这是用户在 2024-10-13 16:40 为 https://pubs.acs.org/doi/10.1021/acsnano.3c09521 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Rapid Induction of Long-Lasting Systemic and Mucosal Immunity via Thermostable Microneedle-Mediated Chitosan Oligosaccharide-Encapsulated DNA Nanoparticles
My Activity
  • Subscribed
Article
文章11月

Rapid Induction of Long-Lasting Systemic and Mucosal Immunity via Thermostable Microneedle-Mediated Chitosan Oligosaccharide-Encapsulated DNA Nanoparticles
通过恒温微针诱导壳聚糖寡糖包被 DNA 纳米粒子快速诱导持久的全身和黏膜免疫力
Click to copy article link
点击复制文章链接
Article link copied!

  • Minchao Li 李敏超
    Minchao Li
    School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    More by Minchao Li
  • Li Yang 李阳
    Li Yang
    School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
    More by Li Yang
  • Congcong Wang 王聪聪
    Congcong Wang
    School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
  • Mingting Cui 崔明婷
    Mingting Cui
    School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    More by Mingting Cui
  • Ziyu Wen 温子玉
    Ziyu Wen
    School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    More by Ziyu Wen
  • Zhiheng Liao 廖志恒
    Zhiheng Liao 廖志恒
    School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    中山大学公共卫生学院(深圳);中国深圳,518107
    More by Zhiheng Liao
    廖志恒的更多作品
  • Zirong Han 韩子荣
    Zirong Han
    School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    More by Zirong Han
  • Yangguo Zhao
    Yangguo Zhao
    School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    More by Yangguo Zhao
  • Bing Lang
    Bing Lang
    School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    More by Bing Lang
  • Hongzhong Chen 陈红忠
    Hongzhong Chen
    School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
  • Jun Qian 钱俊
    Jun Qian
    School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    More by Jun Qian
  • Yuelong Shu* 舒跃龙*
    Yuelong Shu
    School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, P.R. China
    *E-mail: shuylong@mail.sysu.edu.cn
    More by Yuelong Shu
  • Xiaowei Zeng* 曾小伟*
    Xiaowei Zeng 曾小伟
    School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
    中山大学药学院(深圳),中国深圳 518107
    *E-mail: zengxw23@mail.sysu.edu.cn
    *E-mail:zengxw23@mail.sysu.edu.cn
    More by Xiaowei Zeng
    曾小伟的更多作品
  • Caijun Sun* 孙才军*
    Caijun Sun
    School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou 514400, China
    School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University; Guangdong 518107, China
    *E-mail: suncaijun@mail.sysu.edu.cn
    More by Caijun Sun
Open PDF 打开 PDFSupporting Information (1)
辅助资料 (1)

ACS Nano

Cite this: ACS Nano 2023, 17, 23, 24200–24217
Click to copy citationCitation copied!
https://doi.org/10.1021/acsnano.3c09521
Published November 22, 2023
Copyright © 2023 American Chemical Society

Abstract 摘要

Click to copy section link
点击复制章节链接
Section link copied!

Most existing vaccines, delivered by intramuscular injection (IM), are typically associated with stringent storage requirements under cold-chain distribution and professional administration by medical personnel and often result in the induction of weak mucosal immunity. In this context, we reported a microneedle (MN) patch to deliver chitosan oligosaccharide (COS)-encapsulated DNA vaccines (DNA@COS) encoding spike and nucleocapsid proteins of SARS-CoV-2 as a vaccination technology. Compared with IM immunization, intradermal administration via the MN-mediated DNA vaccine effectively induces a comparable level of neutralizing antibody against SARS-CoV-2 variants. Surprisingly, we found that MN-mediated intradermal immunization elicited superior systemic and mucosal T cell immunity with enhanced magnitude, polyfunctionality, and persistence. Importantly, the DNA@COS nanoparticle vaccine loaded in an MN patch can be stored at room temperature for at least 1 month without a significant decrease of its immunogenicity. Mechanically, our strategy enhanced dendritic cell maturation and antiviral immunity by activating the cGAS-STING-mediated IFN signaling pathway. In conclusion, this work provides valuable insights for the rapid development of an easy-to-administer and thermostable technology for mucosal vaccines.
现有的大多数疫苗都是通过肌肉注射(IM)的方式递送的,通常都有严格的冷链配送和医务人员专业管理的储存要求,而且往往会导致诱导出微弱的粘膜免疫。在此背景下,我们报道了一种微针(MN)贴片,用于递送壳聚糖寡糖(COS)包裹的编码SARS-CoV-2尖头蛋白和核壳蛋白的DNA疫苗(DNA@COS),作为一种疫苗接种技术。与即时免疫相比,通过 MN 介导的 DNA 疫苗皮内注射能有效诱导出与 SARS-CoV-2 变体相当水平的中和抗体。令人惊讶的是,我们发现以 MN 为介导的皮内免疫可诱导出卓越的全身和粘膜 T 细胞免疫,且免疫强度、多功能性和持久性均有所增强。重要的是,载入 MN 贴片的 DNA@COS 纳米粒子疫苗可在室温下保存至少 1 个月,其免疫原性不会明显降低。从机制上讲,我们的策略通过激活 cGAS-STING 介导的 IFN 信号通路,增强了树突状细胞成熟和抗病毒免疫力。总之,这项工作为快速开发易于给药且可恒温的粘膜疫苗技术提供了宝贵的见解。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。申请重用许可。

Copyright © 2023 American Chemical Society
版权所有 © 2023 美国化学学会

Introduction 导言

Click to copy section link
点击复制章节链接
Section link copied!

The frequent emergence of infectious diseases, such as coronavirus disease 2019 (COVID-19), mpox (previously known as monkeypox), and avian influenza, has become a huge crisis for global public health. To eventually control these infectious diseases, mass vaccination among the general population is considered to be the most cost-effective intervention by establishing herd immunity. To date, the World Health Organization has approved at least fifteen COVID-19 vaccines for clinical use, with the majority administered via intramuscular injection (IM). However, there are several disadvantages to IM-based vaccination, which usually requires strict storage conditions under cold-chain distribution and professional administration by medical personnel and typically results in weak mucosal immunity. (1−3) In addition, many people are reluctant to receive this vaccine modality due to fear of needles, stemming from the trauma and pain associated with IM. (4,5) The COVID-19 pandemic has emphasized the urgent need for a platform that can rapidly develop mucosa-targeted vaccine technology. Therefore, it is of great significance to explore alternative vaccine modalities that can improve effectiveness and coverage of vaccination across different populations.
冠状病毒病 2019(COVID-19)、痘(以前称为猴痘)和禽流感等传染病的频繁出现已成为全球公共卫生的巨大危机。为了最终控制这些传染病,在普通人群中大规模接种疫苗被认为是建立群体免疫力的最具成本效益的干预措施。迄今为止,世界卫生组织已批准了至少 15 种 COVID-19 疫苗用于临床,其中大多数通过肌肉注射(IM)给药。然而,IM 疫苗接种有几个缺点,通常需要严格的冷链配送储存条件和医务人员的专业接种,而且通常会导致黏膜免疫力低下。(1-3)此外,许多人由于对针头的恐惧而不愿意接种这种疫苗方式,这源于 IM 带来的创伤和疼痛。4,5)COVID-19 大流行凸显了对能够快速开发粘膜靶向疫苗技术的平台的迫切需求。因此,探索可提高不同人群疫苗接种效果和覆盖率的替代疫苗模式具有重要意义。
Recently, transdermal administration with a biocompatible microneedle (MN) has become a rapidly developing alternative for drug delivery. (6,7) The MN matrix consists of an array of micrometer-sized needles that provides a painless way for delivering active substances through the skin. (8) Of note, the needles, ranging from 50 to 1100 μm in length, can effectively deliver antigen to epidermal and dermal regions which are rich in Langerhans cells and dendritic cells, thereby inducing robust immune responses. (9,10) Meanwhile, MN-based vaccines can be easily self-administered at home with minimal training, reducing the risk of cross-infection and accidents associated with mass vaccinations during pandemics. (11) Consequently, the MN-based delivery system is becoming a promising strategy as a vaccine modality. Nevertheless, it remains unclear whether MN-mediated intradermal immunization can induce immune responses in mucosal tissue.
最近,使用生物相容性微针(MN)进行透皮给药已成为一种快速发展的给药方式。(6,7)微针矩阵由微米大小的针头阵列组成,提供了一种通过皮肤输送活性物质的无痛方式。(8)值得注意的是,针的长度从 50 微米到 1100 微米不等,可以有效地将抗原递送到表皮和真皮区域,这些区域含有丰富的朗格汉斯细胞和树突状细胞,从而诱发强大的免疫反应。(9,10)同时,基于 MN 的疫苗只需稍加培训即可在家中方便地自行接种,从而降低了交叉感染的风险和大流行期间大规模疫苗接种带来的事故。(11)因此,基于 MN 的给药系统正成为一种前景广阔的疫苗模式。然而,目前仍不清楚 MN 介导的皮内免疫是否能诱导粘膜组织的免疫反应。
The manufacturing process for MN-based vaccines may require more stringent conditions than that for MN-based chemical drugs, because the main components of vaccines are unstable biological macromolecules including protein subunit, DNA, mRNA, or recombinant viral particles. Therefore, it is crucial to utilize an appropriate material that can effectively safeguard the loaded bioactive compounds. Our previous studies have demonstrated that chitosan oligosaccharide (COS), a positively charged compound, can encapsulate and protect the negatively charged DNA-based vaccine or recombinant viruse-based vaccine, forming nanoparticles (NPs) that elicit robust humoral immunity and cellular immunity. (12,13) Most importantly, the particles’ mucoadhesive and adjuvant properties endow them with the potential ability to induce a strong mucosal immunity. (12) Based on these findings, we report a COVID-19 vaccine modality utilizing an MN patch to deliver COS-encapsulated DNA vaccines (DNA@COS) encoding spike (S) and nucleocapsid (N) proteins. When compared with traditional IM immunization, our results demonstrated that MN-mediated intradermal administration induced a stronger systemic and mucosal immunity. Furthermore, we explore the underlying mechanism behind this immune enhancement of MN-mediated DNA vaccines. In summary, this study provides valuable insights for rapid development of an easy-to-administer, effective, painless, and thermostable vaccine modality that can successfully induce mucosal immunity.
由于疫苗的主要成分是不稳定的生物大分子,包括蛋白质亚基、DNA、mRNA 或重组病毒颗粒,因此基于 MN 的疫苗的生产过程可能需要比基于 MN 的化学药物更严格的条件。因此,利用适当的材料来有效保护负载的生物活性化合物至关重要。我们之前的研究表明,壳聚糖低聚糖(COS)是一种带正电荷的化合物,它能包裹并保护带负电荷的 DNA 疫苗或重组病毒疫苗,形成的纳米颗粒(NPs)能激发强大的体液免疫和细胞免疫。(12,13)最重要的是,颗粒的粘附性和佐剂特性使其具有诱导强烈粘膜免疫的潜在能力。(12)基于这些发现,我们报告了一种 COVID-19 疫苗模式,利用 MN 贴片递送 COS 封装的 DNA 疫苗(DNA@COS),编码尖头蛋白(S)和核壳蛋白(N)。与传统的即时免疫相比,我们的研究结果表明,MN介导的皮内给药能诱导更强的全身和粘膜免疫。此外,我们还探讨了 MN 介导的 DNA 疫苗增强免疫力的内在机制。总之,本研究为快速开发一种可成功诱导粘膜免疫的易注射、有效、无痛、可恒温的疫苗模式提供了宝贵的见解。

Results 成果

Click to copy section link
点击复制章节链接
Section link copied!

Preparation and Characterization of COS-Encapsulated DNA Nanoparticles
COS 包囊 DNA 纳米粒子的制备与表征

The positively charged COS and negatively charged plasmid DNA vaccines can self-assemble to form nanoparticles (DNA@COS NPs) because of the ionic interactions between them (Figure 1A). Thus, we obtained pVAX-S@COS, pVAX-N@COS, and pVAX-S+N@COS NPs as described in the Methods section. The zeta potentials of the naked pVAX-S and pVAX-N plasmid DNA were −20.87 ± 3.50 and −16.15 ± 0.90 mV, respectively. However, upon the addition of positively charged COS (55.54 ± 2.22 mV), the charges of pVAX-S@COS and pVAX-N@COS were reversed, resulting in zeta potential values of 31.88 ± 0.78 and 30.65 ± 0.04 mV, respectively (Figure S1). These results confirmed that COS and DNA can form NPs through positive and negative charge interactions. Transmission electron microscopy (TEM) showed that the pVAX-S@COS, pVAX-N@COS, and pVAX-S+N@COS were spherical (Figure 1B and Figure S1), with particle sizes of approximately 130.53 ± 0.26, 137.27 ± 1.04, and 159.87 ± 1.52 nm, respectively (Figure 1C and Figure S1). We then evaluated the protective capability of COS encapsulation on a DNA plasmid. The naked plasmid DNA or DNA@COS NPs were incubated with restriction endonuclease for different times. The results showed that COS treatment could completely protect the DNA plasmid from digestion, while the naked DNA plasmid was cut into two strips at the restriction enzyme site (Figure S2), confirming the effective protection of COS-encapsulated DNA vaccine from DNase I degradation. We also investigated the toxicity of COS treatment on different cell lines (HEK-293T, DC 2.4, and Raw 264.7) using the Cell Counting Kit-8 (CCK8) assay, and the results demonstrated that COS treatment up to 100 μg/mL did not exhibit significant cell toxicity (Figure S3).
带正电荷的 COS 和带负电荷的质粒 DNA 疫苗可以自组装形成纳米颗粒(DNA@COS NPs),因为它们之间存在离子相互作用(图 1A)。因此,如方法部分所述,我们获得了 pVAX-S@COS、pVAX-N@COS 和 pVAX-S+N@COS NPs。裸 pVAX-S 和 pVAX-N 质粒 DNA 的 zeta 电位分别为 -20.87 ± 3.50 和 -16.15 ± 0.90 mV。然而,加入带正电荷的 COS(55.54 ± 2.22 mV)后,pVAX-S@COS 和 pVAX-N@COS 的电荷发生了反转,zeta 电位分别为 31.88 ± 0.78 和 30.65 ± 0.04 mV(图 S1)。这些结果证实,COS 和 DNA 可通过正负电荷相互作用形成 NPs。透射电子显微镜(TEM)显示,pVAX-S@COS、pVAX-N@COS 和 pVAX-S+N@COS 呈球形(图 1B图 S1),粒径分别约为 130.53 ± 0.26、137.27 ± 1.04 和 159.87 ± 1.52 nm(图 1C图 S1)。然后,我们评估了 COS 对 DNA 质粒的保护能力。将裸质粒 DNA 或 DNA@COS NPs 与限制性内切酶孵育不同时间。结果表明,COS处理能完全保护DNA质粒不被消化,而裸DNA质粒在限制性内切酶位点被切成两段(图S2),证实了COS包被DNA疫苗能有效保护DNA质粒不被DNase I降解。我们还研究了 COS 处理对不同细胞系(HEK-293T、DC 2.4 和 Raw 264)的毒性。7)的细胞计数试剂盒-8(CCK8)检测,结果表明,COS 处理量达到 100 μg/mL 时不会表现出明显的细胞毒性(图 S3)。

Figure 1 图 1

Figure 1. Physiochemical and biological characterization of COS-engineered DNA vaccine. (A) Schematic of plasmid DNA expressing S or N protein (pVAX-S or pVAX-N), which was absorbed on the positive charged COS through electrostatic interaction to give pVAX-S@COS, pVAX-N@COS, or pVAX-S+N@COS. (B) Transmission electron microscopy image of pVAX-S+N@COS. Scale bar represents 200 nm. (C) Particle size distribution of pVAX-S+N@COS. (D) Evaluations of S protein expression in 293T cells 48 h after pVAX-S@COS and pVAX-S+N@COS (4 μg/mL plasmid) transfections by Western blot. (E) Evaluations of N protein expression in 293T cells 48 h after pVAX-N@COS and pVAX-S+N@COS (4 μg/mL plasmid) transfections by Western blot. (F) In vitro transfection efficacy of pVAX-GFP@COS nanoparticle vaccine. HEK-293T cells were treated with different concentrations of pVAX-GFP loaded on COS including freshly prepared nanoparticles (NPs) and stored microneedles (MN) (stored in a desiccator at room temperature for 30 days). The fluorescence signal was obtained using an inverted fluorescence microscope and (G) the GFP expression efficiency was quantified by flow cytometry. Scale bar represents 100 μm. (H) Evaluation of luminescence intensity after HEK-293T cells were treated with different concentration of pVAX-luci@COS. (I) Cellular uptake of Cy5-pVAX-S@COS by HEK-293T cells at different times. Scale bar represents 20 μm. (J) Left panels: observation of the co-localization of Cy5-labeled pVAX-S@COS (red) and LysoTracker (green) in HEK-293T cells by confocal laser scanning microscopy (CLSM). Right panel: curve profiles of pVAX-S@COS with lysotracker. The intensity of each curve was quantified by ImageJ software and drawn using GraphPad Prism 8.0. Scale bar represents 20 μm. Data are expressed as mean ± SEM for triplicate samples, and p-values of less than 0.05 were deemed statistically significant. *p < 0.05; **p < 0.01; ****p < 0.0001.
图 1.COS 工程 DNA 疫苗的理化和生物学特性。(A) 表达 S 或 N 蛋白的质粒 DNA(pVAX-S 或 pVAX-N)示意图,质粒 DNA 通过静电作用吸附在带正电荷的 COS 上,得到 pVAX-S@COS、pVAX-N@COS 或 pVAX-S+N@COS。(B)pVAX-S+N@COS 的透射电子显微镜图像。刻度线代表 200 纳米。(C)pVAX-S+N@COS 的粒度分布。(D) 通过 Western 印迹评估 pVAX-S@COS 和 pVAX-S+N@COS(4 μg/mL 质粒)转染 48 小时后 293T 细胞中 S 蛋白的表达。(E)通过 Western 印迹评估 pVAX-N@COS 和 pVAX-S+N@COS(4 μg/mL 质粒)转染 48 小时后 293T 细胞中 N 蛋白的表达。(F)pVAX-GFP@COS 纳米颗粒疫苗的体外转染效果。用不同浓度的 pVAX-GFP 载于 COS(包括新鲜制备的纳米颗粒(NPs)和储存的微针(MN)(在室温干燥器中储存 30 天))处理 HEK-293T 细胞。荧光信号通过倒置荧光显微镜获得,(G)GFP 表达效率通过流式细胞仪量化。标尺条代表 100 微米。(H)用不同浓度的 pVAX-luci@COS 处理 HEK-293T 细胞后的发光强度评估。(I)不同时间 HEK-293T 细胞对 Cy5-pVAX-S@COS 的吸收。标尺条代表 20 μm。(J)左图:共聚焦激光扫描显微镜(CLSM)观察 HEK-293T 细胞中 Cy5 标记的 pVAX-S@COS(红色)和 LysoTracker(绿色)的共定位。右图:pVAX-S@COS 与溶血追踪器的曲线图。每条曲线的强度由 ImageJ 软件量化,并使用 GraphPad Prism 8.0 绘制。缩放条代表 20 μm。 数据以一式三份样品的平均值 ± SEM 表示,P 值小于 0.05 视为具有统计学意义。*p< 0.05;**p< 0.01;****p< 0.0001。

Subsequently, protein expression was confirmed using Western bolt assay after incubating pVAX-S@COS, pVAX-N@COS, and pVAX-S+N@COS with 293T cells. The results showed that the DNA@COS appropriately expressed the corresponding spike and nucleocapsid proteins with the expected molecular weight (Figure 1D,E). To further investigate the transfection and uptake efficiency of COS-encapsulated DNA NPs, pVAX-GFP@COS NPs were cultured with HEK-293T cells for 48 h, and the transfection efficiency was detected. As shown in Figure 1F,G and Figure S4, the transfection efficiency of DNA@COS NPs was increased in a dose-dependent manner. The expression of pVAX-GFP@COS NPs was also verified in mouse immune cell lines, including DC 2.4 (mouse bone marrow-derived dendritic cells) and RAW264.7 (mouse mononuclear macrophage leukemia cells), although the in vitro transfection efficacy is low in these immune cells (Figure S5). We also assessed the thermostability of the DNA nanoparticle vaccine in MN stored at room temperature for 30 days by testing its transfection efficiency. As shown in Figure 1G and Figure S6, the transfection efficiency of MN-stored DNA@COS nanoparticle vaccine was comparable to, though slightly lower than, that of freshly prepared NPs. This observation was further verified by the transfection of pVAX-luci@COS NPs, which encoded luciferase that can catalyze the oxidation of its substrate luciferin to produce bioluminescence, resulting in an increase in the luminescence intensity in a dose-dependent manner (Figure 1H). Subsequently, we labeled the DNA plasmids with a fluorescent dye (Cy5), and then the Cy5-pVAX-S@COS NPs were incubated with HEK-293T cells for 2, 4, or 8 h. As shown in Figure 1I and Figure S7, the cellular uptake of pVAX-S@COS NPs was significantly increased after incubation for 4 h, and the uptake efficiency was retained until 8 h. Given that COS encapsulation enhanced the cellular uptake and transfection efficiency of DNA plasmids, we further investigated whether COS encapsulation could mediate the endo-/lysosome escaping. We labeled the DNA plasmids with fluorescent dye (Cy5), and the endo-/lysosomes were stained using LysoTracker Green. The results showed that a large amount of yellow staining (the overlap of red and green fluorescence) was observed after the cells were incubated with Cy5-pVAX-S@COS NPs for 1 and 2 h (Figure 1J left), and the overlapped area under the red and green curves was also consistently larger than that at 4 and 8 h (Figure 1J right), indicating that the pVAX-S@COS NPs were effectively transported to endo-/lysosomes at 1 and 2 h after transfection. However, the co-location between pVAX-S@COS and endo-/lysosomes was significantly decreased at 4 and 8 h (Figure 1J), suggesting that the pVAX-S@COS could effectively escape from the endo-/lysosomes at 4 h after transfection. Consistent with this, the values of Pearson’s correlation coefficient at 1 and 2 h were also significantly higher than those at 4 and 8 h (Figure S8). Thus, COS-encapsulated DNA NPs effectively improved transfection efficiency, cellular uptake, and endo-/lysosomes escape, which is beneficial for long-lasting expression of DNA-mediated foreign proteins.
随后,在将 pVAX-S@COS、pVAX-N@COS 和 pVAX-S+N@COS 与 293T 细胞培养后,使用 Western bolt 检测法确认了蛋白质的表达。结果表明,DNA@COS 适当表达了相应的尖峰蛋白和核壳蛋白,且分子量符合预期(图 1D,E)。为了进一步研究 COS 包被 DNA NPs 的转染和吸收效率,将 pVAX-GFP@COS NPs 与 HEK-293T 细胞培养 48 h 并检测转染效率。如图 1F,G 和图 S4 所示,DNA@COS NPs 的转染效率呈剂量依赖性增加。pVAX-GFP@COS NPs 的表达也在小鼠免疫细胞系中得到了验证,包括 DC 2.4(小鼠骨髓衍生树突状细胞)和 RAW264.7(小鼠单核巨噬细胞白血病细胞),尽管这些免疫细胞的体外转染效率较低(图 S5)。我们还通过检测 DNA 纳米粒子疫苗的转染效率,评估了其在室温储存 30 天的 MN 中的恒温性。如图 1G图 S6 所示,储存在 MN 中的 DNA@COS 纳米粒子疫苗的转染效率与新鲜制备的 NPs 相当,但略低于后者。pVAX-luci@COS NPs 编码的荧光素酶可催化底物荧光素氧化产生生物发光,从而以剂量依赖性方式增加发光强度(图 1H)。 如图1I图S7所示,pVAX-S@COS NPs与HEK-293T细胞培养4小时后,细胞对DNA质粒的摄取显著增加,摄取效率一直保持到8小时。鉴于 COS 封装提高了 DNA 质粒的细胞摄取和转染效率,我们进一步研究了 COS 封装是否能介导内/溶酶体逸出。我们用荧光染料(Cy5)标记了DNA质粒,并用LysoTracker Green染色了内/溶酶体。结果表明,用Cy5-pVAX-S@COS NPs培养细胞1小时和2小时后,观察到大量黄色染色(红绿荧光重叠)(图1J左),红绿曲线下的重叠面积也一直大于4小时和8小时时的重叠面积(图1J右),表明转染后1小时和2小时时pVAX-S@COS NPs被有效地转运到内/溶酶体。然而,在转染后 4 小时和 8 小时,pVAX-S@COS 与内/溶酶体之间的共定位显著降低(图 1J),表明 pVAX-S@COS 在转染后 4 小时可以有效地从内/溶酶体中逸出。与此相一致,1 和 2 h 时的皮尔逊相关系数值也明显高于 4 和 8 h 时(图 S8)。 因此,COS 封装的 DNA NPs 有效提高了转染效率、细胞摄取率和内/溶酶体逃逸率,有利于 DNA 介导的外来蛋白质的持久表达。

