这是用户在 2024-11-5 13:44 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?


1 主要维度


1.1 常规


1.2 产品规格


1.3 比例


1.4 体积和重量


2 形状系数


2.1 水平面系数


2.2 船中截面系数


2.3 格挡系数


2.4 棱柱系数


3 线计划


4 图纸

4.1 General arrangement plan

8/[


4.2 船中部分

4.3 Shell expansion

4.4 Other plans

5 Important data on various ships


5.1 杂货船


5.2 冷藏容器


5.3 沿海贸易班轮


5.4 渡轮


5.5 沥青油轮


5.6 化学品罐车

SHIP KNOWLEDGE

A MOD ER N ENC Y CLO P EDIA

1. Principal Dimensions

1.1 General


测量条约

Shipwise

The Shape OF A Ship

PAGE 8 1

PAGE 22 2

All aspects concerning the measurements of seagoing vessels are arranged in the certificate of registry act of 1982. Part of the certificate of registry act is the International treaty on the measurement of ships, as set up by the IMO- conference in 1969. The treaty applies to seagoing vessels with a minimum length of 24 metres and came into force in July1994.


船型


第 44 页3


造船


第 68 页4


船上的部队


第 82 页5


法律法规


第 104 页6


各种建筑


部分第 126 页7


成交安排


第 160页 8


装载 GEAR


第 174 页9


锚和系泊装置


页码 19610


发动机舱


页码 21611


推进器和舵机


第 244 页12


电气装置


页码 26613


维护和对接


第 280 页14


安全


页码 30215


稳定性


页码 32216


第 2 章 问题访问WWW.多克马尔。COM 公司


Ship Knowledge,现代百科全书


垂直


垂直于另一条线或平面的线 (例如水线)。在船上有:


前垂直 (FPP 或 FP)


这条线穿过水线和茎前部的交点


船尾垂直(APP 或 AP)


这条线通常与舵杆的中心线(围绕其旋转的假想线)对齐。


负载线


躺在水中的船的水线。对于不同的情况,有不同的负载线,例如:


轻水线


一艘只运载其常规库存的船的吃水线


深水管线


海水中最大负荷吃水的水线。


水线


船商在船舶设计中计算的夏季标记处的载重线


施工用水管线 (CWL)


用于确定建造船舶的各种组件尺寸的水线


甲板线


船舷固定甲板覆盖的顶部延伸线


模制尺寸


两点之间的距离,在内镀层(或外框)测量


基线


龙骨顶部。


普利姆索尔马克


Plimsoll 标志或干舷标志由一个直径为 1 英尺的圆圈组成,该圆圈通过一条水平线绘制,上边缘是圆心。该水平表示夏季最低干舷盐水条件。 圆圈旁边是一些水平线,表示如上所述的最小干舷。夏季自由舷:S.其他条件: 热带:T, 冬季: W, 新鲜(水):F, 热带新鲜: TF,对于小型船只,小于 100 米: 冬季北大西洋: WNA。全部由一条垂直线连接。为了方便检查标记的位置,在标记上方绘制了一条参考线:甲板线。通常在天气甲板的水平上,但如果天气甲板不是干舷甲板(例如 Ro-Ro),在该甲板的水平上。 当距离不切实际地大,或者连接甲板壳板被磨圆时(油轮、散货船),参考线位于较低的水平。Mark 和 Deckline 将永久标记在左舷和右舷的中间长度上。


吃水标记、Plimsoll Line 和 Plimsoll Mark 是永久性标记。通常这意味着它们被雕刻在船体上。

24

Explanation of the picture at the right:

S

= Summer ( for water with a density of 1.025 t/m³)

W Winter( ditto)

T Tropics ( ditto)

WNA Winter North

Atlantic ( ditto)

TF Tropical Fresh water

F Fresh water

When a ship carries a deck cargo of timber, and certain demands are met, this ship is allowed to have more draught ( less freeboard). This is because of the reserve buoyancy caused by the deck cargo. To indicate this, the ship has a special Plimsoll’ s mark for when it is carrying a deck cargo of timber, the so-called timber mark.

1.2 Dimensions

Length between perpendiculars ( Lpp) Distance between the Fore and the Aft Perpendicular.

Length over all ( Loa)

The horizontal distance from stem to stern.

Length on the water line ( Lwl)

Horizontal distance between the moulded sides of stem and stern when the ship is on her summer mark.

