Vagal Stimulation and Arrhythmias
迷走神经刺激与心律失常
Chengzhe Liu1,2,3,4,, Hong Jiang1,2,3,4, Lilei Yu1,2,3,4,, Sunny S. Po5
刘成哲 1,2,3,4, ,蒋红 1,2,3,4 ,余丽蕾 1,2,3,4, ,坡诗诗 5
1Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.2Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.3Cardiovascular Research Institute, Wuhan University, Wuhan, China.4Hubei Key Laboratory of Cardiology, Wuhan, China.5Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences
Center, Oklahoma City, O K USA.
1 武汉大学人民医院心内科,武汉 2 武汉大学心脏自主神经系统研究中心,中国武汉 3 武汉大学心血管研究所,武汉; 4 武汉心脏病学湖北省重点实验室 5 美国俄克拉荷马城俄克拉荷马大学健康科学中心心律研究所和医学系。
I mbalance of the sympathetic and parasympathetic nervous systems is probably the most prevalent autonomic mechanism underlying many a rrhythmias . Recently, vagus nerve stimulation ( VNS has emerged as a novel therapeutic modality to treat arrhythmias through its anti adrenergic and anti inflammatory actions . C linical trials applying VNS to the cervical vagus nerve in heart failure pati en ts yielded conflicting results, possibly due to limited understanding of the optimal stimulation parameters for the targeted cardiovascular diseases. Transcutaneous VNS by stimulating the auricular branch of the vagus nerve, has attracted great attention d ue to its noninvasiveness. In this r eview, we summarize current knowledge about the complex relationship between VNS and cardiac arrhythmias and discuss recent advances in using VNS , particularly transcutaneous VNS , to treat arrhythmias.
交感和副交感神经系统的失衡可能是许多心律失常背后最普遍的自主神经机制。近年来,迷走神经刺激(VNS)因其抗肾上腺素能和抗炎作用而成为治疗心律失常的一种新的治疗方式。将VNS应用于心衰患者颈迷走神经的临床试验产生了相互矛盾的结果,可能是由于对目标心血管疾病的最佳刺激参数的了解有限。经皮VNS通过刺激迷走神经耳支,因其无创性而受到广泛关注。在这篇综述中,我们总结了目前关于VNS与心律失常之间复杂关系的知识,并讨论了使用VNS,特别是经皮VNS治疗心律失常的最新进展。
Key Words : Vagus Nerve Stimulation, Autonomic Nervous System, Atrial Fibrillation, Ventricular Arrhythmia.
关键词:迷走神经刺激,自主神经系统,心房颤动,室性心律失常
Correspondence to: Sunny S. Po, M.D., Ph.D
Section of Cardiovascular Diseases and
Heart Rhythm Institute
University of Oklahoma Health Sciences Center.
800 Stanton L Young Blvd, AAT 5400
, Oklahoma City, OK 73104, USA
收信人:Sunny S. Po,医学博士,心血管疾病和心律研究所博士,俄克拉荷马大学健康科学中心,800 Stanton L Young Blvd, AAT 5400,俄克拉荷马城,OK 73104,美国
Neuromodulation of the cardiac autonomic nervous system (ANS) is evolving as a novel approach to treat arrhythmias. Excitation of the parasympathetic nervous system exerts negative chronotropic, dromotropic and inotropic effects on the heart 1,2. Electrical stimulation of the vagus nerve (VNS) has emerged as a promising therapy for various conditions, including neural disorders and cardiac diseases 3-5. VNS was approved by the US Food and Drug Administration to treat refractory epilepsy and depression 6,7. Here, we focus on recent advances using VNS, particularly transcutaneous VNS, to treat arrhythmias.
心脏自主神经系统(ANS)的神经调节是一种治疗心律失常的新方法。副交感神经系统的兴奋对心脏产生负的变时、促动和收缩作用 1 2 。电刺激迷走神经(VNS)已经成为一种很有前途的治疗各种疾病的方法,包括神经疾病和心脏病 3 5 。VNS已被美国食品和药物管理局批准用于治疗难治性癫痫和抑郁症 6 7 。在这里,我们重点介绍了利用VNS,特别是经皮VNS治疗心律失常的最新进展。
1.1 Anatomy of the autonomic nervous system
1.1自主神经系统解剖
Signal processing of the cardiac ANS occurs at several levels: i) central; ii) intrathoracic extracardiac; and iii) intrinsic cardiac level 8. Neural trafficking is influenced by the brain, spinal cord, extrinsic and intrinsic cardiac ganglia Figure 1. Autonomic neural signals from other organ systems (e.g. kidneys) can affect the cardiac ANS through complex interactions in the ANS 9-12.
心脏ANS的信号处理发生在几个层面:i)中央;Ii)胸内心外;iii)心脏内禀水平 8 。神经运输受脑、脊髓、外源性和内在心神经节的影响(图1)。来自其他器官系统(如肾脏)的自主神经信号可以通过ANS中的复杂相互作用影响心脏ANS 9 12 。
Figure 1. Neurohumoral control and functional organization of cardiac autonomic innervation.
图1所示。心脏自主神经支配的神经体液控制与功能组织。
The autonomic nervous system related to arrhythmias consists of neurons and nerves in the brain, spinal cord, heart and kidneys and is similar to a closed-loop circuit that modulates the function of target organs. Activation of both the afferent and efferent vagal nerve fibers can increase the vagal tone in the cardiac closed-loop circuit and protect the heart. Blue lines represent sympathetic nerve fibers and green lines represent vagus nerve fibers. Inset: At the cellular level, sympathetic nervous system primarily releases norepinephrine, which stimulates the cardiac β-receptors. Parasympathetic nervous system primarily releases acetylcholine, stimulating cholinergic muscarinergic receptors on the myocytes and activating the α7nAChR pathway to reduce inflammation and fibrosis in the heart. SG, stellate ganglion; DRG, dorsal root ganglia; PVN, paraventricular nucleus; NTS, nucleus tractus solitaries; β1, β-adrenergic receptor; M2, muscarinic receptor; Gi, inhibitory G-protein; Gs, stimulatory G-protein; AC, adenylate cyclase; α7nAChR, α7 nicotinic acetyl-choline receptor.
与心律失常有关的自主神经系统由大脑、脊髓、心脏和肾脏中的神经元和神经组成,类似于调节靶器官功能的闭环回路。同时激活传入和传出迷走神经纤维可以增加心脏闭环的迷走神经张力,保护心脏。蓝线代表交感神经纤维,绿线代表迷走神经纤维。插图:在细胞水平上,交感神经系统主要释放去甲肾上腺素,刺激心脏β受体。副交感神经系统主要释放乙酰胆碱,刺激肌细胞上的胆碱能肌碱能受体,激活α7nAChR通路,减轻心脏炎症和纤维化。SG,星状神经节;DRG,背根神经节;PVN,室旁核;NTS,孤束核;β-肾上腺素能受体;M2,毒蕈碱受体;Gi,抑制性g蛋白;g:刺激g蛋白;AC,腺苷酸环化酶;α7烟碱乙酰胆碱受体
1.2 Sympathetic Efferent Neurotransmission
1.2交感传出神经传递
The cardiac sympathetic preganglionic fibers originate in the central nervous system primarily in the brainstem and are modulated by higher centers such as the subthalamic and periaqueductal grey as well as the rostral ventrolateral medulla 9-12. Then, the sympathetic preganglionic fibers reach postganglionic neurons in the superior cervical, middle cervical, cervicothoracic (stellate) ganglia and mediastinal ganglia along the cervical and thoracic spinal cord (e.g. from C2 to T4 or T5) 9-12. These postganglionic neurons project axons via multiple cardiopulmonary nerves to the atrial and ventricular myocardium as well as limited populations of intrinsic cardiac adrenergic neurons. The major post-ganglionic neurotransmitter of the sympathetic nervous system is norepinephrine. The most important mechanism underlying sympathetic-mediated arrhythmogenesis is the activation of the β-adrenergic receptors and stimulatory Gs proteins, which leads to stimulation of adenylyl cyclase followed by protein kinase A–mediated phosphorylation of the L-type calcium channels (increasing calcium influx) and ryanodine receptors 13. Phosphorylation of the latter enhances the opening probability of the ryanodine receptors and increases calcium release from the sarcoplasmic reticulum (SR). Excessive calcium influx and SR calcium release are known to be arrhythmogenic because calcium homeostasis is crucial in maintaining normal cardiomyocyte functions such as excitability and mitochondrial stability. Elevated intracellular calcium concentration can activate the sodium-calcium exchanger (NCX) to extrude intracellular calcium to the extracellular space. However, extruding one calcium ion occurs at the expense of importing 3 sodium ions, which is electrogenic and can lead to early or delayed after-depolarization 14. Therefore, disturbed calcium homeostasis has been implicated as a leading mechanism underling high sympathetic outflow induced ventricular tachyarrhythmias (VAs) such as catecholaminergic polymorphic VT, long QT syndrome and heart failure.
心脏交感神经节前纤维起源于主要位于脑干的中枢神经系统,并受诸如丘脑下和导水管周围灰质以及延髓吻侧腹外侧等高级中枢调节 9 12 。然后,交感神经节前纤维沿颈、胸脊髓(如从C2到T4或T5)到达颈上、颈中、颈胸(星状)神经节和纵隔神经节的神经节后神经元 9 12 。这些神经节后神经元通过多条心肺神经将轴突投射到心房和心室心肌以及有限数量的内在心脏肾上腺素能神经元。交感神经系统的主要神经节后神经递质是去甲肾上腺素。交感神经介导的心律失常最重要的机制是β-肾上腺素能受体和刺激性Gs蛋白的激活,这导致腺苷酸环化酶的刺激,随后是蛋白激酶a介导的l型钙通道磷酸化(增加钙内流)和ryanodine受体 13 。后者的磷酸化提高了ryanodine受体的打开概率,并增加了钙从肌浆网(SR)的释放。由于钙稳态对维持正常心肌细胞功能(如兴奋性和线粒体稳定性)至关重要,因此过量的钙流入和SR钙释放可引起心律失常。细胞内钙浓度升高可激活钠钙交换器(NCX)将细胞内钙挤压到细胞外空间。 然而,挤出1个钙离子是以输入3个钠离子为代价的,这是电致的,可导致去极化后提前或延迟 14 。因此,受干扰的钙稳态被认为是高交感神经流出引起的室性心动过速(VAs)的主要机制,如儿茶酚胺能多形性室性心动过速、长QT综合征和心力衰竭。
1.3 Parasympathetic Efferent Neurotransmission
1.3副交感神经传出神经传递
Preganglionic neurons of the parasympathetic nervous system are located in the nucleus ambiguous and dorsal motor nucleus of the medulla oblongata as well as scattered regions between these two structures 15,16. Their axons project to the postganglionic parasympathetic neurons in the numerous intrinsic cardiac ganglia via bilateral vagosympathetic trunks and multiple intrathoracic cardiopulmonary nerves 17. Postganglionic neurons, concentrated in epicardial fat pads, then provide direct innervation to the sinus node, atrioventricular node as well as both atria and ventricles 9,18,19. Acetylcholine is the major parasympathetic neurotransmitter of the heart; stimulation of the cholinergic muscarinic receptors (mainly the M2 receptors) inhibits adenylyl cyclase and reduces cyclic adenosine monophosphate via pertussis toxin-sensitive inhibitory G-proteins (Gi), which inhibits the L-type calcium current and hyperpolarization-activated current If as well as activates the Achgated potassium current (IKACh) 20. Important co-transmitters released with vagus nerve stimulation include nitric oxide and vasoactive intestinal peptide 21.
