Shopping, traveling, socializing, eating, sleeping, and leisure exercising: the advent of digitalization has permeated virtually every aspect of modern life. This impact extends not only to our everyday routines, but also to high-performance sports across all levels, including high school and university sports. Digitalization has become deeply ingrained in these athletic settings, showcasing its transformative influence on optimizing human performance and pushing the boundaries of athletic achievement. One notable area of athletic development appears to be trailing in terms of digitalization, however, and that is resistance training.
购物、旅行、社交、饮食、睡眠和休闲锻炼:数字化的出现几乎渗透到现代生活的方方面面。这种影响不仅延伸到我们的日常生活,还延伸到各个级别的高水平运动,包括高中和大学运动。数字化已在这些运动环境中根深蒂固,展示了其对优化人类表现和突破运动成就界限的变革性影响。然而,运动发展的一个值得注意的领域似乎在数字化方面落后,那就是阻力训练。
Looking out on the sports field, GPS systems have revolutionized how coaches and sports scientists monitor athletic capacities and performance, offering a vast array of digitalized metrics, from speed and distance to heart rate variability and associated derivatives such as player or training load. Video analysis tools, meanwhile, have become crucial assets by offering a comprehensive perspective on athletes’ actions, opponents’ strategies, and team dynamics. These tools allow coaches to digitally capture, review, and analyze footage from training sessions, scrimmages, and competitive matches with unprecedented detail and precision.
放眼运动场, GPS 系统彻底改变了教练和运动科学家监控运动能力和表现的方式,提供了大量数字化指标,从速度和距离到心率变异性以及相关衍生产品(例如运动员或训练负荷)。与此同时,视频分析工具通过提供对运动员行为、对手策略和团队动态的全面视角,已成为重要资产。这些工具使教练能够以前所未有的细节和精度以数字方式捕捉、查看和分析训练课程、混战和竞技比赛的镜头。
Even traditional pen-and-paper methods like wellness questionnaires have largely shifted to digital platforms. This transition enables real-time insights into athletes’ physical and mental states, offering coaches and support staff quick and useful insights for adjusting training sessions “on the go.”
即使是健康问卷等传统的纸笔方法也已很大程度上转向数字平台。这种转变可以实时洞察运动员的身体和精神状态,为教练和支持人员提供快速、有用的见解,以便“随时随地”调整训练课程。
In weight room settings today, however, resistance training monitoring still predominantly relies on traditional methods supplemented by occasional manual tracking. Coaches and athletes often use pen-and-paper methods or spreadsheets to record “key metrics,” such as sets, reps, loads lifted, and exertion experienced during strength and power training sessions. Additionally, direct observation and feedback from coaches play a vital role in assessing form, technique, and exertion levels.
然而,在当今的举重室环境中,阻力训练监测仍然主要依赖于传统方法,并偶尔辅以手动跟踪。教练和运动员经常使用纸笔方法或电子表格来记录“关键指标”,例如力量和爆发力训练课程中的组数、次数、举起的负荷和用力程度。此外,教练的直接观察和反馈在评估形式、技术和发挥水平方面发挥着至关重要的作用。
While some advancements in technology may be incorporated—such as accelerometers, linear position transducers, and cameras—the core of resistance training monitoring remains rooted in established practices. This reliance on traditional methods highlights an area where further integration of digital tools and innovations could enhance the efficiency and effectiveness of resistance training programs in athletic development.
