function is used in the activation of neurons. Quick back propagation learning algorithm was used for training the ANN. Maximum 5000 iterations were performed for each input set. When the system reach to the minimum error rate which defined by the user, the iterations will be stopped. The defined minimum error rate for this application is 0,001. Only one of the input images was used for testing the system, the rest was performed in training phase. The iteration-MSE graphics of best results for each character data set are shown in Fig 6. The training reaches the minimum error rate in 4457 iterations for the numbers and 1180 iterations for the letters.
功能用于神经元的激活。采用快速反向传播学习算法对ANN进行训练,每个输入集最多进行5000次迭代。当系统达到用户定义的最小错误率时,迭代将停止。此应用程序定义的最小错误率为 0,001。只有一个输入图像用于测试系统,其余的在训练阶段执行。图 6 显示了每个字符数据集的最佳结果的迭代 MSE 图形。训练在数字的 4457 次迭代和字母的 1180 次迭代中达到最小错误率。
Fig. 6. MSE – Iterations graphics of the training process
图 6.MSE – 训练过程的迭代图形
The success rates for the plate region localization (PRL), character segmentation (CS) and character recognition (CR) stages of the proposed system are given in Table 2. As a result, 247 license plates in 259 vehicle image were recognized correctly in this work, so the overall recognition percentage of the system is 95,36%.
表2给出了所提系统的板区定位(PRL)、字符分割(CS)和字符识别(CR)阶段的成功率。结果,在这项工作中,247车辆图像中的259个车牌被正确识别,因此该系统的总体识别率为95,36%。
Table 2. The success rates of the proposed automatic license plate recognition system.
表 2.所提出的自动车牌识别系统的成功率。
Stage 阶段 | Number of Samples 样本数量 | Number of Correct Results 正确结果的数量 | Success Rate (%) 成功率(%) |
PRL | 259 | 255 | 98,45 |
CS | 255 | 252 | 98,82 |
CR | 347 (Letters) + 1022 (Numbers) 347(字母)+ 1022(数字) | 344 (Letters) + 1000 (Numbers) 344(字母)+ 1000(数字) | 98,17 |
References
引用
H. Caner, “FPGA Donanimi Uzerinde Arac Plakasi Tanima Sistemi”, Ms. Thesis, Pages 58-65, Hacettepe Uni., 2006.
H. Caner,“FPGA 硬件上的车牌识别系统”,硕士论文,第 58-65 页,Hacettepe Uni.,2006 年。
S. Ozbay, “Automatic Vehicle Identification by Plate Recognition”, Ms. Thesis, Pages 79-80, GaziantepUni., 2006.
S. Ozbay,“通过车牌识别自动识别车辆”,女士论文,第79-80页,加济安泰普大学,2006年。
G. Yavuz, “Plaka Tanima Sistemi”, Ms. Thesis, Pages 59-60, Sakarya Uni., 2008.
G. Yavuz,“Plaka Tanima Sistemi”,女士论文,第59-60页,萨卡里亚大学,2008年。
B. Yalim, “Turk Sivil Plaka Standartlari Icin Arac Plaka Tanima Sistemi”, Ms. Thesis, Pages 88-91, Gazi Uni., 2008.
B. Yalim,“Turk sivil plaka standartlari icin arac plaka tanima sistemi”,硕士论文,第88-91页,Gazi Uni.,2008年。
I. Irmakci, “Otomatik Arac Plaka Tanima Sistemi”, Ms. Thesis, Pages 75-76, Ege Uni., 2008.
I. Irmakci,“Otomatik Arac Plaka Tanima Sistemi”,女士论文,第75-76页,Ege Uni.,2008年。
K. Bora, “Car Plate Recognition”, Ms. Thesis, Pages 40-41, Atilim Uni., 2009.
K. Bora,“车牌识别”,硕士论文,第 40-41 页,Atilim Uni.,2009 年。
S. Umbaugh, Computer vision and Image processing, Chapter 4, Prentice Hall, New Jersey, 1999.
S. Umbaugh,计算机视觉和图像处理,第 4 章,新泽西州 Prentice Hall,1999 年。
D.H. Ballard, C. M. Brown, Computer Vision, Pages 151-152, Prentice Hall, New Jersey, 1982.
D.H. Ballard, C. M. Brown, Computer Vision, Pages 151-152, Prentice Hall, New Jersey, 1982.
L. Ma, Y. Wang, T. Tan, “Iris recognition based on Multichannel Gabor Filtering”, The 5th Asian Conference on Computer Vision, Australia, 2002.
L. 马, Y. Wang, T. Tan,“基于多通道Gabor滤波的虹膜识别”,第五届亚洲计算机视觉会议,澳大利亚,2002年。
C.M.Bishop, Neural Networks for Pattern Recognition, Oxford Uni. Press, England, 1995.
C.M.Bishop,《用于模式识别的神经网络》,牛津大学出版社,英国,1995年。
Y. Ozbay, B. Karlik, “A fast training back propagation algorithm on windows”, Proceedings of 3rd Int. Symp. Mathematical & Computational Applications, Turkey, 2002, pp 204-210.
Y. Ozbay, B. Karlik, “A fast training back propagation algorithm on windows”, Proceedings of 3rd Int. Symp. Mathematical & Computational Applications, 土耳其, 2002, pp 204-210.