副交感神经系统的节前神经元位于延髓的模糊核和背运动核以及这两个结构之间的分散区域 15 16 。它们的轴突通过双侧迷走交感干和多个胸内心肺神经投射到众多心内神经节的神经节后副交感神经元 17 。神经节后神经元,集中在心外膜脂肪垫,然后直接神经支配窦结、房室结以及心房和心室 9 18 19 。乙酰胆碱是心脏主要的副交感神经递质;刺激胆碱能毒蕈碱受体(主要是M2受体)通过百日咳毒素敏感抑制g蛋白(Gi)抑制腺苷酸环化酶,减少环磷酸腺苷,从而抑制l型钙电流和超极化激活电流If,激活乙酰化钾电流(IKACh) 20 。迷走神经刺激释放的重要共递质包括一氧化氮和血管活性肠肽 21 。
1.4 The intrinsic cardiac autonomic nervous system
1.4心脏内在自主神经系统
Sympathetic and parasympathetic nerves and neurons as well as interconnecting nerves and neurons form a complex cardiac neural network. These neural elements converge at several ganglionated plexi (GP) embedded within epicardial fat pads 22,23. In the atria, the great majority of GP are concentrated at the pulmonary veinatrial junctions. In contrast, the ventricular GP are primarily located at the origins of major coronary arteries or aortic root 24. These GP act as integration centers that modulate the interactions between the extrinsic cardiac ANS and the heart 25 and contain both afferent and efferent sympathetic as well as parasympathetic nerves and neurons. For example, the bradycardic response elicited by cervical VNS was mediated by the anterior right GP adjacent to the sinus node; ablation of that GP greatly attenuated the bradycardic response 25.
交感和副交感神经和神经元以及相互连接的神经和神经元形成了一个复杂的心脏神经网络。这些神经元件会聚在心外膜脂肪垫内的几个神经节丛(GP) 22 23 。在心房,绝大多数GP集中在肺静脉心房连接处。相反,心室GP主要位于冠状动脉或主动脉根部 24 。这些GP作为整合中心,调节外源性心脏ANS和心脏之间的相互作用 25 ,并包含传入和传出交感神经以及副交感神经和神经元。例如,颈VNS引起的心动过缓反应是由靠近窦房结的右前GP介导的;消融该GP极大地减弱了心动过缓反应 25 。
1.5 Afferent Neurotransmission
1.5传入神经传递
Afferent nerve fibers from the mechanosensory and chemosensory receptors provide critical feedback from the cardiovascular system 26. Trafficking from these nerve fibers are processed in the intrinsic cardiac ganglia, intrathoracic ganglia, dorsal root ganglia of the spinal cord, nodose ganglia (the inferior ganglia of the vagosympathetic trunk) and brainstem 27. Afferent cardiac sympathetic neural trafficking is transmitted to the nucleus tractus solitaries (NTS) and the paraventricular nucleus (PVN) 28-31. In addition to projections from the PVN to the neurohypophysis, anatomic and electrophysiological studies revealed that axons from the PVN also project directly to the autonomic centers in the medulla and spinal cord, indicating that the PVN is a key integrative center for the sympathetic neural trafficking in the brain and is involved in cardiovascular regulation 32,33. Parasympathetic afferent fibers carry peripheral information to the NTS first; axons from the NTS project to the autonomic and cardiovascular centers in the brainstem as well to the hypothalamus and cerebrum. It is important to note that the afferent parasympathetic neural trafficking from peripheral organs back to the brain allows the brain to modulate the ANS and maintain autonomic homeostasis.
来自机械感觉和化学感觉受体的传入神经纤维提供来自心血管系统的关键反馈 26 。这些神经纤维的运输在心脏固有神经节、胸内神经节、脊髓背根神经节、结节神经节(迷走交感干的下神经节)和脑干 27 进行处理。传入心脏交感神经传递到孤束核(NTS)和室旁核(PVN) 28 31 。除了从PVN投射到神经垂体外,解剖学和电生理学研究表明PVN的轴突也直接投射到髓质和脊髓的自主神经中枢,这表明PVN是大脑交感神经运输的关键整合中心,并参与心血管调节 32 33 。副交感神经传入纤维首先将外周信息传递到NTS;从NTS项目的轴突到脑干的自主神经和心血管中心,以及下丘脑和大脑。重要的是要注意,从外周器官传入的副交感神经运输回到大脑允许大脑调节ANS和维持自主神经稳态。
2. Vagus nerve stimulation to treat atrial fibrillation
2. 迷走神经刺激治疗心房颤动
2.1 Rationale for vagus nerve stimulation to treat atrial fibrillation
2.1迷走神经刺激治疗心房颤动的原理
Simultaneous recordings of the canine left stellate ganglion (LSG) and left vagus nerve over several weeks revealed that coactivation of the sympathetic and parasympathetic nervous systems may precede paroxysmal AF Figure 234,35. That is, sympathetic and parasympathetic activity act synergistically to facilitate AF initiation38,39. In isolated atrial myocytes, parasympathetic stimulation shortened the atrial effective refractory period (ERP), whereas sympathetic stimulation increases calcium influx and SR calcium release which activates NCX, depolarizes the myocytes and elicit and early after-depolarization 36,37. Parasympathetic stimulation activates acetylcholine dependent potassium currents (IKACh), leading to shortening the atrial ERP and action potential duration (APD) 20,40,41 as well as a reduction in the atrial reentrant wavelength (the product of ERP and conduction velocity) to increase the probability that multiple reentrant circuits coexist in the atrial myocardium and facilitate AF maintenance 42.
犬左星状神经节(LSG)和左迷走神经在数周内的同时记录显示,交感和副交感神经系统的共同激活可能先于阵发性心房颤动(图2 34 35 )。也就是说,交感神经和副交感神经活动协同作用,促进心房颤动的发生 38 39 。在离体心房肌细胞中,副交感刺激可缩短心房有效不应期(ERP),而交感刺激可增加钙内流和SR钙释放,从而激活NCX,使肌细胞去极化并引发去极化及去极化后早期 36 37 。副交感神经刺激激活乙酰胆碱依赖性钾电流(IKACh),缩短心房ERP和动作电位持续时间(APD) 20 40 41 ,减少心房重入波(ERP和传导速度的产物),增加心房心肌多个重入回路共存的可能性,促进房颤维持 42 。
Figure 2. Simultaneous recording of ECG, stellate ganglion nerve activity (SGNA), vagus nerve activity (VNA) and superior left GP nerve activity (SLGPNA) in ambulatory dogs.
图2。同时记录行走犬的心电图、星状神经节神经活动(SGNA)、迷走神经活动(VNA)和左上GP神经活动(SLGPNA)。
A. Paroxysmal AF was preceded by nearly simultaneous activation of the SGNA, VNA and LSLGPNA.
A.阵发性房颤发生前,SGNA、VNA和LSLGPNA几乎同时激活。B. LL-VNS immediately suppressed SGNA, demonstrating its anti-adrenergic effect. Reproduced with permission from reference
50.
B. LL-VNS立即抑制SGNA,显示其抗肾上腺素能作用。转载请注明出处 50 。
Direct VNS produces atrial ERP heterogeneity due to the heterogeneous distribution of vagal innervation and varying density of the M2 receptors in the atria 43. In past decades, VNS, at the strength to slow the sinus rate or atrioventricular (AV) conduction, was used as an experimental tool to induce and maintain AF 44,45. In contrast, mild activation of vagal tone through the baroreflex has been shown to suppress firing of pulmonary veins 46. This paradox illustrates the complexity of the cardiac ANS and arrhythmogenicity. That is, VNS can either enhance or suppress AF, depending on the strength of stimulation 47.
由于迷走神经支配的不均匀分布和心房M2受体的不同密度,直接VNS产生心房ERP的异质性 43 。在过去的几十年里,VNS以减慢窦率或房室(AV)传导的强度被用作诱导和维持AF的实验工具 44 45 。相反,通过压力反射轻度激活迷走神经张力已被证明可以抑制肺静脉放电 46 。这一悖论说明了心脏ANS和心律失常的复杂性。也就是说,视神经刺激可以增强或抑制房颤,这取决于刺激的强度 47 。
2.2 Cervical low-level vagus nerve stimulation
2.2宫颈低水平迷走神经刺激
The Oklahoma group first reported the antiarrhythmic effect of applying low-level VNS (LL-VNS) to canine cervical vagus nerve 48. LL-VNS, without slowing the sinus rate or AV conduction, increased the ERP in the atrium and pulmonary veins, suppressed AF inducibility, and shortened the duration of acetylcholine-induced AF 48,49. Since the atrial autonomic neural network is dominated by parasympathetic neural elements, inhibiting the GP by LLVNS leads to anti-cholinergic effects on GP and prolonged the ERP. Other mechanisms that LL-VNS suppresses AF have been proposed, including suppression of the LSG activity 50, release of the neurotransmitter vasostatin-1 51 and nitric oxide 52. Direct neural recordings of the canine atrial GPs showed that LL-VNS could inhibit the neural activity of GPs, thereby suppressing AF 49. Studies on ambulatory dogs demonstrated that paroxysmal AF was often initiated by simultaneous or sequential firing of the stellate ganglion, vagus nerve and GP Figure 2. LL-VNS inhibited the LSG activity and sympathetic nerve density in the LSG, thereby suppressing paroxysmal atrial tachyarrhythmias 53. These findings indicated that LL-VNS was both anticholinergic and antiadrenergic, which may account for its antiarrhythmic effects.
俄克拉何马研究小组首次报道了将低水平VNS (LL-VNS)应用于犬颈迷走神经 48 的抗心律失常效果。l - vns在不减慢窦率和房室传导的情况下,增加心房和肺静脉ERP,抑制AF诱导,缩短乙酰胆碱诱导AF持续时间 48 49 。由于心房自主神经网络以副交感神经成分为主,LLVNS抑制GP可导致GP的抗胆碱能作用,延长ERP。已经提出了LL-VNS抑制AF的其他机制,包括抑制LSG活性 50 ,释放神经递质血管抑素-1 51 和一氧化氮 52 。犬心房GPs的直接神经记录显示,LL-VNS可抑制心房GPs的神经活动,从而抑制AF 49 。对活动犬的研究表明,阵发性房颤通常由星状神经节、迷走神经和GP同时或连续放电引起(图2)。LL-VNS抑制LSG活动和LSG交感神经密度,从而抑制阵发性房性心动过速 53 。这些发现表明,LL-VNS具有抗胆碱能和抗肾上腺素能的双重作用,这可能解释了其抗心律失常的作用。
High sympathetic outflow enhances inflammation; inflammation leads to fibrosis through activation of pro-inflammatory cells (e.g. T-lymphocytes, monocytes/macrophages) and the cytokines they release. Inflammation, therefore, plays an important role in the pathogenesis of AF as well as neural, electrical and structural remodeling 54. Since the discovery of the α7 nicotinic acetylcholine receptor (α-7nAChR)-mediated cholinergic anti-inflammatory pathway, the anti-inflammatory effects of the parasympathetic nervous system on cardiovascular diseases have attracted substantial attention 55. Some studies suggested that activation of α7nAChR significantly reduces inflammation and fibrosis in the heart, in which the expression levels of high-mobility group box 1 (HMGB1), chemokine receptors and pro-inflammatory factors such as interleukin-6 and TNF-∝ were decreased56. In an ischemia/reperfusion model, VNS increased STAT3 phosphorylation and inhibited NF-kB activation. The cholinergic anti-inflammatory pathway was involved in these effects 57.