虽然可能会融入一些技术进步(例如加速度计、线性位置传感器和摄像头),但阻力训练监控的核心仍然植根于既定实践。这种对传统方法的依赖凸显了数字工具和创新的进一步整合可以提高运动发展中阻力训练计划的效率和效果。
Optimizing Resistance Training Monitoring and Prescription With Barbell Velocity
使用杠铃速度优化阻力训练监控和处方
A primary method of digitalizing resistance training in athletic settings is through monitoring barbell velocity. Indeed, using barbell velocity to monitor and prescribe resistance training falls under the umbrella term velocity-based resistance training—a training methodology that is not so novel anymore, with dozens of research articles coming out yearly and showcasing its utility in real-world settings.1
在运动环境中数字化阻力训练的主要方法是通过监测杠铃速度。事实上,使用杠铃速度来监测和规定阻力训练属于基于速度的阻力训练的总称——这种训练方法不再那么新颖了,每年都会有数十篇研究文章发表,展示其在现实环境中的实用性。 1
By utilizing tools such as accelerometers with associated smartphone applications, coaches and athletes can capture detailed data on barbell velocity in real time. This is important, as barbell velocity can be utilized in at least four different ways to optimize performance and help coaches make better-educated training decisions.1
通过利用加速度计等工具以及相关的智能手机应用程序,教练和运动员可以实时捕获杠铃速度的详细数据。这很重要,因为杠铃速度可以以至少四种不同的方式利用来优化表现并帮助教练做出更明智的训练决策。 1
@JukicIvan 表示,杠铃速度至少可以通过四种不同的方式来利用,以优化表现并帮助教练做出更明智的训练决策。Share on X 分享到 X
- By continuously tracking barbell velocity during workouts, coaches can assess athletes’ daily readiness to train. More specifically, fluctuations in movement velocity may indicate variations in fatigue levels or recovery status.1,2 This information enables coaches to adapt training loads and volumes in real time to match individual readiness levels, thereby optimizing training adaptations and minimizing the risk of overtraining or underperformance (i.e., loads are higher or lower than they “should be” on a given day).
通过在训练期间持续跟踪杠铃速度,教练可以评估运动员的日常训练准备情况。更具体地,运动速度的波动可以指示疲劳程度或恢复状态的变化。 1,2这些信息使教练能够实时调整训练负荷和训练量,以匹配个人的准备水平,从而优化训练适应并最大限度地减少过度训练或表现不佳的风险(即负荷高于或低于训练时“应有”的水平)。给定的一天)。 - By providing augmented velocity feedback, athletes can refine their execution of each repetition to maximize training effectiveness. Research has shown that kinetic and kinematic outputs are significantly enhanced with barbell velocity, increasing by approximately 8.4% when feedback is provided during resistance training.3 Acute improvements in motivation, competitiveness, and muscular endurance have been reported to occur with augmented velocity feedback.3
通过提供增强的速度反馈,运动员可以改进每次重复的执行,以最大限度地提高训练效果。研究表明,随着杠铃速度的增加,动力学和运动学输出显着增强,在阻力训练期间提供反馈时,可增加约 8.4%。 3据报道,增强的速度反馈可以显着提高动力、竞争力和肌肉耐力。 3 - Real-time monitoring of barbell velocity provides athletes with objective feedback on their exertion levels during resistance exercises. Movement velocity during resistance training can be used to predict how many repetitions athletes are capable of doing in a given set4,5 and how many repetitions they have left in reserve after completing a set6,7 without asking athletes a single question. This allows for greater control of a training stimulus and, hence, better fatigue management, which can have implications for recovery strategies.
实时监测杠铃速度为运动员提供抗阻训练期间用力水平的客观反馈。阻力训练期间的运动速度可用于预测运动员在给定的4,5组中能够完成多少次重复,以及在完成6,7组后他们还保留多少次重复,而无需询问运动员任何问题。这可以更好地控制训练刺激,从而更好地管理疲劳,这可能会对恢复策略产生影响。 - Tracking barbell velocity in real-time allows coaches to quantify neuromuscular fatigue induced by each set and assess the rate at which fatigue develops during a given workout.8,9 By analyzing changes in velocity over successive repetitions or sets, coaches can identify patterns of fatigue accumulation and adjust training variables accordingly to manage fatigue and optimize performance outcomes. This precise monitoring of neuromuscular fatigue dynamics enhances the effectiveness of resistance training programs, promoting efficient recovery and long-term athletic development.10,11
实时跟踪杠铃速度使教练能够量化每组引起的神经肌肉疲劳,并评估在给定锻炼期间疲劳发生的速度。 8,9通过分析连续重复或组数的速度变化,教练可以识别疲劳累积模式并相应调整训练变量,以管理疲劳并优化表现结果。这种对神经肌肉疲劳动态的精确监测增强了阻力训练计划的有效性,促进有效恢复和长期运动发展。 10,11
With all this data, coaches can make informed decisions regarding training load, volume, and recovery strategies to optimize long-term athletic development while minimizing the risk of unnecessary stress or potential injury. Furthermore, the digitalization inherent in the velocity-based approach to resistance training enables the seamless integration of historical training data. This capability allows coaches to track athletes’ progress over time and tailor training prescriptions accordingly.
