这是用户在 2025-1-6 15:10 为 https://app.immersivetranslate.com/pdf-pro/46beb3b3-d9f2-4b18-b00d-247c801a0b0b 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Materials Synthesis vs.Materials Processing
材料合成 vs. 材料加工

\checkmark Materials synthesis:often refers to chemical and physical procedures by which atoms and molecules are assembled.
\checkmark 材料合成:通常是指原子和分子组装的化学和物理过程。

Department of Materials Science and Engineering
材料科学与工程系

University of Science and Technology of China
中国科学技术大学

Fall, 2024  秋季, 2024
Classroom:GH-104  教室:GH-104
Time:Thursday 2:00-4:25 PM
时间:周四 下午 2:00-4:25

材料合成化学

(MSEN6005P.03)  (MSEN6005P.03)

主讲:焦淑红,曹瑞国

Classifications of Materials Synthesis
材料合成的分类

Overview of Materials Synthesis
材料合成概述

-Co-precipitation method: LiNi 1 / 3 Co 1 / 3 Mn 1 / 3 O 2 LiNi 1 / 3 Co 1 / 3 Mn 1 / 3 O 2 LiNi_(1//3)Co_(1//3)Mn_(1//3)O_(2)\mathrm{LiNi}_{1 / 3} \mathrm{Co}_{1 / 3} \mathrm{Mn}_{1 / 3} \mathrm{O}_{2}
-共沉淀法: LiNi 1 / 3 Co 1 / 3 Mn 1 / 3 O 2 LiNi 1 / 3 Co 1 / 3 Mn 1 / 3 O 2 LiNi_(1//3)Co_(1//3)Mn_(1//3)O_(2)\mathrm{LiNi}_{1 / 3} \mathrm{Co}_{1 / 3} \mathrm{Mn}_{1 / 3} \mathrm{O}_{2}

-Sol-gel method: SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2}
-溶胶-凝胶法: SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2}

-Hydrothermal/Solvothermal:MCM-41
-水热/溶剂热:MCM-41

-Solid-state reaction: LiFePO 4 / C LiFePO 4 / C LiFePO_(4)//C\mathrm{LiFePO}_{4} / \mathrm{C}
-固态反应: LiFePO 4 / C LiFePO 4 / C LiFePO_(4)//C\mathrm{LiFePO}_{4} / \mathrm{C}

-Citrate combustion method: Ni x Zn 1 x Fe 2 O 4 Ni x Zn 1 x Fe 2 O 4 Ni_(x)Zn_(1-x)Fe_(2)O_(4)\mathrm{Ni}_{\mathrm{x}} \mathrm{Zn}_{1-\mathrm{x}} \mathrm{Fe}_{2} \mathrm{O}_{4}
-柠檬酸盐燃烧法: Ni x Zn 1 x Fe 2 O 4 Ni x Zn 1 x Fe 2 O 4 Ni_(x)Zn_(1-x)Fe_(2)O_(4)\mathrm{Ni}_{\mathrm{x}} \mathrm{Zn}_{1-\mathrm{x}} \mathrm{Fe}_{2} \mathrm{O}_{4}

-Electrodeposition: ZnO  -电镀:ZnO
-CVD method:carbon nanotubes
-CVD 方法:碳纳米管

-Photochemical synthesis:polymer
-光化学合成:聚合物

-Microwave method:MOF  -微波方式:MOF
-Sonochemical method: MoS 2 MoS 2 MoS_(2)\mathrm{MoS}_{2}
-声化学法: MoS 2 MoS 2 MoS_(2)\mathrm{MoS}_{2}
1.Co-precipitation method
1.共沉淀法


Co-precipitation method LiNi 1 / 3 Co 1 / 3 Mn 1 / 3 O 2 LiNi 1 / 3 Co 1 / 3 Mn 1 / 3 O 2 LiNi_(1//3)Co_(1//3)Mn_(1//3)O_(2)\mathrm{LiNi}_{1 / 3} \mathrm{Co}_{1 / 3} \mathrm{Mn}_{1 / 3} \mathrm{O}_{2}
共沉淀法 LiNi 1 / 3 Co 1 / 3 Mn 1 / 3 O 2 LiNi 1 / 3 Co 1 / 3 Mn 1 / 3 O 2 LiNi_(1//3)Co_(1//3)Mn_(1//3)O_(2)\mathrm{LiNi}_{1 / 3} \mathrm{Co}_{1 / 3} \mathrm{Mn}_{1 / 3} \mathrm{O}_{2}
Precipitation is the process that the desired component is precipitated from the solution.Co-precipitation is used for simultaneous precipitation of more than one component.
沉淀是从溶液中沉淀出所需组分的过程。共沉淀用于同时沉淀多个组分。