高交感神经流出增强炎症;炎症通过激活促炎细胞(如t淋巴细胞、单核细胞/巨噬细胞)及其释放的细胞因子导致纤维化。因此,炎症在房颤的发病机制以及神经、电和结构重塑中起着重要作用 54 。自α7烟碱乙酰胆碱受体(α-7nAChR)介导的胆碱能抗炎途径被发现以来,副交感神经系统在心血管疾病中的抗炎作用备受关注 55 。有研究表明α7nAChR的激活可显著降低心脏炎症和纤维化,其中高迁移率组盒1 (HMGB1)、趋化因子受体及促炎因子如白细胞介素-6、TNF-∝的表达水平降低 56 。在缺血/再灌注模型中,VNS增加STAT3磷酸化,抑制NF-kB活化。胆碱能抗炎途径参与了这些作用 57 。
Pre-clinical evidence indicates that LL-VNS is anti-arrhythmic and anti-inflammatory. Because of the invasive nature of cervical LLVNS, it has only been tested acutely in post-operative AF in patients undergoing open heart surgery. The incidence of postoperative AF was reduced by 66% by LL-VNS (20 Hz) for 72 hours after cardiac surgery 58.
临床前证据表明,LL-VNS具有抗心律失常和抗炎作用。由于颈部LLVNS的侵袭性,它只在接受心脏直视手术的患者的术后房颤中进行了急性试验。在心脏手术后72小时,使用20 Hz的低剂量vns治疗可使术后房颤发生率降低66% 58 。
2.3 Transcutaneous low-level vagus nerve stimulation
2.3经皮低水平迷走神经刺激
A major drawback of cervical LL-VNS is its invasiveness, requiring surgical implantation of a neurostimulator and a cuff electrode around the cervical vagus nerve. Adverse effects include infection, Horner syndrome, discomfort and pain at implant site 59-62. These adverse effects led to the investigation of transcutaneous LL-VNS. Tragus, a small pointed eminence of the external ear, is innervated by the auricular branch of the vagus nerve. The tragus is easily accessible to transcutaneous LL-VNS. Prior research using horseradish peroxidase to trace the cranial projection of the auricular branch of the vagus nerve found that the vagal afferent nerve fibers of the auricular branch terminate mainly in the NTS 63. It is important to note that VNS through the tragus only activates the afferent vagal neural trafficking because there is no efferent vagus nerves in the tragus that innervates the heart.
颈椎LL-VNS的一个主要缺点是其侵入性,需要在颈迷走神经周围植入神经刺激器和袖带电极。不良反应包括感染、霍纳综合征、种植体部位不适和疼痛 59 62 。这些不良反应导致了经皮LL-VNS的研究。耳屏是外耳的一个小而尖的突起,受迷走神经耳支支配。耳屏易于经皮LL-VNS到达。前期研究利用辣根过氧化物酶追踪迷走神经耳支的颅投影,发现耳支的迷走传入神经纤维主要终止于NTS 63 。值得注意的是,通过耳屏的VNS只激活传入迷走神经运输,因为在耳屏中没有支配心脏的传出迷走神经。
Preclinical studies showed that low-level tragus stimulation (LLTS), at the strength not slowing the sinus rate or AV conduction, exerted similar electrophysiological effects to cervical LL-VNS in terms of lengthening the ERP, suppressing pulmonary vein firing and AF as well as inhibiting the neural activity of major atrial GPs Figure 364,65. Notably, the anti-arrhythmic effects of LL-TS were still profound at the stimulation strength 80% below the threshold that slowed the sinus rate or AV conduction, suggesting that this level of stimulation might be tolerable in ambulatory patients with arrhythmias.
临床前研究表明,在不减慢窦率或房室传导的强度下,低水平耳屏刺激(LLTS)在延长ERP,抑制肺静脉放电和房颤以及抑制主要心房gp的神经活动方面具有与颈椎低水平耳屏刺激相似的电生理效果(图3 64 65 )。值得注意的是,当刺激强度低于减慢窦率或房室传导阈值的80%时,LL-TS的抗心律失常作用仍然很明显,这表明这种水平的刺激对动态心律失常患者可能是可耐受的。
Figure 3. Effects of transcutaneous low-level vagus nerve stimulation on effective refractory period of atria, pulmonary veins and on neural activity of ganglionated plexi.
图3。经皮低水平迷走神经刺激对心房、肺静脉有效不应期及神经节丛神经活动的影响。
A. Parameters were measured during 6 hours of rapid atrial pacing (RAP) simulating paroxysmal AF. In the last 3 hours, LL-TS, 80% below threshold, was applied with RAP. At all sites, mean ERP decreased significantly after 3 hours of RAP (*:p<0.05; **:p<0.01; compared to baseline). After 3 hours of RAP+LL-TS, mean ERP at all sites showed a significant reversal toward baseline values (#:p<0.05 , ##:p<0.01; compared with the end of 3rd hour of RAP). Increased ERP dispersion by RAP was also reversed by LL-TS.
A.在模拟阵发性房颤的快速心房起搏(RAP) 6小时内测量参数。最后3小时,在低于阈值80%的情况下,应用RAP进行LL-TS。在所有地点,平均ERP在RAP 3小时后显著下降(*:p<0.05;* *: p < 0.01;与基线相比)。RAP+LL-TS治疗3小时后,所有部位的平均ERP与基线值有显著的逆转(#:p<0.05, ##:p<0.01;与RAP第3小时结束时比较)。RAP增加的ERP分散也被LL-TS逆转。B. Top. A typical example of neural recordings from the anterior right ganglionated plexi (ARGP) taken each hour (during sinus rhythm) when RAP was temporarily stopped. The middle and bottom panels showed the average amplitude and frequency of neural recordings. During the first 3 hours of RAP, there was a progressive increase in both the amplitude as well as the frequency of neural firing in the ARGP. With the addition of LL-TS, at 80% below threshold, the amplitude and frequency returned toward initial levels. RSPV, LSPV, RIPV and LIPV: right superior, left superior, right inferior and left inferior pulmonary vein, respectively. Reproduced from reference 65 with permission.
b。当RAP暂时停止时,每小时(窦性心律期间)从右前神经节丛(ARGP)采集的典型神经记录。中间和底部显示神经记录的平均振幅和频率。在RAP的前3小时,ARGP区神经放电的幅度和频率均呈进行性增加。随着LL-TS的加入,在低于阈值80%时,振幅和频率恢复到初始水平。RSPV、LSPV、RIPV、LIPV分别为右上肺静脉、左上肺静脉、右下肺静脉、左下肺静脉。经许可转载自文献65。
Electrical stimulation of the tragus was tested in 48 healthy participants showing that tragus VNS significantly decreased the low-frequency/high-frequency ratio (LF/HF) measurement of heart rate variability, indicating a tendency toward parasympathetic tone 66. In 2015, the Oklahoma group 67 reported a randomized clinical study applying transcutaneous LL-TS to patients with refractory paroxysmal AF referred for catheter ablation. Only one hour of transcutaneous LL-TS was enough to suppress ERP shortening and AF inducibility, shorten the AF duration, and decrease proinflammatory markers such as tumor necrosis factor-∝ (TNF-∝) and C-reactive protein. A recent sham-controlled randomized clinical trial published by same group indicated that in ambulatory patients with paroxysmal AF, daily transcutaneous LL-TS (one hour, 20 Hz, 1 mA below the perception threshold) reduced the AF burden by 83% at 6 months Figure 4. Plasma level of the TNF-∝ was reduced by 23% as well. These results suggest that transcutaneous LL-TS may serve as a novel, non-invasive therapy for patients in early stage of AF 68. However, as a major limitation of transcutaneous LL-TS, the response to transcutaneous LL-TS was variable among individual patients due to the lack of an acute biomarker of response to therapy that can predict the response to chronic transcutaneous LL-TS therapy Figure 4B. Although transcutaneous LL-TS has been shown to be able to affect heart rate variability and inflammatory markers within an hour 67, if these biomarkers predict long-term success remains unknown. Future large scale randomized clinical trials will be needed to optimize patient selection for transcutaneous LL-TS based on biomarkers as well as to determine if patients with more advanced stage of AF (e.g. persistent AF) still respond to transcutaneous LL-TS.
在48名健康参与者中进行的耳屏电刺激测试显示,耳屏VNS显著降低心率变异性的低频/高频比(LF/HF)测量,表明副交感神经张力倾向 66 。2015年,俄克拉何马州研究小组 67 报道了一项随机临床研究,将经皮LL-TS应用于难治性阵发性房颤患者的导管消融。经皮LL-TS仅1小时就足以抑制ERP缩短和AF诱导,缩短AF持续时间,降低促炎标志物如肿瘤坏死因子-∝(TNF-∝)和c反应蛋白。同一组最近发表的一项假对照随机临床试验表明,在患有阵发性房颤的门诊患者中,每日经皮LL-TS(1小时,20 Hz,低于感知阈值1 mA)在6个月时减少了83%的房颤负担(图4)。血浆TNF-∝水平降低23%。这些结果表明,经皮LL-TS可能是早期AF患者的一种新颖的非侵入性治疗 68 。然而,作为经皮LL-TS的主要限制,由于缺乏一种可以预测慢性经皮LL-TS治疗反应的急性生物标志物,个体患者对经皮LL-TS的反应是可变的(图4B)。虽然经皮LL-TS已被证明能够在一小时内影响心率变异性和炎症标志物 67 ,但这些生物标志物是否能预测长期成功仍不得而知。未来需要进行大规模随机临床试验,以优化基于生物标志物的经皮LL-TS患者选择,并确定晚期房颤患者(如: 持续性房颤)仍对经皮LL-TS有反应。
Figure 4. Effects of chronic transcutaneous low-level vagus nerve stimulation in atrial fibrillation burden.
图4。慢性经皮低水平迷走神经刺激对房颤负荷的影响。
A. Comparison of AF burden between the 2 groups (median values and interquartile range). The p-value is based on a comparison of median AF burden levels at the 6-month time point after adjusting for baseline measures. In the control group, stimulation was delivered to the ear lobule where no vagal innervation exits. B. Patient-level data on AF burden change in the 2 groups. Patients whose AF burden decreased by >75% at follow up were categorized as responders. The proportion of responders was significantly larger in the active compared to the sham control group (47% vs. 5%, respectively, p=0.003). B = baseline; 3M = 3 months; 6M = 6 months. Reproduced from reference 68 with permission.
A.两组间房颤负担比较(中位数和四分位数范围)。p值基于基线测量调整后6个月时间点房颤中位负担水平的比较。在对照组中,刺激被传递到没有迷走神经支配的耳小叶。B.两组房颤负担变化的患者水平数据。随访时房颤负担减轻>75%的患者被归类为应答者。治疗组应答者的比例明显大于假对照组(47% vs. 5%, p=0.003)。B =基线;3M = 3个月;6个月。经许可转载自参考文献68。
3. Vagus nerve stimulation to treat ventricular tachyarrhythmias
3. 迷走神经刺激治疗室性心动过速
3.1 Rationale for VNS to treat ventricular tachyarrhythmias(VAs)
3.1 VNS治疗室性心动过速的原理
VAs are often triggered by high sympathetic tone or reduced vagal tone 69. Sympathetic activation can facilitate the initiation of VAs through the following mechanisms: 1) shortening of the ventricular ERP 70 and increasing the steepness of the slope of the action potential duration restitution curve to facilitate ventricular fibrillation initiation 71; 2) increasing dispersion of refractoriness 72; 3) enhancing of ventricular repolarization heterogeneity 73; and 4) triggering of early and delayed after-depolarization Figure 5) 14, 74, 75,. Furthermore, underlying cardiomyopathy can enhance the sympathetic activity and further promote the occurrence of VAs, forming a vicious cycle between the sympathetic activity and VAs. For instance, in a canine model of myocardial infarction, LSG synapses and nerve density were increased due to ischemia, which in turn caused more instability in the electrophysiological properties and increase the propensity for VAs 76.