Preparation and Characterization of the MN-Mediated DNA@COS Nanoparticles
MN 介导的 DNA@COS 纳米粒子的制备与表征

In our study, the pVAX-S+N@COS NPs were loaded into MNs by using the centrifugal perfusion method (Figure 2A). One patch of the engineered MN had a base radius of 600 μm, a height of 1000 μm, and 72 needle tips. To explore the distribution of DNA@COS in the MN, we labeled COS with a red fluorescent dye (Rhodamine, Rho) to prepare the DNA@COS-Rho NPs. As shown in Figure 2B, the pVAX-S+N@COS-Rho NPs were concentrated at the tips of the MNs with a length of approximately 300 μm. Then, the modified MN patch was tested to determine whether it had sufficient mechanical strength to pierce the skin and thus deliver DNA@COS NPs into the subcutaneous tissue and cells in vivo. The results (Figure 2C) showed that it effectively penetrated the skin of mice, and the MN tips containing the DNA@COS NPs were completely dissolved within 5 min, leaving micrometer-sized holes in the skin. The loading of pVAX-S+N@COS NPs did not affect the mechanical strength of the MNs, including blank MN, freshly prepared MN, and stored MN. Additionally, all of our prepared MNs demonstrated a mechanical strength exceeding 1 N/needle, indicating their ability to penetrate the skin (Figure 2D,E). To further validate the effective delivery of DNA loaded into the MNs, we conducted a measurement of DNA content before and after MN administration. 20 μg of DNA plasmid encapsulated by COS was loaded into the MN before administration (Table S1), and the results demonstrated a substantial and effective delivery of the loaded DNA, with a delivery efficiency up to 88.6% (Figure 2F). Furthermore, we also validated the delivery efficiency of the DNA@COS NPs by assessing the Rho-tagged COS content before and after MN administration. Consistently, when evaluating the delivery efficiency of COS-Rho, we also observed a high efficiency of 87.3% (Figure 2G). These findings highlighted the potential of MN as a highly efficient platform for DNA delivery. To confirm the dissolving properties of this modified MN, we conducted an in vitro experiment and found that the MN tips dissolved in phosphate buffered saline (PBS, pH = 7.4) within 20 s, while the backing layer remained relatively intact (Figure 2H). We then characterized the DNA@COS NPs in the MNs when dissolved in PBS. As shown in Figure S9A,B, the zeta potential of the NPs did not change significantly, and the average size of the dissolved NPs was increased slightly, possibly due to the adhesion of some NPs after dissolving MN in PBS. In addition, the transfection efficiency of the NPs dissolved from MN was also similar to that of freshly prepared NPs (Figure S9C,D).
在我们的研究中,采用离心灌注法将 pVAX-S+N@COS NPs 装入 MN(图 2A)。一块工程 MN 的基底半径为 600 μm,高度为 1000 μm,有 72 个针尖。为了探索 DNA@COS 在 MN 中的分布,我们用红色荧光染料(罗丹明,Rho)标记 COS,制备 DNA@COS-Rho NPs。如图 2B所示,pVAX-S+N@COS-Rho NPs 集中在 MN 的顶端,长度约为 300 μm。然后,对改良后的 MN 贴片进行了测试,以确定其是否有足够的机械强度刺穿皮肤,从而将 DNA@COS NPs 送入皮下组织和体内细胞。结果(图 2C)显示,它能有效穿透小鼠皮肤,含有 DNA@COS NPs 的 MN 顶端在 5 分钟内完全溶解,在皮肤上留下微米大小的孔。pVAX-S+N@COS NPs 的负载并不影响 MN 的机械强度,包括空白 MN、新鲜制备的 MN 和储存的 MN。此外,我们制备的所有 MN 的机械强度都超过了 1 N/针,这表明它们有能力穿透皮肤(图 2D、E)。为了进一步验证载入 MN 的 DNA 的有效递送,我们在 MN 给药前后对 DNA 含量进行了测量。给药前,20 微克由 COS 封装的 DNA 质粒被载入 MN(表 S1),结果表明载入的 DNA 得到了大量有效的递送,递送效率高达 88.6%(图 2F)。 此外,我们还通过评估给药前后 Rho 标记的 COS 含量,验证了 DNA@COS NPs 的给药效率。同样,在评估 COS-Rho 的递送效率时,我们也观察到了 87.3% 的高效率(图 2G)。这些发现凸显了 MN 作为高效 DNA 运送平台的潜力。为了证实这种改性 MN 的溶解特性,我们进行了一次体外实验,发现 MN 顶端在 20 秒内就溶解在磷酸盐缓冲盐水(PBS,pH = 7.4)中,而背衬层则保持相对完整(图 2H)。然后,我们对溶解在 PBS 中的 MN 中的 DNA@COS NPs 进行了表征。如图 S9A、B 所示,NPs 的 zeta 电位没有明显变化,溶解后的 NPs 平均尺寸略有增加,这可能是由于 MN 溶解在 PBS 中后部分 NPs 粘附所致。此外,从 MN 中溶解的 NPs 的转染效率也与新鲜制备的 NPs 相似(图 S9C,D)。

Figure 2 图 2

Figure 2. Fabrication and characteristics of MN patch-based vaccine. (A) Schematic diagram showing the fabrication procedure for loading DNA@COS NPs into MN. (B) Stereopic image of S+N@COS-Rho/MN. (C) The piercing effect of S+N@COS-Rho/MN on the skin of mice and the changes of S+N@COS-Rho/MN before (left) and after (right) the piercing. (D, E) Mechanical strength of the blank MN, freshly prepared S+N@COS-MN, and the stored S+N@COS-MN( n = 3). (F) Measurement of the total amount of DNA in each patch of MN before and after administration in mice (n = 4). (G) Measurement of the total amount of COS labeled with rhodamine in each patch of MN before and after administration in mice (n = 3). (H) Dissolution of MN in PBS for different time points. (I) Representative in vivo luminescence imaging of luciferase expression in mice at 24 and 48 h after receiving 20 μg pVAX-luci@COS through different administration routes. Quantitative analysis of relative luminescence intensity at 24 h (J) and 48 h (K) after receiving DNA NPs through different administration routes. Data are expressed as Avg Radiance (×103 p/s/cm2/sr) and presented as mean ± SEM of three independent experiments, and p-values of less than 0.05 were deemed statistically significant. ***p < 0.001; ****p < 0.0001; ns, not significant. PDMS: polydimethylsiloxane. PVA: poly(vinyl alcohol).
图 2.基于 MN 贴片的疫苗的制造和特性。(A) 将 DNA@COS NPs 装入 MN 的制作过程示意图。 (B) S+N@COS-Rho/MN 的立体图像。(C)S+N@COS-Rho/MN 对小鼠皮肤的穿刺效果以及穿刺前(左)和穿刺后(右)S+N@COS-Rho/MN 的变化。(D,E)空白 MN、新制备的 S+N@COS-MN 和储存的 S+N@COS-MN (n= 3)的机械强度。(F)小鼠用药前后每片 MN 中 DNA 总量的测量(n= 4)。(G)测量小鼠用药前后每块 MN 中罗丹明标记的 COS 总量(n= 3)。(H)不同时间点 MN 在 PBS 中的溶解情况。(I)小鼠通过不同给药途径接受 20 μg pVAX-luci@COS 后 24 小时和 48 小时荧光素酶表达的代表性体内发光成像。通过不同给药途径接受 DNA NPs 后 24 小时(J)和 48 小时(K)的相对发光强度定量分析。数据以 Avg Radiance(×103 p/s/cm2/sr)表示,以三个独立实验的平均值 ± SEM 表示,P 值小于 0.05 视为具有统计学意义。***p< 0.001;****p< 0.0001; ns, 无意义。PDMS:聚二甲基硅氧烷。PVA:聚乙烯醇。

Next, we investigated whether the modified MN containing DNA@COS NPs can appropriately express the targeted protein in vivo. With the pVAX-luci@COS IM group as a positive control, a MN patch containing pVAX-luci@COS was administered to the bare dorsal skin of mice, and then the bioluminescence was quantified using an in vivo imaging system. Compared with the results from the traditional IM group, there was no statistical difference, but a tendency for a higher level expression of luciferase was detected in the group of the MN-mediated intracutaneous administration for 24 and 48 h (Figure 2I–K). These results demonstrated that the modified MN containing DNA@COS NPs was successfully fabricated.
接下来,我们研究了含有 DNA@COS NPs 的修饰 MN 能否在体内适当表达目标蛋白。以 pVAX-luci@COS IM 组为阳性对照,将含有 pVAX-luci@COS 的 MN 贴片置于小鼠裸露的背部皮肤上,然后使用体内成像系统对生物发光进行量化。与传统皮内给药组的结果相比,虽然没有统计学差异,但在 MN 介导的皮内给药组,24 小时和 48 小时的荧光素酶表达水平有升高的趋势(图 2I-K)。这些结果表明,含有 DNA@COS NPs 的改性 MN 制作成功。

Induction of Effective Systemic and Mucosal Humoral Immune Responses by the Thermostable MN-Mediated DNA@COS Nanoparticle Vaccine
热稳定 MN 介导的 DNA@COS 纳米粒子疫苗诱导有效的全身和黏膜体液免疫反应

After validating that the MN-mediated DNA@COS NPs can appropriately express the encoded antigens via intracutaneous administration, we further investigated their immunogenicity in mice (Figure 3A). To investigate the thermostability, DNA@COS NPs loaded into MN were stored at room temperature for 30 days. The mice were then immunized with the freshly prepared MN and stored MN. The antigen-specific IgG responses against SARS-CoV-2 spike and nucleocapsid proteins were quantified by ELISA assay. The results showed that the MN-mediated pVAX-S+N@COS NPs effectively induced S-specific IgG antibodies (Figure 3B) and N-specific IgG antibodies (Figure 3C) at day 21 and day 42, which was similar to the results in the pVAX-S+N@COS IM group. The antibody level was further improved after booster immunization (Figure 3B,C). Importantly, the mice immunized with two doses of pVAX-S+N@COS NPs which had been stored at room temperature for 30 days still showed similar levels of spike- and nucleocapsid-specific antibodies when compared with those immunized with the freshly prepared MN vaccine (Figure 3B,C). We next assessed the neutralizing capacity of serum antibodies using a SARS-CoV-2 pseudovirus-based neutralization assay. Similar to the traditional IM immunization of DNA@COS nanoparticle vaccine, our MN-mediated DNA@COS nanoparticle vaccine based on the S protein of the SARS-CoV-2 protype could significantly inhibit the infection of SARS-CoV-2 protype and beta variants at day 21 and day 42, although it could not inhibit the infection of SARS-CoV-2 delta and omicron variants (Figure 3D,E and Figure S10A,B). In addition, there was similar neutralizing capacity of serum antibodies between mice immunized with freshly prepared MN and stored MN. Thus, these findings indicated that our modified MN-mediated DNA@COS nanoparticle vaccine could retain its activity and immunogenicity at room temperature for at least 1 month, which is very helpful to promote the vaccine coverage by avoiding the strict storage conditions under cold-chain distribution.
在验证了 MN 介导的 DNA@COS NPs 可通过皮内给药适当表达编码抗原后,我们进一步研究了它们在小鼠体内的免疫原性(图 3A)。为了研究其热稳定性,我们将载入 MN 的 DNA@COS NPs 在室温下保存了 30 天。然后用新鲜制备的 MN 和储存的 MN 对小鼠进行免疫。通过酶联免疫吸附试验对 SARS-CoV-2 棘突蛋白和核壳蛋白的抗原特异性 IgG 反应进行定量。结果显示,在第21天和第42天,MN介导的pVAX-S+N@COS NPs能有效诱导S特异性IgG抗体(图3B)和N特异性IgG抗体(图3C),这与pVAX-S+N@COS IM组的结果相似。加强免疫后抗体水平进一步提高(图 3B、C)。重要的是,与接种新鲜制备的 MN 疫苗的小鼠相比,接种两剂室温保存 30 天的 pVAX-S+N@COS NPs 的小鼠仍表现出相似的尖峰和核壳特异性抗体水平(图 3B、C)。接下来,我们使用基于 SARS-CoV-2 伪病毒的中和试验评估了血清抗体的中和能力。与传统的DNA@COS纳米颗粒疫苗IM免疫相似,我们基于SARS-CoV-2原型的S蛋白的MN介导的DNA@COS纳米颗粒疫苗在第21天和第42天能显著抑制SARS-CoV-2原型和β变种的感染,但不能抑制SARS-CoV-2δ和Ω变种的感染(图3D,E和图S10A,B)。 此外,用新鲜制备的 MN 和储存的 MN 免疫小鼠的血清抗体中和能力相似。因此,这些研究结果表明,我们改良的 MN 介导的 DNA@COS 纳米粒子疫苗可在室温下保持其活性和免疫原性至少 1 个月,从而避免了冷链配送下的严格储存条件,这对提高疫苗的覆盖率非常有帮助。

Figure 3 图 3

Figure 3. Humoral immune responses to spike and nucleocapsid proteins in BALB/c mice after receiving DNA nanoparticle vaccine through IM or MN-mediated intradermal administration. (A) Vaccination strategy to evaluate the immunogenicity of DNA@COS nanoparticle vaccine through different administration routes. 6–8-week-old female BALB/c mice were randomly allocated into four groups. Each mouse received 20 μg of the DNA@COS nanoparticle vaccine at weeks 0, 2, and 4 through different administration routes. To investigate the thermostability of the vaccine, DNA@COS and vaccine loaded in MN were stored at room temperature for 30 days. The mice were then immunized with the freshly prepared MN or the stored MN. “Δ” represents the time-point of sacrifice (5 mice per group) and sample collection. (B) Serum anti-spike IgG reciprocal end point antibody titers at day 21, day 21 (stored MN), and day 42 post-immunization. (C) Serum anti-nucleocapsid IgG reciprocal end point antibody titers at day 21, day 21 (stored MN), and day 42 post-immunization. End point titers were defined by the lowest dilution at which the OD value was double standard deviations above the mean of the blank wells. (D, E) Neutralization efficiency of mice serum against SARS-CoV-2 prototype (D) and beta variants (E) with dilution at 1:20 at day 21, day 21 (stored MN), and day 42. (F) Serum anti-spike IgG1 and IgG2c antibody response at day 21 and day 42 with dilution at 1:20. (G) Serum anti-spike IgA antibody response at day 21 and day 42 with dilution at 1:20. G1 means empty@COS-IM, G2 means empty@COS-MN, G3 means S+N@COS-IM, and G4 means S+N@COS-MN. Data are expressed as mean ± SEM of five independent experiments, and p-values of less than 0.05 were deemed statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
图 3.BALB/c 小鼠通过 IM 或 MN 介导的皮内给药接种 DNA 纳米颗粒疫苗后对尖头蛋白和核壳蛋白的体液免疫反应。(A) 通过不同给药途径评估 DNA@COS 纳米颗粒疫苗免疫原性的接种策略。将 6-8 周大的雌性 BALB/c 小鼠随机分为四组。每只小鼠在第0周、第2周和第4周通过不同给药途径接种20微克DNA@COS纳米颗粒疫苗。为研究疫苗的热稳定性,DNA@COS 和载入 MN 的疫苗在室温下储存 30 天。然后用新鲜制备的 MN 或储存的 MN 对小鼠进行免疫接种。Δ "代表牺牲(每组 5 只小鼠)和样本采集的时间点。(B) 免疫后第 21 天、第 21 天(储存的 MN)和第 42 天的血清抗尖峰抗体 IgG 相互终点抗体滴度。(C)免疫后第 21 天、第 21 天(储存 MN)和第 42 天的血清抗核衣壳 IgG 相互终点抗体滴度。以最低稀释度时的 OD 值比空白孔的平均值高出两个标准差来定义终点滴度。(D、E)第 21 天、第 21 天(储存的 MN)和第 42 天,小鼠血清对 SARS-CoV-2 原型(D)和 beta 变体(E)的中和效率,稀释度为 1:20。(F) 第 21 天和第 42 天血清抗尖峰 IgG1 和 IgG2c 抗体反应,稀释度为 1:20。 (G) 第 21 天和第 42 天血清抗尖峰 IgA 抗体反应,稀释度为 1:20。G1表示空@COS-IM,G2表示空@COS-MN,G3表示S+N@COS-IM,G4表示S+N@COS-MN。数据以五个独立实验的平均值 ± SEM 表示,P 值小于 0.05 则具有统计学意义。 *p< 0.05;**p< 0.01;***p< 0.001;****p< 0.0001; ns, 不显著。

The results also showed that our strategy induced T helper 1 (Th1)-bias responses with IgG2c subclass antibodies at day 21 and day 42, but not Th2-bias responses with IgG1 subclass antibodies (Figure 3F), which is consistent with a previous study that showed chitosan material enhanced the antigen-specific Th1 responses. (14) Importantly, the level of S-specific IgA antibodies in the pVAX-S+N@COS MN group was significantly higher than that in the pVAX-S+N@COS IM group at day 21 and day 42 (Figure 3G), indicating that the MN-mediated DNA@COS nanoparticle vaccine effectively elicited a potent mucosal immunity, which plays a critical role as the first line of defense against viral invasion.
结果还显示,我们的策略在第21天和第42天诱导了IgG2c亚类抗体的T辅助细胞1(Th1)偏向性反应,但没有诱导IgG1亚类抗体的Th2偏向性反应(图3F),这与之前的一项研究一致,该研究显示壳聚糖材料增强了抗原特异性Th1反应。(14)重要的是,在第 21 天和第 42 天,pVAX-S+N@COS MN 组的 S 特异性 IgA 抗体水平显著高于 pVAX-S+N@COS IM 组(图 3G),这表明 MN 介导的 DNA@COS 纳米颗粒疫苗能有效激发强效粘膜免疫,而粘膜免疫作为抵御病毒入侵的第一道防线发挥着至关重要的作用。

Induction of a Robust Systemic and Mucosal T Cellular Immunity by MN-Mediated DNA@COS Nanoparticle Vaccine
MN 介导的 DNA@COS 纳米粒子疫苗诱导强大的全身和黏膜 T 细胞免疫力

Previous studies revealed that a high frequency of SARS-CoV-2-specific T cells, including 100% CD4+ T cell and 70% CD8+ T cell immune responses, (15) was identified in COVID-19 convalescent patients, implying that the cellular immune responses play a critical role in controlling viral replication. Moreover, compared to antibody response, T cell immune response is usually more conserved against viral variants, indicating the potential of developing universal COVID-19 vaccines by targeting broadly cross-reactive T cell epitopes. (16) In order to assess the SARS-CoV-2-specific T cell responses, splenic and pulmonary lymphocytes from immunized mice were collected for the IFN-γ ELISpot assay. After the primary immunization, the pVAX-S+N@COS MN group showed a 4.2-fold increase in the frequency of S1-specific IFN-γ+ T cell responses compared with the pVAX-S+N@COS IM group. Similarly, the frequency of S2-specific IFN-γ+ T cell responses was increased by 8.8-fold (Figure 4A). After the booster dose of immunization, the pVAX-S+N@COS-MN group further exhibited a 5.2-fold increase in S1-specific IFN-γ+ T cell responses and a 4.5-fold increase in S2-specific IFN-γ+ T cell responses when compared to the pVAX-S+N@COS IM group (Figure 4B). Meanwhile, there was a higher tendency of N-specific IFN-γ+ T cell responses in the MN group than in the IM group, although this difference was not statistically significant.
先前的研究显示,在 COVID-19 康复期患者中发现了高频率的 SARS-CoV-2 特异性 T 细胞,包括 100% 的 CD4+T 细胞和 70% 的 CD8+T 细胞免疫反应(15),这意味着细胞免疫反应在控制病毒复制方面发挥着关键作用。此外,与抗体反应相比,T 细胞免疫反应通常对病毒变体更为保守,这表明通过靶向广泛交叉反应的 T 细胞表位开发通用 COVID-19 疫苗是有潜力的。(16)为了评估 SARS-CoV-2 特异性 T 细胞反应,收集了免疫小鼠的脾脏和肺淋巴细胞进行 IFN-γ ELISpot 检测。初次免疫后,与 pVAX-S+N@COS IM 组相比,pVAX-S+N@COS MN 组的 S1 特异性 IFN-γ+T 细胞应答频率增加了 4.2 倍。同样,S2 特异性 IFN-γ+T 细胞应答的频率也增加了 8.8 倍(图 4A)。与 pVAX-S+N@COS IM 组相比,pVAX-S+N@COS-MN 组的 S1 特异性 IFN-γ+T 细胞应答增加了 5.2 倍,S2 特异性 IFN-γ+T 细胞应答增加了 4.5 倍(图 4B)。同时,与 IM 组相比,MN 组的 N 特异性 IFN-γ+T 细胞应答有更高的趋势,尽管这一差异没有统计学意义。

Figure 4 图 4

Figure 4. The DNA@COS nanoparticle vaccine induced spike and nucleocapsid protein-specific T cell responses in spleen and lung. After DNA@COS nanoparticle vaccination, mice were sacrificed, and the splenic and pulmonary lymphocytes were stimulated ex vivo with S1, S2, and N peptide pools. Background-subtracted median responses in BALB/c mice following vaccination are shown. (A) Antigen-specific IFN-γ ELISpot assay with splenic lymphocytes isolated at day 21. (B) Antigen-specific IFN-γ ELISpot assay with splenic lymphocytes isolated at day 42. (C) Antigen-specific IFN-γ ELISpot assay with pulmonary lymphocytes isolated at day 21. (D) Antigen-specific IFN-γ ELISpot assay with pulmonary lymphocytes isolated at day 42. (E) Gating strategy of flow cytometric scatter plots to analyze the memory T cell (TEM: CD8+CD62LCD44L+, TCM: CD8+CD62L+CD44L+) simulated by S1 and S2 peptide pools at day 42. (F) Histogram of the background-subtracted percentage of memory T cell simulated by S1 and S2 peptide pools at day 42. G1 means empty@COS-IM, G2 means empty@COS-MN, G3 means S+N@COS-IM, and G4 means S+N@COS-MN. Data are expressed as mean ± SEM, Data are pooled from two independent experiments, n = 5 mice/group. p-values of less than 0.05 were deemed statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001.
图 4.DNA@COS纳米颗粒疫苗诱导脾脏和肺部的尖峰和核壳蛋白特异性T细胞反应。接种 DNA@COS 纳米颗粒疫苗后,小鼠被处死,用 S1、S2 和 N 肽池刺激脾脏和肺部淋巴细胞。图中显示了 BALB/c 小鼠接种疫苗后的背景中值反应。(A) 用第 21 天分离的脾脏淋巴细胞进行抗原特异性 IFN-γ ELISpot 检测。(B) 用第 42 天分离的脾淋巴细胞进行抗原特异性 IFN-γ ELISpot 检测。(C) 用第 21 天分离的肺淋巴细胞进行抗原特异性 IFN-γ ELISpot 检测。(D) 用第 42 天分离的肺淋巴细胞进行抗原特异性 IFN-γ ELISpot 检测。(E)分析第 42 天 S1 和 S2 肽池模拟的记忆 T 细胞(TEM:CD8+CD62L-CD44L+;TCM:CD8+CD62L+CD44L+)的流式细胞散点图分选策略。(F) S1 和 S2 肽池模拟的记忆 T 细胞在第 42 天的背景缩减百分比直方图。G1表示空@COS-IM,G2表示空@COS-MN,G3表示S+N@COS-IM,G4表示S+N@COS-MN。数据以平均值 ± SEM 表示,数据来自两个独立实验,n= 5 只小鼠/组。*p< 0.05;**p< 0.01;***p< 0.001。