Lithium Ion Batteries  锂离子电池

目前,基于三元正极材料和石墨负极材料的锂离子电池的能量密度为 260 Wh / kg 260 Wh / kg ^(∼)260Wh//kg{ }^{\sim} 260 \mathrm{~Wh} / \mathrm{kg}
During precipitation,several processes occurs and the major steps are :
在沉淀过程中,会发生几个过程,主要步骤是:
1.liquid mixing/supersatuartion
1.液体混合/超饱和

2.nucleation  2.成核
3.crystal growth to form primary products
3.晶体生长形成初级产品

4.aggregation of the primary particles
4.初级粒子的聚集
Initial mixing or interdispersing of components in the solution has a significant effect on the precipitation.Good mixing result in a more homogeneous product particularly in case of co-precipitation.Rate of stirring primarily affects the nucleation whereas growth rate is much less influenced by this factor.Stirring rate also affect the aggregation.Aggregate size can be influenced by changing the stirring rate and the manner of mixing.
溶液中组分的初始混合或相互分散对沉淀有显著影响。良好的混合可产生更均匀的产品,尤其是在共沉淀的情况下。搅拌速率主要影响成核,而生长速率受该因素的影响要小得多。搅拌速率也影响聚集体。改变搅拌速率和混合方式会影响聚集体大小。

Co-precipitation method  共沉淀法

实验室中试
大规模生产
Co-precipitation method  共沉淀法
Co-precipitation method  共沉淀法
SEM images of Ni-rich NMC material: LiNi 0.76 Mn 0.14 Co 0.10 O 2 0.76 Mn 0.14 Co 0.10 O 2 _(0.76)Mn_(0.14)Co_(0.10)O_(2){ }_{0.76} \mathrm{Mn}_{0.14} \mathrm{Co}_{0.10} \mathrm{O}_{2} before cycling
富镍 NMC 材料的 SEM 图像:循环 0.76 Mn 0.14 Co 0.10 O 2 0.76 Mn 0.14 Co 0.10 O 2 _(0.76)Mn_(0.14)Co_(0.10)O_(2){ }_{0.76} \mathrm{Mn}_{0.14} \mathrm{Co}_{0.10} \mathrm{O}_{2} 前 LiNi

Higher calcination temperature leads to significant growth of primary 1515 1515 _(1515){ }_{1515} particles and void space inside particles.
较高的煅烧温度会导致初级 1515 1515 _(1515){ }_{1515} 颗粒和颗粒内部的空隙空间显着增长。
Concentration Gradient NCM Cathode
浓度梯度 NCM 阴极

A team from Hanyang University (Korea) and the US Department of Energy’s Argonne National Laboratory have developed a full concentration gradient nickel-rich lithium transition-metal oxide material with a very high capacity ( 215 mAh g 1 215 mAh g 1 215mAhg^(-1)215 \mathrm{mAh} \mathrm{g}^{-1} ) for use as a highenergy cathode in Li-ion batteries.
来自汉阳大学(韩国)和美国能源部阿贡国家实验室的一个团队开发了一种全浓度梯度富镍锂过渡金属氧化物材料,具有非常高的容量 ( 215 mAh g 1 215 mAh g 1 215mAhg^(-1)215 \mathrm{mAh} \mathrm{g}^{-1} ),可用作锂离子电池中的高能阴极。


LiNi 0.76 Co 0.14 Mn 0.10 O 2 LiNi 0.76 Co 0.14 Mn 0.10 O 2 LiNi_(0.76)Co_(0.14)Mn_(0.10)O_(2)\mathrm{LiNi}_{0.76} \mathrm{Co}_{0.14} \mathrm{Mn}_{0.10} \mathrm{O}_{2}

Sodium Ion Batteries  钠离子电池