VAs通常由高交感神经张力或迷走神经张力降低 69 触发。交感神经激活可通过以下机制促进VAs的起始:1)缩短心室ERP 70 ,增加动作电位时程恢复曲线斜率的陡度,促进心室颤动起始 71 ;2)增加耐火度分散度 72 ;3)心室复极异质性增强 73 ;图5) 14 , 74 , 75 ,。此外,潜在的心肌病可增强交感神经活动,进一步促进VAs的发生,形成交感神经活动与VAs的恶性循环。例如,在犬心肌梗死模型中,由于缺血,LSG突触和神经密度增加,从而导致电生理特性更加不稳定,并增加VAs倾向 76 。
Figure 5. Arrhythmogenesis related to high sympathetic outflow.
图5。与高交感神经流出有关的心律失常。
Both early afterdepolarization (EAD), A) and delayed afterdepolarization (DAD, B) can be elicited by the inward current generated by sodium-calcium exchanger (NCX). Reentry can be facilitated by shortened refractory period or action potential duration (C) as well as increased dispersion of the refractory period (D). Reproduced with permission from reference
14.
钠钙交换器(NCX)产生的向内电流可以诱发早期后去极化(EAD, A)和延迟后去极化(DAD, B)。通过缩短不应期或动作电位持续时间(C)以及增加不应期弥散(D),可促进再入。转载经参考文献 14 许可。
The beneficial effects of VNS on VAs are mediated directly by reducing the sympathetic activity and indirectly by inhibiting myocardial remodeling and inflammation 61-62,77. Activation of the IKACh current through the muscarinic receptors and augmentation of neuronal nitric oxide production also contributes to the beneficial effects of VNS 78-81. In addition, inflammatory pathways have an important role in fibrosis 82, scar formation and hypertrophy 83; inflammatory mediators such as interleukin-1 can be directly arrhythmogenic 84. In a rat model of ischemia/reperfusion, VNS reduced the infarct size, inflammatory cell infiltration and the levels of circulating inflammatory cytokines 85. Chronic VNS in a dog model of heart failure also normalized the levels of interleukin-6 and TNF-∝86and reduced plasma levels of angiotensin-II 87, a potent profibrotic mediator. Moreover, chronic VNS preserved the connexin 43 proteins and reduced the prevalence of spontaneous ventricular tachycardia after myocardial infarction 88.
VNS对VAs的有益作用直接通过降低交感神经活动介导,间接通过抑制心肌重构和炎症 61 62 77 介导。通过毒蕈碱受体激活IKACh电流和增加神经元一氧化氮的产生也有助于VNS的有益作用 78 81 。此外,炎症通路在纤维化 82 、瘢痕形成和肥厚 83 中起重要作用;炎症介质如白细胞介素-1可直接引起心律失常 84 。在大鼠缺血/再灌注模型中,VNS降低了梗死面积、炎症细胞浸润和循环炎症细胞因子水平 85 。在心力衰竭狗模型中,慢性VNS也使白细胞介素-6和TNF-∝ 86 水平正常化,并降低血浆血管紧张素- ii 87 水平,这是一种有效的促纤维化介质。此外,慢性VNS保留了连接蛋白43蛋白,降低了心肌梗死后自发性室性心动过速的发生率 88 。
At present, clinical management of ventricular tachycardia/ ventricular fibrillation is often restricted to pharmacological therapy and catheter ablation. Lately, invasive procedures such as thoracic epidural anesthesia (TEA), stellate ganglion blockade and cardiac sympathetic denervation (CSD), aiming at decreasing sympathetic outflow to the heart, have been shown to reduce the incidence of VTs in various conditions 89,91. The use of TEA is limited by antiplatelet or anticoagulation therapy due to concerns about bleeding. The effect of stellate ganglion blockade as well as left CSD or bilateral CSD often depends on the operator; collateral damage to sympathetic innervation to the head, neck, and eyes can cause significant adverse effects 91-94.
目前,室性心动过速/室颤的临床治疗往往局限于药物治疗和导管消融。最近,侵入性手术,如胸椎硬膜外麻醉(TEA)、星状神经节阻滞和心脏交感神经去支配(CSD),旨在减少交感神经向心脏的流出,已被证明可以减少各种情况下VTs的发生率 89 91 。由于担心出血,TEA的使用受到抗血小板或抗凝治疗的限制。星状神经节阻滞以及左侧或双侧CSD的效果往往取决于操作者;对头部、颈部和眼睛的交感神经的附带损害可引起严重的不良反应 91 94 。
3.2 Cervical low-level vagus nerve stimulation
3.2宫颈低水平迷走神经刺激
Increased sympathetic tone is typical in patients with myocardial infarction or heart failure and is an important contributing factor to VAs. Preclinical studies demonstrated that VNS can increase ventricular electrical stability and protect against VAs during acute ischemia and reperfusion in animal models 95-99. Vanoli et al 100 showed that VNS effectively prevents ventricular fibrillation in conscious animals with myocardial infarction. During the repeated exercise stress tests, VNS decreased the incidence of ventricular fibrillation from 92% to 10%. Furthermore, VNS may stabilize the infarct border zones and reduce the incidence of VAs 101. Chen et al 102 found that LL-VNS with a stimulation voltage below the 80% voltage threshold required to slow the heart rate significantly decreased the incidence of VAs and exerts protective effects on myocardial ischemia/reperfusion injury, presumably by preserving the acetylcholine levels and intact parasympathetic neuronal pathways. At present, several clinical trials of VNS for the treatment of advanced heart failure have yielded conflicting results, probably caused by the combination of heterogeneous study population and lack of the knowledge of the optimal stimulation parameters 47,61,62.
交感神经张力增加是心肌梗死或心力衰竭患者的典型特征,是影响VAs的重要因素。临床前研究表明,VNS在动物模型急性缺血再灌注时可增加心室电稳定性,并对VAs有保护作用 95 99 。Vanoli等 100 研究表明VNS可有效预防有意识的心梗动物心室颤动。在重复运动应激试验中,VNS将心室颤动的发生率从92%降低到10%。此外,VNS可以稳定梗死边界区,减少VAs的发生率 101 。Chen等 102 发现,刺激电压低于减慢心率所需的80%电压阈值的LL-VNS显著降低了VAs的发生率,并对心肌缺血/再灌注损伤具有保护作用,可能是通过保持乙酰胆碱水平和完整的副交感神经通路。目前,几项VNS治疗晚期心力衰竭的临床试验得出了相互矛盾的结果,这可能是由于研究人群异质性的结合以及缺乏对最佳刺激参数的了解 47 61 62 。
3.3 Transcutaneous low-level vagus nerve stimulation
3.3经皮低水平迷走神经刺激
Due to the invasiveness of cervical LL-VNS, transcutaneous LLVNS has been investigated as a novel noninvasive method to treat VTs. Yu et al 103 found that in a canine post-myocardial infarction model, chronic transcutaneous LL-VNS (2h/day) for 2 months reduced inducibility of VTs, LSG neuronal activity, left ventricular remodeling and ANS remodeling at the infarct border zone. Recently, this group provided the first clinical evidence that when transcutaneous LL-VNS, 50% below the threshold slowing the sinus rate or AV conduction, was delivered at the time of ST elevation myocardial infarction, transcutaneous LL-VNS reduced the infarct size, myocardial ischemia/reperfusion related ventricular premature contraction and ventricular tachycardia as well as pro-inflammatory markers such as interleukin-1β, interleukin-6 and TNF-∝ in patients presenting with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention 104. This first-inman trial suggests that transcutaneous LL-VNS may be applied to patients in early stage of myocardial infarction to reduce myocardial injury and VAs.
由于颈椎LL-VNS的侵袭性,经皮LL-VNS作为一种新的无创治疗方法被研究。Yu等 103 研究发现,在犬心肌梗死后模型中,连续2个月慢性经皮LL-VNS(每天2小时)可降低梗死边界区VTs诱导、LSG神经元活性、左室重构和ANS重构。最近,该研究小组首次提供了临床证据,证明在ST段抬高型心肌梗死时,在低于阈值50%的情况下,经皮LL-VNS可降低梗死面积、心肌缺血/再灌注相关室性早搏和室性心动过速,以及促炎标志物如白细胞介素-1β、经皮冠状动脉介入治疗st段抬高型心肌梗死患者的白细胞介素-6和TNF-∝[j]。这项首次临床试验提示经皮LL-VNS可用于早期心肌梗死患者,以减少心肌损伤和VAs。
While preclinical cervical VNS showed promising results in suppressing VAs, long-term beneficial outcomes have not been verified in clinical trials 61,62. For its noninvasiveness, transcutaneous LL-VNS is an attractive alternative to cervical VNS to treat VAs related to high sympathetic outflow such as ventricular tachycardia in patients with structural heart diseases and premature ventricular contraction. Future preclinical and clinical studies should focus on identifying the optimal stimulation parameters (e.g. frequency, pulse width, duty cycles) as well as acute biomarkers that can predict longterm efficacy.
虽然临床前颈椎VNS在抑制VAs方面显示出有希望的结果,但长期有益的结果尚未在临床试验中得到证实 61 62 。由于其无创性,经皮l -VNS是一种有吸引力的替代颈式VNS治疗与高交感血流相关的VAs,如结构性心脏病和室性早搏。未来的临床前和临床研究应侧重于确定最佳刺激参数(如频率、脉宽、占空比)以及可以预测长期疗效的急性生物标志物。
Transcutaneous LL-VNS may offer a non-invasive and an inexpensive alternative to treat a variety of cardiovascular or inflammatory diseases related to high sympathetic outflow. The optimal stimulus parameters of VNS for individual disease are yet to be determined. Future pre-clinical and clinical studies are needed to clarify mechanisms responsible for its therapeutic effects and optimize the stimulation parameters fortargeted disease.
经皮LL-VNS可能提供一种非侵入性和廉价的替代治疗与高交感神经流出相关的各种心血管或炎症性疾病。VNS对个体疾病的最佳刺激参数尚未确定。未来的临床前和临床研究需要明确其治疗作用的机制,并优化靶向疾病的刺激参数。
- Levy MN. Cardiac sympathetic-parasympathetic interactions. Federation proceedings. 1984; 43(11):2598-2602.
征收锰。心脏交感-副交感相互作用。联邦诉讼。1984;43(11): 2598 - 2602。 - Goldberger JJ, Arora R, Buckley U, Shivkumar K. Autonomic Nervous System Dysfunction. Journal of the American College of Cardiology. 2019; 73(10):1189-1206.
杨建军,杨建军,刘建军。自主神经系统功能障碍研究进展。美国心脏病学会杂志。2019;73(10): 1189 - 1206。 - Nahas Z, Teneback C, Chae JH, Mu Q, Molnar C, Kozel FA, Walker J, Anderson B, Koola J, Kose S, Lomarev M, Bohning DE, George MS. Serial vagus nerve stimulation functional MRI in treatment-resistant depression. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 2007; 32(8):1649-1660.