Breadth(B)

The greatest moulded breadth, measured from side to side outside the frames, but inside the shell plating.

Breadth over all

The maximum breadth of the ship as measured from the outer hull on starboard to the outer hull on port side.

Draught at the stem ( Tfwd)

Vertical distance between the water line and the underside of the keel, as measured on the fore perpendicular.

Draught at the stern ( Ta)

The vertical distance between the water line and the underside of the keel as measured from the aft perpendicular.

Trim

The difference between the draught at the stem and the draught at the stern.


船舶知识,现代百科全书25


羽绒并修剪头部。


如果吃水在茎处比在船尾处大。


向下并由船尾修剪。


如果船尾的吃水比船干的吃水大。


在平坦的龙骨上,修剪得当。


船尾的吃水等于阀杆的吃水。


深度


基线与上部连续压型板之间的垂直距离。深度是在船舷的一半 Lpp 处测量的。


干舷


吃水线与侧面(在甲板线处)的甲板顶部之间的距离。夏季干舷一词是指从 Plimsoll 标记的 S 线顶部到甲板线顶部的距离。


空气通风


吃水线与船舶最高点之间的垂直距离。气流是从夏季标记开始测量的。如果船舶吃水较少,则可以压载直到达到夏季吃水,从而获得其最小空气吃水。


纯粹


这是船甲板从船中部向船头和船尾向上上升。纯粹的船和船尾船只提供了额外的储备浮力


弯度


给出 athwart-ships 的天气甲板曲率。曲率有助于确保足够的排水。


地板上升


对于某些类型的船只(如拖船和渔船)来说是独一无二的。这是地板下边缘从龙骨向上上升到舱底。


舱底转弯


给出船舱底的转弯。


1.3 比例


上面讨论的一些尺寸的比率可用于获取有关船舶阻力、稳定性和可操纵性的信息。一些广泛使用的关系是:


长杆/蓝


长度和宽度的比率可能会因船只的类型而有很大差异。常见值:


客船6-8


货机5-7


拖船3-5


较大的 L/B 值有利于速度,但不利于机动性。


长证/分


长/深比。 L/D 的自定义值在10 到 15 之间变化。这种关系在干舷和纵向强度的确定中起着作用。


B/T (T= 吃水)


宽度/吃水比在 2.3 和 4.5 之间变化。 相对于吃水的宽度越大(B/T 值越大),初始稳定性就越高。


船舶知识,现代百科全书 26

The breadth / depth-ratio; varies between 1.3 and 2. If this value becomes larger, it will have an unfavourable effect on the stability ( because the deck will be flooded when the vessel has an inclination) and on the strength.

( mostly containers) can be placed on deck. It is typical for small container ships to use this strategy. As a consequence of this, dangerous situations can occur because the loss of reserve buoyancy can result in a loss of stability and more“water on deck”.

The NT may not be less than 30% of the GT.

Displacement ( in m³)

The displacement equals the volume of the part of the ship below the water line including the shell plating, propeller and rudder.

1.4 Volumes and weights

Nett Tonnage Underwater body ( in m³)

General

The dimensions of a ship can be expressed by using termsm which describe the characteristics of the ship. Each term has a specific abbreviation. The type of ship determines the term to be used. For instance, the size of a container vessel is expressed in the number of containers it can transport; a roll-on roll-off carrier's size is given by the total deck-area in square metres and a passenger ship in the number of people it can carry. At the IMO- conference in 1969 the new units “Gross Tonnage” and “Nett Tonnage” were introduced, to establish a world-wide standard in calculating the size of a ship. In many countries the Gross Tonnage is used to determine port dues and pilotage, or to determine the number of people in the crew.

Register ton

To determine the volume of a space the register ton is used. One register ton equals 100 cft, or 2.83 m³.

Gross Tonnage

The gross tonnage is calculated using a formula that takes into account the ship’ s volume in cubic metre below the main deck and the enclosed spaces above the main deck.

This volume is then multiplied by a constant, which results in a dimen- sionless number ( this means no values of T or m³ should be placed after the number). All distances used in the calculation are moulded dimensions.

In order to minimize the daily expenses of a ship, the ship owner will keep the GT as low as possible. One way of doing this is by keeping the depth small, so more cargo

The Nett Tonnage is also a dimensionless number that describes the volume of the cargo space. The NT can be calculated from the GT by subtracting the volume of space occupied by:

- crew

The underwater body of a ship equals the displacement minus the contri- bution of the shell, propeller and rudder. Or: the calculated volume of the part of the hull which is sub- merged in the water, on the outside of the frames without extensions.

