quad\quad The model after log-transform: log(y)=x^(TT) widehat(beta)+epsi\log (y)=\mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}+\varepsilon quad\quad 对数变换后的模型: log(y)=x^(TT) widehat(beta)+epsi\log (y)=\mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}+\varepsilon
quad\quad Thus, if we need to predict hat(y)\hat{y} : quad\quad 因此,如果我们需要预测 hat(y)\hat{y} :
quad\quad Female ={[1","," if Gender "=" 'Female' "],[0","," if Gender "=" 'Male' "]:}= \begin{cases}1, & \text { if Gender }=\text { 'Female' } \\ 0, & \text { if Gender }=\text { 'Male' }\end{cases} quad\quad 女 ={[1","," if Gender "=" 'Female' "],[0","," if Gender "=" 'Male' "]:}= \begin{cases}1, & \text { if Gender }=\text { 'Female' } \\ 0, & \text { if Gender }=\text { 'Male' }\end{cases}
This means that: 这意味着
AmountSpent ={[ hat(beta)_(0)+ hat(beta)_(4)+ hat(beta)_(1)xx" Salary "+ hat(beta)_(2)xx" Children "+ hat(beta)_(3)xx" Catalogs "+epsi","," for female "],[ hat(beta)_(0)+ hat(beta)_(1)xx" Salary "+ hat(beta)_(2)xx" Children "+ hat(beta)_(3)xx" Catalogs "+epsi","," for male "]:}= \begin{cases}\hat{\beta}_{0}+\hat{\beta}_{4}+\hat{\beta}_{1} \times \text { Salary }+\hat{\beta}_{2} \times \text { Children }+\hat{\beta}_{3} \times \text { Catalogs }+\varepsilon, & \text { for female } \\ \hat{\beta}_{0}+\hat{\beta}_{1} \times \text { Salary }+\hat{\beta}_{2} \times \text { Children }+\hat{\beta}_{3} \times \text { Catalogs }+\varepsilon, & \text { for male }\end{cases} 支出金额 ={[ hat(beta)_(0)+ hat(beta)_(4)+ hat(beta)_(1)xx" Salary "+ hat(beta)_(2)xx" Children "+ hat(beta)_(3)xx" Catalogs "+epsi","," for female "],[ hat(beta)_(0)+ hat(beta)_(1)xx" Salary "+ hat(beta)_(2)xx" Children "+ hat(beta)_(3)xx" Catalogs "+epsi","," for male "]:}= \begin{cases}\hat{\beta}_{0}+\hat{\beta}_{4}+\hat{\beta}_{1} \times \text { Salary }+\hat{\beta}_{2} \times \text { Children }+\hat{\beta}_{3} \times \text { Catalogs }+\varepsilon, & \text { for female } \\ \hat{\beta}_{0}+\hat{\beta}_{1} \times \text { Salary }+\hat{\beta}_{2} \times \text { Children }+\hat{\beta}_{3} \times \text { Catalogs }+\varepsilon, & \text { for male }\end{cases}
Interpretation: all else being equal, a female customer spending on average hat(beta)_(4)\hat{\beta}_{4} more than a male customer 释义:在其他条件相同的情况下,女性顾客的平均消费额 hat(beta)_(4)\hat{\beta}_{4} 高于男性顾客
2) Interactions: 2) 互动:
Original regression: 原来的退步:
" AmountSpent "=beta_(0)+beta_(1)xx" Salary "+beta_(2)xx" Children "+epsi\text { AmountSpent }=\beta_{0}+\beta_{1} \times \text { Salary }+\beta_{2} \times \text { Children }+\varepsilon
Interpretation of beta_(1)\beta_{1} : the average spending is increased by hat(beta)_(1)\hat{\beta}_{1} for each dollar increase in salary, if keep the number of children constant beta_(1)\beta_{1} 的解释:在子女人数不变的情况下,工资每增加一美元,平均支出就会增加 hat(beta)_(1)\hat{\beta}_{1} 。
Interpretation: when salary increased by one-dollar, the average spending is increased by ( hat(beta)_(1)+ hat(beta)_(3)xx\hat{\beta}_{1}+\hat{\beta}_{3} \times Children) 解释:当工资增加一美元时,平均支出增加 ( hat(beta)_(1)+ hat(beta)_(3)xx\hat{\beta}_{1}+\hat{\beta}_{3} \times 儿童)
3) Polynomial Regression 3) 多项式回归
Allow us to model nonlinear relationship between response and a predictor 允许我们模拟响应与预测因子之间的非线性关系