Nahas Z, Teneback C, Chae JH, Mu Q, Molnar C, Kozel FA, Walker J, Anderson B, Koola J, Kose S, Lomarev M, Bohning DE, George MS.迷走神经刺激功能MRI治疗难治性抑郁症。神经精神药理学:美国神经精神药理学学院正式出版物。2007;32(8): 1649 - 1660。 - Ma J, Qiao P, Li Q, Wang Y, Zhang L, Yan LJ, Cai Z. Vagus nerve stimulation as a promising adjunctive treatment for ischemic stroke. Neurochemistry international. 2019; 131(null):104539.
马军,乔平,李强,王勇,张丽,闫丽娟,蔡铮。迷走神经刺激作为缺血性脑卒中的一种有前景的辅助治疗。国际神经化学。2019;131 (null): 104539。 - Spindler P, Bohlmann K, Straub HB, Vajkoczy P, Schneider UC. Effects of vagus nerve stimulation on symptoms of depression in patients with difficult-to-treat epilepsy. Seizure. 2019; 69(null) :77-79.
Spindler P, Bohlmann K, Straub HB, Vajkoczy P, Schneider UC。迷走神经刺激对难治性癫痫患者抑郁症状的影响。扣押。2019;69 (null): 77 - 79。 - Morris GL, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C. Evidence-based guideline update: Vagus nerve stimulation for the treatment of epilepsy: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 81(16):1453-1459.
Morris GL, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C.循证指南更新:迷走神经刺激治疗癫痫:美国神经病学学会指南制定小组委员会报告。神经学。81(16):1453 - 1459。 - Howland RH. Vagus Nerve Stimulation. Current Behavioral Neuroscience Reports. 2014; 1(2):64-73.
霍德兰RH。迷走神经刺激。当代行为神经科学报告2014;1(2): 64 - 73。 - Armour JA. Potential clinical relevance of the 'little brain' on the mammalian heart. Exp. Physiol. 2008; 93(2):165-176.
盔甲农协。哺乳动物心脏“小脑”的潜在临床意义。物理学报。2008;93(2): 165 - 176。 - Coote JH. Myths and realities of the cardiac vagus. Journal of Physiology. 2013; 591(17):4073-85.
库特JH。心脏迷走神经的神话与现实。生理学杂志。2013;591(17): 4073 - 85。 - Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac Innervation and Sudden Cardiac Death. 2009; 5(4):289-295.
王晓明,金泽华,金泽华。心脏神经支配与心源性猝死的关系。2009;5(4): 289 - 295。 - Ardell JL, Andresen MC, Armour JA, Billman GE, Zucker IH. Translational Neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol. 2016; 594(14):3877–3909.
adell JL, Andresen MC, Armour JA, Billman GE, Zucker IH。转化神经心脏病学:临床前模型和心神经综合方面。journal of physiology . 2016;594(14): 3877 - 3909。 - Kawashima T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anatomy and Embryology. 2005; 209(6):425-438.
川岛:人类心脏的自主神经系统,特别涉及其起源、走向和周围分布《解剖学与胚胎学》2005;209(6): 425 - 438。 - Voigt N, Heijman J, Wang Q, Chiang DY, Li N, Karck M, Wehrens XHT, Nattel S, Dobrev D. Cellular and Molecular Mechanisms of Atrial Arrhythmogenesis in Patients With Paroxysmal Atrial Fibrillation. Circulation. 2014; 129(2):145-156.
Voigt N, Heijman J,王强,蒋达元,李宁,Karck M, Wehrens XHT, Nattel S, Dobrev D.阵发性心房颤动患者心房心律失常的细胞和分子机制。循环。2014;129(2): 145 - 156。 - Landstrom AP, Dobrev D, Wehrens XHT. Calcium signaling and cardiac arrhythmias. Circ Res. 2017;120:1969-1993.
Landstrom AP, Dobrev D, Wehrens XHT。钙信号和心律失常。Circ Res. 2017;120:1969-1993。 - Standish A, Enquist L, Schwaber J. Innervation of the heart and its central medullary origin defined by viral tracing. Science. 1994; 263(5144):232-234.
李建军,李建军,李建军,等。心脏神经支配与中央髓细胞起源的关系。科学。1994;263(5144): 232 - 234。 - Standish A, Enquist LW, Escardo JA, Schwaber JS. Central neuronal circuit innervating the rat heart defined by transneuronal transport of pseudorabies virus. 1995; 15(3 Pt 1):1998.
Standish A, Enquist LW, Escardo JA, Schwaber JS。假性狂犬病毒跨神经元转运对大鼠心脏中枢神经回路的影响。1995;15(3):1998。 - Hopkins DA, Bieger D, Devente J, Steinbusch WM. Vagal efferent projections: Viscerotopy, neurochemistry and effects of vagotomy. 1996; 107(08):79.
Hopkins DA, Bieger D, Devente J, Steinbusch WM。迷走神经传出投射:内脏切除、神经化学和迷走神经切开术的效果。1996;107(08): 79。 - Rysevaite K, Saburkina I, Pauziene N, Vaitkevicius R, Noujaim SF, Jalife J, Pauza DH. Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart rhythm. 2011; 8(5):731-738.
Rysevaite K, Saburkina I, Pauziene N, Vaitkevicius R, Noujaim SF, Jalife J, Pauza DH。全贴装小鼠心脏内禀神经丛的免疫组织化学表征。心的节奏。2011;8(5): 731 - 738。 - Brack KE, Coote JH, Ng GA. Quantitative analysis of the parasympathetic innervation of the porcine heart. Heart rhythm. 2010; 7(8):e2-e3, e3.
柯立民,王建军,吴佳。猪心脏副交感神经支配的定量分析。心的节奏。2010;7 (8): e2-e3, e3。 - Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 2011; 91(1):265-325.
Schotten U, Verheule S, Kirchhof P, Goette a .房颤的病理生理机制:翻译评价。物理杂志2011;91(1): 265 - 325。 - Habecker BA, Anderson ME, Birren SJ, Fukuda K, Herring N, Hoover DB, Kanazawa H, Paterson DJ, Ripplinger CM. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease. Journal of Physiology. 2016; 594(14):3853-75.
Habecker BA, Anderson ME, Birren SJ, Fukuda K, Herring N, Hoover DB, Kanazawa H, Paterson DJ, Ripplinger CM。分子和细胞神经心脏病学:发展,以及细胞和分子对心脏病的适应。生理学杂志。2016;594(14): 3853 - 75。 - Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. The Anatomical record. 1997; 247(2):289-298.
阿莫尔JA,墨菲DA,袁BX,麦克唐纳S,霍普金斯DA。人体内在心脏神经系统的大体和显微解剖。解剖记录。1997;247(2): 289 - 298。 - Pauza DH, Skripka V, Pauziene N. Morphology of the Intrinsic Cardiac Nervous System in the Dog: A Whole-Mount Study Employing Histochemical Staining with Acetylcholinesterase. Cells Tissues Organs. 2002; 172(4):297-320.
paza DH, Skripka V, Pauziene N.狗心脏内神经系统形态学:乙酰胆碱酯酶组织化学染色的全载研究。细胞组织器官;2002;172(4): 297 - 320。 - Armour JA. Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm. 2010; 7(7):994-996.
盔甲农协。支配心房和心室的胸内神经元的功能解剖。心脏节律。2010;7(7): 994 - 996。 - Hou Y, Scherlag BJ, Lin J, Zhang Y, Lu Z, Truong K, Patterson E, Lazzara R, Jackman WM, Po SS. Ganglionated Plexi Modulate Extrinsic Cardiac Autonomic Nerve Input: Effects on Sinus Rate, Atrioventricular Conduction, Refractoriness, and Inducibility of Atrial Fibrillation. Journal of the American College of Cardiology. 2007; 50(1):61-68.
侯勇,张勇,张勇,张勇,张健,张健,张健,张健,张健,张健。节理丛调节心脏自主神经输入对心房颤动的影响:窦率、房室传导、难治性和诱发性。Journal of American College of Cardiology. 2007;(1): 61 - 68。 - Shivkumar K, Ajijola OA, Anand I, Armour JA, Chen PS, Esler M, De Ferrari GM, Fishbein MC, Goldberger JJ, Harper RM, Joyner MJ, Khalsa SS, Kumar R, Lane R, Mahajan A, Po SS, Schwartz PJ, Somers VK, Valderrabano M, Vaseghi M, Zipes DP. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. The Journal of physiology. 2016; 594(14):3911-3954.
Shivkumar K, Ajijola OA, Anand I, Armour JA, Chen PS, Esler M, De Ferrari GM, Fishbein MC, Goldberger JJ, Harper RM, Joyner MJ, Khalsa SS, Kumar R, Lane R, Mahajan A, Po SS, Schwartz PJ, Somers VK, Valderrabano M, Vaseghi M, Zipes DP。临床神经心脏病学定义了以神经科学为基础的心血管治疗的价值。生理学杂志。2016;594(14): 3911 - 3954。 - Armour JA, Huang MA, Pelleg A, Sylvén C. Responsiveness of in situ canine nodose ganglion afferent neurones to epicardial mechanical or chemical stimuli. Cardiovascular Research. 1994; (8):8.
A, A, A, C.犬结节神经节传入神经元对心外膜机械或化学刺激的反应性。心血管研究。1994;(8): 8。 - Affleck VS, Coote JH, Pyner S. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus. Neuroscience. 2012; 219(1-2):48-61.
阿列克VS, Coote JH, Pyner S.下丘脑室旁核NTS传入连接与前交感神经元、GABA和nNOS神经元的突触组织。神经科学。2012;219(1 - 2): 48 - 61。 - Xu B, Zheng H, Patel KP. Relative contributions of the thalamus and the paraventricular nucleus of the hypothalamus to the cardiac sympathetic afferent reflex. American journal of physiology. Regulatory, integrative and comparative physiology. 2013; 305(1):R50-R59.
徐斌,郑华,Patel KP。丘脑和下丘脑室旁核对心脏交感传入反射的相对贡献。美国生理学杂志。调节,综合和比较生理学。2013;305 (1): R50-R59。 - Wang WZ, Gao L, Pan YX, Zucker IH, Wang W. Differential effects of cardiac sympathetic afferent stimulation on neurons in the nucleus tractus solitarius. Neuroscience letters. 2006; 409(2):146-150.
王文忠,高磊,潘永祥,Zucker IH,王伟。心脏交感传入刺激对孤束核神经元的差异影响。神经科学的信件。2006;409(2): 146 - 150。 - Wang WZ, Gao L, Pan YX, Zucker IH, Wang W. AT1 receptors in the nucleus tractus solitarii mediate the interaction between the baroreflex and the cardiac sympathetic afferent reflex in anesthetized rats. American journal of physiology. Regulatory, integrative and comparative physiology. 2007; 292(3):R1137-R1145.
王文忠,高磊,潘永祥,Zucker IH,王伟。麻醉大鼠孤立束核AT1受体介导压力反射与心脏交感传入反射的相互作用。美国生理学杂志。调节,综合和比较生理学。2007;292 (3): R1137-R1145。 - Yamashita H, Inenaga K, Koizumi K. Possible projections from regions of paraventricular and supraoptic nuclei to the spinal cord: electrophysiological studies.Brain Research. 1984; 296(2):373-378.
张志强,张志强,小泉。脑室旁核和视上核对脊髓的电生理学研究。《大脑研究》1984;296(2): 373 - 378。 - Li YF, Jackson KL, Stern JE, Rabeler B, Patel KP. Interaction between glutamate and GABA systems in the integration of sympathetic outflow by the paraventricular nucleus of the hypothalamus. Ajp Heart & Circulatory Physiology. 2007; 291(6):H2847-H2856.