To assess the cellular immunity elicited at local mucosal tissue, the lung lymphocytes were isolated from immunized mice and subjected to an IFN-γ ELISpot assay. Significantly, we found a higher frequency of S2-specific IFN-γ+ T cell responses in the lung mucosal tissue in the pVAX-S+N@COS-MN group at day 21, as compared to the pVAX-S+N@COS IM group. While statistical significance was not observed in S1-specific and N-specific IFN-γ+ T cell responses, the overall trend supported the enhanced immune response elicited by the pVAX-S+N@COS-MN group (Figure 4C). After the second booster dose of immunization at day 42, we observed a more robust mucosal T cell immune response in the lung tissue. Again a stronger S2-specific T cell immune response was found in the MN group compared to that in the IM group, though there was no significant difference but an increasing trend in S1-specific T cell immune response (Figure 4D), which is similar with the data observed on the day 21 in the lung tissue (Figure 4C). The underlying mechanism for this observation is worth clarifying in a future study.
为了评估在局部粘膜组织引起的细胞免疫,我们从免疫小鼠体内分离出肺淋巴细胞,并对其进行了 IFN-γ ELISpot 检测。值得注意的是,与 pVAX-S+N@COS IM 组相比,我们发现在第 21 天时,pVAX-S+N@COS-MN 组肺粘膜组织中的 S2 特异性 IFN-γ+T 细胞反应频率更高。虽然在S1特异性和N特异性IFN-γ+ T细胞反应中未观察到统计学意义,但总体趋势支持pVAX-S+N@COS-MN组引起的免疫反应增强(图4C)。在第 42 天第二次加强免疫后,我们在肺组织中观察到了更强的粘膜 T 细胞免疫反应。与 IM 组相比,MN 组再次出现了更强的 S2 特异性 T 细胞免疫反应,尽管 S1 特异性 T 细胞免疫反应没有显著差异,但呈上升趋势(图 4D),这与第 21 天在肺组织中观察到的数据相似(图 4C)。这一观察结果的内在机制值得在今后的研究中加以澄清。
Considering the crucial role of memory T cell subsets in rapid viral clearance and long-term protective immunity, we further characterized the phenotype of memory T cell subsets changed by this modified MN-mediated DNA@COS nanoparticle vaccine strategy (Figure 4E). The results showed that there were significantly higher proportions of the S1-specific central memory T subset (Tcm, CD44+CD62L+) and the S2-specific effector memory T subset (Tem, CD44+CD62L) in the pVAX-S+N@COS-MN group than that in the pVAX-S+N@COS IM group (Figure 4F).
考虑到记忆 T 细胞亚群在快速清除病毒和长期保护性免疫中的关键作用,我们进一步研究了这种改良的 MN 介导 DNA@COS 纳米粒子疫苗策略所改变的记忆 T 细胞亚群的表型(图 4E)。结果显示,pVAX-S+N@COS-MN组中S1特异性中心记忆T亚群(Tcm,CD44+CD62L+)和S2特异性效应记忆T亚群(Tem,CD44+CD62L-的比例明显高于pVAX-S+N@COS IM组(图4F)。

MN-Mediated Intracutaneous but Not Intramuscular Immunization Induces Stronger Multifunctional T Cell Responses
MN 介导的皮内免疫而非肌内免疫可诱导更强的多功能 T 细胞反应

Recent studies demonstrated that the polyfunctional T cells, which can simultaneously secrete multiple cytokines (IFNγ+/IL-2+/TNFα+/CD107a+), were usually associated with better control for viral infections. Therefore, we next detected the frequency of functional T cells by a multi-parameter intracellular cytokine staining (ICS) assay (Figure 5A). The representative ICS plots for the production of IFN-γ, IL-2, and TNF-α and the mobilization of CD107a in the CD8+ T cell subsets are shown in Figure 5B. The frequency of S1-, S2-, and N-specific CD8+IFN-γ+ T cells in the pVAX-S+N@COS MN group was significantly higher than that in the pVAX-S+N@COS IM group (Figure 5C,F,I). Similar observations were made with the CD4+ T cell subsets (Figures S11 and S12). Moreover, in response to the stimulation with the S1 peptide pool, the frequency of CD8+IL2+, CD8+TNF-α+, and CD8+IL2+TNF-α+ T cells in the pVAX-S+N@COS MN group was significantly higher than that in the pVAX-S+N@COS IM group (Figure 5D,G,J). Further analysis also revealed that there was higher frequency of polyfunctional CD8+ T cells with the co-expression of IFN-γ, IL-2, and TNF-α in the pVAX-S+N@COS MN group than in the pVAX-S+N@COS IM group (Figure 5L). Next, we detected the CD107a mobilization on the surface of CD8+ T cells after immunization, since the up-regulation of CD107a expression is correlated to the granzyme killing activity of CD8+ T cells, and thus CD8+CD107a+ T cells can represent the cytotoxic T lymphocyte. As expected, the frequency of CD8+CD107a+ T cells in the pVAX-S+N@COS MN group was significantly higher than that in the pVAX-S+N@COS IM group (Figure 5E,H,K).
最近的研究表明,能同时分泌多种细胞因子(IFNγ+/IL-2+/TNFα+/CD107a+)的多功能 T 细胞通常能更好地控制病毒感染。因此,我们接下来通过多参数细胞内细胞因子染色法(ICS)检测了功能性 T 细胞的频率(图 5A)。图 5B中显示了 IFN-γ、IL-2 和 TNF-α 的产生以及 CD8+T 细胞亚群中 CD107a 的动员的 ICS 代表图。pVAX-S+N@COS MN组中S1-、S2-和N特异性CD8+IFN-γ+ T细胞的频率明显高于pVAX-S+N@COS IM组(图5C、F、I)。对 CD4+T 细胞亚群也有类似的观察结果(图 S11 和 S12)。此外,在 S1 肽池刺激下,pVAX-S+N@COS MN 组 CD8+IL2+、CD8+TNF-α+ 和 CD8+IL2+TNF-α+T 细胞的频率明显高于 pVAX-S+N@COS IM 组(图 5D、G、J)。 进一步分析还发现,与pVAX-S+N@COS IM组相比,pVAX-S+N@COS MN组的多功能CD8+T细胞同时表达IFN-γ、IL-2和TNF-α的频率更高(图5L)。接下来,我们检测了免疫后CD8+ T细胞表面的CD107a动员,因为CD107a表达的上调与CD8+ T细胞的颗粒酶杀伤活性相关,因此CD8+CD107a+ T细胞可以代表细胞毒性T淋巴细胞。不出所料,pVAX-S+N@COS MN 组 CD8+CD107a+T 细胞的频率明显高于 pVAX-S+N@COS IM 组(图 5E,H,K)。

Figure 5 图 5

Figure 5. Assessment the antigen-specific cellular immunity elicited by DNA@COS nanoparticle vaccine through intracellular cytokine staining (ICS) assay. The ability of polyfunctional CD8+ T cell populations from immunized mice to secrete IFN-γ, IL-2, and TNF-α cytokines in response to the stimulation with S1, S2, and N peptide pools was assessed. The background-subtracted median responses in BALB/c mice following vaccination are shown. (A) Gating strategy for flow cytometric scatter plots to analyze the frequency of the splenic lymphocytes to secrete cytokines. (B) Representative ICS plots for IFN-γ, IL-2, and TNF-α production, and CD107a mobilization in the CD8+ population after the stimulation of splenic lymphocytes with S1 peptide pools. (C) Proportion of S1-specific CD8+IFN-γ+ T cells in the spleen at day 21 and day 42 post-immunization. (D) Multifunctional CD8+ T cell responses in the spleen measured by the secretion of IFN-γ, IL-2, and TNF-α at day 42 post-immunization, after the stimulation with the S1 peptide pools. (E) Frequency of cytotoxic CD8+ T cells in the spleen measured by CD107a mobilization at day 42 post-immunization, after the stimulation with DMSO or S1 peptide pools. (F–H) Same as (C–E) but stimulated with S2 peptide pools. (I–K) Same as (C–E) but stimulated with nucleocapsid peptide pools. (L) Percentage of multifunctional CD8+ T cell responses in the spleen, calculated using sunburst plots at day 42 post-immunization, after the stimulation with S1, S2, and N peptide pools. (M) T-SNE analysis of concatenated data from the pVAX-S+N@COS-IM group and the pVAX-S+N@COS-MN group for the stimulation with S1, S2, and N peptide pools, showing density plots for each condition. The gate G1 was drawn to indicate the major differences between the pVAX-S+N@COS-IM group and the pVAX-S+N@COS-MN group. Histograms showed IFN-γ, IL-2, and TNF-α in G1, then the median and arithmetic mean were calculated for each cytokine. Analysis was performed utilizing default FCS Express software (version 7.0) settings. Data are expressed as mean ± SEM, pooled from two independent experiments, n = 5 mice/group. p-values of less than 0.05 were deemed statistically significant. *p < 0.05; **p < 0.01; ****p < 0.0001.
图 5.通过细胞内细胞因子染色法(ICS)评估 DNA@COS 纳米粒子疫苗诱导的抗原特异性细胞免疫。评估免疫小鼠的多功能 CD8+T 细胞群在 S1、S2 和 N 肽池刺激下分泌 IFN-γ、IL-2 和 TNF-α 细胞因子的能力。图中显示了 BALB/c 小鼠接种疫苗后的本底减去中值反应。(A) 流式细胞散点图的选通策略,用于分析脾脏淋巴细胞分泌细胞因子的频率。(B) 用 S1 肽池刺激脾脏淋巴细胞后,IFN-γ、IL-2 和 TNF-α 的分泌以及 CD8+群体中 CD107a 的动员的代表性 ICS 图。(C)免疫后第 21 天和第 42 天脾脏中 S1 特异性 CD8+IFN-γ+T 细胞的比例。(D) 用 S1 肽池刺激后第 42 天,通过分泌 IFN-γ、IL-2 和 TNF-α 测定脾脏中 CD8+T 细胞的多功能反应。(E)在免疫后第 42 天,用 DMSO 或 S1 肽池刺激后,通过 CD107a 迁移测量脾脏中细胞毒性 CD8+T 细胞的频率。(F-H)与(C-E)相同,但使用 S2 肽池刺激。(I-K)与(C-E)相同,但使用核苷酸肽池刺激。(L) 在免疫后第 42 天,使用 S1、S2 和 N 肽池刺激后,使用旭日图计算的脾脏中多功能 CD8+T 细胞反应的百分比。 (M)对 pVAX-S+N@COS-IM 组和 pVAX-S+N@COS-MN 组在 S1、S2 和 N 肽池刺激下的合并数据进行 T-SNE 分析,显示每种条件下的密度图。门 G1 的绘制表明了 pVAX-S+N@COS-IM 组与 pVAX-S+N@COS-MN 组之间的主要差异。直方图显示 G1 中的 IFN-γ、IL-2 和 TNF-α,然后计算每种细胞因子的中位数和算术平均数。分析采用 FCS Express 软件(7.0 版)的默认设置。数据以平均值 ± SEM 表示,来自两个独立实验,n= 5 只小鼠/组。*p< 0.05;**p< 0.01;****p< 0.0001。

To further validate the functionality of CD8+ T cell responses, we conducted t-distributed stochastic neighbor embedding (t-SNE) analysis based on pooled samples from lymphocytes in response to the stimulation with S1, S2 and N peptide pools at day 42. Cluster G1 represented these cells secreting IFN-γ, IL-2, and TNF-α in the polyfunctional CD8+ T cell region, while cluster G2 represented these cells secreting IFN-γ, IL-2, and TNF-α in the total CD8+ T cell region (Figure 5M and Figure S13). Results showed that the total CD8+ T cell responses in the pVAX-S+N@COS MN group had a higher functionality of secreting IFN-γ, IL-2, and TNF-α than that in the pVAX-S+N@COS IM group. Taken together, these findings show that our modified MN-mediated DNA@COS nanoparticle vaccine conferred a superior cellular immunity with enhanced magnitude and polyfunctionality.
为了进一步验证 CD8+T 细胞反应的功能性,我们根据淋巴细胞在第 42 天受到 S1、S2 和 N 肽池刺激时的集合样本进行了 t 分布随机邻接嵌入(t-SNE)分析。G1群代表这些在多功能CD8+ T细胞区域分泌IFN-γ、IL-2和TNF-α的细胞,而G2群代表这些在总CD8+ T细胞区域分泌IFN-γ、IL-2和TNF-α的细胞(图5M图S13)。结果显示,与 pVAX-S+N@COS IM 组相比,pVAX-S+N@COS MN 组的总 CD8+T 细胞应答分泌 IFN-γ、IL-2 和 TNF-α 的功能更强。综上所述,这些研究结果表明,我们的改良MN介导的DNA@COS纳米颗粒疫苗能产生更强、更多功能性的细胞免疫。

Induction of a Long-Lasting Humoral and Cellular T Cellular Immunity by MN-Mediated DNA@COS Nanoparticle Vaccine
MN 介导的 DNA@COS 纳米粒子疫苗诱导持久的体液免疫和细胞 T 细胞免疫

Considering the importance of long-lasting immune responses against viral infection, we evaluated the antigen-specific long-lasting immune responses induced by the DNA@COS nanoparticle vaccine through an MN-mediated intradermal administration. The humoral and cellular immune responses were monitored until 6 weeks after the second booster immunization. Results showed that MN-mediated intradermal administration inducedlevels of S-specific and N-specific antibodies comparable to those in the IM group at day 70 (Figure 6A,B). Notably, MN-mediated intradermal administration elicited a stronger systemic and mucosal T cell immunity than that in the IM group, especially when stimulated by S1 and S2 peptide pools (Figure 6C,D). The ICS assay further supported the above results, and the frequency of antigen-specific CD4+ and CD8+ IFN-γ+ T cells was also higher in the MN group (Figure 6E,F). These data revealed that a long-lasting humoral and cellular T cellular immunity was effectively induced by the modified MN-mediated vaccination strategy.
考虑到针对病毒感染的长效免疫反应的重要性,我们评估了 DNA@COS 纳米粒子疫苗通过 MN 介导的皮内给药诱导的抗原特异性长效免疫反应。我们对体液免疫和细胞免疫反应进行了监测,直至第二次加强免疫后 6 周。结果显示,在第 70 天时,MN 介导的皮内给药诱导的 S 特异性抗体和 N 特异性抗体水平与 IM 组相当(图 6A,B)。值得注意的是,与 IM 组相比,MN 介导的皮内给药诱导了更强的全身和粘膜 T 细胞免疫,尤其是在 S1 和 S2 肽池刺激下(图 6C,D)。ICS 检测进一步证实了上述结果,MN 组抗原特异性 CD4+ CD8+ IFN-γ+T 细胞的频率也更高(图 6E,F)。这些数据表明,改良的 MN 介导的疫苗接种策略能有效诱导持久的体液和细胞 T 细胞免疫。

Figure 6 图 6

Figure 6. Evaluation of antigen-specific long-lasting immune responses stimulated by the DNA@COS nanoparticle vaccine through intramuscular injection or MN-mediated intradermal administration. Six weeks after the booster immunization, mice were sacrificed and the humoral and cellular immune responses were detected. (A) Serum anti-spike IgG reciprocal end point antibody titers at day 70. (B) Serum anti-nucleocapsid IgG reciprocal end point antibody titers at day 70. (C) Antigen-specific IFN-γ ELISpot assay with splenic lymphocytes isolated at day 70. (D) Antigen-specific IFN-γ ELISpot assay with pulmonary lymphocytes isolated at day 70. (E) Frequency of antigen-specific CD4+IFN-γ+ T cells in the spleen at day 70 post-immunization. (F) Frequency of antigen-specific CD8+IFN-γ+ T cells in the spleen at day 70 post-immunization. Data are expressed as mean ± SEM. p-values of less than 0.05 were deemed statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
图 6.评估 DNA@COS 纳米粒子疫苗通过肌肉注射或 MN 介导的皮内给药激发的抗原特异性长效免疫反应。加强免疫六周后,处死小鼠并检测体液和细胞免疫反应。(A) 第 70 天时血清抗尖头穗状病毒 IgG 相互终点抗体滴度。(B) 第 70 天时血清抗核衣壳 IgG 倒数终点抗体滴度。(C) 用第 70 天分离的脾淋巴细胞进行抗原特异性 IFN-γ ELISpot 检测。(D) 用第 70 天分离的肺淋巴细胞进行抗原特异性 IFN-γ ELISpot 检测。(E)免疫后第 70 天,脾脏中抗原特异性 CD4+IFN-γ+T 细胞的频率。(F)免疫后第 70 天,脾脏中抗原特异性 CD8+IFN-γ+T 细胞的数量。数据以平均值 ± SEM 表示。P 值小于 0.05 被认为具有统计学意义。*p<0.05;**p<0.01;***p<0.001;****p<0.0001;ns,不显著。

Enhancement of T Cellular Immunity by Promoting the Maturation of Antigen-Presenting Cells via cGAS-STING-Dependent Signaling Pathway
通过 cGAS-STING 依赖性信号通路促进抗原递呈细胞成熟从而增强 T 细胞免疫力

We further investigated the mechanisms underlying the enhanced magnitude and polyfunctionality of T cellular immunity induced by our modified MN-mediated DNA@COS nanoparticle vaccine. Previous studies indicated that chitosan induced the production of mitochondrial-derived reactive oxygen species (ROS), leading to the maturation of DCs through triggering the type I interferons (IFNs) signaling. (14) In this study, we determined the ROS production by the DNA@COS nanoparticle vaccine using a ROS assay kit (DCF-DA), and the results showed that COS treatment promoted ROS production (Figure S14). To explain this phenomenon, we measured the mitochondrial membrane potential (MMP) in response to the COS stimulation and found that DC 2.4 cells incubated with COS still maintained the stability of MMP, thus preventing cell apoptosis (Figure S15).
我们进一步研究了改良MN介导的DNA@COS纳米粒子疫苗诱导T细胞免疫的幅度和多功能性增强的机制。先前的研究表明,壳聚糖能诱导线粒体源性活性氧(ROS)的产生,通过触发 I 型干扰素(IFNs)信号传导导致 DCs 成熟。(14)在本研究中,我们使用 ROS 检测试剂盒(DCF-DA)测定了 DNA@COS 纳米粒子疫苗产生的 ROS,结果显示 COS 处理促进了 ROS 的产生(图 S14)。为了解释这一现象,我们测量了线粒体膜电位(MMP)对COS刺激的反应,发现与COS孵育的DC 2.4细胞仍能保持MMP的稳定性,从而防止细胞凋亡(图S15)。
Significantly, we observed a substantial increase in the secretion of IFNs and pro-inflammatory cytokines, including IFN-β (Figure 7A,B), IL-6 (Figure 7C,D), and TNF-α (Figure 7E,F), in DC 2.4 cells after COS incubation, which was confirmed by both RT-PCR and ELISA assays. Consistent with this observation, COS treatment also led to a significant upregulation in the expression of maturation markers of DCs, including CD40, CD86, and MHC II (Figure 7G–I and Figure S16). These data implied that the DNA@COS nanoparticle vaccine enhanced antiviral immunity by activating IFN expression and promoting the maturation of antigen-presenting cells (APCs).
值得注意的是,我们观察到 COS 培养后 DC 2.4 细胞中 IFNs 和促炎细胞因子包括 IFN-β(图 7A,B)、IL-6(图 7C,D)和 TNF-α(图 7E,F))的分泌量大幅增加,RT-PCR 和 ELISA 检测都证实了这一点。与这一观察结果相一致的是,COS处理也导致了DC成熟标志物表达的显著上调,包括CD40、CD86和MHC II(图7G-I图S16)。这些数据表明,DNA@COS 纳米粒子疫苗通过激活 IFN 表达和促进抗原递呈细胞(APCs)的成熟增强了抗病毒免疫力。

Figure 7 图 7

Figure 7. COS-induced innate immunity and promoted DC maturation via the cGAS-STING-dependent signaling pathway. (A–F) Evaluation of the innate immune activation of DC 2.4 cells by incubation with COS. The mRNA expression and the secretion of cytokines were measured after DC 2.4 cells were incubated with different concentrations of COS (4, 8, and 16 μg/mL) for 24 h, including IFN-β (A, B), IL-6 (C, D), and TNF-α (E, F). mRNA level calculated with respect to β-actin, and the fold increase calculated relative to untreated cells. (G–I) CD40, CD86, and MHC II expression in DC 2.4 cells incubated with different concentrations of COS for 24 h. (J) COS activated the major transcription factor involved downstream of the cGAS-STING-dependent pathway. DC 2.4 cells were incubated with 16 μg/mL COS for 4 h in the presence or absence of cyclosporin A (CsA). The expression levels of the indicated proteins were detected by Western blot assay. (K–M) Secretion of cytokines in the supernatant of DC 2.4 cells after incubation with 16 μg/mL COS for 24 h in the presence or absence of CsA, including IFN-β (K), IL-6 (L), and TNF-α (M). (N–P) CD40, CD86, and MHC II expression in DC 2.4 cells incubated with 16 μg/mL COS for 24 h in the presence or absence of CsA. Bar charts of CD40 (N), CD86 (O), and MHC II (P) expression in DC 2.4 cells after treatment. Data are represented as mean ± SEM for triplicate samples, and p-values of less than 0.05 were deemed statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
图 7.COS 通过 cGAS-STING 依赖性信号通路诱导先天性免疫并促进 DC 成熟。(A-F)通过与 COS 培养评估 DC 2.4 细胞的先天性免疫激活。将 DC 2.4 细胞与不同浓度的 COS(4、8 和 16 μg/mL)孵育 24 小时后,测定细胞因子的 mRNA 表达和分泌,包括 IFN-β(A、B)、IL-6(C、D)和 TNF-α(E、F)。mRNA 水平相对于 β-肌动蛋白计算,相对于未处理细胞的增加倍数计算。(G-I) 与不同浓度的 COS 培养 24 小时的 DC 2.4 细胞中 CD40、CD86 和 MHC II 的表达。 (J) COS 激活了 cGAS-STING 依赖性途径下游的主要转录因子。在有或没有环孢素 A (CsA) 的情况下,用 16 μg/mL COS 培养 DC 2.4 细胞 4 小时。通过 Western 印迹分析法检测所述蛋白质的表达水平。(K-M)在 CsA 存在或不存在的情况下,与 16 μg/mL COS 培养 24 小时后,DC 2.4 细胞上清液中细胞因子的分泌,包括 IFN-β (K)、IL-6 (L) 和 TNF-α (M)。 N-P)在 CsA 存在或不存在的情况下,与 16 μg/mL COS 培养 24 小时后,DC 2.4 细胞中 CD40、CD86 和 MHC II 的表达。处理后 DC 2.4 细胞中 CD40(N)、CD86(O)和 MHC II(P)表达的条形图。数据以一式三份样本的平均值 ± SEM 表示,P 值小于 0.05 视为具有统计学意义。*p< 0.05;**p< 0.01;***p< 0.001;****p< 0.0001; ns, not significant.