有了所有这些数据,教练可以就训练负荷、训练量和恢复策略做出明智的决定,以优化长期运动发展,同时最大限度地减少不必要的压力或潜在伤害的风险。此外,基于速度的阻力训练方法所固有的数字化可以实现历史训练数据的无缝集成。此功能使教练能够跟踪运动员随时间的进步并相应地定制训练处方。
By leveraging digitalization in resistance training monitoring, coaches can enhance the efficiency, effectiveness, and sustainability of training programs, ultimately empowering athletes to realize their full potential.
通过利用阻力训练监控中的数字化,教练可以提高训练计划的效率、效果和可持续性,最终使运动员能够充分发挥潜力。
The Future of Velocity-Based Resistance Training is Versatility
基于速度的阻力训练的未来是多功能性
Despite the well-researched benefits of the velocity-based approach to resistance training and the inherent digitalization it entails, its widespread implementation still lags behind popular technological advancements like GPS systems. There are several reasons why this might be the case.
尽管基于速度的阻力训练方法的好处及其固有的数字化已得到充分研究,但其广泛实施仍然落后于 GPS 系统等流行的技术进步。造成这种情况的原因有多种。
@JukicIvan 表示,尽管基于速度的阻力训练方法具有经过充分研究的好处及其固有的数字化,但其广泛实施仍然落后于流行的技术进步。Share on X 分享到 X
For instance, the suitability of existing velocity-based monitoring devices for a wide range of resistance exercises is a concern. Many devices are designed primarily for barbell movements, limiting their applicability to other types of resistance exercises, such as body-weight exercises or machine-based workouts. Similarly, many velocity-tracking devices focus solely on velocity metrics, which may not be seen as a justifiable purchase. In this regard, having additional features such as barbell path analysis, along with rotation and inclination tracking, could provide coaches with insights into movement mechanics and technique efficiency during resistance exercises.
例如,现有的基于速度的监测设备是否适用于各种阻力练习是一个问题。许多设备主要针对杠铃运动而设计,限制了它们对其他类型阻力练习的适用性,例如自重练习或基于机器的锻炼。同样,许多速度跟踪设备仅关注速度指标,这可能不被视为合理的购买。在这方面,杠铃路径分析等附加功能以及旋转和倾斜跟踪可以帮助教练深入了解阻力练习期间的运动力学和技术效率。
Furthermore, the weight and bulkiness of some devices may impede athletes’ movements or limit their versatility, rendering them impractical for certain training scenarios. Coaches may also hesitate to adopt velocity-based training due to the perceived complexity of integrating yet another piece of technology into their toolbox. This reluctance may stem from the fact that coaches are already utilizing other technological tools, such as optical measurement systems or flywheel machines, each requiring its own software and protocols. Thus, the challenge lies in seamlessly integrating a velocity-based approach to resistance training into existing training methodologies without overwhelming coaches or justifiably disrupting established workflows.
此外,某些设备的重量和体积可能会妨碍运动员的运动或限制其多功能性,从而使其对于某些训练场景来说不切实际。由于将另一项技术集成到他们的工具箱中的复杂性,教练也可能会犹豫是否采用基于速度的训练。这种不情愿可能源于教练已经在使用其他技术工具,例如光学测量系统或飞轮机,每种工具都需要自己的软件和协议。因此,挑战在于如何将基于速度的阻力训练方法无缝集成到现有的训练方法中,而不会让教练不知所措或合理地破坏既定的工作流程。
A solution to these issues can be a versatile device like Enode, an accelerometer-based technology. This compact, wireless device offers comprehensive monitoring capabilities and movement analysis features across a wide range of exercises, including free-weight, body-weight, and machine-based movements. Furthermore, its compatibility with other commonly used modalities of training, such as flywheel machines and jumping exercises, provides coaches with a holistic view of training data regardless of the training modality employed in the weight room.
这些问题的解决方案可以是使用Enode(一种基于加速度计的技术)等多功能设备。这款紧凑的无线设备提供全面的监测功能和运动分析功能,涵盖各种练习,包括自由重量、体重和基于机器的运动。此外,它与其他常用的训练方式(例如飞轮机和跳跃练习)的兼容性,为教练提供了训练数据的整体视图,无论举重室采用何种训练方式。
By consolidating all data streams into a single software platform, coaches can easily monitor and analyze training progress across different exercises and modalities using Enode, facilitating informed decision-making and personalized training interventions. This integrated approach to performance monitoring has the potential to streamline coaching workflows, optimize training outcomes, and foster long-term athlete development. Therefore, the integration of accelerometer-based technology such as Enode in the weight room could represent a significant leap forward in overcoming the obstacles associated with digitalization in resistance training, offering a promising avenue to augment performance monitoring and advance athlete development over time.