李玉峰,Jackson KL, Stern JE, Rabeler B, Patel KP。谷氨酸和GABA系统在下丘脑室旁核交感神经流出整合中的相互作用。心脏与循环生理学杂志2007;291 (6): H2847-H2856。 - Tan AY, Zhou S, Ogawa M, Song J, Chu M, Li H, Fishbein MC, Lin SF, Chen LS, Chen PS. Neural Mechanisms of Paroxysmal Atrial Fibrillation and Paroxysmal Atrial Tachycardia in Ambulatory Canines. Circulation. 2008; 118(9):916-925.
谭爱英,周森,小川美,宋军,褚敏,李宏,Fishbein MC,林顺生,陈少林,陈培生。动态犬阵发性心房颤动和阵发性房性心动过速的神经机制[J]。循环。2008;118(9): 916 - 925。 - Choi EK, Shen MJ, Han S, Kim D, Hwang S, Sayfo S, Piccirillo G, Frick K, Fishbein MC, Hwang C. Intrinsic Cardiac Nerve Activity and Paroxysmal Atrial Tachyarrhythmia in Ambulatory Dogs. Circulation. 2010; 121(24):2615-2623.
Choi EK, Shen MJ, Han S, Kim D, Hwang S, Sayfo S, Piccirillo G, Frick K, Fishbein MC, Hwang C.动态犬心脏固有神经活动与阵发性房性心动过速的关系。循环。2010;121(24): 2615 - 2623。 - Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart rhythm. 2005; 2(6):624-631.
张建军,张建军,张建军,等。体外自主神经刺激诱发肺静脉放电的实验研究。心的节奏。2005;2(6): 624 - 631。 - Patterson E, Lazzara R, Szabo B, Liu H, Tang D, Li YH, Scherlag BJ, Po SS. Sodium-calcium exchange initiated by the Ca2+ transient: an arrhythmia trigger within pulmonary veins. Journal of the American College of Cardiology. 2006; 47(6):1196-1206.
引用本文:刘浩,李永华,唐丹,李永华,薛立杰,波生生。肺静脉内钙离子瞬变触发的钠钙交换。Journal of American College of Cardiology. 2006;47(6): 1196 - 1206。 - Shen MJ, Zipes DP. Role of the Autonomic Nervous System in Modulating Cardiac Arrhythmias. Circulation Research. 2014; 114(6):1004-1021.
沈俊杰,Zipes DP。自主神经系统在心律失常调节中的作用。流通研究。2014;114(6): 1004 - 1021。 - Oliveira M, Da Silva MN, Timoteo AT, Feliciano J, Sousa L, Santos S, Silva-Carvalho L, Ferreira R. Inducibility of atrial fibrillation during electrophysiologic evaluation is associated with increased dispersion of atrial refractoriness. Int. J. Cardiol. 2009; 136(2):130-5.
Oliveira M, Da Silva MN, Timoteo AT, Feliciano J, Sousa L, Santos S, Silva- carvalho L, Ferreira R.电生理评估心房颤动诱发性与心房难治性弥散度增加相关。Int。中华医学杂志。2009;136(2): 130 - 5。 - Iwasaki Y K, Nishida K, Kato T, Nattel S. Atrial Fibrillation Pathophysiology Implications for Management. Circulation. 2011; 124(20):2264-2274.
Iwasaki Y K, Nishida K, Kato T, Nattel S.心房颤动的病理生理意义。循环。2011;124(20): 2264 - 2274。 - Wakili R, Voigt N, Kääb S, Dobrev D, Nattel S, Kääb S. Recent advances in the molecular pathophysiology of atrial fibrillation. Journal of Clinical Investigation. 2011; 121(8):2955.
Wakili R, Voigt N, Kääb S, Dobrev D, Nattel S, Kääb S.心房颤动的分子病理生理研究进展。临床研究杂志2011;121(8): 2955。 - Allessie MA. Atrial Electrophysiologic Remodeling: Another Vicious Circle? J Cardiovasc Electrophysiol. 1999; 9(12):1378-1393.
Allessie马。心房电生理重构:又一个恶性循环?中华心血管病杂志;1999;9(12): 1378 - 1393。 - Arora R, Ulphani JS, Villuendas R, Ng J, Harvey L, Thordson S, Inderyas F, Lu Y, Gordon D, Denes P. Greene R, Crawford S, Decker R, Morris A, Goldberger J, Kadish AH. Neural substrate for atrial fibrillation: implications for targeted parasympathetic blockade in the posterior left atrium. Am. J. Physiol. Heart Circ. Physiol. 2008; 294(1): H134-44.
Arora R, Ulphani J, Villuendas R, Ng J, Harvey L, Thordson S, Inderyas F, Lu Y, Gordon D, Denes P. Greene R, Crawford S, Decker R, Morris A, Goldberger J, Kadish AH。心房颤动的神经基质:左后心房靶向副交感神经阻滞的意义。点。j .杂志。中华医学杂志2008;294 (1): H134-44。 - Goldberger AL, Pavelec RS. Vagally-mediated atrial fibrillation in dogs: conversion with bretylium tosylate. International Journal of Cardiology. 1986; 13(1):47-55.
狗的迷走神经介导的心房颤动:与戊酸乙酯的转换。国际心脏病学杂志。1986;13(1): 47-55。 - Wang Z, Page P, Nattel S. Mechanism of flecainide\"s antiarrhythmic action in experimental atrial fibrillation. Circulation Research. 1992; 71(2):271-287.
王忠,裴鹏,Nattel s .氟氯胺抗心房颤动心律失常的作用机制。流通研究。1992;71(2): 271 - 287。 - Tai CT, Chiou CW, Wen ZC, Hsieh MH, Tsai CF, Lin WS, Chen CC, Lin YK, Yu WC, Ding YA. Effect of phenylephrine on focal atrial fibrillation originating in the pulmonary veins and superior vena cava. Journal of the American College of Cardiology. 2000; 36(3): 788-793.
戴国成,邱永武,温志成,谢海明,蔡春芳,林文伟,陈春春,林奕坤,余文武,丁亚。苯肾上腺素对源自肺静脉和上腔静脉的局灶性房颤的影响。Journal of American College of Cardiology. 2000;36(3): 788 - 793。 - Ardell JL, Nier H, Hammer M, Southerland EM, Ardell CL, Beaumont E, Kenknight BH, Armour JA. Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control. J Physiol. 2017; 595(22):6887-6903.
Ardell JL, Nier H, Hammer M, Southerland EM, Ardell CL, Beaumont E, Kenknight BH, Armour JA。定义慢性迷走神经刺激的神经支点:对心脏综合控制的影响。物理学报;2017;595(22): 6887 - 6903。 - Li S, Scherlag BJ, Yu L, Sheng X, Zhang Y, Ali R, Dong Y, Ghias M, Po SS. Low-level vagosympathetic stimulation: a paradox and potential new modality for the treatment of focal atrial fibrillation. Circulation. Arrhythmia and electrophysiology. 2009; 2(6):645-651.
引用本文:李松,Scherlag BJ,于磊,盛翔,张勇,Ali R,董勇,Ghias M, Po SS.迷走交感神经刺激:治疗局灶性心房颤动的一个矛盾和潜在的新模式。循环。心律失常和电生理。2009;2(6): 645 - 651。 - Yu L, Scherlag BJ, Li S, Sheng X, Lu Z, Nakagawa H, Zhang Y, Jackman WM, Lazzara R, Jiang H, Po SS. Low-Level Vagosympathetic Nerve Stimulation Inhibits Atrial Fibrillation Inducibility: Direct Evidence by Neural Recordings from Intrinsic Cardiac Ganglia. Journal of Cardiovascular Electrophysiology. 2011; 22(4):455-463.
于磊,Scherlag BJ,李松,盛祥,陆忠,Nakagawa H,张勇,Jackman WM, Lazzara R,姜浩,波顺生。迷走交感神经低水平刺激对心房颤动的诱导作用:心脏内节神经记录的直接证据。心血管电生理杂志。2011;22(4): 455 - 463。 - Shen MJ, Chang HC, Park HW, George Akingba A, Chang PC, Zhang Z, Lin SF, Shen C, Chen LS, Chen Z,Fishbein MC, Chiamvimonvat N, Chen PS. Low-level vagus nerve stimulation upregulates small conductance calcium-activated potassium channels in the stellate ganglion. Heart Rhythm.2013; 10(6):910-915.
沈俊杰,张慧慧,Park HW, George Akingba A, Chang PC,张志,林世丰,沈超,陈少林,陈志强,陈志强,Fishbein MC, Chiamvimonvat N,陈ps .迷走神经低水平刺激上调星状神经节小电导钙激活钾通道。心Rhythm.2013;10(6): 910 - 915。 - Stavrakis S, Scherlag BJ, Fan Y, Liu Y, Liu Q, Mao J, Cai H, Lazzara R, Po SS. Antiarrhythmic effects of vasostatin-1 in a canine model of atrial fibrillation. J Cardiovasc Electrophysiol. 2012; 23(7):771-777.
引用本文:Stavrakis S, Scherlag BJ,樊勇,刘勇,刘强,毛军,蔡辉,Lazzara R,波生生。血管抑制素-1在犬房颤模型中的抗心律失常作用。中华心血管病杂志。2012;23日(7):771 - 777。 - Stavrakis S, Scherlag BJ, Fan Y, Liu Y, Mao J, Varma V, Lazzara R, Po SS. Inhibition of atrial fibrillation by low-level vagus nerve stimulation: the role of the nitric oxide signaling pathway. Journal of Interventional Cardiac Electrophysiology. 2013; 36(3):199-208.
引用本文:Stavrakis S, Scherlag BJ,樊艳,刘艳,毛军,Varma V, Lazzara R, Po SS.迷走神经刺激对房颤的抑制作用:一氧化氮信号通路的作用。介入心脏电生理杂志。2013;36(3): 199 - 208。 - Shen MJ, Shinohara T, Park HW, Frick K, Ice DS, Choi EK, Han S, Maruyama M, Sharma R, Shen C, Fishbein MC, Chen LS, Lopshire JC, Zipes DP, Lin SF, Chen PS. Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation. 2011; 123(20):2204-2212.
沈俊杰,Shinohara T, Park HW, Frick K, Ice DS, Choi EK, Han S, Maruyama M, Sharma R, Shen C, Fishbein MC, Chen LS, Lopshire JC, Zipes DP, Lin SF, Chen PS.持续低水平迷走神经刺激降低游动犬星状神经节神经活动和阵状房性心动过速。循环。2011;123(20): 2204 - 2212。 - Stavrakis S, Nakagawa H, Po SS, Scherlag BJ, Lazzara R, Jackman WM. The role of the autonomic ganglia in atrial fibrillation. JACC. Clinical electrophysiology. 2015; 1(null):1-13.
Stavrakis S, Nakagawa H, Po SS, Scherlag BJ, Lazzara R, Jackman WM。自主神经节在房颤中的作用。JACC。临床电生理学。2015;1(空):1-13。 - Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2003; 421(6921):384-388.
王辉,于敏,Ochani M, Amella CA, Tanovic M, Susarla S,李建辉,王辉,杨辉,Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ。烟碱乙酰胆碱受体α7亚基是炎症的重要调节因子。大自然。2003;421(6921): 384 - 388。 - Leib C, Goser S, Luthje D, Ottl R, Tretter T, Lasitschka F, Zittrich S, Pfitzer G, Katus HA, Kaya Z. Role of the Cholinergic Antiinflammatory Pathway in Murine Autoimmune Myocarditis. Circulation Research. 2011; 109(2):130-140.