- navigation equipment

- propulsion equipment

- workshops

Ship Knowledge, a modern encyclopedia

27


位移 Δ( in t)


位移是船舶位移的水体积的重量。


也可以说:位移等于飞船的总质量。

Displacement (t) = waterdisplacement (m³) * density of water (t/m³)

Light displacement ( in t)

This is the weight of the hull including the regular inventory. The regular inventory includes: anchors, life-saving appliances, lubricating oil, paint, etc.

Dead weight ( in t)

This is the weight a ship can load until the maximum allowable submersion is reached. This is a constant, which is unique for every ship.

Dead weight (t) = maximum weight Δ(t) - light displacement (t)

Dead weight (t) = maximum weight Δ(t) - actual weight Δ(t)

Cargo, carrying or dead weight capacity ( in t)

This is the total weight of cargo a ship can carry. The cargo capacity ( in t) is not a fixed number, it depends on the ship's maximum allowable submersion, which will include the capacity ( in t) of fuel, provisions and drinking water. For a long voyage there has to be room for extra fuel, which reduces the cargo capacity. If, on the other hand, the ship refuels ( bunkers) halfway, the cargo capacity is larger upon departure. The choices for the amount of fuel on board and the location for refuelling depend on many factors, but in the end the master has final responsibility for the choices made.

Cargo capacity (t) = dead weight (t) - ballast, fuel, provisions (t).

The cargo capacity largely determines the amount of money a ship generates.

2. Form coefficients

Form coefficients give clues about the characteristics of the vessel’ s shape from the water line down into the water. This makes it possible to get an impression of the shape of the underwater body of a ship without extensive use of any data. However, the form coefficients do not contain any information on the dimensions of the ship, they are non-dimensional numbers.

2.1 Waterplane-coefficient Cw.

The waterplane-coefficient gives the ratio of the area of the water line A and the rectangular plane spanned by Lpp and Bmld. A large waterplane-coefficient in combination with a small block-coefficient ( or coef- ficient of fineness) is favourable for the stability in both athwart and fore and aft direction.

Waterplane-coefficient(Cw)=AwLppxBmld


船舶卸货散货


船舶知识,现代百科全书 28

2.2 Midship section coefficient, Cm.

The midship-coefficient gives the ratio of the area of the midship section ( Am) and the area spanned by Bmld and T.

Midship-coefficient(Cm)=AmBmldxT

2.3 Block coefficient, coefficient of fineness, Cb.

The block coefficient gives the ratio of the volume of the underwater body and the rectangular beam spanned by Lpp, Bmld and T. A vessel with a small block coefficient is referred to as‘slim’. In general, fast ships have a small block coefficient.

Customary values for the block coefficient of several types of vessels:

Tanker 0.80-0.90

Freighter 0.70-0.80

Container vessel 0.60-0.75

Reefer 0.55-0.70

Frigate 0.50-0.55

V

Block coefficient ( Cb) = Lpp x Bmld x T

A ship with a small block-coefficient and a large midship section coefficient

Graphical representation of the block coefficient.

A ship with a large block-coefficient and a large midship section and prismatic coefficient.

Prismatic coefficient( Cp)= VLppxAm

2.4 Prismatic coefficient, Cp.

The prismatic coefficient gives the ratio of the volume of the underwater body and the block formed by the area of the midship section ( Am) and Lpp. The Cp is important for the resistance and hence for the necessary power of propulsion ( if the Cp decreases, the necessary propulsion power also becomes smaller).

The maximum value of all these coefficients is reached in case of a rectangular beam, and equals 1. The minimal value is theoretically 0.


棱柱系数的图形表示。


船舶知识,现代百科全书 29

3. Lines and offsets ( Lines plan)

When the principal dimensions, displacement and line-coefficients are known, one has an impressive amount of design information, but not yet a clear image of the exact geometrical shape of the ship. This can be obtained by the use of a lines plan.

The shape of a ship can vary in height, length and breadth of the ship’ s hull. In order to represent this complex shape on paper, cross- sections of the hull are combined with three sets of parallel planes, each one perpendicular to the others.

water lines

Water lines.

Horizontal cross-sections of the hull are called water lines. One of these is the water lines/ design draught. This is the water line used in the design of the ship when it is hypothetically loaded. When the water lines are projected and drawn into one particular view, the result is called a water line model.

