
轨迹持续时间
272 286 332 177 165 154 185 151
Average height  平均身高 0.49 0.52 0.55 0.85 0.84 0.79 0.73 0.74
Board orientation relative to the ground
电路板相对于地面的方向
parallel parallel parallel parallel parallel parallel tilted tilted
  • including the initial part of the trajectory where the position-aiding is turned on.
    包括开启位置辅助的轨迹初始部分。
LP: low height and parallel NP: normal height and parallel NT: normal height and tilted.
LP: 低高度和平行 NP: 正常高度和平行 NT: 正常高度和倾斜。
Fig. 5. Sensor configurations used in the experiments. Left: Square configuration. Right: Rectangular configuration.
图 5.实验中使用的传感器配置。左:方形配置。右图矩形配置。
It can be seen from Fig. 6 that both MAINS and the method in [19] output a trajectory with a similar shape as the true trajectory, while the INS trajectory quickly drifted away. The same conclusion can be drawn from the horizontal and vertical error plots. As expected the position error of the INS grows much faster than those of the other two methods. Looking at the results in Tab. II it shows that both MAINS and the method [19] achieved superior performance in terms of horizontal error, vertical error, and speed error, compared to the stand-alone INS. However, MAINS has a consistently lower speed error than the method [19] on all datasets. Furthermore, MAINS has, in general, a lower average horizontal error, which is consistent with the observation of the trajectory shown in Fig. 6 In terms of vertical error, the method [19] performed poorly on the datasets where the board was tilted, while MAINS had larger errors on the datasets where the board was close to the ground. The reason for [19] performing worse is that when the board is tilted (so is the body frame), the speed errors in all three axes contributed to a larger vertical error, compared to the case when the board is flat and the vertical error comes mostly from the speed error in the z-axis. Meanwhile, the reason why MAINS produced trajectories with a large vertical drift when the board was close to the ground is that the magnetic field there was too complex for the polynomial model, which results in large fitting residuals and thus large innovations in filtering pulling the estimate away from what it should be. Comparing the performance of the MAINS algorithm with the two different sensor configurations, the benefit of using more sensors is apparent - Vertical error was significantly reduced, and both the horizontal and vertical error at the end of the trajectory were less than 3 meters for most trajectories.
从图 6 中可以看出,MAINS 和 [19] 中的方法都能输出与真实轨迹形状相似的轨迹,而 INS 的轨迹则很快偏离。从水平和垂直误差图中也可以得出同样的结论。不出所料,INS 的位置误差比其他两种方法的位置误差增长更快。从表 II 中的结果可以看出,MAINS 和 INS 的位置误差都比其他两种方法要大。II 中的结果表明,与独立的 INS 相比,MAINS 和方法 [19] 在水平误差、垂直误差和速度误差方面都取得了优异的性能。不过,在所有数据集上,MAINS 的速度误差始终低于方法 [19]。在垂直误差方面,方法[19]在滑板倾斜的数据集上表现较差,而 MAINS 在滑板靠近地面的数据集上误差较大。[19]表现较差的原因是,当木板倾斜时(主体框架也倾斜),三个轴的速度误差都会导致较大的垂直误差,而当木板平放时,垂直误差主要来自 Z 轴的速度误差。同时,当电路板靠近地面时,MAINS 会产生较大的垂直漂移轨迹,其原因是该处的磁场对于多项式模型来说过于复杂,导致拟合残差较大,从而在滤波时产生较大的创新,使估计值偏离了应有的水平。比较 MAINS 算法与两种不同传感器配置的性能,使用更多传感器的好处显而易见--垂直误差显著降低,在大多数轨迹中,轨迹末端的水平和垂直误差均小于 3 米。
To help readers better understand the magnetic field in
为了帮助读者更好地了解