Leib C, Goser S, Luthje D, Ottl R, Tretter T, Lasitschka F, Zittrich S, pitzer G, Katus HA, Kaya Z.胆碱能抗炎途径在小鼠自身免疫性心肌炎中的作用。流通研究。2011;109(2): 130 - 140。 - Zhao M, He X, Bi XY, Yu XJ, Gil Wier W, Zang WJ. Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic research in cardiology. 2013; 108(3):345.
赵敏,何翔,毕晓燕,于晓军,吉尔维尔文,臧文杰。迷走神经刺激在大鼠心肌缺血/再灌注模型中通过胆碱能抗炎途径触发周围血管保护。心脏病学基础研究。2013;108(3): 345。 - Stavrakis S, Humphrey MB, Scherlag B, Iftikhar O, Parwani P, Abbas M, Filiberti A, Fleming C, Hu Y, Garabelli P, McUnu A, Peyton M, Po SS. Low-Level Vagus Nerve Stimulation Suppresses Post-Operative Atrial Fibrillation and Inflammation: A Randomized Study. JACC. Clinical electrophysiology. 2017; 3(9):929-938.
Stavrakis S, Humphrey MB, Scherlag B, Iftikhar O, Parwani P, Abbas M, Filiberti A, Fleming C, Hu Y, Garabelli P, McUnu A, Peyton M, Po SS.低水平迷走神经刺激抑制房颤和炎症的随机研究。JACC。临床电生理学。2017;3(9): 929 - 938。 - Spuck S, Tronnier V, Orosz I, Schönweiler R, Sepehrnia A, Nowak G, Sperner J. Operative and Technical Complications of Vagus Nerve Stimulator Implantation. Neurosurgery. 2010;67(null): 489-94.
Spuck S, Tronnier V, Orosz I, Schönweiler R, sepenia A, Nowak G, Sperner J.迷走神经刺激器植入术及技术并发症。神经外科。2010;67(null): 489-94。 - Elliott RE, Morsi A, Kalhorn SP, Marcus J, Sellin J, Kang M, Silverberg A, Rivera E, Geller E, Carlson C. Vagus nerve stimulation in 436 consecutive patients with treatment-resistant epilepsy: Long-term outcomes and predictors of response. Epilepsy Behav. 2011; 20(1): 57-63.
艾略特,莫尔西,Kalhorn SP, Marcus J, Sellin J, Kang M, Silverberg A, Rivera E, Geller E, Carlson C.迷走神经刺激治疗抵抗性癫痫患者的长期预后及预测因素。《癫痫行为学》2011;20(1): 57 - 63。 - Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, DiCarlo LA, Ardell JL, Rector TS, Amurthur B, KenKnight BH, Anand IS. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. Journal of cardiac failure. 2014; 20(11):808-816.
Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, DiCarlo LA, Ardell JL, Rector TS, Amurthur B, KenKnight BH, Anand IS。通过左或右颈迷走神经刺激对慢性心力衰竭患者进行自主调节治疗:ANTHEM-HF试验的结果心力衰竭杂志。2014;20(11): 808 - 816。 - Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, Klein H, Stolen C, Meyer S, Stein KM, Ramuzat A, Schubert B, Daum D, Neuzil P, Botman C, Castel MA, D'Onofrio A, Solomon SD, Wold N, Ruble SB, Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. European Heart Journal. 2015; 36(7):425-433.
Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, Klein H, Stolen C, Meyer S, Stein KM, Ramuzat A, Schubert B, Daum D, Neuzil P, Botman C, Castel MA, D'Onofrio A, Solomon SD, Wold N, Ruble SB,慢性迷走神经刺激治疗低射血分数心力衰竭的随机对照试验。欧洲心脏杂志。2015;36(7): 425 - 433。 - Nomura S, Mizuno N. Central distribution of primary afferent fibers in the Arnold's nerve (the auricular branch of the vagus nerve): a transganglionic HRP study in the cat. Brain Res. 1984; 292(2):199-205.
野村S, Mizuno N.,阿诺德神经(迷走神经的耳支)初级传入纤维的中心分布:猫的跨神经节HRP研究。Brain Res. 1984;292(2): 199 - 205。 - Yu L, Li X, Huang B, Zhou X, Wang M, Zhou L, Meng G, Wang Y, Wang Z, Deng J, Jiang H. Atrial Fibrillation in Acute Obstructive Sleep Apnea: Autonomic Nervous Mechanism and Modulation. J Am Heart Assoc. 6(9):e6264.
黄于L,李X, B,周X,王米,周L,孟G,王Y, Z,邓J,江h .房颤急性阻塞性睡眠呼吸暂停:自主神经机制和调制。中华心脏杂志,6(9):664。 - Yu L, Scherlag BJ, Li S, Fan Y, Dyer J, Male S, Varma V, Sha Y, Stavrakis S, Po SS. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: A noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm.2013; 10(3):428-435.
于丽,Scherlag BJ,李松,范勇,Dyer J, Male S, Varma V, Sha Y, Stavrakis S, Po SS.经皮低水平电刺激迷走神经耳支治疗心房颤动的无创方法。心Rhythm.2013;(3): 428 - 435。 - Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive Vagus Nerve Stimulation in Healthy Humans Reduces Sympathetic Nerve Activity. Brain Stimulation. 2014; 7(6):871-877.
Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J.非侵入性迷走神经刺激减少交感神经活动。脑刺激。2014;7(6): 871 - 877。 - Stavrakis S, Humphrey MB, Scherlag BJ, Hu Y, Jackman WM, Nakagawa H, Lockwood D, Lazzara R, Po SS. Low-Level Transcutaneous Electrical Vagus Nerve Stimulation Suppresses Atrial Fibrillation. J. Am. Coll. Cardiol. 2015; 65(9): 867-75.
刘建军,刘建军,刘建军,刘建军,刘建军,刘建军。经皮迷走神经电刺激对心房颤动的抑制作用。j。科尔。心功能杂志。2015;65(9): 867 - 75。 - Stavrakis S, Stoner JA, Humphrey MB, Morris L, Filiberti A, Reynolds JC, Elkholey K, Javed I, Twidale N, Riha P, Varahan S, Scherlag BJ, Jackman WM, Dasari TW, Po SS. TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): A Randomized Clinical Trial.JACC Clin Electrophysiol. 2020; 6(3): 282-291.
Stavrakis S, Stoner JA, Humphrey MB, Morris L, Filiberti A, Reynolds JC, Elkholey K, Javed I, Twidale N, Riha P, Varahan S, Scherlag BJ, Jackman m, Dasari TW, Po SS.经皮迷走神经电刺激抑制心房颤动的随机临床研究。中华医学杂志。2020;6(3): 282 - 291。 - Antzelevitch C. The Role of Spatial Dispersion of Repolarization and Intramural Reentry in Inherited and Acquired Sudden Cardiac Death Syndromes: John Wiley & Sons, Ltd; 2007.
C.在遗传性和获得性心源性猝死综合征中复极空间弥散和内部再入的作用:John Wiley & Sons, Ltd;2007. - Martins JB, Zipes DP. Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circulation Research.1980; 46(1):100-110.
马丁斯JB,齐普斯DP。交感神经和迷走神经对犬左心室心内膜和心外膜恢复特性的影响。循环Research.1980;46(1): 100 - 110。 - Taggart, P. Effect of Adrenergic Stimulation on Action Potential Duration Restitution in Humans. Circulation. 2003; 107(2):285-289.
肾上腺素能刺激对人体动作电位持续时间恢复的影响。循环。2003;107(2): 285 - 289。 - Opthof T, Coronel R, Vermeulen JT, Verberne HJ, van Capelle FJ, Janse MJ. Dispersion of refractoriness in normal and ischaemic canine ventricle: effects of sympathetic stimulation. Cardiovascular Research. 1993;27(11):1954-60.
Opthof T, Coronel R, Vermeulen JT, Verberne HJ, van Capelle FJ, Janse MJ。正常和缺血犬脑室难治性的分散:交感神经刺激的影响。心血管研究。1993;27(11):1954-60。 - Vaseghi M, Yamakawa K, Sinha A, So EL, Zhou W, Ajijola OA, Lux RL, Laks M, Shivkumar K, Mahajan A. Modulation of regional dispersion of repolarization and T-peak to T-end interval by the right and left stellate ganglia. Am. J. Physiol. Heart Circ. Physiol. 2013; 305(7):H1020-H1030.
Vaseghi M, Yamakawa K, Sinha A, So EL, Zhou W, Ajijola OA, Lux RL, Laks M, Shivkumar K, Mahajan A.左右星状神经节对复极化区域色散和t峰到t端间隔的调制。点。j .杂志。中华医学杂志。2013;305 (7): H1020-H1030。 - Ben-David J, Zipes DP. Differential response to right and left ansae subclaviae stimulation of early afterdepolarizations and ventricular tachycardia induced by cesium in dogs. Circulation. 1988; 78(5):1241-1250.
Ben-David J, Zipes DP。铯诱导犬左、右背锁骨下刺激早期去极化和室性心动过速的差异反应。循环。1988;78(5): 1241 - 1250。 - Yu L, Huang B, Zhou X, Wang S, Wang Z, Wang M, Li X, Zhou L, Meng G, Yuan S. Renal sympathetic stimulation and ablation affect ventricular arrhythmia by modulating autonomic activity in a cesium-induced long QT canine model. Heart Rhythm. 2017; S1139054666.
黄昱L, B,周X,小王,小王Z,王米,李X,周L,孟G,元美国肾交感神经刺激和影响心室性心律失常消融通过调节自主神经活动cesium-induced长QT犬模型。《心脏节律》2017;S1139054666。 - Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, Czer L, Wolf PL, Denton TA, Shintaku IP, Chen PS, Chen LS. Relationship Between Regional Cardiac Hyperinnervation and Ventricular Arrhythmia. Circulation. 2000; 101(16):1960-1969.
曹建民,Fishbein MC,韩杰比,赖文文,赖亚奇,吴天杰,蔡利,Wolf PL, Denton TA,叶新拓,陈ps,陈立林。局部心脏神经支配亢进与室性心律失常的关系。循环。2000;101(16): 1960 - 1969。 - Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS, Foreman RD, Schwartz PJ. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circulation Research.1991; 68(5):1471-1481.
Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS, Foreman RD, Schwartz PJ。迷走神经刺激和预防心肌梗死愈合犬的猝死。循环Research.1991;68(5): 1471 - 1481。 - Ng GA, Brack KE, Patel VH, Coote JH. Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovascular Research. 2007; 73(4):750-760.
吴国良,陈国强,陈国强,陈国强。离体心脏电恢复、交替和心室颤动起始的自主调节。心血管研究。2007;73(4): 750 - 760。 - Litovsky SH, Antzelevitch C. Differences in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular myocardium. Circulation Research. 1990; 67(3):615-627.
李春华,李春华,李春华,等。犬心室心内膜下和心包下对乙酰胆碱和异丙肾上腺素电生理反应的差异。乙酰胆碱对心室心肌的直接作用。《流通研究》1990;67(3): 615 - 627。 - Martins JB, Zipes DP, Lund DD. Distribution of local repolarization changes produced by efferent vagal stimulation in the canine ventricles. Journal of the American College of Cardiology. 1984; 2(6):1191-1199.