Next, we further elucidated the potential signaling pathway involved in the activation of IFN expression induced by the DNA@COS nanoparticle vaccine. Considering that chitosan might trigger the cGAS-STING pathway to activate a variety of IFN-stimulated genes (ISGs) to modulate the antiviral immunity, (14) we therefore investigated the downstream transcriptional products of this signaling pathway in this study. The results showed that the phosphorylation of interferon regulatory factor 3 (IRF3) and signal transducer and activator 1 (STAT1) was significantly promoted in DC 2.4 cells after the COS treatment (Figure 7J). In contrast, pre-incubation of DC 2.4 cells with cyclosporin A (CsA), a known inhibitor to block the release of mitochondrial DNA fragments into the cytosol due to mitochondrial oxidative stress, abrogated the ability of COS to promote the phosphorylation of IRF3 and STAT1 (Figure 7J). Consistent with the above findings, after CsA treatment, the secretion of cytokines, including IFN-β, IL-6, and TNF-α, induced by COS incubation was significantly decreased (Figure 7K–M), and the maturation markers of DC cells, including CD40, CD86, and MHC II, were also significantly decreased (Figure 7N–P and Figure S17).
接下来,我们进一步阐明了DNA@COS纳米颗粒疫苗激活IFN表达的潜在信号通路。考虑到壳聚糖可能触发cGAS-STING通路激活多种IFN刺激基因(ISGs)以调节抗病毒免疫,(14)因此我们在本研究中调查了该信号通路的下游转录产物。结果显示,COS 处理后,干扰素调节因子 3(IRF3)和信号转导和激活因子 1(STAT1)在 DC 2.4 细胞中的磷酸化显著增强(图 7J)。与此相反,用环孢素 A(CsA)预先孵育 DC 2.4 细胞,可减弱 COS 促进 IRF3 和 STAT1 磷酸化的能力(图 7J)。环孢素 A 是一种已知的抑制剂,可阻止线粒体氧化应激导致的线粒体 DNA 片段释放到细胞膜中。与上述发现一致的是,经 CsA 处理后,COS 诱导的 IFN-β、IL-6 和 TNF-α 等细胞因子的分泌显著减少(图 7K-M),CD40、CD86 和 MHC II 等 DC 细胞成熟标志物也显著减少(图 7N-P图 S17)。
Overall, these data demonstrated that the DNA@COS nanoparticle vaccine enhanced antiviral innate immunity by activating the IFN expression and promoting APC maturation through the cGAS-STING-dependent signaling pathway and subsequently endowed the modified MN-mediated DNA@COS nanoparticle vaccine to induce a superior cellular immunity with enhanced magnitude and polyfunctionality (Figure 8).
总之,这些数据表明,DNA@COS 纳米颗粒疫苗通过 cGAS-STING 依赖性信号通路激活 IFN 表达和促进 APC 成熟,从而增强了抗病毒先天免疫力,并使改良 MN 介导的 DNA@COS 纳米颗粒疫苗具有更强的诱导细胞免疫的能力(图 8)。

Figure 8 图 8

Figure 8. Diagrammatic sketch to illustrate that the COS-engineered DNA nanoparticle vaccine through MN-mediated intradermal administration can induce a robust innate immunity and adaptive immunity. The MN can deliver DNA@COS nanoparticle vaccine into the dermis, in which DNA@COS vaccine is released and absorbed by antigen-presenting cells (APCs), including Langerhans cells (LCs), dermal dendritic cells (dDCs), and mast cells. The adjuvant COS promotes the maturation of APCs via the cGAS-STING-dependent signaling pathway. The mature DCs migrate to draining lymph nodes, in which they can interact with and stimulate naive T lymphocytes and thus trigger an adaptive immune response to induce humoral and cellular immunity.
图 8.图解简图,说明 COS 工程 DNA 纳米粒子疫苗通过 MN 介导的皮内给药可诱导强大的先天性免疫和适应性免疫。MN 可将 DNA@COS 纳米颗粒疫苗送入真皮层,其中 DNA@COS 疫苗会被抗原呈递细胞(APC)释放和吸收,包括朗格汉斯细胞(LC)、真皮树突状细胞(dDC)和肥大细胞。佐剂 COS 可通过 cGAS-STING 依赖性信号通路促进 APC 的成熟。成熟的 DC 转移到引流淋巴结,在那里它们可以与幼稚 T 淋巴细胞相互作用并刺激它们,从而触发适应性免疫反应,诱导体液免疫和细胞免疫。

Discussion 讨论

Click to copy section link
点击复制章节链接
Section link copied!

In this study, we report that MN-mediated intradermal administration of the DNA@COS nanoparticle vaccine elicited a stronger systemic and mucosal T cell immunity when compared to traditional IM immunization. Meanwhile, this vaccine modality also induced an effective humoral immunity and generated neutralizing antibodies against the SARS-CoV-2 prototype and its variants. It is worth noting that adults typically have a skin surface area of about 1.5 to 2 m2. In addition to its physical defense function, the skin also serves as a vital immune organ, housing various immune cells including Langerhans cells, dermal dendritic cells, macrophages, mast cells, and T and B lymphocytes in skin-draining lymph nodes. (17) Therefore, the MN-based delivery system can lead the loaded components to the local microenvironment within the skin, contributing to reach a high antigen concentration with a relatively low vaccine dose, thus improving the induction of antigen-specific immune responses. (18) Besides, mechanical stress generated from MN insertion might activate the local innate immune responses. (19) Then, the COS material used in this study can also play an adjuvant function to promote the maturation of APCs, upregulate the expression of major histocompatibility complex (MHC) molecules and co-stimulatory molecules (including CD40 and CD86), and then trigger antigen-specific adaptive immune responses. More importantly, the MN-mediated DNA@COS NPs stably retained their immunogenicity after storage at room temperature for at least 1 month, indicating the potential to transport this vaccine without cold-chain conditions and thus greatly improve the vaccination coverage, especially in remote and developing areas.
在本研究中,我们发现与传统的皮内免疫相比,以MN为介导的皮内注射DNA@COS纳米颗粒疫苗能激发更强的全身和粘膜T细胞免疫。同时,这种疫苗方式还能诱导有效的体液免疫,并产生针对 SARS-CoV-2 原型及其变种的中和抗体。值得注意的是,成人的皮肤表面积通常约为 1.5 至 2平方米。皮肤除了具有物理防御功能外,还是一个重要的免疫器官,容纳各种免疫细胞,包括朗格汉斯细胞、真皮树突状细胞、巨噬细胞、肥大细胞以及皮肤淋巴结中的 T 淋巴细胞和 B 淋巴细胞。(17)因此,基于 MN 的递送系统可将负载的成分引向皮肤内的局部微环境,有助于以相对较低的疫苗剂量达到较高的抗原浓度,从而提高诱导抗原特异性免疫反应的能力。(18)此外,MN 插入产生的机械应力可能会激活局部先天性免疫反应。(19)那么,本研究中使用的 COS 材料也可发挥佐剂作用,促进 APCs 成熟,上调主要组织相容性复合体(MHC)分子和协同刺激分子(包括 CD40 和 CD86)的表达,进而触发抗原特异性适应性免疫反应。 更重要的是,MN 介导的 DNA@COS NPs 在室温下储存至少 1 个月后仍能稳定地保持其免疫原性,这表明这种疫苗可以在无冷链条件下运输,从而大大提高疫苗接种覆盖率,尤其是在偏远和发展中地区。
Notably, our strategy elicited a robust cytotoxic T cell (CTL) response with polyfunctional CD8+ T cells, which is well recognized for its ability to target and eliminate infected cells through recognizing the viral polypeptides presented on the cell surface by the MHC. (20) Recently, increasing studies have proven that T cellular immunity can play important roles in controlling viral replication and disease progression. For instance, the robust antigen-specific T cellular immunity and abundant memory T cells are often identified in recovered COVID-19 individuals. (21) Moreover, the antigen-specific memory T cells can have a long-term survival for more than 17 years in some SARS-CoV convalescent individuals. (22) In addition, compared to the B cell epitope-mediated antibody responses, T cell epitope-mediated immune responses are usually more conserved and cross-reactive against viral variants. (23) Some studies revealed that the amino acid changes in SARS-CoV-2 spike variants did not affect the S-specific T cell immune response, and the T cell epitopes in both S antigen and non-S antigens remained conserved in SARS-CoV-2 variants. (24−26) However, most of the currently available COVID-19 vaccines target the S antigen to produce neutralizing antibodies. (27) So far, the frequently occurring SARS-CoV-2 variants can rapidly escape immune recognition by the S-specific neutralizing antibodies, which has seriously attenuated their effectiveness and led to breakthrough infections. (28) Therefore, it is of great importance to develop the next generation of COVID-19 vaccines by targeting T cell-based immunity against SARS-CoV-2 variants. In the present study, we constructed the DNA@COS nanoparticle vaccine encoding both SARS-CoV-2 spike and nucleocapsid antigens. The choice of including the SARS-CoV-2 nucleocapsid (N) protein is driven by its high degree of conservation, which implies it might be an attractive immunogen component for developing a broadly protective COVID-19 vaccine. (15,29−31) In fact, N antigen-based vaccines induced protective T cell immune responses in mice and macaques and effectively protected them from SARS-CoV-2 infection. (32,33) In addition, a combination of S and N antigens elicited a strong neutralization antibody and broadened T cell immunity in mice and macaques. This comprehensive immunity was associated with protective effects, including the prevention of weight loss and reduction of respiratory symptoms and lung injury after infection by SARS-CoV-2 and its variants. (34,35) Consistent with these findings, our MN-delivered DNA@COS nanoparticle vaccine encoding the combination of S and N antigens can induce both a high level of neutralizing antibodies and a robust polyfunctional T cell immune response.
值得注意的是,我们的策略激发了多功能 CD8+T 细胞强有力的细胞毒性 T 细胞(CTL)反应,这种细胞毒性 T 细胞通过识别由 MHC 呈现在细胞表面的病毒多肽,具有靶向和消除感染细胞的能力,这一点已得到广泛认可。(20)最近,越来越多的研究证明,T 细胞免疫可在控制病毒复制和疾病进展方面发挥重要作用。例如,在 COVID-19 的康复者中经常可以发现强大的抗原特异性 T 细胞免疫和丰富的记忆 T 细胞。(21)此外,在一些 SARS-CoV 康复者中,抗原特异性记忆 T 细胞可长期存活超过 17 年。(22)此外,与 B 细胞表位介导的抗体反应相比,T 细胞表位介导的免疫反应通常更为保守,且对病毒变体具有交叉反应性。(23)一些研究发现,SARS-CoV-2 穗状变异株的氨基酸变化并不影响 S 特异性 T 细胞免疫反应,S 抗原和非 S 抗原中的 T 细胞表位在 SARS-CoV-2 变异株中保持不变。(24-26)然而,目前可用的 COVID-19 疫苗大多针对 S 抗原产生中和抗体。(27)迄今为止,频繁出现的 SARS-CoV-2 变体可迅速逃脱 S 特异性中和抗体的免疫识别,这严重削弱了疫苗的效力,并导致突破性感染。 (28)因此,通过针对SARS-CoV-2变种的T细胞免疫来开发下一代COVID-19疫苗具有重要意义。在本研究中,我们构建了同时编码 SARS-CoV-2 穗状抗原和核头状抗原的 DNA@COS 纳米颗粒疫苗。之所以选择将 SARS-CoV-2 核头状(N)蛋白包括在内,是因为它的高度保守性,这意味着它可能是开发具有广泛保护性的 COVID-19 疫苗的一个有吸引力的免疫原成分(15,29-31)。(15,29-31)事实上,基于 N 抗原的疫苗可诱导小鼠和猕猴产生保护性 T 细胞免疫反应,并有效保护它们免受 SARS-CoV-2 感染。(32,33)此外,S 抗原和 N 抗原的组合在小鼠和猕猴体内引起了强烈的中和抗体,并扩大了 T 细胞免疫。这种综合免疫与保护作用有关,包括防止体重减轻,减少 SARS-CoV-2 及其变种感染后的呼吸道症状和肺损伤。(34,35)与这些研究结果一致,我们的 MN 给药 DNA@COS 纳米颗粒疫苗编码 S 抗原和 N 抗原的组合,既能诱导高水平的中和抗体,又能诱导强大的多功能 T 细胞免疫反应。
Impressively, our data supported that these MN-delivered DNA@COS NPs had the potential to elicit a strong immune response at local mucosal tissue, as evidenced by the high frequency of SARS-CoV-2-specific IFN-γ+ T cells in the lung tissue and the high level of S-specific IgA antibodies in serum. It is well known that many pathogens enter our bodies mainly through mucosal surfaces, including the respiratory tract, skin epithelium, and reproductive tract, and therefore mucosal immunity is usually considered as the first line of defense against such infectious pathogens. (2) As a result, it is necessary to develop the next generation of mucosal vaccines to confer superior protection by eliciting mucosal immunity. However, most licensed vaccines are designed to induce systemic immunity, and only a few are aimed to induce mucosal immunity. Among them, one miracle in fighting infectious diseases is the eradication of the deadly airborne smallpox virus by skin-scratch inoculation of the cowpox vaccine, implying that intradermal immunization routine is a promising strategy to induce both protective systemic immunity and mucosal immunity. (36) Studies have shown that there is a similar expression pattern of trafficking molecules (such as CCR4, (37) CXCR3, (38) and CCR5 (38,39) ligands) between lung and skin lymph node (SLN) DC-activated T cells, suggesting that SLN DC-activated T cells could potentially home to the lungs and lung DC-activated T cells could potentially home to the skin. Therefore, further study should focus on unraveling the underlying mechanism behind the robust mucosal immunity induced by this MN-mediated intradermal immunization.
令人印象深刻的是,我们的数据支持这些 MN 释放的 DNA@COS NPs 有可能在局部粘膜组织引起强烈的免疫反应,肺组织中高频率的 SARS-CoV-2 特异性 IFN-γ+T 细胞和血清中高水平的 S 特异性 IgA 抗体就是证明。众所周知,许多病原体主要通过粘膜表面进入人体,包括呼吸道、皮肤上皮和生殖道,因此粘膜免疫通常被认为是抵御此类传染性病原体的第一道防线。(2)因此,有必要开发下一代粘膜疫苗,通过激发粘膜免疫来提供卓越的保护。然而,大多数已获批准的疫苗都是为诱导全身免疫而设计的,只有少数疫苗旨在诱导粘膜免疫。其中,牛痘疫苗通过皮肤划痕接种根除了致命的空气传播天花病毒,创造了抗击传染病的奇迹,这意味着皮内免疫常规是一种既能诱导保护性全身免疫,又能诱导粘膜免疫的有前途的策略。(36)研究表明,肺部和皮肤淋巴结(SLN)DC 激活的 T 细胞之间存在相似的贩运分子(如 CCR4、(37)CXCR3、(38)和 CCR5(38,39)配体)表达模式,这表明 SLN DC 激活的 T 细胞有可能进入肺部,而肺部 DC 激活的 T 细胞有可能进入皮肤。 因此,进一步的研究应侧重于揭示这种 MN 介导的皮内免疫诱导强大粘膜免疫的内在机制。

Conclusions 结论

Click to copy section link
点击复制章节链接
Section link copied!

Our MN-mediated DNA@COS nanoparticle strategy elicited superior systemic and mucosal T cell immunity with enhanced magnitude, polyfunctionality, and persistence. Nevertheless, there are some limitations for this study. For instance, the intradermal injection of DNA@COS NPs was not included as another control group in this study. Further investigation is required to elucidate the exact mechanism of robust T cell immunity induced by MN-mediated intradermal immunization. In addition, the challenge experiment against SARS-CoV-2 infections was not evaluated in the animal model due to the limited resources for a high-level biosafety laboratory. Overall, this work provides a promising strategy to rapidly develop an easy-to-administer, effective, painless, and thermostable vaccine modality for inducing mucosal immunity.
我们以 MN 为介导的 DNA@COS 纳米粒子策略可激发全身和粘膜 T 细胞免疫,并具有更高的强度、多功能性和持久性。然而,这项研究也存在一些局限性。例如,本研究没有将皮内注射 DNA@COS NPs 作为另一个对照组。要阐明 MN 介导的皮内免疫诱导强大 T 细胞免疫的确切机制,还需要进一步的研究。此外,由于高级生物安全实验室的资源有限,针对 SARS-CoV-2 感染的挑战实验没有在动物模型中进行评估。总之,这项工作为快速开发一种易于注射、有效、无痛、可恒温的疫苗模式以诱导粘膜免疫提供了一种前景广阔的策略。

Methods 方法

Click to copy section link
点击复制章节链接
Section link copied!

Materials 材料

Dulbecco’s modified eagle medium (DMEM), Roswell Park Memorial Institute (RPMI) 1640 medium, penicillin/streptomycin, fetal bovine serum (FBS), trypsin-EDTA, and dimethyl sulfoxide (DMSO) were purchased from Gibco (Grand Island, NY, USA). 50× TAE buffer, agarose gel, PBS, defatted milk powder, 4% paraformaldehyde, Tris-buffered saline with Tween-20 (TBST), and Triton X-100 and 4′,6-diamidino-2-phenylindole (DAPI) were purchased from Biosharp (Beijing, China). Chitosan oligosaccharide (COS), sucrose and poly(vinyl alcohol) 1795 (PVA), Phorbol 12-myristate13-acetate (PMA), ionomycin, concanavalin A (ConA), d-luciferin potassium salt, cyclosporine A (CsA), collagenase I, and DNase I were purchased from Sigma (Saint Louis, MO, USA). Rhodamine-modified COS (COS-Rho) was purchased from Xi’an ruixi Biological Technology Co., Ltd. (Xi’an, China). Bicinchoninic acid (BCA) assay kit, SDS-PAGE gel, and NBT/BCIP reagent were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Hifair III first strand cDNA kit, SYBR green qPCR super mix, and Cell Counting Kit-8 (CCK8) were purchased from Yeasen (Shanghai, China). IFN-γ ELISpot 96-well plate, poly(vinylidene difluoride) (PVDF), 3,3′,5,5′-tetramethylbenzidine (TMB), and stop buffer were purchased from Merck Millipore (Burlington, MA, USA). HindIII and XbaI restriction endonucleases were purchased from New England Biolabs Ltd. (Beijing, China). GelRed was purchased from Transgen (Beijing, China). Mouse lymphocyte separation solution and red blood lysis buffer were purchased from Dakewe Biotech Co., Ltd. (Shenzhen, China). Bright-light luciferase assay system was purchased from Vazyme (Nanjing, China). Label IT nucleic acid labeling kits were purchased from Mirus (Beijing, China). Mouse IFN-β ELISA kit, mouse IL-6 ELISA kit, and mouse TNF-α ELISA kit were purchased from Elabscience (Wuhan, China). ROS assay kit (DCF-DA) and mitochondrial membrane potential assay kit were purchased from Beyotime (Shanghai, China). EZ-press RNA purification kit was purchased from EZBioscience (Roseville, MN, USA). EndoFree Maxi Plasmid Kit was purchased from Tiangen (Beijing, China). Mouse IFN-γ ELISPOT antibody pair was purchased from U-CyTech (The Netherlands). Alkaline phosphatase-conjugated streptavidin, brefeldin A, cytofix/cytoperm, FITC-anti-mouse-CD3 antibody, Precp-anti-mouse-CD4 antibody, PE-cy7-anti-mouse-CD8a antibody, APC-anti-mouse-IFN-γ antibody, BV605-anti-mouse-IL-2 antibody, PE-anti-mouse-TNF-α antibody, BV421-anti-mouse-CD107a antibody, BV421-anti-mouse-CD62L antibody, and PE-anti-mouse-CD44 antibody were purchased from BD Biosciences (San Jose, CA, USA). APC-anti-mouse-CD40 antibody, BV605-anti-mouse-CD86 antibody, and PE-anti-mouse-MHCII antibody were purchased from BioLegend (San Diego, CA, USA). Rabbit monoclonal anti-IRF3 antibody, rabbit monoclonal anti-phospho-IRF3 antibody, rabbit monoclonal anti-STAT1 antibody, rabbit monoclonal anti-phospho-STAT1 antibody, mouse monoclonal anti-GAPDH antibody, HRP-conjugated anti-rabbit IgG antibody, or anti-mouse IgG antibody, HRP-conjugated anti-mouse IgA, HRP-conjugated anti-mouse IgG1, and HRP-conjugated anti-mouse IgG2c were purchased from Abcam (Cambridge, UK). Rabbit monoclonal anti-spike antibody and rabbit monoclonal anti-nucleocapsid antibody were purchased from ABclonal (Wuhan, China). Recombinant SARS-COV-2 nucleocapsid protein and recombinant SARS-COV-2 spike protein were purchased from SinoBiological (Beijing, China). SARS-CoV-2 spike and its variants pseudotyped virus and variants were gifted by VectorBuilder (Guangzhou, China). SARS-CoV-2 spike protein and nucleocapsid protein peptide pool were purchased from GeneScript (Nanjing, China).
Dulbecco's modified eagle medium (DMEM)、Roswell Park Memorial Institute (RPMI) 1640 培养基、青霉素/链霉素、胎牛血清 (FBS)、胰蛋白酶-EDTA 和二甲基亚砜 (DMSO) 购自 Gibco 公司(美国纽约大岛)。50× TAE 缓冲液、琼脂糖凝胶、PBS、脱脂奶粉、4% 多聚甲醛、含吐温-20 的三相缓冲盐水(TBST)、Triton X-100 和 4′,6-二脒基-2-苯基吲哚(DAPI)购自 Biosharp(中国北京)。壳聚糖低聚糖(COS)、蔗糖和聚乙烯醇 1795(PVA)、12-肉豆蔻酸 13-乙酸磷脂(PMA)、离子霉素、海参素 A(ConA)、d-荧光素钾盐、环孢素 A(CsA)、胶原酶 I 和 DNase I 购自 Sigma(美国密苏里州圣路易斯市)。罗丹明修饰的 COS(COS-Rho)购自西安瑞希生物科技有限公司(中国西安)。(中国西安)。双喹啉酸 (BCA) 检测试剂盒、SDS-PAGE 凝胶和 NBT/BCIP 试剂购自 Thermo Fisher Scientific (Waltham, MA, USA)。Hifair III 第一链 cDNA 试剂盒、SYBR green qPCR 超级混合物和细胞计数试剂盒-8(CCK8)购自 Yeasen(中国上海)。IFN-γ ELISpot 96 孔板、聚偏二氟乙烯(PVDF)、3,3′,5,5′-四甲基联苯胺(TMB)和终止缓冲液购自 Merck Millipore (Burlington, MA, USA)。HindIIIXbaI限制性内切酶购自新英格兰生物实验室有限公司(中国北京)。(中国北京)。GelRed 购自 Transgen 公司(中国北京)。小鼠淋巴细胞分离液和红细胞裂解缓冲液购自达科威生物技术有限公司(中国深圳)。(中国深圳)。亮光荧光素酶检测系统购自 Vazyme 公司(中国南京)。 Label IT 核酸标记试剂盒购自 Mirus 公司(中国北京)。小鼠 IFN-β 酶联免疫吸附试剂盒、小鼠 IL-6 酶联免疫吸附试剂盒和小鼠 TNF-α 酶联免疫吸附试剂盒购自 Elabscience(武汉)。ROS检测试剂盒(DCF-DA)和线粒体膜电位检测试剂盒购自百优泰(上海)生物科技有限公司。EZ-press RNA 纯化试剂盒购自 EZBioscience(Roseville, MN, USA)。EndoFree Maxi 质粒试剂盒购自天根公司(北京)。小鼠 IFN-γ ELISPOT 抗体对购自 U-CyTech(荷兰)。碱性磷酸酶结合链霉亲和素、brefeldin A、cytofix/cytoperm、FITC-抗小鼠-CD3 抗体、Precp-抗小鼠-CD4 抗体、PE-cy7-抗小鼠-CD8a 抗体、APC-抗小鼠-IFN-γ 抗体、BV605-anti-mouse-IL-2 antibody、PE-anti-mouse-TNF-α antibody、BV421-anti-mouse-CD107a antibody、BV421-anti-mouse-CD62L antibody 和 PE-anti-mouse-CD44 antibody 购自 BD Biosciences (San Jose, CA, USA)。APC-anti-mouse-CD40 抗体、BV605-anti-mouse-CD86 抗体和 PE-anti-mouse-MHCII 抗体购自 BioLegend (San Diego, CA, USA)。兔单克隆抗 IRF3 抗体、兔单克隆抗磷酸-IRF3 抗体、兔单克隆抗 STAT1 抗体、兔单克隆抗磷酸-STAT1 抗体、小鼠单克隆抗 GAPDH 抗体、HRP-conjugated anti-rabbit IgG antibody, or anti-mouse IgG antibody, HRP-conjugated anti-mouse IgA, HRP-conjugated anti-mouse IgG1, and HRP-conjugated anti-mouse IgG2c were purchased from Abcam (Cambridge, UK)。兔单克隆抗尖峰抗体和兔单克隆抗核壳抗体购自 ABclonal 公司(武汉)。 重组 SARS-COV-2 核壳蛋白和重组 SARS-COV-2 穗状病毒蛋白购自 SinoBiological(中国北京)。SARS-CoV-2 穗状病毒及其变种伪型病毒和变种由 VectorBuilder(中国广州)提供。SARS-CoV-2尖峰蛋白和核壳蛋白肽池购自 GeneScript(中国南京)。

Plasmid 质粒

The SARS-CoV-2 structural protein sequence was obtained from the National Center for Biotechnology Information (NCBI), including the S protein sequence (YP_009724390.1) and the N protein sequence (YP_009724397.2). The protein sequence was optimized according to the preferred codon usage of mammalian cells as previously described (40) and chemically synthesized by Sango Biotech (Shanghai, China). The codon-optimized S and N genes were then cloned into the pVAX-1 expression vector (Invitrogen) utilizing restriction endonucleases HindIII and XbaI. The pVAX-GFP and pVAX-luciferase plasmids are stored in our laboratory.
SARS-CoV-2 结构蛋白序列来自美国国家生物技术信息中心(NCBI),包括 S 蛋白序列(YP_009724390.1)和 N 蛋白序列(YP_009724397.2)。蛋白质序列是根据哺乳动物细胞的首选密码子用法优化的,如前所述(40),并由三高生物技术公司(中国上海)化学合成。然后利用限制性内切酶HindIIIXbaI将经过密码子优化的 S 和 N 基因克隆到 pVAX-1 表达载体(Invitrogen 公司)中。pVAX-GFP 和 pVAX-luciferase 质粒保存在本实验室。