The waterlines

Ordinates. Evenly spaced vertical cross-sections in athwart direction are called ordinates. Usually the ship is divided into 20 ordinates, from the centre of the rudder stock ( ordinate 0) to the intersection of the water line and the mould-side of the stem ( ordinate 20). The boundaries of these distances are numbered 1 to 20, called the ordinate numbers. A projection of all ordinates into one view is called a body plan.

The ordinates

Buttocks

Vertical cross-sections in fore and aft direction are called buttock lines. These cross-sections are parallel to the plane of symmetry of the ship. When the buttocks are projected and drawn into one particular view, the result is called a sheer plan.

Buttock lines


对角线

The diagonals are cross-sections of fore and aft planes that intersect with the water lines and verticals at a certain angle. On the longitudinal plan they show up as straight lines. The curvature of the water lines and buttocks are compared to each other and modified until they are consistent. When this procedure is executed, the results can be checked using the diagonals. The most common diagonal is called the bilge diagonal.

The diagonals

Ship Knowledge, a modern encyclopedia

30

Nowadays the lines plans are being made with the aid of computer- programs that have the possibility to transform the shape of the vessel automatically when modifications in the ship's design require this. When the linesplan is ready, the programs may be used to calculate, among other things, the volume and stability of the ship.

As shown in the lines plan below, both the water lines and the buttocks are drawn in one half of the ship. In the body plan, the frames aft of the midships are drawn on the left side and the fore frames are drawn on the right. The linesplan is drawn on the inside of the skin plating.

The lines plans shown here are of vessels that have underwater bodies

that differ quite dramatically. The reader can tell from these plans that a ship will be slimmer with smaller coefficients, when the water lines, ordinates and l buttocks are more

closely spaced. For instance, a rectangular forecastle has only one water line, one ordinate and one buttock, the coefficients are 1.

A B C D E F G H

8

7| 7

6 6


总长:219,345 [米]

Length over and :212,000 [m]

Moulded breadth :32.240 [m]

5 Draft :12.240 [m] 5

Displacement :59279 [t]

Cb :0.691 [-]

Cp :0.707 [-]

Cm :0.978[-]

LCB :-0,343 [% Lpp]

Xb :102,561 [m]

4| KMtransverse : 14.430 [m]

4

3 3


2|阿拉伯数字

1 Linesplan

Trawler harm Printed: 29-8-2002

A B C D E F G

Last modification: 29-8-200210:59:39 Scale: Fitted


一艘全长 203.5 米的集装箱船的线路图


船舶知识,现代百科全书 31

Lpp =35.000m

Cb =0.565

Volume=896m³

Bmld=10.080m

Cm = 0.908

LCB =2.90 %

Tmld =4.500 m

Cp =0.622

KM =5.13 m


游艇

Lpp = 23.500 m

Cb =0.157

Volume = 92 m³

Bmld = 6.250 m

Cm =0.305

LCB =-3.16 %

Tmld =4.000 m

Cp =0.515

KM = 6.06 m

0.000 5.000 10.000 15.000 20.000 25.000


海岸警卫队船,水下形状有些特殊。

Lpp = 73.200 m

Cb =0.637

Volume =4196 m³

Bmld = 18.000 m

Cm =0.933

LCB = - 0.75 %

Tmld =5.000 m

Cp =0.683

KM = 8.67 m


船舶知识,现代百科全书 32


重型货船,多用途。

Lpp = 134.000 m

Cb = 0.710

Volume=18644m³

Bmld = 28.000 m

Cm = 0.992

LCB = - 2.24 %

20.000 20.000

15.000 15.000

Tmld =7.000 m

Cp =0.715

10.000 10.000

5.000 5.000

KM = 14.46 m

0.000

0.000

Frigate


Lpp = 96.000 米

Cb =0.452


容积 = 1620 m³


Bmld = 11.500 米


厘米= 0.752

LCB =-2.30%

Tmld =3.250m

Cp =0.601

KM = 6.17 m Frigate


附图中使用的缩写:

Lpp = length between perpen- diculars

Cm LCB

= midship section coefficient

Bmld = breadth moulded Cp = prismatic coefficient

Tmld = draught moulded

Volume = volume of the under-

Cb water body, as measured KM

block coefficient or coefficient of fineness

on the water lines, to the

= point of application of the= resultant of all upward forces; longitudinal centre of buoyancy(m).