Martins JB, Zipes DP, Lund DD.犬脑室传出迷走神经刺激引起局部复极化变化的分布。美国心脏病学会杂志。1984;2(6): 1191 - 1199。 - Koumi S, Sato R, Nagasawa K, Hayakawa H. Activation of inwardly rectifying potassium channels by muscarinic receptor-linked G protein in isolated human ventricular myocytes. J Membr Biol. 1997; 157(1):71-81.
张建军,张建军,张建军,等。心肌细胞内钾离子通道的研究进展。生物医学学报;1997;157(1): 71 - 81。 - Nicoletti A, Michel JB. Cardiac fibrosis and inflammation: interaction with hemodynamic and hormonal factors. Cardiovasc. Res. 1999; 41(3): 532-43.
Nicoletti A, Michel JB。心脏纤维化和炎症:与血流动力学和激素因素的相互作用。Cardiovasc。杂志1999;41(3): 532 - 43。 - Klein R M , Vester E G , Brehm M U , Dees H, Strauer BE. [Inflammation of the myocardium as an arrhythmia trigger]. Zeitschrift für Kardiologie. 2000; 89 Suppl 3(3):24-35.
李志强,李志强,李志强,李志强。[心律失常诱因心肌炎症]心脏病学杂志,2000年。89补充3(3):24-35。 - De Jesus NM, Wang L, Lai J, Rigor RR, Francis Stuart SD, Bers DM, Lindsey ML, Ripplinger CM. Antiarrhythmic effects of interleukin 1 inhibition after myocardial infarction. Heart Rhythm. 2017; 14(5):727-736.
De Jesus NM, Wang L, Lai J, rigrr, Francis Stuart SD, Bers DM, Lindsey ML, Ripplinger CM。心肌梗死后白细胞介素1抑制的抗心律失常作用。《心脏节律》2017;14(5): 727 - 736。 - Calvillo L, Vanoli E, Andreoli E, Besana A, Omodeo E, Gnecchi M, Zerbi P, Vago G, Busca G, Schwartz PJ. Vagal Stimulation, Through its Nicotinic Action, Limits Infarct Size and the Inflammatory Response to Myocardial Ischemia and Reperfusion. J Cardiovasc Pharmacol. 2011; 58(5):500-507.
李建军,李建军,李建军,李建军,李建军,李建军。迷走神经刺激,通过其烟碱作用,限制梗死面积和心肌缺血再灌注时的炎症反应。中华心血管病杂志。2011;58(5): 500 - 507。 - Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2003; 421(6921):384-388.
王辉,于敏,Ochani M, Amella CA, Tanovic M, Susarla S,李建辉,王辉,杨辉,Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ。烟碱乙酰胆碱受体α7亚基是炎症的重要调节因子。大自然。2003;421(6921): 384 - 388。 - Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van WagonerDR, Mazgalev TN. Chronic Vagus Nerve Stimulation Improves Autonomic Control and Attenuates Systemic Inflammation and Heart Failure Progression in a Canine High-Rate Pacing Model. Circ Heart Fail. 2009; 2(6):692-699.
张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇,张勇。慢性迷走神经刺激在犬高速率起搏模型中的应用。Circ心力衰竭;2009;2(6): 692 - 699。 - Ando M. Efferent Vagal Nerve Stimulation Protects Heart Against Ischemia-Induced Arrhythmias by Preserving Connexin43 Protein. Circulation. 2005; 112(2):164-170.
输出迷走神经刺激通过保存连接蛋白43保护心脏免受缺血引起的心律失常。循环。2005;112(2): 164 - 170。 - Meissner A, Eckardt L, Kirchhof P, Weber T, Rolf N, Breithardt G, Van Aken H, Haverkamp W. Effects of thoracic epidural anesthesia with and without autonomic nervous system blockade on cardiac monophasic action potentials and effective refractoriness in awake dogs. Anesthesiology. 2001; 95(1):132-138, 6A.
Meissner A, Eckardt L, Kirchhof P, Weber T, Rolf N, Breithardt G, Van Aken H, Haverkamp W.胸椎硬膜外麻醉对清醒犬心脏单相动作电位和有效顽固性的影响。麻醉学。2001;95(1): 132 - 138 6。 - Kamibayashi T, Hayashi Y, Mammoto T, Yamatodani A, Taenaka N, Yoshiya I. Thoracic Epidural Anesthesia Attenuates Halothane-induced Myocardial Sensitization to Dysrhythmogenic Effect of Epinephrine in Dogs. Anesthesiology. 1995; 82(1):129-134.
Kamibayashi T, Hayashi Y, Mammoto T, Yamatodani A, Taenaka N, Yoshiya I.胸椎硬膜外麻醉对肾上腺素致心律失常作用的减弱。麻醉学。1995;82(1): 129 - 134。 - Bourke T, Vaseghi M, Michowitz Y, Sankhla V, Shah M, Swapna N, Boyle NG, Mahajan A, Narasimhan C, Lokhandwala Y, Shivkumar K. Neuraxial Modulation for Refractory Ventricular Arrhythmias: Value of Thoracic Epidural Anesthesia and Surgical Left Cardiac Sympathetic Denervation. Circulation. 2010; 121(21):2255-2262.
Bourke T, Vaseghi M, Michowitz Y, Sankhla V, Shah M, Swapna N, Boyle NG, Mahajan A, Narasimhan C, Lokhandwala Y, Shivkumar K.神经轴向调节治疗难治性室性心律失常:胸椎硬膜外麻醉和手术左心交感神经去神经的价值。循环。2010;121(21): 2255 - 2262。 - Schwartz PJ, Periti M, Malliani A. The long Q-T syndrome. Circulation Arrhythmia & Electrophysiology. 2012; 5(4):868-877.
刘建军,刘建军,刘建军。长Q-T综合征的研究进展。循环性心律失常与电生理。2012;5(4): 868 - 877。 - Odero A, Bozzani A, De Ferrari GM, Schwartz PJ. Left cardiac sympathetic denervation for the prevention of life-threatening arrhythmias: The surgical supraclavicular approach to cervicothoracic sympathectomy. Heart Rhythm. 2010; 7(8):1161-1165.
张建军,张建军,张建军。左心交感神经断行预防危及生命的心律失常:锁骨上入路颈胸交感神经切除术。心脏节律。2010;7(8): 1161 - 1165。 - Schwartz PJ, Priori SG, Cerrone M, Spazzolini C, Odero A, Napolitano C, Bloise R, De Ferrari GM, Klersy C, Moss AJ, Zareba W, Robinson JL, Hall WJ, Brink PA, Toivonen L, Epstein AE, Li C, Hu D. Left Cardiac Sympathetic Denervation in the Management of High-Risk Patients Affected by the Long-QT Syndrome. Circulation. 2004; 109(15):1826-1833.
Schwartz PJ, Priori SG, Cerrone M, Spazzolini C, Odero A, Napolitano C, Bloise R, De Ferrari GM, Klersy C, Moss AJ, Zareba W, Robinson JL, Hall WJ, Brink PA, Toivonen L, Epstein AE, Li C, Hu D.左心交感神经去神经在长qt综合征高风险患者治疗中的作用。循环。2004;109(15): 1826 - 1833。 - Myers RW, Pearlman AS, Hyman RM, Goldstein RA, Kent KM, Goldstein RE, Epstein SE. Beneficial Effects of Vagal Stimulation and Bradycardia During Experimental Acute Myocardial Ischemia. Circulation. 1974; 49(5):943-947.
Myers RW, Pearlman AS, Hyman RM, Goldstein RA, Kent KM, Goldstein RE, Epstein SE。实验性急性心肌缺血时迷走神经刺激和心动过缓的有益作用。循环。1974;49(5): 943 - 947。 - Corr PB, Gillis RA. Role of the Vagus Nerves in the Cardiovascular Changes Induced by Coronary Occlusion. Circulation. 1974; 49(1):86-97.
Corr PB, Gillis RA。迷走神经在冠状动脉闭塞引起的心血管改变中的作用。循环。1974;49(1): 86 - 97。 - Kent KM, Smith ER, Redwood DR, Epstein SE. Electrical Stability of Acutely Ischemic Myocardium: Influences of Heart Rate and Vagal Stimulation. Circulation. 1973; 47(2):291-298.
Kent KM, Smith ER, Redwood DR, Epstein SE。急性缺血心肌的电稳定性:心率和迷走神经刺激的影响。循环。1973;47(2): 291 - 298。 - Kolman BS, Verrier RL, Lown B. The effect of vagus nerve stimulation upon vulnerability of the canine ventricle. American Journal of Cardiology. 1976; 37(7):1041-1045.
柯尔曼,王晓明,王晓明,等。迷走神经刺激对犬脑室易损性的影响。美国心脏病学杂志。1976;37(7): 1041 - 1045。 - Zuanetti G, De Ferrari GM, Priori SG, Schwartz PJ. Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circulation research. 1987; 61(3):429-435.
苏亚明,德法拉利GM, Priori SG,施瓦茨PJ。迷走神经刺激对猫再灌注性心律失常的保护作用。循环的研究。1987;61(3): 429 - 435。 - Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS, Foreman RD, Schwartz PJ. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circulation research. 1991; 68(5):1471-1481.
Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS, Foreman RD, Schwartz PJ。迷走神经刺激和预防心肌梗死愈合犬的猝死。循环的研究。1991;68(5): 1471 - 1481。 - Vaseghi M, Salavatian S, Rajendran PS, Yagishita D, Woodward WR, Hamon D, Yamakawa K, Irie T, Habecker BA, Shivkumar K. Parasympathetic dysfunction and antiarrhythmic effect of vagal nerve stimulation following myocardial infarction. JCI insight. 2017; 2(16):
Vaseghi M, salavatis, Rajendran PS, Yagishita D, Woodward WR, Hamon D, Yamakawa K, Irie T, Habecker BA, Shivkumar K.迷走神经刺激对心肌梗死后副交感神经功能障碍的影响。JCI洞察力。2017;2 (16): - Chen M, Zhou X, Yu L, Liu Q, Sheng X, Wang Z, Wang S, Jiang H, Zhou S. Low-Level Vagus Nerve Stimulation Attenuates Myocardial Ischemic Reperfusion Injury by Antioxidative Stress and Antiapoptosis Reactions in Canines. Journal of cardiovascular electrophysiology. 2016; 27(2):224-231.
陈敏,周翔,于磊,刘强,盛翔,王铮,王松,姜宏,周森。低水平迷走神经刺激对犬心肌缺血再灌注损伤的影响。心血管电生理学杂志。2016;27(2): 224 - 231。 - Yu L, Wang S, Zhou X, Wang Z, Huang B. Chronic Intermittent Low-Level Stimulation of Tragus Reduces Cardiac Autonomic Remodeling and Ventricular Arrhythmia Inducibility in a Post-Infarction Canine Model. JACC: Clinical Electrophysiology. 2016.
王于L,王年代,周X, Z,黄b慢性间歇性低刺激耳屏减少心脏自主改造,心室性心律失常可诱导性Post-Infarction犬模型。临床电生理学报。2016。 - Yu L, Huang B, Po SS. Low-Level Tragus Stimulation for the Treatment of Ischemia and Reperfusion Injury in Patients With ST-Segment Elevation Myocardial Infarction A Proof-of-Concept Study. Jacc Cardiovascular Interventions. 2017; 10(15):1511.
于丽,黄斌,波生生。低水平耳屏刺激治疗st段抬高型心肌梗死缺血再灌注损伤的概念验证。中华心血管杂志2017;10(15): 1511。