Cell Lines 细胞系

HEK-293T cells, DC 2.4 cells, and 293T-ACE2 cells were cultured in complete DMEM containing 10% FBS and 1% penicillin/streptomycin at 37 °C in an incubator containing 5% of CO2. Raw 264.7 cells were cultured in complete RPMI 1640 containing 10% FBS and 1% penicillin/streptomycin at 37 °C in an incubator containing 5% CO2.
HEK-293T 细胞、DC 2.4 细胞和 293T-ACE2 细胞在含有 10% FBS 和 1% 青霉素/链霉素的完全 DMEM 中培养,培养温度为 37 °C,培养箱中含 5%CO2。原始 264.7 细胞在含有 10% FBS 和 1% 青霉素/链霉素的完全 RPMI 1640 中培养,培养温度为 37 °C,培养箱中含 5%CO2

Mice 小鼠

All animal experiments were approved and performed in strict accordance with the guidelines of the Animal Experiment Committee of Sun Yat-sen University (SYSU-IACUC-2022-001967). Adult female BALB/c mice (6–8 weeks old) were purchased from the Guangdong Medical Laboratory Animal Center.
所有动物实验均严格按照中山大学动物实验委员会的指导原则(SYSU-IACUC-2022-001967)进行。成年雌性BALB/c小鼠(6-8周龄)购自广东省医学实验动物中心。

Preparation and Characterization of the DNA@COS Nanoparticle Vaccine
DNA@COS 纳米粒子疫苗的制备与表征

DNA@COS NPs were prepared based on our previously reported methods with some modifications. (12,13) In brief, 2 mg of COS was dissolved into 2 mg/mL PBS solution. Under vortex conditions, an equal volume of COS solution was slowly added to the DNA solution (500 μg/mL), followed by vortexing for 30 s. The mixture was then placed at 4 °C for 15 min to obtain the DNA nanoparticle vaccine (pVAX-S@COS). By using the same method, the pVAX-S solution was replaced with pVAX-N solution to prepare pVAX-N@COS. After mixing the pVAX-S solution and pVAX-N solution in a 1:1 concentration ratio, pVAX-S+N@COS was prepared using the aforementioned method. The formed DNA nanoparticle vaccine solution was concentrated and purified using ultracentrifugation until no free DNA was detectable in the centrifugate, confirming the completion of NP purification. The appearance of the NPs was observed by transmission electron microscopy (TEM). The hydrodynamic size and zeta potential of DNA nanoparticle vaccine were measured by using a zeta potential analyzer (Brookhaven Instruments, USA).
DNA@COS NPs 的制备方法基于我们之前报道的方法,并做了一些修改。(12,13)简而言之,将 2 毫克 COS 溶于 2 毫克/毫升的 PBS 溶液中。在涡旋条件下,将等体积的 COS 溶液缓慢加入 DNA 溶液(500 μg/mL)中,然后涡旋 30 秒。用同样的方法将 pVAX-S 溶液换成 pVAX-N 溶液,制备 pVAX-N@COS。将 pVAX-S 溶液和 pVAX-N 溶液按 1:1 的浓度比混合后,用上述方法制备 pVAX-S+N@COS。将形成的 DNA 纳米粒子疫苗溶液浓缩并用超速离心法纯化,直到离心液中检测不到游离 DNA,确认 NP 纯化完成。透射电子显微镜(TEM)观察了 NPs 的外观。使用 zeta 电位分析仪(美国布鲁克海文仪器公司)测量 DNA 纳米粒子疫苗的流体力学尺寸和 zeta 电位。
To determine the protective ability of the COS-encapsulated DNA vaccine (containing 1 μg DNA plasmid) against restriction endonuclease, 1 μL of HindIII and 1 μL of XbaI restriction endonuclease were mixed with NPs and incubated for 0, 15 min, 30 min, 1 h, and 2 h at 37 °C and then loaded onto 1% agarose gels. These gels were allowed to run at 120 V for 20 min in 1× TAE buffer.
为了确定 COS 封装 DNA 疫苗(含 1 μg DNA 质粒)对限制性内切酶的保护能力,将 1 μLHindIII和 1 μLXbaI限制性内切酶与 NPs 混合,在 37 ℃ 下孵育 0、15 分钟、30 分钟、1 小时和 2 小时,然后上载到 1% 琼脂糖凝胶上。这些凝胶在 1×TAE 缓冲液中以 120 V 电压运行 20 分钟。

Cytotoxicity Assay 细胞毒性试验

HEK-293T cells, DC 2.4 cells, and Raw 264.7 cells were used to evaluate cytotoxicity. The cells suspended in DMEM or RPMI 1640 with 10% fetal calf serum were seeded into 96-well microtiter plates at a density of 1 × 104 cells/well. The chitosan was diluted with serum-free DMEM medium with different concentrations of COS (0, 0.5, 1, 2, 4, 8, 10, 20, 50, and 100 μg/mL) filtered with Millex-GP sterile syringe filters (0.22 μm). This solution was then added to the plates at various concentrations in a final volume of 100 μL. After 24 h, 10 μL of CCK8 reagent was added, and 4 h later, the value of OD450 was read by the microplate reader (Synergy HTX, Biotek).
HEK-293T 细胞、DC 2.4 细胞和 Raw 264.7 细胞用于评估细胞毒性。将悬浮于含有 10% 胎牛血清的 DMEM 或 RPMI 1640 培养基中的细胞以 1 ×104 个/孔的密度播种到 96 孔微孔板中。用无血清 DMEM 培养基稀释壳聚糖,并加入不同浓度的 COS(0、0.5、1、2、4、8、10、20、50 和 100 μg/mL),用 Millex-GP 无菌注射器过滤器(0.22 μm)过滤。然后将该溶液以 100 μL 的最终体积添加到不同浓度的平板中。24 小时后,加入 10 μL CCK8 试剂,4 小时后,用微孔板阅读器(Synergy HTX,Biotek)读取 OD450 值。

In Vitro Evaluation of Uptake and Transfection Efficiency of DNA@COS Nanoparticles into Cells
体外评估细胞对 DNA@COS 纳米颗粒的吸收和转染效率

In order to evaluate the cellular uptake of DNA@COS NPs in HEK-293T cells, the DNA component was labeled with fluorescent dye (Cy5) according to the Label IT nucleic acid labeling kit. Briefly, 293T cells were co-incubated with DNA@COS NPs for 2, 4, and 8 h, and the uptake of NPs was observed using confocal laser scanning microscopy (CLSM) (LSN880, Zeiss, Germany) and quantified by flow cytometry (CytoFLEX S, Beckman).
为了评估DNA@COS NPs在HEK-293T细胞中的细胞吸收情况,根据Label IT核酸标记试剂盒用荧光染料(Cy5)标记了DNA成分。简言之,将 293T 细胞与 DNA@COS NPs 共同培养 2、4 和 8 小时,使用激光扫描共聚焦显微镜(CLSM)(LSN880,德国蔡司公司)观察 NPs 的吸收情况,并用流式细胞仪(CytoFLEX S,贝克曼公司)进行量化。
The HEK-293T cells were treated with different concentrations of pVAX-GFP encapsulated into COS (containing 0.5, 1, 2, and 4 μg/mL DNA plasmid). At 48 h, the treated cells were imaged for fluorescence signal using an inverted fluorescence microscope (Axio Vert.A.1, Carl Zeiss). The efficiency of GFP expression was then quantified by flow cytometry and analyzed by using FlowJo software (version X). Similarly, the HEK-293T cells were treated with pVAX-luciferase encapsulated into COS, and the treated cells were imaged for bioluminescence signal by a microwell plate luminous detector (GloMax 96, Promega) using a bright-light luciferase assay system.
用不同浓度的 pVAX-GFP 包被 COS(含 0.5、1、2 和 4 μg/mL DNA 质粒)处理 HEK-293T 细胞。48 小时后,使用倒置荧光显微镜(Axio Vert.A.1,卡尔蔡司)对处理过的细胞进行荧光信号成像。然后用流式细胞仪量化 GFP 的表达效率,并用 FlowJo 软件(X 版)进行分析。同样,用封装在 COS 中的 pVAX-luciferase 处理 HEK-293T 细胞,并使用微孔板发光检测器(GloMax 96,Promega 公司)和亮光荧光素酶检测系统对处理过的细胞进行生物发光信号成像。
For detecting the S and N protein expression, the HEK-293T cells were cultured in 6-well plates for 24 h. Then, the cells were treated with naked pVAX-S, naked pVAX-N, pVAX-S@COS, pVAX-N@COS, or pVAX-S+N@COS (4 μg of plasmid) for another 48 h. A commercially available cationic liposomal transfection agent (Lipofectamine 2000) was used as a positive control. These cells were then lysed, and proteins were separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) under denaturing and reducing conditions. Proteins were transferred to the PVDF membrane. After being blocked for 1 h with 5% skim milk in TBST, the membrane was incubated overnight with rabbit monoclonal anti-spike antibody, rabbit monoclonal anti-nucleocapsid antibody, and a mouse monoclonal anti-GAPDH antibody at a 1:2000 dilution at 4 °C. The membrane was washed and then incubated with HRP-conjugated anti-rabbit IgG antibody or anti-mouse IgG antibody at a 1:5000 dilution for 2 h. Finally, the membranes were developed with a chemiluminescent horseradish peroxidase (HRP) substrate.
为了检测 S 和 N 蛋白的表达,将 HEK-293T 细胞置于 6 孔板中培养 24 小时,然后用裸 pVAX-S、裸 pVAX-N、pVAX-S@COS、pVAX-N@COS 或 pVAX-S+N@COS(4 μg 质粒)处理细胞 48 小时。然后裂解这些细胞,在变性和还原条件下用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离蛋白质。蛋白质被转移到 PVDF 膜上。在 TBST 中用 5% 脱脂奶封闭 1 小时后,用兔单克隆抗尖头抗体、兔单克隆抗核壳抗体和小鼠单克隆抗 GAPDH 抗体(1:2000 稀释)在 4 ℃ 下孵育过夜。最后用化学发光辣根过氧化物酶(HRP)底物显影。

DNA@COS Nanoparticles Escaping the Lysosome-Mediated Degradation
DNA@COS纳米颗粒摆脱溶酶体介导的降解作用

DNA@COS nanoparticle vaccine (containing 2 μg/mL Cy5-labeled DNA plasmid) was prepared and co-incubated with HEK-293T cells for 1, 2, 4, and 8 h, respectively. The cell was fixed using 4% paraformaldehyde for 30 min at room temperature and then washed. The lysosomes of HEK-293T cells were stained with lysotracker dye for 30 min at 37 °C. The cell was washed, and nuclei were stained with DAPI for 10 min at room temperature. The co-localization of lyso-tracker and NPs was observed using CLSM (LSN880, Zeiss, Germany).
制备 DNA@COS 纳米粒子疫苗(含 2 μg/mL Cy5 标记的 DNA 质粒),并分别与 HEK-293T 细胞共培养 1、2、4 和 8 小时。室温下用 4% 多聚甲醛固定细胞 30 分钟,然后清洗。用溶酶体染色剂在 37 ℃ 下染色 HEK-293T 细胞的溶酶体 30 分钟。洗涤细胞,室温下用 DAPI 染色细胞核 10 分钟。使用 CLSM(LSN880,Zeiss,德国)观察溶酶追踪器和 NPs 的共定位。

Detection of Reactive Oxygen Species (ROS) and Mitochondrial Membrane Potential Change by DNA@COS
利用 DNA@COS 检测活性氧 (ROS) 和线粒体膜电位变化

A ROS assay kit (DCF-DA) was used to determine the generation of ROS. After co-incubation of DC 2.4 cells with different concentrations of COS (0, 16, and 50 μg/mL) for 2 h, DCF-DA probes were added for further co-incubation for 2 h, and the production of ROS in different groups was observed by CLSM.
ROS 检测试剂盒(DCF-DA)用于测定 ROS 的生成。将 DC 2.4 细胞与不同浓度的 COS(0、16 和 50 μg/mL)共孵育 2 小时后,加入 DCF-DA 探针继续共孵育 2 小时,并通过 CLSM 观察不同组中 ROS 的产生情况。
A mitochondrial membrane potential assay kit with JC-1 was employed for detecting the mitochondrial membrane potential. 16 μg/mL COS was co-incubated with DC 2.4 cells for 2, 4, and 8 h, respectively. DC 2.4 cells were stained with JC-1, and the mitochondrial membrane potential was observed by CLSM.
线粒体膜电位检测试剂盒采用 JC-1 检测线粒体膜电位。16 μg/mL COS 分别与 DC 2.4 细胞共培养 2、4 和 8 小时。用 JC-1 染色 DC 2.4 细胞,并用 CLSM 观察线粒体膜电位。

Dendritic Cells Activation and Antigen Presentation by DNA@COS
DNA@COS 激活树突状细胞并呈现抗原

The DC 2.4 cells were seeded on 24-well plates with a density of 2 × 105 cells/well and cultured for 6 h. Next, the medium was replaced with fresh DMEM complete medium containing COS (4, 8, and 16 μg/mL). After incubation for 24 h, the cells were collected, washed, and stained with BV605-anti-mouse CD86, APC-anti-mouse CD40, and PE-anti-mouse MHC II. Finally, the cells were resuspended in PBS and analyzed by flow cytometry. Similarly, the cells were harvested and the total RNA was extracted using an EZ-press RNA purification kit, and then the expression of cytokines including IFN-γ, IL-6, and TNF-α was detected by RT-qPCR using Hifair III 1st Strand cDNA kit and SYBR green qPCR super mix. The primers are shown in Table S2. The cell culture supernatant was collected, and the secretion of cytokines including IFN-γ, IL-6, and TNF-α was detected using a mouse cytokines ELISA kit.
将 DC 2.4 细胞以 2 ×105 个/孔的密度接种到 24 孔板上,培养 6 小时后,将培养基更换为含有 COS(4、8 和 16 μg/mL)的新鲜 DMEM 完全培养基。培养 24 小时后,收集、洗涤细胞并用 BV605-抗小鼠 CD86、APC-抗小鼠 CD40 和 PE-抗小鼠 MHC II 染色。最后,将细胞重悬于 PBS 中,用流式细胞仪进行分析。同样,收获细胞并使用 EZ-press RNA 纯化试剂盒提取总 RNA,然后使用 Hifair III 1st Strand cDNA 试剂盒和 SYBR green qPCR super mix 通过 RT-qPCR 检测 IFN-γ、IL-6 和 TNF-α 等细胞因子的表达。引物见表 S2。收集细胞培养上清,使用小鼠细胞因子酶联免疫吸附试剂盒检测细胞因子的分泌,包括 IFN-γ、IL-6 和 TNF-α。
To investigate the mechanism of cell activation, DC 2.4 cells were treated with CsA (20 μM) for 40 min prior to treatment with COS (4, 8, and 16 μg/mL) for 24 h. The concentrations of IFN-γ, IL-6, and TNF-α were subsequently measured by ELISA. Similarly, the expression of CD40, CD86, and MHC II was determined by flow cytometry. To determine the activation of the cGAS-STING-dependent pathway, DC 2.4 cells were treated with CsA for 40 min prior to treatment with 16 μg/mL of COS for 4 h; then, these cells were lysed, and the proteins were separated by SDS-PAGE under denaturing and reducing conditions. Proteins were transferred to the PVDF membrane. After being blocked for 1 h with 5% skim milk in TBST, the membrane was incubated overnight with rabbit monoclonal anti-IRF3 antibody, rabbit monoclonal anti-phospho-IRF3 antibody, rabbit monoclonal anti-STAT1 antibody, rabbit monoclonal anti-phospho-STAT1 antibody, and a mouse monoclonal anti-GAPDH antibody at a 1:2000 dilution at 4 °C. The membrane was washed and then incubated with HRP-conjugated anti-rabbit IgG antibody or anti-mouse IgG antibody at a 1:5000 dilution for 2 h. Finally, the membranes were developed with a chemiluminescent HRP substrate.
为了研究细胞活化的机制,在用 COS(4、8 和 16 μg/mL)处理 DC 2.4 细胞 24 小时之前,先用 CsA(20 μM)处理 40 分钟,然后用 ELISA 测定 IFN-γ、IL-6 和 TNF-α 的浓度。同样,CD40、CD86 和 MHC II 的表达也是通过流式细胞术测定的。为了确定 cGAS-STING 依赖性途径的激活情况,在用 16 μg/mL 的 COS 处理 DC 2.4 细胞 4 小时之前,先用 CsA 处理 DC 2.4 细胞 40 分钟;然后裂解这些细胞,在变性和还原条件下用 SDS-PAGE 分离蛋白质。蛋白质被转移到 PVDF 膜上。在 TBST 中用 5%脱脂牛奶封闭 1 小时后,用兔单克隆抗 IRF3 抗体、兔单克隆抗磷酸-IRF3 抗体、兔单克隆抗 STAT1 抗体、兔单克隆抗磷酸-STAT1 抗体和小鼠单克隆抗 GAPDH 抗体以 1:2000 稀释度在 4 ℃ 孵育过夜。最后用化学发光 HRP 底物显影。

Preparation and Characteristics of the MN Patch-Based Vaccine
MN 贴片疫苗的制备和特性

The MN patch was prepared using the centrifugal infusion PDMS mold method. (41,42) Briefly, DNA@COS nanoparticle vaccine was suspended in an aqueous solution containing 20% sucrose, followed by the addition of 200 μL of the solution to the PDMS mold with a pipet and centrifugation for 3 min (4500 rpm, 4 °C) to fill in the cavities. The residual suspension was removed with a pipet. Subsequently, the mold was centrifuged at 25 °C for 30 min to dry. Then, 18% aqueous PVA solution was added to the mold, centrifuged for 10 min (4500 rpm, 4 °C), and stored in a desiccator overnight to obtain MN patches.
MN 补丁采用离心灌注 PDMS 模具法制备。(41,42)简而言之,将 DNA@COS 纳米粒子疫苗悬浮在含 20% 蔗糖的水溶液中,然后用移液管向 PDMS 模具中加入 200 μL 溶液,离心 3 分钟(4500 rpm,4 °C)以填充空腔。用移液管移去残留的悬浮液。随后,在 25 °C 下离心 30 分钟使模具干燥。然后,向模具中加入 18% 的 PVA 水溶液,离心 10 分钟(4500 转/分,4 °C),并在干燥器中储存过夜,以获得 MN 补丁。
To test the mechanical strength of the MN patches, they were cut into smaller pieces with the needle tips facing upward. They were then fixed vertically onto the base of a texture analyzer (Brookfield CT3, USA) using double-sided tape. A compression mold was positioned above the MNs, and a vertical compression force was applied at a speed of 1 mm/s. The trigger value for compression was set at 0.07 N, and the compression distance was set at 400 μm. The force magnitude and deformation of the MNs during this process were recorded.
为了测试 MN 补丁的机械强度,我们将其切成小块,针尖朝上。然后用双面胶带将其垂直固定在纹理分析仪(Brookfield CT3,美国)的底座上。在 MNs 的上方放置一个压缩模具,以 1 mm/s 的速度施加垂直压缩力。压缩触发值设定为 0.07 N,压缩距离设定为 400 μm。在此过程中,对 MN 的力大小和变形进行了记录。
To further validate the effective delivery of DNA loaded into the MNs, 20 μg of DNA plasmid encapsulated in COS labeled with rhodamine was loaded into MNs. Subsequently, the contents of DNA and COS-Rho in the MNs were measured before and after administration. The amount of DNA loaded on each patch of MN was quantified by detecting the OD260 value using a Nanodrop (Thermo Fisher Scientific, Waltham, MA, USA). The amount of COS labeled with rhodamine was quantified by fluorescence using an ELISA analyzer (Tecan/Infinite E plex, Switzerland).
为了进一步验证载入 MNs 的 DNA 的有效输送,20 微克用罗丹明标记的包封在 COS 中的 DNA 质粒被载入 MNs。随后,测量了给药前后 MN 中 DNA 和 COS-Rho 的含量。使用 Nanodrop(赛默飞世尔科技公司,美国马萨诸塞州沃尔瑟姆)检测 OD260 值,对每个 MN 片段上的 DNA 负载量进行量化。用 ELISA 分析仪(Tecan/Infinite E plex,瑞士)通过荧光对罗丹明标记的 COS 量进行量化。
To confirm the expression of DNA@COS NP loading in MN, a MN patch containing pVAX-luciferase@COS (20 μg plasmid) was applied on the bare dorsal skin of 6–8-week-old female BALB/c mice, and then these mice were imaged and quantified at different time points (24 and 48 h) using an in vivo imaging system in the presence of 200 μL of d-luciferin potassium salt (150 μg/mL) substrate via intraperitoneal injection. As a control, the pVAX-luciferase@COS (20 μg of plasmid) alone was intramuscularly injected in the right quadriceps of the mice.
为了证实 DNA@COS NP 负载在 MN 中的表达,将含有 pVAX-荧光素酶@COS(20 μg 质粒)的 MN 贴片贴在 6-8 周大的雌性 BALB/c 小鼠裸露的背部皮肤上,然后在腹腔注射 200 μLd-luciferin 钾盐(150 μg/mL)底物的情况下,使用体内成像系统对这些小鼠在不同时间点(24 和 48 h)进行成像和量化。作为对照,在小鼠右股四头肌肌肉注射单独的 pVAX-荧光素酶@COS(20 μg 质粒)。
As for the quality control of our MN patches containing DNA@COS NPs, the amount of DNA loaded on each patch of MN was quantified by detecting the OD260 value using Nanodrop (Thermo Fisher Scientific, Waltham, MA, USA) after the MN was dissolved in PBS buffer. In this study, the average value of DNA loaded on each patch was 19.372 ± 0.616 μg (Table S1).
至于含有 DNA@COS NPs 的 MN 贴片的质量控制,我们使用 Nanodrop(Thermo Fisher Scientific, Waltham, MA, USA)检测了 MN 在 PBS 缓冲液中溶解后的 OD260 值,从而量化了每个 MN 贴片上负载的 DNA 量。在这项研究中,每个贴片上负载的 DNA 平均值为 19.372 ± 0.616 μg(表 S1)。

Animal Experiments 动物实验

6–8-week-old female BALB/c mice were randomly allocated into four groups (n = 10 per group). Group 1 received 20 μg of pVAX-empty@COS per mouse intramuscularly injected in the right quadriceps of the leg. Group 2 received 20 μg of pVAX-empty@COS per mouse in the bare skin using MN patch. Group 3 received 20 μg of pVAX-S+N@COS (10 μg for each plasmid) per mouse intramuscularly injected in the quadricep of the right leg. Similarly, group 4 received 20 μg of pVAX-S+N@COS (10 μg for each plasmid) per mouse on the bare skin using MN patch. Briefly, the dorsal area of the mice was subjected to depilation treatment, followed by anesthetizing the mice with isoflurane. Subsequently, MNs were vertically inserted into the bare dorsal skin of the mice and pressed for 60 s. After 20 min, the MNs were torn off once they had completely dissolved. Each group received prime immunization at weeks 0 and 2, and then were boosted at week 4. At days 21 and 42, five mice in each group were anesthetized with inhaled isoflurane and sacrificed by cervical dislocation. Blood sample was collected from mouse orbits, and supernatant was harvested after centrifugation at 8000 rpm for 10 min at 4 °C. To eliminate the complement and other active substances that might potentially affect cell growth, mouse serum was subjected to heat inactivation at 56 °C for 30 min. The inactivated serum was used for the following immunological assays. Spleen was ground and filtrated with 75 μm cell strainers. The splenic lymphocytes were isolated using a mouse lymphocyte separation solution. Next, the red blood lysis buffer was added, incubated for 5 min at 4 °C, and washed using RPMI 1640. The lymphocytes were suspended with RPMI 1640 supplemented with 10% FBS, 2 mM l-glutamine, and 1% penicillin/streptomycin. The lung tissue was cut into pieces and digested with collagenase I (1 mg/mL) and DNase I (20 U/mL) at 37 °C for 1 h. Subsequently, the lung lymphocytes were isolated according to the methods for the isolation of splenic lymphocytes.
将 6-8 周大的雌性 BALB/c 小鼠随机分为四组每组 10 只)。第 1 组每只小鼠右腿股四头肌肌肉注射 20 μg pVAX-empty@COS。第 2 组每只小鼠使用 MN 贴片在裸露皮肤上注射 20 微克 pVAX-empty@COS。第 3 组小鼠右腿股四头肌肌肉注射 20 微克 pVAX-S+N@COS(每个质粒 10 微克)。同样,第 4 组每只小鼠使用 MN 贴片在裸露皮肤上注射 20 μg pVAX-S+N@COS(每个质粒 10 μg)。简言之,先对小鼠背部进行脱毛处理,然后用异氟烷麻醉小鼠。20 分钟后,待 MN 完全溶解后撕下。每组小鼠在第 0 周和第 2 周接受初次免疫,然后在第 4 周进行加强免疫。第 21 天和第 42 天,每组五只小鼠吸入异氟醚麻醉后颈椎脱位处死。从小鼠眼眶采集血样,在 4 °C 下以 8000 rpm 离心 10 分钟后收集上清液。为去除补体和其他可能影响细胞生长的活性物质,小鼠血清在 56 ℃ 下加热灭活 30 分钟。灭活的血清用于以下免疫测定。磨碎脾脏并用 75 μm 细胞滤网过滤。使用小鼠淋巴细胞分离液分离脾脏淋巴细胞。然后加入红细胞裂解缓冲液,在 4 ℃ 温育 5 分钟,并用 RPMI 1640 冲洗。 淋巴细胞用RPMI 1640悬浮,添加10% FBS、2 mMl-谷氨酰胺和1%青霉素/链霉素。将肺组织切块,用胶原酶 I(1 mg/mL)和 DNase I(20 U/mL)在 37 ℃ 下消化 1 小时,然后按照分离脾淋巴细胞的方法分离肺淋巴细胞。