= Height of meta-centre above the keel (m).


框架外 (m³)。


船舶知识,现代百科全书 33


4. 图纸

Of the many drawings, only the most important ones are mentioned here. In general, the following demands are made:

The general arrangement plan, safety plan, docking plan and capacity plan have to be submitted to the Shipping Inspectorate for approval.

The general arrangement plan, midship section drawing, shell expansion and construction plan ( or sheer plan or working drawing) have to be submitted to the classification bureau for approval.

4.1 General arrangement plan

The general plan roughly depicts the division and arrangement of the ship. The following views are displayed:

-a (SB) side-view of the ship.

- the plan views of the most important decks.

- sometimes cross-sections, or a front and back view are included.

The views and cross-sections mentioned above, display among other things:

- the division into the different compartments ( for example: tanks, engine room, holds)

- location of bulkheads.

- location and arrangement of the superstructures.

- parts of the equipment ( for example: winches, loading gear, bow thruster, lifeboat).

Next to these, some basic data are included in the drawing like: principal dimensions, volumes of the holds, tonnage, dead weight, engine power, speed and class.

Fig: General arrangement plan of a multi-purpose vessel that carries mainly paper, timber products and containers.


总体布置图示例

Ship Knowledge, a modern encyclopedia

34

SHEET:

Ship Knowledge, a modern encyclopedia

35


4.2 船中部分

This cross-section shows one or more athwart cross-sections of the ship. In case of a freighter it is always a cross-section of the hold closest to the midship. Some of the data shows includes:

- principal dimensions

-engine power and speed

- data on classification

-equipment numbers

- maximum longitudinal bending moment.


Web 框架


框架间距 700 毫米


每 2 帧 Web

2


这里显示了同一艘多用途船的船中部部分。


船舶知识,现代百科全书 36


船尾的外壳镀层,P. S.


容器馈线的 Shell 扩展。


4.3 Shell 扩展


为了了解壳板的不同板的成分及其细节(例如船体开口),绘制了壳展开。这张图可以有两种形式。在一个版本中,显示了壳体的真实运动长度;因此,前后方向显示的长度不是壳体的真实长度。这导致了这艘船的形象似乎有些扭曲。另一个版本(如下所示)显示了这艘船的 3D 样视图。


4.4 其他计划


施工计划


这张图描绘了船前和船尾横截面中部 (CL) 和最重要甲板的平面图。有时,图纸还包括水密和其他重要的舱壁。它指示


它们的位置和结构杆件的尺寸(包括板的厚度)。


安全计划


安全计划是一个总体布置计划,上面显示了所有安全装置(例如救生艇、救生筏、逃生路线、灭火器)。


对接计划


停靠计划是总体计划的简化版本。它指示在停靠时船舶应由龙骨块支撑的位置。此外,底部和其他罐塞还显示了可以填充罐的液体类型


容量计划


这也是总体规划的简化版本。所有气瓶和货舱分别标有它们的体积和重心。


这与稳定性和“重量轻”的细节一起构成了进行稳定性计算的基础 通常,此图与载重秤一起使用,该秤提供有关吃水与例如淡水和盐水中位移之间的关系的信息。


5. 各种船舶的重要数据


船东有兴趣尽可能地推广他们的船舶,尤其是他们的船舶可以运输的货物类型。或者换一种说法:他们如何赚钱。下一页的表格包含许多船舶的数据,这些船舶在可以运载的货物类型方面差异很大。缩写和其他信息进行了解释,除非它们已在文本中解释过。


船舶知识,现代百科全书 37

CLASS

S-TYPE


劳埃德 + 100 A1 +LMC UMS LA NAV1(1)


用于重型货物的加固(2)


Ice Class 芬兰语/瑞典语

1A


主要维度

(3)


总长度


168.14 米


模制宽度


25.20/25.30 米


以 SID 表示的货舱高度


14.30 米


下部货舱高度 (TWD)


3 高度 3.30、7.00 或 10.25 米


补间甲板高度为 TWD


3 种高度 9.90、6.20 或 2.95 m


设计草稿


10.00 米


最大夏季选秀


10.65 米

GT


ABT 16,800(4)

NT

abt 6,900


DEADWEIGHT 全部告诉


设计草图


约 18,900/18,275 吨 ( 不含 TWD) (5)


Max Summer Draft (最大夏季选秀)


约 21,150/20,525 公吨( 不含 TWD)