Fig. 6. Estimated trajectory and the corresponding positional errors from a stand-alone INS, MAINS, and the method proposed in [19]. The square sensor configuration was used in this experiment.
图 6.独立 INS、MAINS 和 [19] 中提出的方法估计的轨迹和相应的位置误差。本实验中使用的是方形传感器配置。
which the experiments were conducted and the full potential of MAINS, the trajectory estimated by MAINS with rectangular sensor configuration is plotted on top of a magnetic field magnitude plot, as shown in Fig. 7. It can be seen that the magnitude variance along the trajectory is around , and the gradient varies. MAINS is capable of producing a trajectory that is very close to the true one, and more importantly, the positional error is consistently reflected by the uncertainty. One thing that may raise readers' interest is why the trajectory seems to always "bend inwards" near the top left corner. We cannot offer a precise explanation now, but one of the possibilities is that MAINS is sensitive to errors in magnetometer calibration parameters, which are difficult to eliminate.
如图 7 所示,将 MAINS 估算的矩形传感器配置轨迹绘制在磁场幅值图上,以充分发挥 MAINS 的潜力。从图中可以看出,轨迹沿线的磁场幅值方差约为 ,且梯度各不相同。MAINS 能够生成与真实轨迹非常接近的轨迹,更重要的是,位置误差始终反映在不确定性上。有一点可能会引起读者的兴趣,那就是为什么轨迹似乎总是在左上角附近 "向内弯曲"。我们现在无法给出准确的解释,但其中一种可能性是 MAINS 对磁强计校准参数的误差很敏感,而这种误差很难消除。

Fig. 7. Illustration of the estimated and the true trajectory, as well as the magnetic field magnitude along the trajectory. The magnetic field magnitude plot is created by the interpolated magnetic field measurements using a Gaussian process model.
图 7.估算轨迹和真实轨迹以及沿轨迹的磁场幅值示意图。磁场大小图由使用高斯过程模型的内插磁场测量值绘制。

V. Conclusion And Future Work
V.结论和未来工作

The results presented in this paper demonstrate the effectiveness of the MAINS algorithm for magnetic-field-based indoor positioning. The proposed algorithm outperforms the stand-alone INS in terms of horizontal and vertical error, as well as speed error. Furthermore, it has a comparable performance with the state-of-the-art method with the same sensor configuration. Having the advantage of being flexible with sensor configurations, the MAINS algorithm can, in most cases, limit the position drift to less than 3 meters after 2 minutes of navigation when using all magnetometers.
本文介绍的结果证明了 MAINS 算法在基于磁场的室内定位方面的有效性。就水平和垂直误差以及速度误差而言,所提出的算法优于独立的 INS。此外,在传感器配置相同的情况下,该算法的性能与最先进的方法不相上下。MAINS 算法具有灵活配置传感器的优势,在大多数情况下,使用所有磁力计导航 2 分钟后,可将位置漂移限制在 3 米以内。
Future work could focus on investigating loop closure detection mechanisms for magnetic field SLAM, unifying sensor calibration and parameter tuning within the MAINS framework, and exploring the impact of the magnetic field model on positioning error. Overall, the MAINS algorithm shows great promise for real-life applications of magneticfield-based positioning.
未来的工作重点是研究磁场 SLAM 的闭环检测机制,在 MAINS 框架内统一传感器校准和参数调整,以及探索磁场模型对定位误差的影响。总之,MAINS 算法在基于磁场的定位的实际应用中大有可为。

REFERENCES 参考文献

[1] C.-I. Chesneau, "Magneto-inertial dead-reckoning in inhomogeneous field and indoor applications," Ph.D. dissertation, Université Grenoble Alpes, 2018.
[1] C.-I.Chesneau, "Magneto-inertial dead-reckoning in inhomogeneous field and indoor applications," Ph.D. dissertation, Université Grenoble Alpes, 2018.
[2] I. Skog, G. Hendeby, and F. Trulsson, "Magnetic-field based odometry - an optical flow inspired approach," in Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, Nov. 2021, pp. .
[2] I. Skog, G. Hendeby, and F. Trulsson, "Magnetic-field based odometry - an optical flow inspired approach," in Int.室内定位与室内导航会议(IPIN),西班牙 Lloret de Mar,2021 年 11 月,第 页。
[3] M. Kok and A. Solin, "Scalable magnetic field SLAM in 3D using gaussian process maps," in Proc. 2018 21st Int. Conf. on Information Fusion (FUSION), Cambridge, United Kingdom, July 2018, pp. 13531360.
[3] M. Kok 和 A. Solin,"使用高斯过程图的三维可扩展磁场 SLAM",《2018 年第 21 届国际信息融合大会(FUSION)》,英国剑桥,2018 年 7 月,第 13531360 页。Conf. on Information Fusion (FUSION),英国剑桥,2018 年 7 月,第 13531360 页。
[4] F. Viset, R. Helmons, and M. Kok, "An extended Kalman filter for magnetic field slam using gaussian process regression," Sensors, vol. 22, no. 8,2022 .
[4] F. Viset, R. Helmons, and M. Kok, "An extended Kalman filter for magnetic field slam using gaussian process regression," Sensors, vol. 22, no.