ELISA Assay 酶联免疫吸附试验

SARS-CoV-2 spike-specific antibody titers, including IgG, IgA, IgG1, and IgG2c, and nucleocapsid-specific IgG antibody titers were detected by ELISA following our previously reported method. (43,44) The SARS-CoV-2 S protein or N protein was diluted to 1 μg/mL and coated onto the 96-well ELISA plate overnight at 4 °C. Next, the ELISA plate was washed by PBS and blocked by 5% skim milk in PBST solution for 1 h at 37 °C. Then the plates were incubated with 100 μL of 2-fold serially diluted samples (starting at 1:20) for 2 h. Next, the well was washed, and 100 μL of HRP conjugated anti-mouse IgG antibody (dilution: 1:5000), HRP-conjugated anti-mouse IgA (dilution: 1:5000), HRP-conjugated anti-mouse IgG1 (dilution: 1:5000), and HRP-conjugated anti-mouse IgG2c (dilution: 1:5000) were added for another 1 h at 37 °C. Finally, the plate was washed and incubated with 100 μL of TMB solution for 25 min protected from light. Subsequently, the reaction was stopped by 1 M H2SO4, and the value of OD450 was read by a microplate reader. End point titers were defined as the lowest dilution at which the OD value was double the standard deviation above the mean of the blank wells.
SARS-CoV-2 棘突特异性抗体滴度(包括 IgG、IgA、IgG1 和 IgG2c)和核壳特异性 IgG 抗体滴度由 ELISA 法检测。(43,44)将 SARS-CoV-2 S 蛋白或 N 蛋白稀释至 1 μg/mL 并涂布到 96 孔 ELISA 板上,在 4 °C 下过夜。然后,用 PBS 冲洗 ELISA 板,并用 PBST 溶液中的 5% 脱脂牛奶在 37 ℃ 下阻断 1 小时。然后用 100 μL 2 倍序列稀释的样品(从 1:20 开始)培养 2 小时。然后,洗孔,加入 100 μL HRP 结合的抗小鼠 IgG 抗体(稀释度:1:5000)、HRP 结合的抗小鼠 IgA(稀释度:1:5000)、HRP 结合的抗小鼠 IgG1(稀释度:1:5000)和 HRP 结合的抗小鼠 IgG2c(稀释度:1:5000),37 ℃ 再孵育 1 小时。最后,洗板并用 100 μL TMB 溶液避光孵育 25 分钟。随后,用 1 MH2SO4 停止反应,并用微孔板阅读器读取 OD450 值。终点滴度定义为 OD 值比空白孔平均值高出一倍标准偏差的最低稀释度。

Neutralization Assay 中和试验

The neutralizing assay was performed as our previously reported method. (43,44) In brief, 50 μL of mice serum with a dilution at 1:20 in 96-well cell culture plates was incubated with 50 μL of pseudotyped SARS-CoV-2 virus (2 × 104 PFU) at 37 °C for 1 h, followed by the addition of 2 × 104 293T-ACE2 cells in 100 μL of DMEM supplemented with 5% FBS into each well. After incubation at 37 °C and 5% CO2 for 48 h, 100 μL of cell culture supernatant was moved. 100 μL of bright-light luciferase reagent was added to each well and incubated for 2 min. After incubation, each well was mixed 10 times by pipet, and 150 μL of the mixture was transferred to a white plate to measure the luciferase activity using a microwell plate luminous detector.
中和试验按照我们之前报道的方法进行。(43,44)简言之,在 96 孔细胞培养板中加入 50 μL 稀释度为 1:20 的小鼠血清,与 50 μL 假型 SARS-CoV-2 病毒(2 ×104PFU)在 37 °C 下孵育 1 小时,然后在每个孔中加入 2 ×104 个293T-ACE2 细胞(100 μL 加入 5% FBS 的 DMEM)。在 37 °C 和 5%CO2下培养 48 小时后,移取 100 μL 细胞培养上清液。每孔加入 100 μL 亮光荧光素酶试剂并孵育 2 分钟。孵育后,用移液管将每个孔混合 10 次,然后将 150 μL 混合物转移到白板上,使用微孔板发光检测器测量荧光素酶活性。

IFN-γ ELISpot Assay IFN-γ ELISpot 检测法

IFN-γ ELISpot assay was performed using our previously reported method. (45) In brief, a 96-well plate was washed using PBS and coated with purified rat anti-mouse IFN-γ monoclonal antibody at 4 °C overnight. Mouse splenic and pulmonary lymphocytes were seeded in the plates at 5 × 105 per well. Then each group was incubated with the peptide pool (including S1, S2, and N protein) at 4 mg/mL, while DMSO served as a negative control and ConA (10 μg/mL) served as a positive control. After incubation for 24 h, the plate was incubated with biotinylated detection antibodies and developed with alkaline phosphatase-conjugated streptavidin and the NBT/BCIP reagent. Finally, the spots were counted with an ELISpot reader (Mabtech IRIS 53, Sweden).
IFN-γ ELISpot 检测采用我们之前报道过的方法。(45)简单地说,用 PBS 冲洗 96 孔板,然后用纯化的大鼠抗小鼠 IFN-γ 单克隆抗体涂布,4 ℃ 过夜。将小鼠脾淋巴细胞和肺淋巴细胞按每孔 5 ×105 的比例接种到孔板中。然后每组用 4 mg/mL 的多肽池(包括 S1、S2 和 N 蛋白)孵育,DMSO 作为阴性对照,ConA(10 μg/mL)作为阳性对照。孵育 24 小时后,用生物素化的检测抗体孵育平板,并用碱性磷酸酶结合的链霉亲和素和 NBT/BCIP 试剂显色。最后,用 ELISpot 阅读器(Mabtech IRIS 53,瑞典)对斑点进行计数。

Intracellular Cytokine Staining (ICS)
细胞内细胞因子染色(ICS)

ICS assay was performed using our previously reported method. (46) In brief, mouse splenic lymphocytes were seeded in the 96-well plates at 2 × 106 per well and incubated with the peptide pool at 4 mg/mL, while DMSO served as a negative control and ConA (10 μg/mL) served as a positive control for 2 h at 37 °C. Then brefeldin A was added and incubated for 16 h at 37 °C. The cells were harvested and stained with anti-mouse CD3-FITC, CD4-Percp, and CD8-PE-Cy7 for 30 min protected from light. Then cytofix/cytoperm was added to permeabilize the mixture for 30 min protected from light. Subsequently, the plate was stained with anti-mouse IFN-γ-APC, IL-2-BV605, TNF-α-PE, and CD107a-BV421 for 1 h protected from light at 4 °C. Samples were quantified by flow cytometry and analyzed using CytExpert software.
ICS 检测采用我们之前报道过的方法。(46)简而言之,将小鼠脾脏淋巴细胞按每孔2×106 个的比例接种到 96 孔板中,然后与 4 mg/mL 的肽池一起在 37 ℃ 下孵育 2 小时,DMSO 作为阴性对照,ConA(10 μg/mL)作为阳性对照。然后加入布雷非德菌素 A 并在 37 ℃ 下培养 16 小时。收获细胞并用抗小鼠 CD3-FITC、CD4-Percp 和 CD8-PE-Cy7 避光染色 30 分钟。然后加入 cytofix/cytoperm 使混合物透化,避光 30 分钟。然后用抗小鼠 IFN-γ-APC、IL-2-BV605、TNF-α-PE 和 CD107a-BV421 进行染色,4 ℃ 避光 1 小时。使用 CytExpert 软件对样本进行流式细胞术定量分析。
Similarly, in order to determine the memory T cell of splenic lymphocytes after receiving DNA nanoparticle vaccine, 2 × 106 mouse splenic lymphocytes were seeded in the 96-well plates and incubated with the peptide pool at 4 mg/mL, while DMSO served as a negative control for 24 h at 37 °C. The cells were harvested and stained with anti-mouse CD3-FITC, CD4-Percp, CD8-PE-Cy7, CD44-PE, and CD62L-BV421 for 30 min protected from light. Samples were washed and quantified by flow cytometry.
同样,为了测定脾脏淋巴细胞在接种DNA纳米颗粒疫苗后的记忆T细胞,将2×106个小鼠脾脏淋巴细胞接种到96孔板中,与4 mg/mL的肽池在37 °C下孵育24小时,DMSO作为阴性对照。收获细胞并用抗小鼠 CD3-FITC、CD4-Percp、CD8-PE-Cy7、CD44-PE 和 CD62L-BV421 避光染色 30 分钟。清洗样本并用流式细胞仪定量。

Statistical Analysis 统计分析

Statistical analyses and graphical presentations were conducted with GraphPad Prism version 8.0. One-way ANOVA was used for the comparison among multiple (>2) groups, and a two-tailed unpaired Student’s t test was used for comparison between two groups. Data are expressed as mean ± SEM, and p-values of less than 0.05 were deemed statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001; ns, not significant).
使用 GraphPad Prism 8.0 版进行统计分析和图表展示。多组(>2)间比较采用单因素方差分析,两组间比较采用双尾非配对学生t检验。数据以平均值 ± SEM 表示,P 值小于 0.05 视为具有统计学意义(*p < 0.05,**p < 0.01,***p < 0.001,****p< 0.0001;ns,无意义)。

Supporting Information 辅助信息

Click to copy section link
点击复制章节链接
Section link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.3c09521.
辅助信息可从https://pubs.acs.org/doi/10.1021/acsnano.3c09521 免费获取。

  • Supplementary figures: physiochemical characterization of COS-engineered DNA vaccine; stability of COS-encapsulated DNA vaccine; the COS showed no obvious cell toxicity to different cell lines; in vitro transfection efficacy of DNA nanoparticle vaccine; in vitro transfection efficacy of DNA nanoparticle vaccine in DC 2.4 and RAW264.7 cells; cellular uptake of DNA nanoparticle vaccine in HEK-293T cells determined by flow cytometry; co-localization observed by CLSM of the Cy5-labeled pVAX-S (red) and LysoTracker (green) in HEK-293T cells; physiochemical and biological characterization of DNA@COS-MN dissolving in PBS; neutralization efficiency of mice serum against SARS-CoV-2 variants delta and omicron with dilution at 1:20 at day 42; characterization of DNA nanoparticle vaccine in MN stored at room temperature for 30 days; SARS-CoV-2-specific cellular immune responses after MN-mediated DNA nanoparticle vaccine at day 21; SARS-CoV-2-specific cellular immune responses after MN-mediated DNA nanoparticle vaccine at day 42; T-SNE analysis of concatenated data from group S+N@COS-IM and group S+N@COS-MN for stimulation with S1, S2, and N peptide pool, showing density plots for each condition; detection of ROS by fluorescence of DCFH-DA in the DC 2.4 cells incubated with different concentration of COS; change of MMP of DC 2.4 cells at different times after incubation with COS; CD40, CD86, and MHC II expression in DC 2.4 cells incubated with 16 μg/mL COS for 24 h in the presence or absence of CsA; Supplementary table: primer sequence for qPCR to verify the DC 2.4 cells activation after COS treatment (PDF)
    补图:COS 工程 DNA 疫苗的理化特性;COS 封装 DNA 疫苗的稳定性;COS 对不同细胞系无明显细胞毒性;DNA 纳米颗粒疫苗的体外转染效果;DNA 纳米颗粒疫苗在 DC 2.4 和 RAW264.7 细胞中的体外转染效果;流式细胞仪测定 DNA 纳米颗粒疫苗在 HEK-293T 细胞中的细胞摄取量;CLSM 观察到 Cy5 标记的 pVAX-S(pVAX-S)与 COS 的共定位。7细胞的体外转染效果;流式细胞仪测定DNA纳米颗粒疫苗在HEK-293T细胞中的细胞摄取量;CLSM观察到Cy5标记的pVAX-S(红色)和LysoTracker(绿色)在HEK-293T细胞中的共定位;溶于PBS的DNA@COS-MN的理化和生物学特性;小鼠血清对SARS-CoV-2变体delta和ocmicron的中和效率,稀释度为1:在第 42 天时,小鼠血清对 SARS-CoV-2 变体 delta 和 omicron 的中和效率(稀释度为 1:20);DNA 纳米粒子疫苗在 MN 中的特性(在室温下储存 30 天);在第 21 天时,MN 介导的 DNA 纳米粒子疫苗对 SARS-CoV-2 的特异性细胞免疫反应;在第 42 天时,MN 介导的 DNA 纳米粒子疫苗对 SARS-CoV-2 的特异性细胞免疫反应;S+N@COS-IM组和S+N@COS-MN组在S1、S2和N肽池刺激下的T-SNE分析,显示每种条件下的密度图;用DCFH-DA荧光检测DC 2中的ROS。4 细胞中的 ROS 的荧光检测;与 COS 培养后不同时间 DC 2.4 细胞 MMP 的变化;在 CsA 存在或不存在的情况下,与 16 μg/mL COS 培养 24 小时的 DC 2.4 细胞中 CD40、CD86 和 MHC II 的表达;补充表:用于验证 COS 处理后 DC 2.4 细胞活化的 qPCR 引物序列(PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Yuelong Shu - School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, ChinaKey Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, P.R. China Email: shuylong@mail.sysu.edu.cn
    • Xiaowei Zeng - School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, ChinaOrcidhttps://orcid.org/0000-0002-2804-2689 Email: zengxw23@mail.sysu.edu.cn
    • Caijun Sun - School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, ChinaKey Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou 514400, ChinaSchool of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University; Guangdong 518107, ChinaOrcidhttps://orcid.org/0000-0002-2000-7053 Email: suncaijun@mail.sysu.edu.cn
  • Authors
    • Minchao Li - School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    • Li Yang - School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
    • Congcong Wang - School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    • Mingting Cui - School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    • Ziyu Wen - School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    • Zhiheng Liao - School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    • Zirong Han - School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    • Yangguo Zhao - School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    • Bing Lang - School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
    • Hongzhong Chen - School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
    • Jun Qian - School of Public Health (Shenzhen), Sun Yat-sen University; Shenzhen, 518107, China
  • Author Contributions

    M.L. and L.Y. contributed equally to this work. Project design and supervision by C.S. and X.Z.; experiments performed by M.L., L.Y., C.W., M.C., Z.W., Z.L., Z.H., Y.Z., and B.L.; data analysis by M.L. and L.Y.; graphics drawn by M.L. and L.Y.; writing by M.L., L.Y., and C.S.; materials and reagents contributed by H.C., J.Q., Y.S., and X.Z.; review and editing by C.S. All authors have read and agreed to the final version of this manuscript.

  • Funding

    This work was supported by the National Key R&D Program of China (2022YFE0203100, 2021YFC2300103, 2022YFC2603600), the National Natural Science Foundation of China (82271786, 81971927), CAMS Innovation Fund for Medical Sciences (CIFMS) (2022-I2M-1-021), Science and Technology Planning Project of Guangdong Province, China (2021B1212040017), Shenzhen Science and Technology Program (JSGG20200225152008136, JCYJ2019080715500948), and High level project of Medicine in Nanshan, Shenzhen (SZSM202103008).

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

Figures 3A and 8 were created with BioRender.com.

References

Click to copy section linkSection link copied!

This article references 46 other publications.