通过将所有数据流整合到一个软件平台中,教练可以使用 Enode 轻松监控和分析不同练习和模式的训练进度,从而促进明智的决策和个性化的训练干预。这种综合表现监测方法有可能简化教练工作流程、优化训练结果并促进运动员的长期发展。因此,在举重室中集成 Enode 等基于加速度计的技术可能代表着克服阻力训练数字化相关障碍的重大飞跃,为增强表现监控和促进运动员长期发展提供了一条有前途的途径。
@JukicIvan 表示,通过将所有数据流整合到一个软件平台中,教练可以使用 Enode 轻松监控和分析不同练习和模式的训练进度。Share on X 分享到 X
In considering the overarching trend of monitoring training loads and our increasing reliance on it, particularly through GPS data, it begs the question: are we truly capturing the full spectrum of training stressors, particularly those inherent in resistance training?
在考虑监测训练负荷的总体趋势以及我们对它的日益依赖(特别是通过 GPS 数据)时,这就引出了一个问题:我们是否真正捕获了全方位的训练压力源,特别是阻力训练中固有的压力源?
While GPS technology offers valuable insights into athletes’ external workload, the absence of comprehensive monitoring of resistance training could leave a significant gap in our understanding of the overall training load experienced by athletes. Given the pivotal role of resistance training in many athletic development programs, ensuring proper monitoring of this component is imperative. As such, integrating accelerometer-based technology for comprehensive resistance training monitoring becomes not only desirable but essential for a more holistic and informed approach to athlete management and performance optimization.
虽然 GPS 技术为运动员的外部负荷提供了宝贵的见解,但缺乏对阻力训练的全面监测可能会导致我们对运动员所经历的整体训练负荷的理解存在重大差距。鉴于阻力训练在许多运动发展计划中的关键作用,确保对这一组成部分进行适当的监测势在必行。因此,集成基于加速度计的技术来进行全面的阻力训练监控不仅是可取的,而且对于采用更全面、更明智的方法来进行运动员管理和表现优化来说也是必不可少的。
Since you’re here… 既然你在这里……
…we have a small favor to ask. More people are reading SimpliFaster than ever, and each week we bring you compelling content from coaches, sport scientists, and physiotherapists who are devoted to building better athletes. Please take a moment to share the articles on social media, engage the authors with questions and comments below, and link to articles when appropriate if you have a blog or participate on forums of related topics. — SF
……我们有一个小小的请求。阅读 SimpliFaster 的人比以往任何时候都多,每周我们都会为您带来来自致力于培养更好运动员的教练、运动科学家和物理治疗师的精彩内容。请花点时间在社交媒体上分享文章,让作者提出问题和评论,并在适当的时候链接到文章(如果您有博客或参与相关主题的论坛)。 — SF
References 参考
1. Weakley J, Mann B, Banyard H, McLaren S, Scott T, Garcia-Ramos A. Velocity-based training: From theory to application. Strength & Conditioning Journal. 2021 Apr 1;43(2):31-49.
1. Weakley J、Mann B、Banyard H、McLaren S、Scott T、Garcia-Ramos A。基于速度的训练:从理论到应用。力量与体能杂志。 2021 年 4 月 1 日;43(2):31-49。
2. Banyard HG, Nosaka K, Vernon AD, Haff GG. The reliability of individualized load–velocity profiles. International journal of sports physiology and performance. 2018 Jul 1;13(6):763-9.
2.班亚德 HG、野坂 K、弗农 AD、哈夫 GG。个性化负载速度曲线的可靠性。国际运动生理学和表现杂志。 2018 年 7 月 1 日;13(6):763-9。
3. Weakley J, Cowley N, Schoenfeld BJ, Read DB, Timmins RG, García-Ramos A, McGuckian TB. The Effect of Feedback on Resistance Training Performance and Adaptations: A Systematic Review and Meta-Analysis. Sports Medicine. 2023 Sep;53(9):1789-803.