CAPACITY


谷物 = 捆


货舱 014,000 立方英尺400 立方米

(6)


货舱 1179,000 立方英尺5,050 立方米


货舱 2/3662,000 立方英尺18,750 立方米


总计855,000 立方英尺24,200 立方米


如果 TW Een Deck 在货舱中安装了 63,000 立方英尺/1,780 立方米


占地面积


背心


合计 1,625( No 0: 50 m², No 1: 340 m², No 2/3: 1,235 m²)

(7)


补间甲板


总计 1,840 m²( 1 号:425 m²,2/3 号:1,415 m²)


Weather Deck (天气甲板)


合计 2,800 m²( No 0: 50 m², No 1: 425 m², No 2: 685 m², No 3: 650 m²)


AIR CHANGE(基空货舱)


每小时 20 次(8)


容器起收

(9)



单位


478 标准箱


甲板


单位


632 标准箱



单位


1,110 标准箱


最大尺寸


高度可达 9 英尺 6 英寸,宽度可达 2,500 毫米


数量有限的替代尺寸,例如长度 45 英尺


为 reefer connect 提供电源。


高达 800/900 kW

SIDEPORTS


5 个侧移器,每个 16 吨 SWL,每小时 500 吨容量(10)

HATCHES


Weather Deck (天气甲板)


否 0:6.50x 7.50 mno 1:25.60x 17.80/15.20m(11)


编号 2: 38.40 x 17.80m 编号 3:25.60x 20.40m


钢, 端部折叠式


补间甲板


从 1:25.60x17.80/15.20/10.10m 起 2:38.40 x 17.80m


横梁下:4.20x 17.80 m 无 3:25.60x 20.40m


由 18 个钢浮筒组成;


1 个 6.37 x 17.72 米2 个 6.37 x 10.02 米


1 米的 6.37 x 15.12 米5 米的 6.37 x 17.72 米


2 个 3.17 x 17.72 米4 个 6.37 x 20.32 米


2 个 1.50 米 x 20.32 米1 个 4.20 米 17.72 米


隔板/隔层


可拆卸浮筒,在 TEU 间隔下最多 14 个隔间


最大负载

(12)


Weather deck ha tch 盖板


1.75 t/m² 天气载荷,2.00 t/m² 有效载荷


补间甲板 ha tch 封面


1 号货舱: 7.5 吨/平方米, 2 号货舱: 5.5 吨/平方米, 3 号货舱: 5.0 吨/平方米


背心


20.0 吨/平方米


甲板起重机 可组合

(13)


吨/范围


3 个120 mt SWL/14m 和 50 mt SWL/30m


位置


2 x PS(后部和中部)和 1 x SB(向前)


主机


瓦锡兰 16,400 马力/12,060千瓦 艏推进器 1,155 马力/850千瓦(14)


速度


压载


ABT 20.0 节


设计草图


AB T 19.6 节


最大满载


ABT 19.2 节


每天的燃料消耗量


约 45 公吨 IFO 380 cSt


海上无 MDO,除机动外


料斗容量

(15)


中间燃料油


1,700 立方米


船用柴油


180立方米


镇流器容量


7,200 立方米(16)


船舶知识,现代百科全书 38


5.1 杂货船


上图说明


劳氏船级社名称(1)


+100A1 根据该级规则建造并受其监督。


+LMC= 劳埃德机械级。所有机械均按照此分类的规格制造。


UMS= 无人机械空间。机舱不必永久有人值守。


LA= 电梯设备。货物起落架已被批准为分类。


NAV1= 允许进行单个网桥监视控制,尽管 SOLAS 规则仅在有利的情况下允许这样做。


该船已加固以运载重型货物。(2)


1A= 芬兰/瑞典冰级。


货舱高度为 SID 单层货舱高度(无补间甲板)(3)


下层甲板高度为 TWD层货舱高度为补间甲板


补间甲板中的高度 TWD=间甲板中的高度 (tweendecker)。

(4)


自重 = 设计吃水时的自重。约 18900/18275 公吨(5)


(不包括/包括补间甲板)。


容量 = 谷物 = 捆。由于货舱是箱形的,因此散装货物的总 m³ 等于 ((6)


普通货物的总 m³。


Cbft= 立方英尺。


如果所有补间甲板都安装在货舱中,货舱的容量将减少 63000 立方英尺或 1780 立方米。


占地面积 = 油箱顶部、补间甲板和天气甲板的整体和每个货舱的甲板面积。