  1. 1
    Eyawo, O.; Viens, A. M.; Ugoji, U. C. Lockdowns and low- and middle-income countries: building a feasible, effective, and ethical COVID-19 response strategy. Global Health 2021, 17 (1), 13  DOI: 10.1186/s12992-021-00662-y
  2. 2
    Feng, F.; Wen, Z.; Chen, J.; Yuan, Y.; Wang, C.; Sun, C. Strategies to Develop a Mucosa-Targeting Vaccine against Emerging Infectious Diseases. Viruses 2022, 14 (3), 520,  DOI: 10.3390/v14030520
  3. 3
    Seaman, C. P.; Kahn, A. L.; Kristensen, D.; Steinglass, R.; Spasenoska, D.; Scott, N.; Morgan, C. Controlled temperature chain for vaccination in low- and middle-income countries: a realist evidence synthesis. Bull. World Health Organ. 2022, 100 (8), 491502,  DOI: 10.2471/BLT.21.287696
  4. 4
    Freeman, D.; Lambe, S.; Yu, L. M.; Freeman, J.; Chadwick, A.; Vaccari, C.; Waite, F.; Rosebrock, L.; Petit, A.; Vanderslott, S.; Lewandowsky, S.; Larkin, M.; Innocenti, S.; McShane, H.; Pollard, A. J.; Loe, B. S. Injection fears and COVID-19 vaccine hesitancy. Psychol. Med. 2023, 53 (4), 11851195,  DOI: 10.1017/S0033291721002609
  5. 5
    Wang, H.; Cui, M.; Li, S.; Wu, F.; Jiang, S.; Chen, H.; Yuan, J.; Sun, C. Perception and willingness toward various immunization routes for COVID-19 vaccines: a cross-sectional survey in China. Front. Public Health 2023, 11, 1192709,  DOI: 10.3389/fpubh.2023.1192709
  6. 6
    Yang, Y.; Li, Z.; Huang, P.; Lin, J.; Li, J.; Shi, K.; Lin, J.; Hu, J.; Zhao, Z.; Yu, Y.; Chen, H.; Zeng, X.; Mei, L. Rapidly separating dissolving microneedles with sustained-release colchicine and stabilized uricase for simplified long-term gout management. Acta Pharm. Sin. B 2023, 13 (8), 34543470,  DOI: 10.1016/j.apsb.2023.02.011
  7. 7
    Yang, L.; Yang, Y.; Chen, H.; Mei, L.; Zeng, X. Polymeric microneedle-mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian J. Pharm. Sci. 2022, 17 (1), 7086,  DOI: 10.1016/j.ajps.2021.07.002
  8. 8
    Menon, I.; Bagwe, P.; Gomes, K. B.; Bajaj, L.; Gala, R.; Uddin, M. N.; D’Souza, M. J.; Zughaier, S. M. Microneedles: A New Generation Vaccine Delivery System. Micromachines 2021, 12 (4), 435,  DOI: 10.3390/mi12040435
  9. 9
    Larraneta, E.; Lutton, R. E. M.; Woolfson, A. D.; Donnelly, R. F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R-Reports 2016, 104, 132,  DOI: 10.1016/j.mser.2016.03.001
  10. 10
    Iwata, H.; Kakita, K.; Imafuku, K.; Takashima, S.; Haga, N.; Yamaguchi, Y.; Taguchi, K.; Oyamada, T. Safety and dose-sparing effect of Japanese encephalitis vaccine administered by microneedle patch in uninfected, healthy adults (MNA-J): a randomised, partly blinded, active-controlled, phase 1 trial. Lancet Microbe 2022, 3 (2), E96E104,  DOI: 10.1016/S2666-5247(21)00269-X
  11. 11
    Vander Straeten, A.; Sarmadi, M.; Daristotle, J. L.; Kanelli, M.; Tostanoski, L. H.; Collins, J.; Pardeshi, A.; Han, J.; Varshney, D.; Eshaghi, B.; Garcia, J.; Forster, T. A.; Li, G.; Menon, N.; Pyon, S. L.; Zhang, L.; Jacob-Dolan, C.; Powers, O. C.; Hall, K.; Alsaiari, S. K.; Wolf, M.; Tibbitt, M. W.; Farra, R.; Barouch, D. H.; Langer, R.; Jaklenec, A. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. 2023,  DOI: 10.1038/s41587-023-01774-z
  12. 12
    Feng, F.; Hao, H.; Zhao, J.; Li, Y.; Zhang, Y.; Li, R.; Wen, Z.; Wu, C.; Li, M.; Li, P.; Chen, L.; Tang, R.; Wang, X.; Sun, C. Shell-mediated phagocytosis to reshape viral-vectored vaccine-induced immunity. Biomaterials 2021, 276, 121062  DOI: 10.1016/j.biomaterials.2021.121062
  13. 13
    Sun, C. J.; Pan, S. P.; Xie, Q. X.; Xiao, L. J. Preparation of chitosan-plasmid DNA nanoparticles encoding zona pellucida glycoprotein-3alpha and its expression in mouse. Mol. Reprod. Dev. 2004, 68 (2), 1828,  DOI: 10.1002/mrd.20058
  14. 14
    Carroll, E. C.; Jin, L.; Mori, A.; Munoz-Wolf, N.; Oleszycka, E.; Moran, H. B. T.; Mansouri, S.; McEntee, C. P.; Lambe, E.; Agger, E. M.; Andersen, P.; Cunningham, C.; Hertzog, P.; Fitzgerald, K. A.; Bowie, A. G.; Lavelle, E. C. The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type I Interferons. Immunity 2016, 44 (3), 597608,  DOI: 10.1016/j.immuni.2016.02.004
  15. 15
    Grifoni, A.; Weiskopf, D.; Ramirez, S. I.; Mateus, J.; Dan, J. M.; Moderbacher, C. R.; Rawlings, S. A.; Sutherland, A.; Premkumar, L.; Jadi, R. S.; Marrama, D.; de Silva, A. M.; Frazier, A.; Carlin, A. F.; Greenbaum, J. A.; Peters, B.; Krammer, F.; Smith, D. M.; Crotty, S.; Sette, A. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181 (7), 14891501 e15,  DOI: 10.1016/j.cell.2020.05.015
  16. 16
    Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 2022, 23 (2), 186193,  DOI: 10.1038/s41590-021-01122-w
  17. 17
    Sheng, T.; Luo, B.; Zhang, W.; Ge, X.; Yu, J.; Zhang, Y.; Gu, Z. Microneedle-Mediated Vaccination: Innovation and Translation. Adv. Drug Deliv. Rev. 2021, 179, 113919  DOI: 10.1016/j.addr.2021.113919
  18. 18
    Korkmaz, E.; Balmert, S. C.; Carey, C. D.; Erdos, G.; Falo, L. D., Jr. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin. Drug Deliv. 2021, 18 (2), 151167,  DOI: 10.1080/17425247.2021.1823964
  19. 19
    Depelsenaire, A. C. I.; Meliga, S. C.; McNeilly, C. L.; Pearson, F. E.; Coffey, J. W.; Haigh, O. L.; Flaim, C. J.; Frazer, I. H.; Kendall, M. A. F. Colocalization of cell death with antigen deposition in skin enhances vaccine immunogenicity. J. Invest. Dermatol. 2014, 134 (9), 23612370,  DOI: 10.1038/jid.2014.174
  20. 20
    Rock, K. L.; York, I. A.; Goldberg, A. L. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol. 2004, 5 (7), 6707,  DOI: 10.1038/ni1089
  21. 21
    Mateus, J.; Grifoni, A.; Tarke, A.; Sidney, J.; Ramirez, S. I.; Dan, J. M.; Burger, Z. C.; Rawlings, S. A.; Smith, D. M.; Phillips, E.; Mallal, S.; Lammers, M.; Rubiro, P.; Quiambao, L.; Sutherland, A.; Yu, E. D.; da Silva Antunes, R.; Greenbaum, J.; Frazier, A.; Markmann, A. J.; Premkumar, L.; de Silva, A.; Peters, B.; Crotty, S.; Sette, A.; Weiskopf, D. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020, 370 (6512), 8994,  DOI: 10.1126/science.abd3871
  22. 22
    Le Bert, N.; Tan, A. T.; Kunasegaran, K.; Tham, C. Y. L.; Hafezi, M.; Chia, A.; Chng, M. H. Y.; Lin, M.; Tan, N.; Linster, M.; Chia, W. N.; Chen, M. I.; Wang, L. F.; Ooi, E. E.; Kalimuddin, S.; Tambyah, P. A.; Low, J. G.; Tan, Y. J.; Bertoletti, A. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020, 584 (7821), 457462,  DOI: 10.1038/s41586-020-2550-z
  23. 23
    Selin, L. K.; Brehm, M. A.; Naumov, Y. N.; Cornberg, M.; Kim, S. K.; Clute, S. C.; Welsh, R. M. Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol. Rev. 2006, 211 (1), 16481,  DOI: 10.1111/j.0105-2896.2006.00394.x
  24. 24
    Riou, C.; Keeton, R.; Moyo-Gwete, T.; Hermanus, T.; Kgagudi, P.; Baguma, R.; Valley-Omar, Z.; Smith, M.; Tegally, H.; Doolabh, D.; Iranzadeh, A.; Tyers, L.; Mutavhatsindi, H.; Tincho, M. B.; Benede, N.; Marais, G.; Chinhoyi, L. R.; Mennen, M.; Skelem, S.; du Bruyn, E.; Stek, C.; de Oliveira, T.; Williamson, C.; Moore, P. L.; Wilkinson, R. J.; Ntusi, N. A. B.; Burgers, W. A. Escape from recognition of SARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity. Sci. Transl. Med. 2022, 14 (631), eabj6824  DOI: 10.1126/scitranslmed.abj6824
  25. 25
    Choi, S. J.; Kim, D. U.; Noh, J. Y.; Kim, S.; Park, S. H.; Jeong, H. W.; Shin, E. C. T cell epitopes in SARS-CoV-2 proteins are substantially conserved in the Omicron variant. Cell. Mol. Immunol. 2022, 19 (3), 447448,  DOI: 10.1038/s41423-022-00838-5
  26. 26
    Naranbhai, V.; Nathan, A.; Kaseke, C.; Berrios, C.; Khatri, A.; Choi, S.; Getz, M. A.; Tano-Menka, R.; Ofoman, O.; Gayton, A.; Senjobe, F.; Zhao, Z.; St Denis, K. J.; Lam, E. C.; Carrington, M.; Garcia-Beltran, W. F.; Balazs, A. B.; Walker, B. D.; Iafrate, A. J.; Gaiha, G. D. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals. Cell 2022, 185 (6), 10411051 e6,  DOI: 10.1016/j.cell.2022.01.029
  27. 27
    Fan, F.; Zhang, X.; Zhang, Z.; Ding, Y.; Wang, L.; Xu, X.; Pan, Y.; Gong, F. Y.; Jiang, L.; Kang, L.; Ha, Z.; Lu, H.; Hou, J.; Kou, Z.; Zhao, G.; Wang, B.; Gao, X. M. Potent immunogenicity and broad-spectrum protection potential of microneedle array patch-based COVID-19 DNA vaccine candidates encoding dimeric RBD chimera of SARS-CoV and SARS-CoV-2 variants. Emerg. Microbes Infect. 2023, 12 (1), 2202269  DOI: 10.1080/22221751.2023.2202269
  28. 28
    Castro Dopico, X.; Ols, S.; Lore, K.; Karlsson Hedestam, G. B. Immunity to SARS-CoV-2 induced by infection or vaccination. J. Intern. Med. 2022, 291 (1), 3250,  DOI: 10.1111/joim.13372
  29. 29
    Dutta, N. K.; Mazumdar, K.; Gordy, J. T. The Nucleocapsid Protein of SARS-CoV-2: a Target for Vaccine Development. J. Virol. 2020, 94 (13), 647-20,  DOI: 10.1128/JVI.00647-20
  30. 30
    Ni, L.; Ye, F.; Cheng, M. L.; Feng, Y.; Deng, Y. Q.; Zhao, H.; Wei, P.; Ge, J.; Gou, M.; Li, X.; Sun, L.; Cao, T.; Wang, P.; Zhou, C.; Zhang, R.; Liang, P.; Guo, H.; Wang, X.; Qin, C. F.; Chen, F.; Dong, C. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity 2020, 52 (6), 971977 e3,  DOI: 10.1016/j.immuni.2020.04.023
  31. 31
    Peng, Y.; Mentzer, A. J.; Liu, G.; Yao, X.; Yin, Z.; Dong, D.; Dejnirattisai, W.; Rostron, T.; Supasa, P.; Liu, C.; Lopez-Camacho, C.; Slon-Campos, J.; Zhao, Y.; Stuart, D. I.; Paesen, G. C.; Grimes, J. M.; Antson, A. A.; Bayfield, O. W.; Hawkins, D.; Ker, D. S.; Wang, B.; Turtle, L.; Subramaniam, K.; Thomson, P.; Zhang, P.; Dold, C.; Ratcliff, J.; Simmonds, P.; de Silva, T.; Sopp, P.; Wellington, D.; Rajapaksa, U.; Chen, Y. L.; Salio, M.; Napolitani, G.; Paes, W.; Borrow, P.; Kessler, B. M.; Fry, J. W.; Schwabe, N. F.; Semple, M. G.; Baillie, J. K.; Moore, S. C.; Openshaw, P. J. M.; Ansari, M. A.; Dunachie, S.; Barnes, E.; Frater, J.; Kerr, G.; Goulder, P.; Lockett, T.; Levin, R.; Zhang, Y.; Jing, R.; Ho, L. P.; Oxford Immunology Network Covid-19 Response, T. c. C.; Investigators, I. C.; Cornall, R. J.; Conlon, C. P.; Klenerman, P.; Screaton, G. R.; Mongkolsapaya, J.; McMichael, A.; Knight, J. C.; Ogg, G.; Dong, T. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 2020, 21 (11), 13361345,  DOI: 10.1038/s41590-020-0782-6
  32. 32
    Harris, P. E.; Brasel, T.; Massey, C.; Herst, C. V.; Burkholz, S.; Lloyd, P.; Blankenberg, T.; Bey, T. M.; Carback, R.; Hodge, T.; Ciotlos, S.; Wang, L.; Comer, J. E.; Rubsamen, R. M. A Synthetic Peptide CTL Vaccine Targeting Nucleocapsid Confers Protection from SARS-CoV-2 Challenge in Rhesus Macaques. Vaccines (Basel) 2021, 9 (5), 520,  DOI: 10.3390/vaccines9050520
  33. 33
    Matchett, W. E.; Joag, V.; Stolley, J. M.; Shepherd, F. K.; Quarnstrom, C. F.; Mickelson, C. K.; Wijeyesinghe, S.; Soerens, A. G.; Becker, S.; Thiede, J. M.; Weyu, E.; O’Flanagan, S. D.; Walter, J. A.; Vu, M. N.; Menachery, V. D.; Bold, T. D.; Vezys, V.; Jenkins, M. K.; Langlois, R. A.; Masopust, D. Cutting Edge: Nucleocapsid Vaccine Elicits Spike-Independent SARS-CoV-2 Protective Immunity. J. Immunol. 2021, 207 (2), 376379,  DOI: 10.4049/jimmunol.2100421
  34. 34
    Chiuppesi, F.; Nguyen, V. H.; Park, Y.; Contreras, H.; Karpinski, V.; Faircloth, K.; Nguyen, J.; Kha, M.; Johnson, D.; Martinez, J.; Iniguez, A.; Zhou, Q.; Kaltcheva, T.; Frankel, P.; Kar, S.; Sharma, A.; Andersen, H.; Lewis, M. G.; Shostak, Y.; Wussow, F.; Diamond, D. J. Synthetic multiantigen MVA vaccine COH04S1 protects against SARS-CoV-2 in Syrian hamsters and non-human primates. NPJ Vaccines 2022, 7 (1), 7,  DOI: 10.1038/s41541-022-00436-6
  35. 35
    Afkhami, S.; D’Agostino, M. R.; Zhang, A.; Stacey, H. D.; Marzok, A.; Kang, A.; Singh, R.; Bavananthasivam, J.; Ye, G.; Luo, X.; Wang, F.; Ang, J. C.; Zganiacz, A.; Sankar, U.; Kazhdan, N.; Koenig, J. F. E.; Phelps, A.; Gameiro, S. F.; Tang, S.; Jordana, M.; Wan, Y.; Mossman, K. L.; Jeyanathan, M.; Gillgrass, A.; Medina, M. F. C.; Smaill, F.; Lichty, B. D.; Miller, M. S.; Xing, Z. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell 2022, 185 (5), 896915 e19,  DOI: 10.1016/j.cell.2022.02.005
  36. 36
    Liu, L.; Zhong, Q.; Tian, T.; Dubin, K.; Athale, S. K.; Kupper, T. S. Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nat. Med. 2010, 16 (2), 2247,  DOI: 10.1038/nm.2078
  37. 37
    Mikhak, Z.; Strassner, J. P.; Luster, A. D. Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4. J. Exp. Med. 2013, 210 (9), 185569,  DOI: 10.1084/jem.20130091
  38. 38
    Dijkman, K.; Aguilo, N.; Boot, C.; Hofman, S. O.; Sombroek, C. C.; Vervenne, R. A. W.; Kocken, C. H. M.; Marinova, D.; Thole, J.; Rodriguez, E.; Vierboom, M. P. M.; Haanstra, K. G.; Puentes, E.; Martin, C.; Verreck, F. A. W. Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection. Cell Rep. Med. 2021, 2 (1), 100187  DOI: 10.1016/j.xcrm.2020.100187
  39. 39
    Pan, Y.; Liu, L.; Tian, T.; Zhao, J.; Park, C. O.; Lofftus, S. Y.; Stingley, C. A.; Yan, Y.; Mei, S.; Liu, X.; Kupper, T. S. Epicutaneous immunization with modified vaccinia Ankara viral vectors generates superior T cell immunity against a respiratory viral challenge. NPJ Vaccines 2021, 6 (1), 1,  DOI: 10.1038/s41541-020-00265-5
  40. 40
    Sun, C.; Zhang, L.; Zhang, M.; Liu, Y.; Zhong, M.; Ma, X.; Chen, L. Induction of balance and breadth in the immune response is beneficial for the control of SIVmac239 replication in rhesus monkeys. J. Infect. 2010, 60 (5), 371381,  DOI: 10.1016/j.jinf.2010.03.005
  41. 41
    Sun, Y.; Chen, M. L.; Yang, D.; Qin, W. B.; Quan, G. L.; Wu, C. B.; Pan, X. Self-assembly nanomicelle-microneedle patches with enhanced tumor penetration for superior chemo-photothermal therapy. Nano Res. 2022, 15 (3), 23352346,  DOI: 10.1007/s12274-021-3817-x
  42. 42
    Lin, S. Q.; Quan, G. L.; Hou, A. L.; Yang, P. P.; Peng, T. T.; Gu, Y. K.; Qin, W. B.; Liu, R. B.; Ma, X. Y.; Pan, X.; Liu, H.; Wang, L. L.; Wu, C. B. Strategy for hypertrophic scar therapy: Improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J. Controlled Release 2019, 306, 6982,  DOI: 10.1016/j.jconrel.2019.05.038
  43. 43
    Li, M.; Chen, J.; Liu, Y.; Zhao, J.; Li, Y.; Hu, Y.; Chen, Y. Q.; Sun, L.; Shu, Y.; Feng, F.; Sun, C. Rational design of AAVrh10-vectored ACE2 functional domain to broadly block the cell entry of SARS-CoV-2 variants. Antiviral Res. 2022, 205, 105383  DOI: 10.1016/j.antiviral.2022.105383
  44. 44
    Luo, H.; Jia, T.; Chen, J.; Zeng, S.; Qiu, Z.; Wu, S.; Li, X.; Lei, Y.; Wang, X.; Wu, W.; Zhang, R.; Zou, X.; Feng, T.; Ding, R.; Zhang, Y.; Chen, Y. Q.; Sun, C.; Wang, T.; Fang, S.; Shu, Y. The Characterization of Disease Severity Associated IgG Subclasses Response in COVID-19 Patients. Front. Immunol. 2021, 12, 632814  DOI: 10.3389/fimmu.2021.632814
  45. 45
    Li, P.; Wang, Q.; He, Y.; Yang, C.; Zhang, Z.; Liu, Z.; Liu, B.; Yin, L.; Cui, Y.; Hu, P.; Liu, Y.; Zheng, P.; Wang, W.; Qu, L.; Sun, C.; Guan, S.; Feng, L.; Chen, L. Booster vaccination is required to elicit and maintain COVID-19 vaccine-induced immunity in SIV-infected macaques. Emerg. Microbes Infect. 2023, 12 (1), e2136538  DOI: 10.1080/22221751.2022.2136538
  46. 46
    Wen, Z.; Fang, C.; Liu, X.; Liu, Y.; Li, M.; Yuan, Y.; Han, Z.; Wang, C.; Zhang, T.; Sun, C. A recombinant Mycobacterium smegmatis-based surface display system for developing the T cell-based COVID-19 vaccine. Hum. Vaccines Immunother. 2023, 19 (1), 2171233  DOI: 10.1080/21645515.2023.2171233

Cited By

Click to copy section linkSection link copied!
Citation Statements
  • Supporting
    Supporting0
  • Mentioning
    Mentioning1
  • Contrasting
    Contrasting0
Explore this article's citation statements on scite.ai

This article is cited by 1 publications.

  1. Hong Liu, Haolin Chen, Zeyu Yang, Zhenfu Wen, Zhan Gao, Zhijia Liu, Lixin Liu, Yongming Chen. Precision Nanovaccines for Potent Vaccination. JACS Au 2024, 4 (8) , 2792-2810. https://doi.org/10.1021/jacsau.4c00568
Open PDF

ACS Nano ACS 纳米

Cite this: ACS Nano 2023, 17, 23, 24200–24217
引用此文:ACS Nano2023, 17, 23, 24200-24217
Click to copy citation 点击复制引文Citation copied!
https://doi.org/10.1021/acsnano.3c09521
Published November 22, 2023
出版日期:2023 年 11 月 22 日
Copyright © 2023 American Chemical Society
版权所有 © 2023 美国化学学会

Article Views 文章观点

3470

Citations 引文

Learn about these metrics
了解这些指标

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract 摘要

    Figure 1 图 1

    Figure 1. Physiochemical and biological characterization of COS-engineered DNA vaccine. (A) Schematic of plasmid DNA expressing S or N protein (pVAX-S or pVAX-N), which was absorbed on the positive charged COS through electrostatic interaction to give pVAX-S@COS, pVAX-N@COS, or pVAX-S+N@COS. (B) Transmission electron microscopy image of pVAX-S+N@COS. Scale bar represents 200 nm. (C) Particle size distribution of pVAX-S+N@COS. (D) Evaluations of S protein expression in 293T cells 48 h after pVAX-S@COS and pVAX-S+N@COS (4 μg/mL plasmid) transfections by Western blot. (E) Evaluations of N protein expression in 293T cells 48 h after pVAX-N@COS and pVAX-S+N@COS (4 μg/mL plasmid) transfections by Western blot. (F) In vitro transfection efficacy of pVAX-GFP@COS nanoparticle vaccine. HEK-293T cells were treated with different concentrations of pVAX-GFP loaded on COS including freshly prepared nanoparticles (NPs) and stored microneedles (MN) (stored in a desiccator at room temperature for 30 days). The fluorescence signal was obtained using an inverted fluorescence microscope and (G) the GFP expression efficiency was quantified by flow cytometry. Scale bar represents 100 μm. (H) Evaluation of luminescence intensity after HEK-293T cells were treated with different concentration of pVAX-luci@COS. (I) Cellular uptake of Cy5-pVAX-S@COS by HEK-293T cells at different times. Scale bar represents 20 μm. (J) Left panels: observation of the co-localization of Cy5-labeled pVAX-S@COS (red) and LysoTracker (green) in HEK-293T cells by confocal laser scanning microscopy (CLSM). Right panel: curve profiles of pVAX-S@COS with lysotracker. The intensity of each curve was quantified by ImageJ software and drawn using GraphPad Prism 8.0. Scale bar represents 20 μm. Data are expressed as mean ± SEM for triplicate samples, and p-values of less than 0.05 were deemed statistically significant. *p < 0.05; **p < 0.01; ****p < 0.0001.

    Figure 2

    Figure 2. Fabrication and characteristics of MN patch-based vaccine. (A) Schematic diagram showing the fabrication procedure for loading DNA@COS NPs into MN. (B) Stereopic image of S+N@COS-Rho/MN. (C) The piercing effect of S+N@COS-Rho/MN on the skin of mice and the changes of S+N@COS-Rho/MN before (left) and after (right) the piercing. (D, E) Mechanical strength of the blank MN, freshly prepared S+N@COS-MN, and the stored S+N@COS-MN( n = 3). (F) Measurement of the total amount of DNA in each patch of MN before and after administration in mice (n = 4). (G) Measurement of the total amount of COS labeled with rhodamine in each patch of MN before and after administration in mice (n = 3). (H) Dissolution of MN in PBS for different time points. (I) Representative in vivo luminescence imaging of luciferase expression in mice at 24 and 48 h after receiving 20 μg pVAX-luci@COS through different administration routes. Quantitative analysis of relative luminescence intensity at 24 h (J) and 48 h (K) after receiving DNA NPs through different administration routes. Data are expressed as Avg Radiance (×103 p/s/cm2/sr) and presented as mean ± SEM of three independent experiments, and p-values of less than 0.05 were deemed statistically significant. ***p < 0.001; ****p < 0.0001; ns, not significant. PDMS: polydimethylsiloxane. PVA: poly(vinyl alcohol).

    Figure 3

    Figure 3. Humoral immune responses to spike and nucleocapsid proteins in BALB/c mice after receiving DNA nanoparticle vaccine through IM or MN-mediated intradermal administration. (A) Vaccination strategy to evaluate the immunogenicity of DNA@COS nanoparticle vaccine through different administration routes. 6–8-week-old female BALB/c mice were randomly allocated into four groups. Each mouse received 20 μg of the DNA@COS nanoparticle vaccine at weeks 0, 2, and 4 through different administration routes. To investigate the thermostability of the vaccine, DNA@COS and vaccine loaded in MN were stored at room temperature for 30 days. The mice were then immunized with the freshly prepared MN or the stored MN. “Δ” represents the time-point of sacrifice (5 mice per group) and sample collection. (B) Serum anti-spike IgG reciprocal end point antibody titers at day 21, day 21 (stored MN), and day 42 post-immunization. (C) Serum anti-nucleocapsid IgG reciprocal end point antibody titers at day 21, day 21 (stored MN), and day 42 post-immunization. End point titers were defined by the lowest dilution at which the OD value was double standard deviations above the mean of the blank wells. (D, E) Neutralization efficiency of mice serum against SARS-CoV-2 prototype (D) and beta variants (E) with dilution at 1:20 at day 21, day 21 (stored MN), and day 42. (F) Serum anti-spike IgG1 and IgG2c antibody response at day 21 and day 42 with dilution at 1:20. (G) Serum anti-spike IgA antibody response at day 21 and day 42 with dilution at 1:20. G1 means empty@COS-IM, G2 means empty@COS-MN, G3 means S+N@COS-IM, and G4 means S+N@COS-MN. Data are expressed as mean ± SEM of five independent experiments, and p-values of less than 0.05 were deemed statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.

    Figure 4

    Figure 4. The DNA@COS nanoparticle vaccine induced spike and nucleocapsid protein-specific T cell responses in spleen and lung. After DNA@COS nanoparticle vaccination, mice were sacrificed, and the splenic and pulmonary lymphocytes were stimulated ex vivo with S1, S2, and N peptide pools. Background-subtracted median responses in BALB/c mice following vaccination are shown. (A) Antigen-specific IFN-γ ELISpot assay with splenic lymphocytes isolated at day 21. (B) Antigen-specific IFN-γ ELISpot assay with splenic lymphocytes isolated at day 42. (C) Antigen-specific IFN-γ ELISpot assay with pulmonary lymphocytes isolated at day 21. (D) Antigen-specific IFN-γ ELISpot assay with pulmonary lymphocytes isolated at day 42. (E) Gating strategy of flow cytometric scatter plots to analyze the memory T cell (TEM: CD8+CD62LCD44L+, TCM: CD8+CD62L+CD44L+) simulated by S1 and S2 peptide pools at day 42. (F) Histogram of the background-subtracted percentage of memory T cell simulated by S1 and S2 peptide pools at day 42. G1 means empty@COS-IM, G2 means empty@COS-MN, G3 means S+N@COS-IM, and G4 means S+N@COS-MN. Data are expressed as mean ± SEM, Data are pooled from two independent experiments, n = 5 mice/group. p-values of less than 0.05 were deemed statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001.

    Figure 5

    Figure 5. Assessment the antigen-specific cellular immunity elicited by DNA@COS nanoparticle vaccine through intracellular cytokine staining (ICS) assay. The ability of polyfunctional CD8+ T cell populations from immunized mice to secrete IFN-γ, IL-2, and TNF-α cytokines in response to the stimulation with S1, S2, and N peptide pools was assessed. The background-subtracted median responses in BALB/c mice following vaccination are shown. (A) Gating strategy for flow cytometric scatter plots to analyze the frequency of the splenic lymphocytes to secrete cytokines. (B) Representative ICS plots for IFN-γ, IL-2, and TNF-α production, and CD107a mobilization in the CD8+ population after the stimulation of splenic lymphocytes with S1 peptide pools. (C) Proportion of S1-specific CD8+IFN-γ+ T cells in the spleen at day 21 and day 42 post-immunization. (D) Multifunctional CD8+ T cell responses in the spleen measured by the secretion of IFN-γ, IL-2, and TNF-α at day 42 post-immunization, after the stimulation with the S1 peptide pools. (E) Frequency of cytotoxic CD8+ T cells in the spleen measured by CD107a mobilization at day 42 post-immunization, after the stimulation with DMSO or S1 peptide pools. (F–H) Same as (C–E) but stimulated with S2 peptide pools. (I–K) Same as (C–E) but stimulated with nucleocapsid peptide pools. (L) Percentage of multifunctional CD8+ T cell responses in the spleen, calculated using sunburst plots at day 42 post-immunization, after the stimulation with S1, S2, and N peptide pools. (M) T-SNE analysis of concatenated data from the pVAX-S+N@COS-IM group and the pVAX-S+N@COS-MN group for the stimulation with S1, S2, and N peptide pools, showing density plots for each condition. The gate G1 was drawn to indicate the major differences between the pVAX-S+N@COS-IM group and the pVAX-S+N@COS-MN group. Histograms showed IFN-γ, IL-2, and TNF-α in G1, then the median and arithmetic mean were calculated for each cytokine. Analysis was performed utilizing default FCS Express software (version 7.0) settings. Data are expressed as mean ± SEM, pooled from two independent experiments, n = 5 mice/group. p-values of less than 0.05 were deemed statistically significant. *p < 0.05; **p < 0.01; ****p < 0.0001.

    Figure 6

    Figure 6. Evaluation of antigen-specific long-lasting immune responses stimulated by the DNA@COS nanoparticle vaccine through intramuscular injection or MN-mediated intradermal administration. Six weeks after the booster immunization, mice were sacrificed and the humoral and cellular immune responses were detected. (A) Serum anti-spike IgG reciprocal end point antibody titers at day 70. (B) Serum anti-nucleocapsid IgG reciprocal end point antibody titers at day 70. (C) Antigen-specific IFN-γ ELISpot assay with splenic lymphocytes isolated at day 70. (D) Antigen-specific IFN-γ ELISpot assay with pulmonary lymphocytes isolated at day 70. (E) Frequency of antigen-specific CD4+IFN-γ+ T cells in the spleen at day 70 post-immunization. (F) Frequency of antigen-specific CD8+IFN-γ+ T cells in the spleen at day 70 post-immunization. Data are expressed as mean ± SEM. p-values of less than 0.05 were deemed statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.