3. Weakley J、Cowley N、Schoenfeld BJ、Read DB、Timmins RG、García-Ramos A、McGuckian TB。反馈对阻力训练表现和适应的影响:系统回顾和荟萃分析。运动医学。 2023 年 9 月;53(9):1789-803。
4. Miras-Moreno S, Pérez-Castilla A, García-Ramos A. Lifting velocity as a predictor of the maximum number of repetitions that can be performed to failure during the prone bench pull exercise. International Journal of Sports Physiology and Performance. 2022 Jun 14;17(8):1213-21.
4. Miras-Moreno S、Pérez-Castilla A、García-Ramos A。举升速度作为俯卧凳拉练习期间可进行到力竭的最大重复次数的预测因子。国际运动生理学和表现杂志。 2022 年 6 月 14 日;17(8):1213-21。
5. Jukic I, Helms ER, McGuigan MR. The fastest repetition in a set predicts the number of repetitions completed to failure during resistance training: The impact of individual characteristics. Physiology & Behavior. 2023 June 1;265:114158.
5. Jukic I、Helms ER、McGuigan MR。一组中最快的重复次数可以预测阻力训练期间完成至力竭的重复次数:个人特征的影响。生理学与行为。 2023 年 6 月 1 日;265:114158。
6. Jukic I, Prnjak K, Helms ER, McGuigan MR. Modeling the repetitions‐in‐ reserve‐velocity relationship: a valid method for resistance training monitoring and prescription, and fatigue management. Physiological Reports. 2024 Mar;12(5):e15955.
6. Jukic I、Prnjak K、Helms ER、McGuigan MR。模拟储备重复速度关系:阻力训练监测和处方以及疲劳管理的有效方法。生理报告。 2024 年 3 月;12(5):e15955。
7. Pérez-Castilla A, Miras-Moreno S, Weakley J, García-Ramos A. Relationship between the number of repetitions in reserve and lifting velocity during the prone bench pull exercise: an alternative approach to control proximity-to-failure. The Journal of Strength & Conditioning Research. 2023 Aug 1;37(8):1551-8.
7. Pérez-Castilla A、Miras-Moreno S、Weakley J、García-Ramos A。俯卧卧推推力练习中备用重复次数与提升速度之间的关系:控制接近力竭的另一种方法。力量与体能研究杂志。 2023 年 8 月 1 日;37(8):1551-8。
8. Sanchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Medicine and science in sports and exercise. 2011 Sep 1;43(9):1725-34.
8. 桑切斯-梅迪纳 L,冈萨雷斯-巴迪略 JJ。速度损失作为阻力训练期间神经肌肉疲劳的指标。运动和锻炼中的医学和科学。 2011 年 9 月 1 日;43(9):1725-34。
9. Jukic I, Castilla AP, Ramos AG, Van Hooren B, McGuigan MR, Helms ER. The acute and chronic effects of implementing velocity loss thresholds during resistance training: A systematic review, meta-analysis, and critical evaluation of the literature. Sports Medicine. 2023 Jan;53(1):177-214.
9. 尤基奇 I、卡斯蒂利亚 AP、拉莫斯 AG、范霍伦 B、麦奎根 MR、赫尔姆斯 ER。在阻力训练期间实施速度损失阈值的急性和慢性影响:对文献的系统回顾、荟萃分析和批判性评估。运动医学。 2023 年 1 月;53(1):177-214。
10. Pareja-Blanco F, Sánchez-Medina L, Suárez-Arrones L, González-Badillo JJ. Effects of velocity loss during resistance training on performance in professional soccer players. International journal of sports physiology and performance. 2017 Apr 1;12(4):512-9.
10. Pareja-Blanco F、Sánchez-Medina L、Suárez-Arrones L、González-Badillo JJ。阻力训练期间速度损失对职业足球运动员表现的影响。国际运动生理学和表现杂志。 2017 年 4 月 1 日;12(4):512-9。
11. Pareja-Blanco F, Villalba-Fernández A, Cornejo-Daza PJ, Sánchez-Valdepeñas J, González-Badillo JJ. Time course of recovery following resistance exercise with different loading magnitudes and velocity loss in the set. Sports. 2019 Mar 4;7(3):59.
11. 帕雷哈-布兰科 F、比利亚巴-费尔南德斯 A、科尔内霍-达萨 PJ、桑切斯-巴尔德佩尼亚斯 J、冈萨雷斯-巴迪略 JJ。组中不同负荷大小和速度损失的阻力训练后的恢复时间过程。运动的。 2019 年 3 月 4 日;7(3):59。