    Figure 7

    Figure 7. COS-induced innate immunity and promoted DC maturation via the cGAS-STING-dependent signaling pathway. (A–F) Evaluation of the innate immune activation of DC 2.4 cells by incubation with COS. The mRNA expression and the secretion of cytokines were measured after DC 2.4 cells were incubated with different concentrations of COS (4, 8, and 16 μg/mL) for 24 h, including IFN-β (A, B), IL-6 (C, D), and TNF-α (E, F). mRNA level calculated with respect to β-actin, and the fold increase calculated relative to untreated cells. (G–I) CD40, CD86, and MHC II expression in DC 2.4 cells incubated with different concentrations of COS for 24 h. (J) COS activated the major transcription factor involved downstream of the cGAS-STING-dependent pathway. DC 2.4 cells were incubated with 16 μg/mL COS for 4 h in the presence or absence of cyclosporin A (CsA). The expression levels of the indicated proteins were detected by Western blot assay. (K–M) Secretion of cytokines in the supernatant of DC 2.4 cells after incubation with 16 μg/mL COS for 24 h in the presence or absence of CsA, including IFN-β (K), IL-6 (L), and TNF-α (M). (N–P) CD40, CD86, and MHC II expression in DC 2.4 cells incubated with 16 μg/mL COS for 24 h in the presence or absence of CsA. Bar charts of CD40 (N), CD86 (O), and MHC II (P) expression in DC 2.4 cells after treatment. Data are represented as mean ± SEM for triplicate samples, and p-values of less than 0.05 were deemed statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.

    Figure 8

    Figure 8. Diagrammatic sketch to illustrate that the COS-engineered DNA nanoparticle vaccine through MN-mediated intradermal administration can induce a robust innate immunity and adaptive immunity. The MN can deliver DNA@COS nanoparticle vaccine into the dermis, in which DNA@COS vaccine is released and absorbed by antigen-presenting cells (APCs), including Langerhans cells (LCs), dermal dendritic cells (dDCs), and mast cells. The adjuvant COS promotes the maturation of APCs via the cGAS-STING-dependent signaling pathway. The mature DCs migrate to draining lymph nodes, in which they can interact with and stimulate naive T lymphocytes and thus trigger an adaptive immune response to induce humoral and cellular immunity.

  • References


    This article references 46 other publications.

    1. 1
      Eyawo, O.; Viens, A. M.; Ugoji, U. C. Lockdowns and low- and middle-income countries: building a feasible, effective, and ethical COVID-19 response strategy. Global Health 2021, 17 (1), 13  DOI: 10.1186/s12992-021-00662-y
    2. 2
      Feng, F.; Wen, Z.; Chen, J.; Yuan, Y.; Wang, C.; Sun, C. Strategies to Develop a Mucosa-Targeting Vaccine against Emerging Infectious Diseases. Viruses 2022, 14 (3), 520,  DOI: 10.3390/v14030520
    3. 3
      Seaman, C. P.; Kahn, A. L.; Kristensen, D.; Steinglass, R.; Spasenoska, D.; Scott, N.; Morgan, C. Controlled temperature chain for vaccination in low- and middle-income countries: a realist evidence synthesis. Bull. World Health Organ. 2022, 100 (8), 491502,  DOI: 10.2471/BLT.21.287696
    4. 4
      Freeman, D.; Lambe, S.; Yu, L. M.; Freeman, J.; Chadwick, A.; Vaccari, C.; Waite, F.; Rosebrock, L.; Petit, A.; Vanderslott, S.; Lewandowsky, S.; Larkin, M.; Innocenti, S.; McShane, H.; Pollard, A. J.; Loe, B. S. Injection fears and COVID-19 vaccine hesitancy. Psychol. Med. 2023, 53 (4), 11851195,  DOI: 10.1017/S0033291721002609
    5. 5
      Wang, H.; Cui, M.; Li, S.; Wu, F.; Jiang, S.; Chen, H.; Yuan, J.; Sun, C. Perception and willingness toward various immunization routes for COVID-19 vaccines: a cross-sectional survey in China. Front. Public Health 2023, 11, 1192709,  DOI: 10.3389/fpubh.2023.1192709
    6. 6
      Yang, Y.; Li, Z.; Huang, P.; Lin, J.; Li, J.; Shi, K.; Lin, J.; Hu, J.; Zhao, Z.; Yu, Y.; Chen, H.; Zeng, X.; Mei, L. Rapidly separating dissolving microneedles with sustained-release colchicine and stabilized uricase for simplified long-term gout management. Acta Pharm. Sin. B 2023, 13 (8), 34543470,  DOI: 10.1016/j.apsb.2023.02.011
    7. 7
      Yang, L.; Yang, Y.; Chen, H.; Mei, L.; Zeng, X. Polymeric microneedle-mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian J. Pharm. Sci. 2022, 17 (1), 7086,  DOI: 10.1016/j.ajps.2021.07.002
    8. 8
      Menon, I.; Bagwe, P.; Gomes, K. B.; Bajaj, L.; Gala, R.; Uddin, M. N.; D’Souza, M. J.; Zughaier, S. M. Microneedles: A New Generation Vaccine Delivery System. Micromachines 2021, 12 (4), 435,  DOI: 10.3390/mi12040435
    9. 9
      Larraneta, E.; Lutton, R. E. M.; Woolfson, A. D.; Donnelly, R. F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R-Reports 2016, 104, 132,  DOI: 10.1016/j.mser.2016.03.001
    10. 10
      Iwata, H.; Kakita, K.; Imafuku, K.; Takashima, S.; Haga, N.; Yamaguchi, Y.; Taguchi, K.; Oyamada, T. Safety and dose-sparing effect of Japanese encephalitis vaccine administered by microneedle patch in uninfected, healthy adults (MNA-J): a randomised, partly blinded, active-controlled, phase 1 trial. Lancet Microbe 2022, 3 (2), E96E104,  DOI: 10.1016/S2666-5247(21)00269-X
    11. 11
      Vander Straeten, A.; Sarmadi, M.; Daristotle, J. L.; Kanelli, M.; Tostanoski, L. H.; Collins, J.; Pardeshi, A.; Han, J.; Varshney, D.; Eshaghi, B.; Garcia, J.; Forster, T. A.; Li, G.; Menon, N.; Pyon, S. L.; Zhang, L.; Jacob-Dolan, C.; Powers, O. C.; Hall, K.; Alsaiari, S. K.; Wolf, M.; Tibbitt, M. W.; Farra, R.; Barouch, D. H.; Langer, R.; Jaklenec, A. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. 2023,  DOI: 10.1038/s41587-023-01774-z
    12. 12
      Feng, F.; Hao, H.; Zhao, J.; Li, Y.; Zhang, Y.; Li, R.; Wen, Z.; Wu, C.; Li, M.; Li, P.; Chen, L.; Tang, R.; Wang, X.; Sun, C. Shell-mediated phagocytosis to reshape viral-vectored vaccine-induced immunity. Biomaterials 2021, 276, 121062  DOI: 10.1016/j.biomaterials.2021.121062
    13. 13
      Sun, C. J.; Pan, S. P.; Xie, Q. X.; Xiao, L. J. Preparation of chitosan-plasmid DNA nanoparticles encoding zona pellucida glycoprotein-3alpha and its expression in mouse. Mol. Reprod. Dev. 2004, 68 (2), 1828,  DOI: 10.1002/mrd.20058
    14. 14
      Carroll, E. C.; Jin, L.; Mori, A.; Munoz-Wolf, N.; Oleszycka, E.; Moran, H. B. T.; Mansouri, S.; McEntee, C. P.; Lambe, E.; Agger, E. M.; Andersen, P.; Cunningham, C.; Hertzog, P.; Fitzgerald, K. A.; Bowie, A. G.; Lavelle, E. C. The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type I Interferons. Immunity 2016, 44 (3), 597608,  DOI: 10.1016/j.immuni.2016.02.004
    15. 15
      Grifoni, A.; Weiskopf, D.; Ramirez, S. I.; Mateus, J.; Dan, J. M.; Moderbacher, C. R.; Rawlings, S. A.; Sutherland, A.; Premkumar, L.; Jadi, R. S.; Marrama, D.; de Silva, A. M.; Frazier, A.; Carlin, A. F.; Greenbaum, J. A.; Peters, B.; Krammer, F.; Smith, D. M.; Crotty, S.; Sette, A. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181 (7), 14891501 e15,  DOI: 10.1016/j.cell.2020.05.015
    16. 16
      Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 2022, 23 (2), 186193,  DOI: 10.1038/s41590-021-01122-w
    17. 17
      Sheng, T.; Luo, B.; Zhang, W.; Ge, X.; Yu, J.; Zhang, Y.; Gu, Z. Microneedle-Mediated Vaccination: Innovation and Translation. Adv. Drug Deliv. Rev. 2021, 179, 113919  DOI: 10.1016/j.addr.2021.113919
    18. 18
      Korkmaz, E.; Balmert, S. C.; Carey, C. D.; Erdos, G.; Falo, L. D., Jr. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin. Drug Deliv. 2021, 18 (2), 151167,  DOI: 10.1080/17425247.2021.1823964
    19. 19
      Depelsenaire, A. C. I.; Meliga, S. C.; McNeilly, C. L.; Pearson, F. E.; Coffey, J. W.; Haigh, O. L.; Flaim, C. J.; Frazer, I. H.; Kendall, M. A. F. Colocalization of cell death with antigen deposition in skin enhances vaccine immunogenicity. J. Invest. Dermatol. 2014, 134 (9), 23612370,  DOI: 10.1038/jid.2014.174
    20. 20
      Rock, K. L.; York, I. A.; Goldberg, A. L. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol. 2004, 5 (7), 6707,  DOI: 10.1038/ni1089
    21. 21
      Mateus, J.; Grifoni, A.; Tarke, A.; Sidney, J.; Ramirez, S. I.; Dan, J. M.; Burger, Z. C.; Rawlings, S. A.; Smith, D. M.; Phillips, E.; Mallal, S.; Lammers, M.; Rubiro, P.; Quiambao, L.; Sutherland, A.; Yu, E. D.; da Silva Antunes, R.; Greenbaum, J.; Frazier, A.; Markmann, A. J.; Premkumar, L.; de Silva, A.; Peters, B.; Crotty, S.; Sette, A.; Weiskopf, D. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020, 370 (6512), 8994,  DOI: 10.1126/science.abd3871
    22. 22
      Le Bert, N.; Tan, A. T.; Kunasegaran, K.; Tham, C. Y. L.; Hafezi, M.; Chia, A.; Chng, M. H. Y.; Lin, M.; Tan, N.; Linster, M.; Chia, W. N.; Chen, M. I.; Wang, L. F.; Ooi, E. E.; Kalimuddin, S.; Tambyah, P. A.; Low, J. G.; Tan, Y. J.; Bertoletti, A. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020, 584 (7821), 457462,  DOI: 10.1038/s41586-020-2550-z
    23. 23
      Selin, L. K.; Brehm, M. A.; Naumov, Y. N.; Cornberg, M.; Kim, S. K.; Clute, S. C.; Welsh, R. M. Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol. Rev. 2006, 211 (1), 16481,  DOI: 10.1111/j.0105-2896.2006.00394.x
    24. 24
      Riou, C.; Keeton, R.; Moyo-Gwete, T.; Hermanus, T.; Kgagudi, P.; Baguma, R.; Valley-Omar, Z.; Smith, M.; Tegally, H.; Doolabh, D.; Iranzadeh, A.; Tyers, L.; Mutavhatsindi, H.; Tincho, M. B.; Benede, N.; Marais, G.; Chinhoyi, L. R.; Mennen, M.; Skelem, S.; du Bruyn, E.; Stek, C.; de Oliveira, T.; Williamson, C.; Moore, P. L.; Wilkinson, R. J.; Ntusi, N. A. B.; Burgers, W. A. Escape from recognition of SARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity. Sci. Transl. Med. 2022, 14 (631), eabj6824  DOI: 10.1126/scitranslmed.abj6824
    25. 25
      Choi, S. J.; Kim, D. U.; Noh, J. Y.; Kim, S.; Park, S. H.; Jeong, H. W.; Shin, E. C. T cell epitopes in SARS-CoV-2 proteins are substantially conserved in the Omicron variant. Cell. Mol. Immunol. 2022, 19 (3), 447448,  DOI: 10.1038/s41423-022-00838-5
    26. 26
      Naranbhai, V.; Nathan, A.; Kaseke, C.; Berrios, C.; Khatri, A.; Choi, S.; Getz, M. A.; Tano-Menka, R.; Ofoman, O.; Gayton, A.; Senjobe, F.; Zhao, Z.; St Denis, K. J.; Lam, E. C.; Carrington, M.; Garcia-Beltran, W. F.; Balazs, A. B.; Walker, B. D.; Iafrate, A. J.; Gaiha, G. D. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals. Cell 2022, 185 (6), 10411051 e6,  DOI: 10.1016/j.cell.2022.01.029
    27. 27
      Fan, F.; Zhang, X.; Zhang, Z.; Ding, Y.; Wang, L.; Xu, X.; Pan, Y.; Gong, F. Y.; Jiang, L.; Kang, L.; Ha, Z.; Lu, H.; Hou, J.; Kou, Z.; Zhao, G.; Wang, B.; Gao, X. M. Potent immunogenicity and broad-spectrum protection potential of microneedle array patch-based COVID-19 DNA vaccine candidates encoding dimeric RBD chimera of SARS-CoV and SARS-CoV-2 variants. Emerg. Microbes Infect. 2023, 12 (1), 2202269  DOI: 10.1080/22221751.2023.2202269
    28. 28
      Castro Dopico, X.; Ols, S.; Lore, K.; Karlsson Hedestam, G. B. Immunity to SARS-CoV-2 induced by infection or vaccination. J. Intern. Med. 2022, 291 (1), 3250,  DOI: 10.1111/joim.13372
    29. 29
      Dutta, N. K.; Mazumdar, K.; Gordy, J. T. The Nucleocapsid Protein of SARS-CoV-2: a Target for Vaccine Development. J. Virol. 2020, 94 (13), 647-20,  DOI: 10.1128/JVI.00647-20
    30. 30
      Ni, L.; Ye, F.; Cheng, M. L.; Feng, Y.; Deng, Y. Q.; Zhao, H.; Wei, P.; Ge, J.; Gou, M.; Li, X.; Sun, L.; Cao, T.; Wang, P.; Zhou, C.; Zhang, R.; Liang, P.; Guo, H.; Wang, X.; Qin, C. F.; Chen, F.; Dong, C. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity 2020, 52 (6), 971977 e3,  DOI: 10.1016/j.immuni.2020.04.023
    31. 31
      Peng, Y.; Mentzer, A. J.; Liu, G.; Yao, X.; Yin, Z.; Dong, D.; Dejnirattisai, W.; Rostron, T.; Supasa, P.; Liu, C.; Lopez-Camacho, C.; Slon-Campos, J.; Zhao, Y.; Stuart, D. I.; Paesen, G. C.; Grimes, J. M.; Antson, A. A.; Bayfield, O. W.; Hawkins, D.; Ker, D. S.; Wang, B.; Turtle, L.; Subramaniam, K.; Thomson, P.; Zhang, P.; Dold, C.; Ratcliff, J.; Simmonds, P.; de Silva, T.; Sopp, P.; Wellington, D.; Rajapaksa, U.; Chen, Y. L.; Salio, M.; Napolitani, G.; Paes, W.; Borrow, P.; Kessler, B. M.; Fry, J. W.; Schwabe, N. F.; Semple, M. G.; Baillie, J. K.; Moore, S. C.; Openshaw, P. J. M.; Ansari, M. A.; Dunachie, S.; Barnes, E.; Frater, J.; Kerr, G.; Goulder, P.; Lockett, T.; Levin, R.; Zhang, Y.; Jing, R.; Ho, L. P.; Oxford Immunology Network Covid-19 Response, T. c. C.; Investigators, I. C.; Cornall, R. J.; Conlon, C. P.; Klenerman, P.; Screaton, G. R.; Mongkolsapaya, J.; McMichael, A.; Knight, J. C.; Ogg, G.; Dong, T. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 2020, 21 (11), 13361345,  DOI: 10.1038/s41590-020-0782-6
    32. 32
      Harris, P. E.; Brasel, T.; Massey, C.; Herst, C. V.; Burkholz, S.; Lloyd, P.; Blankenberg, T.; Bey, T. M.; Carback, R.; Hodge, T.; Ciotlos, S.; Wang, L.; Comer, J. E.; Rubsamen, R. M. A Synthetic Peptide CTL Vaccine Targeting Nucleocapsid Confers Protection from SARS-CoV-2 Challenge in Rhesus Macaques. Vaccines (Basel) 2021, 9 (5), 520,  DOI: 10.3390/vaccines9050520
    33. 33
      Matchett, W. E.; Joag, V.; Stolley, J. M.; Shepherd, F. K.; Quarnstrom, C. F.; Mickelson, C. K.; Wijeyesinghe, S.; Soerens, A. G.; Becker, S.; Thiede, J. M.; Weyu, E.; O’Flanagan, S. D.; Walter, J. A.; Vu, M. N.; Menachery, V. D.; Bold, T. D.; Vezys, V.; Jenkins, M. K.; Langlois, R. A.; Masopust, D. Cutting Edge: Nucleocapsid Vaccine Elicits Spike-Independent SARS-CoV-2 Protective Immunity. J. Immunol. 2021, 207 (2), 376379,  DOI: 10.4049/jimmunol.2100421
    34. 34
      Chiuppesi, F.; Nguyen, V. H.; Park, Y.; Contreras, H.; Karpinski, V.; Faircloth, K.; Nguyen, J.; Kha, M.; Johnson, D.; Martinez, J.; Iniguez, A.; Zhou, Q.; Kaltcheva, T.; Frankel, P.; Kar, S.; Sharma, A.; Andersen, H.; Lewis, M. G.; Shostak, Y.; Wussow, F.; Diamond, D. J. Synthetic multiantigen MVA vaccine COH04S1 protects against SARS-CoV-2 in Syrian hamsters and non-human primates. NPJ Vaccines 2022, 7 (1), 7,  DOI: 10.1038/s41541-022-00436-6
    35. 35
      Afkhami, S.; D’Agostino, M. R.; Zhang, A.; Stacey, H. D.; Marzok, A.; Kang, A.; Singh, R.; Bavananthasivam, J.; Ye, G.; Luo, X.; Wang, F.; Ang, J. C.; Zganiacz, A.; Sankar, U.; Kazhdan, N.; Koenig, J. F. E.; Phelps, A.; Gameiro, S. F.; Tang, S.; Jordana, M.; Wan, Y.; Mossman, K. L.; Jeyanathan, M.; Gillgrass, A.; Medina, M. F. C.; Smaill, F.; Lichty, B. D.; Miller, M. S.; Xing, Z. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell 2022, 185 (5), 896915 e19,  DOI: 10.1016/j.cell.2022.02.005
    36. 36
      Liu, L.; Zhong, Q.; Tian, T.; Dubin, K.; Athale, S. K.; Kupper, T. S. Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nat. Med. 2010, 16 (2), 2247,  DOI: 10.1038/nm.2078
    37. 37
      Mikhak, Z.; Strassner, J. P.; Luster, A. D. Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4. J. Exp. Med. 2013, 210 (9), 185569,  DOI: 10.1084/jem.20130091
    38. 38
      Dijkman, K.; Aguilo, N.; Boot, C.; Hofman, S. O.; Sombroek, C. C.; Vervenne, R. A. W.; Kocken, C. H. M.; Marinova, D.; Thole, J.; Rodriguez, E.; Vierboom, M. P. M.; Haanstra, K. G.; Puentes, E.; Martin, C.; Verreck, F. A. W. Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection. Cell Rep. Med. 2021, 2 (1), 100187  DOI: 10.1016/j.xcrm.2020.100187
    39. 39
      Pan, Y.; Liu, L.; Tian, T.; Zhao, J.; Park, C. O.; Lofftus, S. Y.; Stingley, C. A.; Yan, Y.; Mei, S.; Liu, X.; Kupper, T. S. Epicutaneous immunization with modified vaccinia Ankara viral vectors generates superior T cell immunity against a respiratory viral challenge. NPJ Vaccines 2021, 6 (1), 1,  DOI: 10.1038/s41541-020-00265-5
    40. 40
      Sun, C.; Zhang, L.; Zhang, M.; Liu, Y.; Zhong, M.; Ma, X.; Chen, L. Induction of balance and breadth in the immune response is beneficial for the control of SIVmac239 replication in rhesus monkeys. J. Infect. 2010, 60 (5), 371381,  DOI: 10.1016/j.jinf.2010.03.005
    41. 41
      Sun, Y.; Chen, M. L.; Yang, D.; Qin, W. B.; Quan, G. L.; Wu, C. B.; Pan, X. Self-assembly nanomicelle-microneedle patches with enhanced tumor penetration for superior chemo-photothermal therapy. Nano Res. 2022, 15 (3), 23352346,  DOI: 10.1007/s12274-021-3817-x
    42. 42
      Lin, S. Q.; Quan, G. L.; Hou, A. L.; Yang, P. P.; Peng, T. T.; Gu, Y. K.; Qin, W. B.; Liu, R. B.; Ma, X. Y.; Pan, X.; Liu, H.; Wang, L. L.; Wu, C. B. Strategy for hypertrophic scar therapy: Improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J. Controlled Release 2019, 306, 6982,  DOI: 10.1016/j.jconrel.2019.05.038
    43. 43
      Li, M.; Chen, J.; Liu, Y.; Zhao, J.; Li, Y.; Hu, Y.; Chen, Y. Q.; Sun, L.; Shu, Y.; Feng, F.; Sun, C. Rational design of AAVrh10-vectored ACE2 functional domain to broadly block the cell entry of SARS-CoV-2 variants. Antiviral Res. 2022, 205, 105383  DOI: 10.1016/j.antiviral.2022.105383
    44. 44
      Luo, H.; Jia, T.; Chen, J.; Zeng, S.; Qiu, Z.; Wu, S.; Li, X.; Lei, Y.; Wang, X.; Wu, W.; Zhang, R.; Zou, X.; Feng, T.; Ding, R.; Zhang, Y.; Chen, Y. Q.; Sun, C.; Wang, T.; Fang, S.; Shu, Y. The Characterization of Disease Severity Associated IgG Subclasses Response in COVID-19 Patients. Front. Immunol. 2021, 12, 632814  DOI: 10.3389/fimmu.2021.632814
    45. 45
      Li, P.; Wang, Q.; He, Y.; Yang, C.; Zhang, Z.; Liu, Z.; Liu, B.; Yin, L.; Cui, Y.; Hu, P.; Liu, Y.; Zheng, P.; Wang, W.; Qu, L.; Sun, C.; Guan, S.; Feng, L.; Chen, L. Booster vaccination is required to elicit and maintain COVID-19 vaccine-induced immunity in SIV-infected macaques. Emerg. Microbes Infect. 2023, 12 (1), e2136538  DOI: 10.1080/22221751.2022.2136538
    46. 46
      Wen, Z.; Fang, C.; Liu, X.; Liu, Y.; Li, M.; Yuan, Y.; Han, Z.; Wang, C.; Zhang, T.; Sun, C. A recombinant Mycobacterium smegmatis-based surface display system for developing the T cell-based COVID-19 vaccine. Hum. Vaccines Immunother. 2023, 19 (1), 2171233  DOI: 10.1080/21645515.2023.2171233
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.3c09521.

    • Supplementary figures: physiochemical characterization of COS-engineered DNA vaccine; stability of COS-encapsulated DNA vaccine; the COS showed no obvious cell toxicity to different cell lines; in vitro transfection efficacy of DNA nanoparticle vaccine; in vitro transfection efficacy of DNA nanoparticle vaccine in DC 2.4 and RAW264.7 cells; cellular uptake of DNA nanoparticle vaccine in HEK-293T cells determined by flow cytometry; co-localization observed by CLSM of the Cy5-labeled pVAX-S (red) and LysoTracker (green) in HEK-293T cells; physiochemical and biological characterization of DNA@COS-MN dissolving in PBS; neutralization efficiency of mice serum against SARS-CoV-2 variants delta and omicron with dilution at 1:20 at day 42; characterization of DNA nanoparticle vaccine in MN stored at room temperature for 30 days; SARS-CoV-2-specific cellular immune responses after MN-mediated DNA nanoparticle vaccine at day 21; SARS-CoV-2-specific cellular immune responses after MN-mediated DNA nanoparticle vaccine at day 42; T-SNE analysis of concatenated data from group S+N@COS-IM and group S+N@COS-MN for stimulation with S1, S2, and N peptide pool, showing density plots for each condition; detection of ROS by fluorescence of DCFH-DA in the DC 2.4 cells incubated with different concentration of COS; change of MMP of DC 2.4 cells at different times after incubation with COS; CD40, CD86, and MHC II expression in DC 2.4 cells incubated with 16 μg/mL COS for 24 h in the presence or absence of CsA; Supplementary table: primer sequence for qPCR to verify the DC 2.4 cells activation after COS treatment (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.